]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/f2fs/segment.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-focal-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42 shift = 56;
43 #endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49 }
50
51 /*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 int num = 0;
58
59 #if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64 #endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88 }
89
90 /*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101 {
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123 pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131 found:
132 return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137 {
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160 pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168 found:
169 return result - size + __reverse_ffz(tmp);
170 }
171
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 2 * reserved_sections(sbi));
185 }
186
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190 struct inmem_pages *new;
191
192 f2fs_trace_pid(page);
193
194 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 SetPagePrivate(page);
196
197 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
198
199 /* add atomic page indices to the list */
200 new->page = page;
201 INIT_LIST_HEAD(&new->list);
202
203 /* increase reference count with clean state */
204 mutex_lock(&fi->inmem_lock);
205 get_page(page);
206 list_add_tail(&new->list, &fi->inmem_pages);
207 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
208 mutex_unlock(&fi->inmem_lock);
209
210 trace_f2fs_register_inmem_page(page, INMEM);
211 }
212
213 static int __revoke_inmem_pages(struct inode *inode,
214 struct list_head *head, bool drop, bool recover)
215 {
216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
217 struct inmem_pages *cur, *tmp;
218 int err = 0;
219
220 list_for_each_entry_safe(cur, tmp, head, list) {
221 struct page *page = cur->page;
222
223 if (drop)
224 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
225
226 lock_page(page);
227
228 if (recover) {
229 struct dnode_of_data dn;
230 struct node_info ni;
231
232 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
233 retry:
234 set_new_dnode(&dn, inode, NULL, NULL, 0);
235 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
236 if (err) {
237 if (err == -ENOMEM) {
238 congestion_wait(BLK_RW_ASYNC, HZ/50);
239 cond_resched();
240 goto retry;
241 }
242 err = -EAGAIN;
243 goto next;
244 }
245 get_node_info(sbi, dn.nid, &ni);
246 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
247 cur->old_addr, ni.version, true, true);
248 f2fs_put_dnode(&dn);
249 }
250 next:
251 /* we don't need to invalidate this in the sccessful status */
252 if (drop || recover)
253 ClearPageUptodate(page);
254 set_page_private(page, 0);
255 ClearPagePrivate(page);
256 f2fs_put_page(page, 1);
257
258 list_del(&cur->list);
259 kmem_cache_free(inmem_entry_slab, cur);
260 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
261 }
262 return err;
263 }
264
265 void drop_inmem_pages(struct inode *inode)
266 {
267 struct f2fs_inode_info *fi = F2FS_I(inode);
268
269 mutex_lock(&fi->inmem_lock);
270 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
271 mutex_unlock(&fi->inmem_lock);
272
273 clear_inode_flag(inode, FI_ATOMIC_FILE);
274 clear_inode_flag(inode, FI_HOT_DATA);
275 stat_dec_atomic_write(inode);
276 }
277
278 void drop_inmem_page(struct inode *inode, struct page *page)
279 {
280 struct f2fs_inode_info *fi = F2FS_I(inode);
281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
282 struct list_head *head = &fi->inmem_pages;
283 struct inmem_pages *cur = NULL;
284
285 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
286
287 mutex_lock(&fi->inmem_lock);
288 list_for_each_entry(cur, head, list) {
289 if (cur->page == page)
290 break;
291 }
292
293 f2fs_bug_on(sbi, !cur || cur->page != page);
294 list_del(&cur->list);
295 mutex_unlock(&fi->inmem_lock);
296
297 dec_page_count(sbi, F2FS_INMEM_PAGES);
298 kmem_cache_free(inmem_entry_slab, cur);
299
300 ClearPageUptodate(page);
301 set_page_private(page, 0);
302 ClearPagePrivate(page);
303 f2fs_put_page(page, 0);
304
305 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
306 }
307
308 static int __commit_inmem_pages(struct inode *inode,
309 struct list_head *revoke_list)
310 {
311 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
312 struct f2fs_inode_info *fi = F2FS_I(inode);
313 struct inmem_pages *cur, *tmp;
314 struct f2fs_io_info fio = {
315 .sbi = sbi,
316 .type = DATA,
317 .op = REQ_OP_WRITE,
318 .op_flags = REQ_SYNC | REQ_PRIO,
319 .io_type = FS_DATA_IO,
320 };
321 pgoff_t last_idx = ULONG_MAX;
322 int err = 0;
323
324 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
325 struct page *page = cur->page;
326
327 lock_page(page);
328 if (page->mapping == inode->i_mapping) {
329 trace_f2fs_commit_inmem_page(page, INMEM);
330
331 set_page_dirty(page);
332 f2fs_wait_on_page_writeback(page, DATA, true);
333 if (clear_page_dirty_for_io(page)) {
334 inode_dec_dirty_pages(inode);
335 remove_dirty_inode(inode);
336 }
337 retry:
338 fio.page = page;
339 fio.old_blkaddr = NULL_ADDR;
340 fio.encrypted_page = NULL;
341 fio.need_lock = LOCK_DONE;
342 err = do_write_data_page(&fio);
343 if (err) {
344 if (err == -ENOMEM) {
345 congestion_wait(BLK_RW_ASYNC, HZ/50);
346 cond_resched();
347 goto retry;
348 }
349 unlock_page(page);
350 break;
351 }
352 /* record old blkaddr for revoking */
353 cur->old_addr = fio.old_blkaddr;
354 last_idx = page->index;
355 }
356 unlock_page(page);
357 list_move_tail(&cur->list, revoke_list);
358 }
359
360 if (last_idx != ULONG_MAX)
361 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
362
363 if (!err)
364 __revoke_inmem_pages(inode, revoke_list, false, false);
365
366 return err;
367 }
368
369 int commit_inmem_pages(struct inode *inode)
370 {
371 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
372 struct f2fs_inode_info *fi = F2FS_I(inode);
373 struct list_head revoke_list;
374 int err;
375
376 INIT_LIST_HEAD(&revoke_list);
377 f2fs_balance_fs(sbi, true);
378 f2fs_lock_op(sbi);
379
380 set_inode_flag(inode, FI_ATOMIC_COMMIT);
381
382 mutex_lock(&fi->inmem_lock);
383 err = __commit_inmem_pages(inode, &revoke_list);
384 if (err) {
385 int ret;
386 /*
387 * try to revoke all committed pages, but still we could fail
388 * due to no memory or other reason, if that happened, EAGAIN
389 * will be returned, which means in such case, transaction is
390 * already not integrity, caller should use journal to do the
391 * recovery or rewrite & commit last transaction. For other
392 * error number, revoking was done by filesystem itself.
393 */
394 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
395 if (ret)
396 err = ret;
397
398 /* drop all uncommitted pages */
399 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
400 }
401 mutex_unlock(&fi->inmem_lock);
402
403 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
404
405 f2fs_unlock_op(sbi);
406 return err;
407 }
408
409 /*
410 * This function balances dirty node and dentry pages.
411 * In addition, it controls garbage collection.
412 */
413 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
414 {
415 #ifdef CONFIG_F2FS_FAULT_INJECTION
416 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
417 f2fs_show_injection_info(FAULT_CHECKPOINT);
418 f2fs_stop_checkpoint(sbi, false);
419 }
420 #endif
421
422 /* balance_fs_bg is able to be pending */
423 if (need && excess_cached_nats(sbi))
424 f2fs_balance_fs_bg(sbi);
425
426 /*
427 * We should do GC or end up with checkpoint, if there are so many dirty
428 * dir/node pages without enough free segments.
429 */
430 if (has_not_enough_free_secs(sbi, 0, 0)) {
431 mutex_lock(&sbi->gc_mutex);
432 f2fs_gc(sbi, false, false, NULL_SEGNO);
433 }
434 }
435
436 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
437 {
438 /* try to shrink extent cache when there is no enough memory */
439 if (!available_free_memory(sbi, EXTENT_CACHE))
440 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
441
442 /* check the # of cached NAT entries */
443 if (!available_free_memory(sbi, NAT_ENTRIES))
444 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
445
446 if (!available_free_memory(sbi, FREE_NIDS))
447 try_to_free_nids(sbi, MAX_FREE_NIDS);
448 else
449 build_free_nids(sbi, false, false);
450
451 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
452 return;
453
454 /* checkpoint is the only way to shrink partial cached entries */
455 if (!available_free_memory(sbi, NAT_ENTRIES) ||
456 !available_free_memory(sbi, INO_ENTRIES) ||
457 excess_prefree_segs(sbi) ||
458 excess_dirty_nats(sbi) ||
459 f2fs_time_over(sbi, CP_TIME)) {
460 if (test_opt(sbi, DATA_FLUSH)) {
461 struct blk_plug plug;
462
463 blk_start_plug(&plug);
464 sync_dirty_inodes(sbi, FILE_INODE);
465 blk_finish_plug(&plug);
466 }
467 f2fs_sync_fs(sbi->sb, true);
468 stat_inc_bg_cp_count(sbi->stat_info);
469 }
470 }
471
472 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
473 struct block_device *bdev)
474 {
475 struct bio *bio = f2fs_bio_alloc(0);
476 int ret;
477
478 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
479 bio_set_dev(bio, bdev);
480 ret = submit_bio_wait(bio);
481 bio_put(bio);
482
483 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
484 test_opt(sbi, FLUSH_MERGE), ret);
485 return ret;
486 }
487
488 static int submit_flush_wait(struct f2fs_sb_info *sbi)
489 {
490 int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
491 int i;
492
493 if (!sbi->s_ndevs || ret)
494 return ret;
495
496 for (i = 1; i < sbi->s_ndevs; i++) {
497 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
498 if (ret)
499 break;
500 }
501 return ret;
502 }
503
504 static int issue_flush_thread(void *data)
505 {
506 struct f2fs_sb_info *sbi = data;
507 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
508 wait_queue_head_t *q = &fcc->flush_wait_queue;
509 repeat:
510 if (kthread_should_stop())
511 return 0;
512
513 sb_start_intwrite(sbi->sb);
514
515 if (!llist_empty(&fcc->issue_list)) {
516 struct flush_cmd *cmd, *next;
517 int ret;
518
519 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
520 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
521
522 ret = submit_flush_wait(sbi);
523 atomic_inc(&fcc->issued_flush);
524
525 llist_for_each_entry_safe(cmd, next,
526 fcc->dispatch_list, llnode) {
527 cmd->ret = ret;
528 complete(&cmd->wait);
529 }
530 fcc->dispatch_list = NULL;
531 }
532
533 sb_end_intwrite(sbi->sb);
534
535 wait_event_interruptible(*q,
536 kthread_should_stop() || !llist_empty(&fcc->issue_list));
537 goto repeat;
538 }
539
540 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
541 {
542 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
543 struct flush_cmd cmd;
544 int ret;
545
546 if (test_opt(sbi, NOBARRIER))
547 return 0;
548
549 if (!test_opt(sbi, FLUSH_MERGE)) {
550 ret = submit_flush_wait(sbi);
551 atomic_inc(&fcc->issued_flush);
552 return ret;
553 }
554
555 if (atomic_inc_return(&fcc->issing_flush) == 1) {
556 ret = submit_flush_wait(sbi);
557 atomic_dec(&fcc->issing_flush);
558
559 atomic_inc(&fcc->issued_flush);
560 return ret;
561 }
562
563 init_completion(&cmd.wait);
564
565 llist_add(&cmd.llnode, &fcc->issue_list);
566
567 /* update issue_list before we wake up issue_flush thread */
568 smp_mb();
569
570 if (waitqueue_active(&fcc->flush_wait_queue))
571 wake_up(&fcc->flush_wait_queue);
572
573 if (fcc->f2fs_issue_flush) {
574 wait_for_completion(&cmd.wait);
575 atomic_dec(&fcc->issing_flush);
576 } else {
577 struct llist_node *list;
578
579 list = llist_del_all(&fcc->issue_list);
580 if (!list) {
581 wait_for_completion(&cmd.wait);
582 atomic_dec(&fcc->issing_flush);
583 } else {
584 struct flush_cmd *tmp, *next;
585
586 ret = submit_flush_wait(sbi);
587
588 llist_for_each_entry_safe(tmp, next, list, llnode) {
589 if (tmp == &cmd) {
590 cmd.ret = ret;
591 atomic_dec(&fcc->issing_flush);
592 continue;
593 }
594 tmp->ret = ret;
595 complete(&tmp->wait);
596 }
597 }
598 }
599
600 return cmd.ret;
601 }
602
603 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
604 {
605 dev_t dev = sbi->sb->s_bdev->bd_dev;
606 struct flush_cmd_control *fcc;
607 int err = 0;
608
609 if (SM_I(sbi)->fcc_info) {
610 fcc = SM_I(sbi)->fcc_info;
611 if (fcc->f2fs_issue_flush)
612 return err;
613 goto init_thread;
614 }
615
616 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
617 if (!fcc)
618 return -ENOMEM;
619 atomic_set(&fcc->issued_flush, 0);
620 atomic_set(&fcc->issing_flush, 0);
621 init_waitqueue_head(&fcc->flush_wait_queue);
622 init_llist_head(&fcc->issue_list);
623 SM_I(sbi)->fcc_info = fcc;
624 if (!test_opt(sbi, FLUSH_MERGE))
625 return err;
626
627 init_thread:
628 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
629 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
630 if (IS_ERR(fcc->f2fs_issue_flush)) {
631 err = PTR_ERR(fcc->f2fs_issue_flush);
632 kfree(fcc);
633 SM_I(sbi)->fcc_info = NULL;
634 return err;
635 }
636
637 return err;
638 }
639
640 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
641 {
642 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
643
644 if (fcc && fcc->f2fs_issue_flush) {
645 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
646
647 fcc->f2fs_issue_flush = NULL;
648 kthread_stop(flush_thread);
649 }
650 if (free) {
651 kfree(fcc);
652 SM_I(sbi)->fcc_info = NULL;
653 }
654 }
655
656 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
657 enum dirty_type dirty_type)
658 {
659 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
660
661 /* need not be added */
662 if (IS_CURSEG(sbi, segno))
663 return;
664
665 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
666 dirty_i->nr_dirty[dirty_type]++;
667
668 if (dirty_type == DIRTY) {
669 struct seg_entry *sentry = get_seg_entry(sbi, segno);
670 enum dirty_type t = sentry->type;
671
672 if (unlikely(t >= DIRTY)) {
673 f2fs_bug_on(sbi, 1);
674 return;
675 }
676 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
677 dirty_i->nr_dirty[t]++;
678 }
679 }
680
681 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
682 enum dirty_type dirty_type)
683 {
684 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
685
686 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
687 dirty_i->nr_dirty[dirty_type]--;
688
689 if (dirty_type == DIRTY) {
690 struct seg_entry *sentry = get_seg_entry(sbi, segno);
691 enum dirty_type t = sentry->type;
692
693 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
694 dirty_i->nr_dirty[t]--;
695
696 if (get_valid_blocks(sbi, segno, true) == 0)
697 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
698 dirty_i->victim_secmap);
699 }
700 }
701
702 /*
703 * Should not occur error such as -ENOMEM.
704 * Adding dirty entry into seglist is not critical operation.
705 * If a given segment is one of current working segments, it won't be added.
706 */
707 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
708 {
709 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
710 unsigned short valid_blocks;
711
712 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
713 return;
714
715 mutex_lock(&dirty_i->seglist_lock);
716
717 valid_blocks = get_valid_blocks(sbi, segno, false);
718
719 if (valid_blocks == 0) {
720 __locate_dirty_segment(sbi, segno, PRE);
721 __remove_dirty_segment(sbi, segno, DIRTY);
722 } else if (valid_blocks < sbi->blocks_per_seg) {
723 __locate_dirty_segment(sbi, segno, DIRTY);
724 } else {
725 /* Recovery routine with SSR needs this */
726 __remove_dirty_segment(sbi, segno, DIRTY);
727 }
728
729 mutex_unlock(&dirty_i->seglist_lock);
730 }
731
732 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
733 struct block_device *bdev, block_t lstart,
734 block_t start, block_t len)
735 {
736 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
737 struct list_head *pend_list;
738 struct discard_cmd *dc;
739
740 f2fs_bug_on(sbi, !len);
741
742 pend_list = &dcc->pend_list[plist_idx(len)];
743
744 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
745 INIT_LIST_HEAD(&dc->list);
746 dc->bdev = bdev;
747 dc->lstart = lstart;
748 dc->start = start;
749 dc->len = len;
750 dc->ref = 0;
751 dc->state = D_PREP;
752 dc->error = 0;
753 init_completion(&dc->wait);
754 list_add_tail(&dc->list, pend_list);
755 atomic_inc(&dcc->discard_cmd_cnt);
756 dcc->undiscard_blks += len;
757
758 return dc;
759 }
760
761 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
762 struct block_device *bdev, block_t lstart,
763 block_t start, block_t len,
764 struct rb_node *parent, struct rb_node **p)
765 {
766 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
767 struct discard_cmd *dc;
768
769 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
770
771 rb_link_node(&dc->rb_node, parent, p);
772 rb_insert_color(&dc->rb_node, &dcc->root);
773
774 return dc;
775 }
776
777 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
778 struct discard_cmd *dc)
779 {
780 if (dc->state == D_DONE)
781 atomic_dec(&dcc->issing_discard);
782
783 list_del(&dc->list);
784 rb_erase(&dc->rb_node, &dcc->root);
785 dcc->undiscard_blks -= dc->len;
786
787 kmem_cache_free(discard_cmd_slab, dc);
788
789 atomic_dec(&dcc->discard_cmd_cnt);
790 }
791
792 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
793 struct discard_cmd *dc)
794 {
795 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
796
797 f2fs_bug_on(sbi, dc->ref);
798
799 if (dc->error == -EOPNOTSUPP)
800 dc->error = 0;
801
802 if (dc->error)
803 f2fs_msg(sbi->sb, KERN_INFO,
804 "Issue discard(%u, %u, %u) failed, ret: %d",
805 dc->lstart, dc->start, dc->len, dc->error);
806 __detach_discard_cmd(dcc, dc);
807 }
808
809 static void f2fs_submit_discard_endio(struct bio *bio)
810 {
811 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
812
813 dc->error = blk_status_to_errno(bio->bi_status);
814 dc->state = D_DONE;
815 complete_all(&dc->wait);
816 bio_put(bio);
817 }
818
819 void __check_sit_bitmap(struct f2fs_sb_info *sbi,
820 block_t start, block_t end)
821 {
822 #ifdef CONFIG_F2FS_CHECK_FS
823 struct seg_entry *sentry;
824 unsigned int segno;
825 block_t blk = start;
826 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
827 unsigned long *map;
828
829 while (blk < end) {
830 segno = GET_SEGNO(sbi, blk);
831 sentry = get_seg_entry(sbi, segno);
832 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
833
834 if (end < START_BLOCK(sbi, segno + 1))
835 size = GET_BLKOFF_FROM_SEG0(sbi, end);
836 else
837 size = max_blocks;
838 map = (unsigned long *)(sentry->cur_valid_map);
839 offset = __find_rev_next_bit(map, size, offset);
840 f2fs_bug_on(sbi, offset != size);
841 blk = START_BLOCK(sbi, segno + 1);
842 }
843 #endif
844 }
845
846 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
847 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
848 struct discard_cmd *dc)
849 {
850 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
851 struct bio *bio = NULL;
852
853 if (dc->state != D_PREP)
854 return;
855
856 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
857
858 dc->error = __blkdev_issue_discard(dc->bdev,
859 SECTOR_FROM_BLOCK(dc->start),
860 SECTOR_FROM_BLOCK(dc->len),
861 GFP_NOFS, 0, &bio);
862 if (!dc->error) {
863 /* should keep before submission to avoid D_DONE right away */
864 dc->state = D_SUBMIT;
865 atomic_inc(&dcc->issued_discard);
866 atomic_inc(&dcc->issing_discard);
867 if (bio) {
868 bio->bi_private = dc;
869 bio->bi_end_io = f2fs_submit_discard_endio;
870 bio->bi_opf |= REQ_SYNC;
871 submit_bio(bio);
872 list_move_tail(&dc->list, &dcc->wait_list);
873 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
874
875 f2fs_update_iostat(sbi, FS_DISCARD, 1);
876 }
877 } else {
878 __remove_discard_cmd(sbi, dc);
879 }
880 }
881
882 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
883 struct block_device *bdev, block_t lstart,
884 block_t start, block_t len,
885 struct rb_node **insert_p,
886 struct rb_node *insert_parent)
887 {
888 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
889 struct rb_node **p = &dcc->root.rb_node;
890 struct rb_node *parent = NULL;
891 struct discard_cmd *dc = NULL;
892
893 if (insert_p && insert_parent) {
894 parent = insert_parent;
895 p = insert_p;
896 goto do_insert;
897 }
898
899 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
900 do_insert:
901 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
902 if (!dc)
903 return NULL;
904
905 return dc;
906 }
907
908 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
909 struct discard_cmd *dc)
910 {
911 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
912 }
913
914 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
915 struct discard_cmd *dc, block_t blkaddr)
916 {
917 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
918 struct discard_info di = dc->di;
919 bool modified = false;
920
921 if (dc->state == D_DONE || dc->len == 1) {
922 __remove_discard_cmd(sbi, dc);
923 return;
924 }
925
926 dcc->undiscard_blks -= di.len;
927
928 if (blkaddr > di.lstart) {
929 dc->len = blkaddr - dc->lstart;
930 dcc->undiscard_blks += dc->len;
931 __relocate_discard_cmd(dcc, dc);
932 modified = true;
933 }
934
935 if (blkaddr < di.lstart + di.len - 1) {
936 if (modified) {
937 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
938 di.start + blkaddr + 1 - di.lstart,
939 di.lstart + di.len - 1 - blkaddr,
940 NULL, NULL);
941 } else {
942 dc->lstart++;
943 dc->len--;
944 dc->start++;
945 dcc->undiscard_blks += dc->len;
946 __relocate_discard_cmd(dcc, dc);
947 }
948 }
949 }
950
951 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
952 struct block_device *bdev, block_t lstart,
953 block_t start, block_t len)
954 {
955 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
956 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
957 struct discard_cmd *dc;
958 struct discard_info di = {0};
959 struct rb_node **insert_p = NULL, *insert_parent = NULL;
960 block_t end = lstart + len;
961
962 mutex_lock(&dcc->cmd_lock);
963
964 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
965 NULL, lstart,
966 (struct rb_entry **)&prev_dc,
967 (struct rb_entry **)&next_dc,
968 &insert_p, &insert_parent, true);
969 if (dc)
970 prev_dc = dc;
971
972 if (!prev_dc) {
973 di.lstart = lstart;
974 di.len = next_dc ? next_dc->lstart - lstart : len;
975 di.len = min(di.len, len);
976 di.start = start;
977 }
978
979 while (1) {
980 struct rb_node *node;
981 bool merged = false;
982 struct discard_cmd *tdc = NULL;
983
984 if (prev_dc) {
985 di.lstart = prev_dc->lstart + prev_dc->len;
986 if (di.lstart < lstart)
987 di.lstart = lstart;
988 if (di.lstart >= end)
989 break;
990
991 if (!next_dc || next_dc->lstart > end)
992 di.len = end - di.lstart;
993 else
994 di.len = next_dc->lstart - di.lstart;
995 di.start = start + di.lstart - lstart;
996 }
997
998 if (!di.len)
999 goto next;
1000
1001 if (prev_dc && prev_dc->state == D_PREP &&
1002 prev_dc->bdev == bdev &&
1003 __is_discard_back_mergeable(&di, &prev_dc->di)) {
1004 prev_dc->di.len += di.len;
1005 dcc->undiscard_blks += di.len;
1006 __relocate_discard_cmd(dcc, prev_dc);
1007 di = prev_dc->di;
1008 tdc = prev_dc;
1009 merged = true;
1010 }
1011
1012 if (next_dc && next_dc->state == D_PREP &&
1013 next_dc->bdev == bdev &&
1014 __is_discard_front_mergeable(&di, &next_dc->di)) {
1015 next_dc->di.lstart = di.lstart;
1016 next_dc->di.len += di.len;
1017 next_dc->di.start = di.start;
1018 dcc->undiscard_blks += di.len;
1019 __relocate_discard_cmd(dcc, next_dc);
1020 if (tdc)
1021 __remove_discard_cmd(sbi, tdc);
1022 merged = true;
1023 }
1024
1025 if (!merged) {
1026 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1027 di.len, NULL, NULL);
1028 }
1029 next:
1030 prev_dc = next_dc;
1031 if (!prev_dc)
1032 break;
1033
1034 node = rb_next(&prev_dc->rb_node);
1035 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1036 }
1037
1038 mutex_unlock(&dcc->cmd_lock);
1039 }
1040
1041 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1042 struct block_device *bdev, block_t blkstart, block_t blklen)
1043 {
1044 block_t lblkstart = blkstart;
1045
1046 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1047
1048 if (sbi->s_ndevs) {
1049 int devi = f2fs_target_device_index(sbi, blkstart);
1050
1051 blkstart -= FDEV(devi).start_blk;
1052 }
1053 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1054 return 0;
1055 }
1056
1057 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
1058 {
1059 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1060 struct list_head *pend_list;
1061 struct discard_cmd *dc, *tmp;
1062 struct blk_plug plug;
1063 int iter = 0, issued = 0;
1064 int i;
1065 bool io_interrupted = false;
1066
1067 mutex_lock(&dcc->cmd_lock);
1068 f2fs_bug_on(sbi,
1069 !__check_rb_tree_consistence(sbi, &dcc->root));
1070 blk_start_plug(&plug);
1071 for (i = MAX_PLIST_NUM - 1;
1072 i >= 0 && plist_issue(dcc->pend_list_tag[i]); i--) {
1073 pend_list = &dcc->pend_list[i];
1074 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1075 f2fs_bug_on(sbi, dc->state != D_PREP);
1076
1077 /* Hurry up to finish fstrim */
1078 if (dcc->pend_list_tag[i] & P_TRIM) {
1079 __submit_discard_cmd(sbi, dc);
1080 issued++;
1081
1082 if (fatal_signal_pending(current))
1083 break;
1084 continue;
1085 }
1086
1087 if (!issue_cond) {
1088 __submit_discard_cmd(sbi, dc);
1089 issued++;
1090 continue;
1091 }
1092
1093 if (is_idle(sbi)) {
1094 __submit_discard_cmd(sbi, dc);
1095 issued++;
1096 } else {
1097 io_interrupted = true;
1098 }
1099
1100 if (++iter >= DISCARD_ISSUE_RATE)
1101 goto out;
1102 }
1103 if (list_empty(pend_list) && dcc->pend_list_tag[i] & P_TRIM)
1104 dcc->pend_list_tag[i] &= (~P_TRIM);
1105 }
1106 out:
1107 blk_finish_plug(&plug);
1108 mutex_unlock(&dcc->cmd_lock);
1109
1110 if (!issued && io_interrupted)
1111 issued = -1;
1112
1113 return issued;
1114 }
1115
1116 static void __drop_discard_cmd(struct f2fs_sb_info *sbi)
1117 {
1118 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1119 struct list_head *pend_list;
1120 struct discard_cmd *dc, *tmp;
1121 int i;
1122
1123 mutex_lock(&dcc->cmd_lock);
1124 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1125 pend_list = &dcc->pend_list[i];
1126 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1127 f2fs_bug_on(sbi, dc->state != D_PREP);
1128 __remove_discard_cmd(sbi, dc);
1129 }
1130 }
1131 mutex_unlock(&dcc->cmd_lock);
1132 }
1133
1134 static void __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1135 struct discard_cmd *dc)
1136 {
1137 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138
1139 wait_for_completion_io(&dc->wait);
1140 mutex_lock(&dcc->cmd_lock);
1141 f2fs_bug_on(sbi, dc->state != D_DONE);
1142 dc->ref--;
1143 if (!dc->ref)
1144 __remove_discard_cmd(sbi, dc);
1145 mutex_unlock(&dcc->cmd_lock);
1146 }
1147
1148 static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
1149 {
1150 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1151 struct list_head *wait_list = &(dcc->wait_list);
1152 struct discard_cmd *dc, *tmp;
1153 bool need_wait;
1154
1155 next:
1156 need_wait = false;
1157
1158 mutex_lock(&dcc->cmd_lock);
1159 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1160 if (!wait_cond || (dc->state == D_DONE && !dc->ref)) {
1161 wait_for_completion_io(&dc->wait);
1162 __remove_discard_cmd(sbi, dc);
1163 } else {
1164 dc->ref++;
1165 need_wait = true;
1166 break;
1167 }
1168 }
1169 mutex_unlock(&dcc->cmd_lock);
1170
1171 if (need_wait) {
1172 __wait_one_discard_bio(sbi, dc);
1173 goto next;
1174 }
1175 }
1176
1177 /* This should be covered by global mutex, &sit_i->sentry_lock */
1178 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1179 {
1180 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1181 struct discard_cmd *dc;
1182 bool need_wait = false;
1183
1184 mutex_lock(&dcc->cmd_lock);
1185 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1186 if (dc) {
1187 if (dc->state == D_PREP) {
1188 __punch_discard_cmd(sbi, dc, blkaddr);
1189 } else {
1190 dc->ref++;
1191 need_wait = true;
1192 }
1193 }
1194 mutex_unlock(&dcc->cmd_lock);
1195
1196 if (need_wait)
1197 __wait_one_discard_bio(sbi, dc);
1198 }
1199
1200 void stop_discard_thread(struct f2fs_sb_info *sbi)
1201 {
1202 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1203
1204 if (dcc && dcc->f2fs_issue_discard) {
1205 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1206
1207 dcc->f2fs_issue_discard = NULL;
1208 kthread_stop(discard_thread);
1209 }
1210 }
1211
1212 /* This comes from f2fs_put_super and f2fs_trim_fs */
1213 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1214 {
1215 __issue_discard_cmd(sbi, false);
1216 __drop_discard_cmd(sbi);
1217 __wait_discard_cmd(sbi, false);
1218 }
1219
1220 static void mark_discard_range_all(struct f2fs_sb_info *sbi)
1221 {
1222 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1223 int i;
1224
1225 mutex_lock(&dcc->cmd_lock);
1226 for (i = 0; i < MAX_PLIST_NUM; i++)
1227 dcc->pend_list_tag[i] |= P_TRIM;
1228 mutex_unlock(&dcc->cmd_lock);
1229 }
1230
1231 static int issue_discard_thread(void *data)
1232 {
1233 struct f2fs_sb_info *sbi = data;
1234 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1235 wait_queue_head_t *q = &dcc->discard_wait_queue;
1236 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1237 int issued;
1238
1239 set_freezable();
1240
1241 do {
1242 wait_event_interruptible_timeout(*q,
1243 kthread_should_stop() || freezing(current) ||
1244 dcc->discard_wake,
1245 msecs_to_jiffies(wait_ms));
1246 if (try_to_freeze())
1247 continue;
1248 if (kthread_should_stop())
1249 return 0;
1250
1251 if (dcc->discard_wake) {
1252 dcc->discard_wake = 0;
1253 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1254 mark_discard_range_all(sbi);
1255 }
1256
1257 sb_start_intwrite(sbi->sb);
1258
1259 issued = __issue_discard_cmd(sbi, true);
1260 if (issued) {
1261 __wait_discard_cmd(sbi, true);
1262 wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1263 } else {
1264 wait_ms = DEF_MAX_DISCARD_ISSUE_TIME;
1265 }
1266
1267 sb_end_intwrite(sbi->sb);
1268
1269 } while (!kthread_should_stop());
1270 return 0;
1271 }
1272
1273 #ifdef CONFIG_BLK_DEV_ZONED
1274 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1275 struct block_device *bdev, block_t blkstart, block_t blklen)
1276 {
1277 sector_t sector, nr_sects;
1278 block_t lblkstart = blkstart;
1279 int devi = 0;
1280
1281 if (sbi->s_ndevs) {
1282 devi = f2fs_target_device_index(sbi, blkstart);
1283 blkstart -= FDEV(devi).start_blk;
1284 }
1285
1286 /*
1287 * We need to know the type of the zone: for conventional zones,
1288 * use regular discard if the drive supports it. For sequential
1289 * zones, reset the zone write pointer.
1290 */
1291 switch (get_blkz_type(sbi, bdev, blkstart)) {
1292
1293 case BLK_ZONE_TYPE_CONVENTIONAL:
1294 if (!blk_queue_discard(bdev_get_queue(bdev)))
1295 return 0;
1296 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1297 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1298 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1299 sector = SECTOR_FROM_BLOCK(blkstart);
1300 nr_sects = SECTOR_FROM_BLOCK(blklen);
1301
1302 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1303 nr_sects != bdev_zone_sectors(bdev)) {
1304 f2fs_msg(sbi->sb, KERN_INFO,
1305 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1306 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1307 blkstart, blklen);
1308 return -EIO;
1309 }
1310 trace_f2fs_issue_reset_zone(bdev, blkstart);
1311 return blkdev_reset_zones(bdev, sector,
1312 nr_sects, GFP_NOFS);
1313 default:
1314 /* Unknown zone type: broken device ? */
1315 return -EIO;
1316 }
1317 }
1318 #endif
1319
1320 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1321 struct block_device *bdev, block_t blkstart, block_t blklen)
1322 {
1323 #ifdef CONFIG_BLK_DEV_ZONED
1324 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1325 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1326 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1327 #endif
1328 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1329 }
1330
1331 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1332 block_t blkstart, block_t blklen)
1333 {
1334 sector_t start = blkstart, len = 0;
1335 struct block_device *bdev;
1336 struct seg_entry *se;
1337 unsigned int offset;
1338 block_t i;
1339 int err = 0;
1340
1341 bdev = f2fs_target_device(sbi, blkstart, NULL);
1342
1343 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1344 if (i != start) {
1345 struct block_device *bdev2 =
1346 f2fs_target_device(sbi, i, NULL);
1347
1348 if (bdev2 != bdev) {
1349 err = __issue_discard_async(sbi, bdev,
1350 start, len);
1351 if (err)
1352 return err;
1353 bdev = bdev2;
1354 start = i;
1355 len = 0;
1356 }
1357 }
1358
1359 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1360 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1361
1362 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1363 sbi->discard_blks--;
1364 }
1365
1366 if (len)
1367 err = __issue_discard_async(sbi, bdev, start, len);
1368 return err;
1369 }
1370
1371 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1372 bool check_only)
1373 {
1374 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1375 int max_blocks = sbi->blocks_per_seg;
1376 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1377 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1378 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1379 unsigned long *discard_map = (unsigned long *)se->discard_map;
1380 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1381 unsigned int start = 0, end = -1;
1382 bool force = (cpc->reason & CP_DISCARD);
1383 struct discard_entry *de = NULL;
1384 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1385 int i;
1386
1387 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1388 return false;
1389
1390 if (!force) {
1391 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1392 SM_I(sbi)->dcc_info->nr_discards >=
1393 SM_I(sbi)->dcc_info->max_discards)
1394 return false;
1395 }
1396
1397 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1398 for (i = 0; i < entries; i++)
1399 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1400 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1401
1402 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1403 SM_I(sbi)->dcc_info->max_discards) {
1404 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1405 if (start >= max_blocks)
1406 break;
1407
1408 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1409 if (force && start && end != max_blocks
1410 && (end - start) < cpc->trim_minlen)
1411 continue;
1412
1413 if (check_only)
1414 return true;
1415
1416 if (!de) {
1417 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1418 GFP_F2FS_ZERO);
1419 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1420 list_add_tail(&de->list, head);
1421 }
1422
1423 for (i = start; i < end; i++)
1424 __set_bit_le(i, (void *)de->discard_map);
1425
1426 SM_I(sbi)->dcc_info->nr_discards += end - start;
1427 }
1428 return false;
1429 }
1430
1431 void release_discard_addrs(struct f2fs_sb_info *sbi)
1432 {
1433 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1434 struct discard_entry *entry, *this;
1435
1436 /* drop caches */
1437 list_for_each_entry_safe(entry, this, head, list) {
1438 list_del(&entry->list);
1439 kmem_cache_free(discard_entry_slab, entry);
1440 }
1441 }
1442
1443 /*
1444 * Should call clear_prefree_segments after checkpoint is done.
1445 */
1446 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1447 {
1448 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1449 unsigned int segno;
1450
1451 mutex_lock(&dirty_i->seglist_lock);
1452 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1453 __set_test_and_free(sbi, segno);
1454 mutex_unlock(&dirty_i->seglist_lock);
1455 }
1456
1457 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1458 {
1459 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1460 struct list_head *head = &dcc->entry_list;
1461 struct discard_entry *entry, *this;
1462 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1463 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1464 unsigned int start = 0, end = -1;
1465 unsigned int secno, start_segno;
1466 bool force = (cpc->reason & CP_DISCARD);
1467
1468 mutex_lock(&dirty_i->seglist_lock);
1469
1470 while (1) {
1471 int i;
1472 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1473 if (start >= MAIN_SEGS(sbi))
1474 break;
1475 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1476 start + 1);
1477
1478 for (i = start; i < end; i++)
1479 clear_bit(i, prefree_map);
1480
1481 dirty_i->nr_dirty[PRE] -= end - start;
1482
1483 if (!test_opt(sbi, DISCARD))
1484 continue;
1485
1486 if (force && start >= cpc->trim_start &&
1487 (end - 1) <= cpc->trim_end)
1488 continue;
1489
1490 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1491 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1492 (end - start) << sbi->log_blocks_per_seg);
1493 continue;
1494 }
1495 next:
1496 secno = GET_SEC_FROM_SEG(sbi, start);
1497 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1498 if (!IS_CURSEC(sbi, secno) &&
1499 !get_valid_blocks(sbi, start, true))
1500 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1501 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1502
1503 start = start_segno + sbi->segs_per_sec;
1504 if (start < end)
1505 goto next;
1506 else
1507 end = start - 1;
1508 }
1509 mutex_unlock(&dirty_i->seglist_lock);
1510
1511 /* send small discards */
1512 list_for_each_entry_safe(entry, this, head, list) {
1513 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1514 bool is_valid = test_bit_le(0, entry->discard_map);
1515
1516 find_next:
1517 if (is_valid) {
1518 next_pos = find_next_zero_bit_le(entry->discard_map,
1519 sbi->blocks_per_seg, cur_pos);
1520 len = next_pos - cur_pos;
1521
1522 if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1523 (force && len < cpc->trim_minlen))
1524 goto skip;
1525
1526 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1527 len);
1528 cpc->trimmed += len;
1529 total_len += len;
1530 } else {
1531 next_pos = find_next_bit_le(entry->discard_map,
1532 sbi->blocks_per_seg, cur_pos);
1533 }
1534 skip:
1535 cur_pos = next_pos;
1536 is_valid = !is_valid;
1537
1538 if (cur_pos < sbi->blocks_per_seg)
1539 goto find_next;
1540
1541 list_del(&entry->list);
1542 dcc->nr_discards -= total_len;
1543 kmem_cache_free(discard_entry_slab, entry);
1544 }
1545
1546 wake_up_discard_thread(sbi, false);
1547 }
1548
1549 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1550 {
1551 dev_t dev = sbi->sb->s_bdev->bd_dev;
1552 struct discard_cmd_control *dcc;
1553 int err = 0, i;
1554
1555 if (SM_I(sbi)->dcc_info) {
1556 dcc = SM_I(sbi)->dcc_info;
1557 goto init_thread;
1558 }
1559
1560 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1561 if (!dcc)
1562 return -ENOMEM;
1563
1564 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1565 INIT_LIST_HEAD(&dcc->entry_list);
1566 for (i = 0; i < MAX_PLIST_NUM; i++) {
1567 INIT_LIST_HEAD(&dcc->pend_list[i]);
1568 if (i >= dcc->discard_granularity - 1)
1569 dcc->pend_list_tag[i] |= P_ACTIVE;
1570 }
1571 INIT_LIST_HEAD(&dcc->wait_list);
1572 mutex_init(&dcc->cmd_lock);
1573 atomic_set(&dcc->issued_discard, 0);
1574 atomic_set(&dcc->issing_discard, 0);
1575 atomic_set(&dcc->discard_cmd_cnt, 0);
1576 dcc->nr_discards = 0;
1577 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1578 dcc->undiscard_blks = 0;
1579 dcc->root = RB_ROOT;
1580
1581 init_waitqueue_head(&dcc->discard_wait_queue);
1582 SM_I(sbi)->dcc_info = dcc;
1583 init_thread:
1584 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1585 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1586 if (IS_ERR(dcc->f2fs_issue_discard)) {
1587 err = PTR_ERR(dcc->f2fs_issue_discard);
1588 kfree(dcc);
1589 SM_I(sbi)->dcc_info = NULL;
1590 return err;
1591 }
1592
1593 return err;
1594 }
1595
1596 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1597 {
1598 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1599
1600 if (!dcc)
1601 return;
1602
1603 stop_discard_thread(sbi);
1604
1605 kfree(dcc);
1606 SM_I(sbi)->dcc_info = NULL;
1607 }
1608
1609 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1610 {
1611 struct sit_info *sit_i = SIT_I(sbi);
1612
1613 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1614 sit_i->dirty_sentries++;
1615 return false;
1616 }
1617
1618 return true;
1619 }
1620
1621 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1622 unsigned int segno, int modified)
1623 {
1624 struct seg_entry *se = get_seg_entry(sbi, segno);
1625 se->type = type;
1626 if (modified)
1627 __mark_sit_entry_dirty(sbi, segno);
1628 }
1629
1630 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1631 {
1632 struct seg_entry *se;
1633 unsigned int segno, offset;
1634 long int new_vblocks;
1635 bool exist;
1636 #ifdef CONFIG_F2FS_CHECK_FS
1637 bool mir_exist;
1638 #endif
1639
1640 segno = GET_SEGNO(sbi, blkaddr);
1641
1642 se = get_seg_entry(sbi, segno);
1643 new_vblocks = se->valid_blocks + del;
1644 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1645
1646 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1647 (new_vblocks > sbi->blocks_per_seg)));
1648
1649 se->valid_blocks = new_vblocks;
1650 se->mtime = get_mtime(sbi);
1651 SIT_I(sbi)->max_mtime = se->mtime;
1652
1653 /* Update valid block bitmap */
1654 if (del > 0) {
1655 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1656 #ifdef CONFIG_F2FS_CHECK_FS
1657 mir_exist = f2fs_test_and_set_bit(offset,
1658 se->cur_valid_map_mir);
1659 if (unlikely(exist != mir_exist)) {
1660 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1661 "when setting bitmap, blk:%u, old bit:%d",
1662 blkaddr, exist);
1663 f2fs_bug_on(sbi, 1);
1664 }
1665 #endif
1666 if (unlikely(exist)) {
1667 f2fs_msg(sbi->sb, KERN_ERR,
1668 "Bitmap was wrongly set, blk:%u", blkaddr);
1669 f2fs_bug_on(sbi, 1);
1670 se->valid_blocks--;
1671 del = 0;
1672 }
1673
1674 if (f2fs_discard_en(sbi) &&
1675 !f2fs_test_and_set_bit(offset, se->discard_map))
1676 sbi->discard_blks--;
1677
1678 /* don't overwrite by SSR to keep node chain */
1679 if (se->type == CURSEG_WARM_NODE) {
1680 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1681 se->ckpt_valid_blocks++;
1682 }
1683 } else {
1684 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1685 #ifdef CONFIG_F2FS_CHECK_FS
1686 mir_exist = f2fs_test_and_clear_bit(offset,
1687 se->cur_valid_map_mir);
1688 if (unlikely(exist != mir_exist)) {
1689 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1690 "when clearing bitmap, blk:%u, old bit:%d",
1691 blkaddr, exist);
1692 f2fs_bug_on(sbi, 1);
1693 }
1694 #endif
1695 if (unlikely(!exist)) {
1696 f2fs_msg(sbi->sb, KERN_ERR,
1697 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1698 f2fs_bug_on(sbi, 1);
1699 se->valid_blocks++;
1700 del = 0;
1701 }
1702
1703 if (f2fs_discard_en(sbi) &&
1704 f2fs_test_and_clear_bit(offset, se->discard_map))
1705 sbi->discard_blks++;
1706 }
1707 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1708 se->ckpt_valid_blocks += del;
1709
1710 __mark_sit_entry_dirty(sbi, segno);
1711
1712 /* update total number of valid blocks to be written in ckpt area */
1713 SIT_I(sbi)->written_valid_blocks += del;
1714
1715 if (sbi->segs_per_sec > 1)
1716 get_sec_entry(sbi, segno)->valid_blocks += del;
1717 }
1718
1719 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1720 {
1721 update_sit_entry(sbi, new, 1);
1722 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1723 update_sit_entry(sbi, old, -1);
1724
1725 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1726 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1727 }
1728
1729 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1730 {
1731 unsigned int segno = GET_SEGNO(sbi, addr);
1732 struct sit_info *sit_i = SIT_I(sbi);
1733
1734 f2fs_bug_on(sbi, addr == NULL_ADDR);
1735 if (addr == NEW_ADDR)
1736 return;
1737
1738 /* add it into sit main buffer */
1739 mutex_lock(&sit_i->sentry_lock);
1740
1741 update_sit_entry(sbi, addr, -1);
1742
1743 /* add it into dirty seglist */
1744 locate_dirty_segment(sbi, segno);
1745
1746 mutex_unlock(&sit_i->sentry_lock);
1747 }
1748
1749 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1750 {
1751 struct sit_info *sit_i = SIT_I(sbi);
1752 unsigned int segno, offset;
1753 struct seg_entry *se;
1754 bool is_cp = false;
1755
1756 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1757 return true;
1758
1759 mutex_lock(&sit_i->sentry_lock);
1760
1761 segno = GET_SEGNO(sbi, blkaddr);
1762 se = get_seg_entry(sbi, segno);
1763 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1764
1765 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1766 is_cp = true;
1767
1768 mutex_unlock(&sit_i->sentry_lock);
1769
1770 return is_cp;
1771 }
1772
1773 /*
1774 * This function should be resided under the curseg_mutex lock
1775 */
1776 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1777 struct f2fs_summary *sum)
1778 {
1779 struct curseg_info *curseg = CURSEG_I(sbi, type);
1780 void *addr = curseg->sum_blk;
1781 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1782 memcpy(addr, sum, sizeof(struct f2fs_summary));
1783 }
1784
1785 /*
1786 * Calculate the number of current summary pages for writing
1787 */
1788 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1789 {
1790 int valid_sum_count = 0;
1791 int i, sum_in_page;
1792
1793 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1794 if (sbi->ckpt->alloc_type[i] == SSR)
1795 valid_sum_count += sbi->blocks_per_seg;
1796 else {
1797 if (for_ra)
1798 valid_sum_count += le16_to_cpu(
1799 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1800 else
1801 valid_sum_count += curseg_blkoff(sbi, i);
1802 }
1803 }
1804
1805 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1806 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1807 if (valid_sum_count <= sum_in_page)
1808 return 1;
1809 else if ((valid_sum_count - sum_in_page) <=
1810 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1811 return 2;
1812 return 3;
1813 }
1814
1815 /*
1816 * Caller should put this summary page
1817 */
1818 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1819 {
1820 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1821 }
1822
1823 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1824 {
1825 struct page *page = grab_meta_page(sbi, blk_addr);
1826 void *dst = page_address(page);
1827
1828 if (src)
1829 memcpy(dst, src, PAGE_SIZE);
1830 else
1831 memset(dst, 0, PAGE_SIZE);
1832 set_page_dirty(page);
1833 f2fs_put_page(page, 1);
1834 }
1835
1836 static void write_sum_page(struct f2fs_sb_info *sbi,
1837 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1838 {
1839 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1840 }
1841
1842 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1843 int type, block_t blk_addr)
1844 {
1845 struct curseg_info *curseg = CURSEG_I(sbi, type);
1846 struct page *page = grab_meta_page(sbi, blk_addr);
1847 struct f2fs_summary_block *src = curseg->sum_blk;
1848 struct f2fs_summary_block *dst;
1849
1850 dst = (struct f2fs_summary_block *)page_address(page);
1851
1852 mutex_lock(&curseg->curseg_mutex);
1853
1854 down_read(&curseg->journal_rwsem);
1855 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1856 up_read(&curseg->journal_rwsem);
1857
1858 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1859 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1860
1861 mutex_unlock(&curseg->curseg_mutex);
1862
1863 set_page_dirty(page);
1864 f2fs_put_page(page, 1);
1865 }
1866
1867 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1868 {
1869 struct curseg_info *curseg = CURSEG_I(sbi, type);
1870 unsigned int segno = curseg->segno + 1;
1871 struct free_segmap_info *free_i = FREE_I(sbi);
1872
1873 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1874 return !test_bit(segno, free_i->free_segmap);
1875 return 0;
1876 }
1877
1878 /*
1879 * Find a new segment from the free segments bitmap to right order
1880 * This function should be returned with success, otherwise BUG
1881 */
1882 static void get_new_segment(struct f2fs_sb_info *sbi,
1883 unsigned int *newseg, bool new_sec, int dir)
1884 {
1885 struct free_segmap_info *free_i = FREE_I(sbi);
1886 unsigned int segno, secno, zoneno;
1887 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1888 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
1889 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
1890 unsigned int left_start = hint;
1891 bool init = true;
1892 int go_left = 0;
1893 int i;
1894
1895 spin_lock(&free_i->segmap_lock);
1896
1897 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1898 segno = find_next_zero_bit(free_i->free_segmap,
1899 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
1900 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
1901 goto got_it;
1902 }
1903 find_other_zone:
1904 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1905 if (secno >= MAIN_SECS(sbi)) {
1906 if (dir == ALLOC_RIGHT) {
1907 secno = find_next_zero_bit(free_i->free_secmap,
1908 MAIN_SECS(sbi), 0);
1909 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1910 } else {
1911 go_left = 1;
1912 left_start = hint - 1;
1913 }
1914 }
1915 if (go_left == 0)
1916 goto skip_left;
1917
1918 while (test_bit(left_start, free_i->free_secmap)) {
1919 if (left_start > 0) {
1920 left_start--;
1921 continue;
1922 }
1923 left_start = find_next_zero_bit(free_i->free_secmap,
1924 MAIN_SECS(sbi), 0);
1925 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1926 break;
1927 }
1928 secno = left_start;
1929 skip_left:
1930 hint = secno;
1931 segno = GET_SEG_FROM_SEC(sbi, secno);
1932 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
1933
1934 /* give up on finding another zone */
1935 if (!init)
1936 goto got_it;
1937 if (sbi->secs_per_zone == 1)
1938 goto got_it;
1939 if (zoneno == old_zoneno)
1940 goto got_it;
1941 if (dir == ALLOC_LEFT) {
1942 if (!go_left && zoneno + 1 >= total_zones)
1943 goto got_it;
1944 if (go_left && zoneno == 0)
1945 goto got_it;
1946 }
1947 for (i = 0; i < NR_CURSEG_TYPE; i++)
1948 if (CURSEG_I(sbi, i)->zone == zoneno)
1949 break;
1950
1951 if (i < NR_CURSEG_TYPE) {
1952 /* zone is in user, try another */
1953 if (go_left)
1954 hint = zoneno * sbi->secs_per_zone - 1;
1955 else if (zoneno + 1 >= total_zones)
1956 hint = 0;
1957 else
1958 hint = (zoneno + 1) * sbi->secs_per_zone;
1959 init = false;
1960 goto find_other_zone;
1961 }
1962 got_it:
1963 /* set it as dirty segment in free segmap */
1964 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1965 __set_inuse(sbi, segno);
1966 *newseg = segno;
1967 spin_unlock(&free_i->segmap_lock);
1968 }
1969
1970 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1971 {
1972 struct curseg_info *curseg = CURSEG_I(sbi, type);
1973 struct summary_footer *sum_footer;
1974
1975 curseg->segno = curseg->next_segno;
1976 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
1977 curseg->next_blkoff = 0;
1978 curseg->next_segno = NULL_SEGNO;
1979
1980 sum_footer = &(curseg->sum_blk->footer);
1981 memset(sum_footer, 0, sizeof(struct summary_footer));
1982 if (IS_DATASEG(type))
1983 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1984 if (IS_NODESEG(type))
1985 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1986 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1987 }
1988
1989 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
1990 {
1991 /* if segs_per_sec is large than 1, we need to keep original policy. */
1992 if (sbi->segs_per_sec != 1)
1993 return CURSEG_I(sbi, type)->segno;
1994
1995 if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
1996 return 0;
1997
1998 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
1999 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2000 return CURSEG_I(sbi, type)->segno;
2001 }
2002
2003 /*
2004 * Allocate a current working segment.
2005 * This function always allocates a free segment in LFS manner.
2006 */
2007 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2008 {
2009 struct curseg_info *curseg = CURSEG_I(sbi, type);
2010 unsigned int segno = curseg->segno;
2011 int dir = ALLOC_LEFT;
2012
2013 write_sum_page(sbi, curseg->sum_blk,
2014 GET_SUM_BLOCK(sbi, segno));
2015 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2016 dir = ALLOC_RIGHT;
2017
2018 if (test_opt(sbi, NOHEAP))
2019 dir = ALLOC_RIGHT;
2020
2021 segno = __get_next_segno(sbi, type);
2022 get_new_segment(sbi, &segno, new_sec, dir);
2023 curseg->next_segno = segno;
2024 reset_curseg(sbi, type, 1);
2025 curseg->alloc_type = LFS;
2026 }
2027
2028 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2029 struct curseg_info *seg, block_t start)
2030 {
2031 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2032 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2033 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2034 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2035 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2036 int i, pos;
2037
2038 for (i = 0; i < entries; i++)
2039 target_map[i] = ckpt_map[i] | cur_map[i];
2040
2041 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2042
2043 seg->next_blkoff = pos;
2044 }
2045
2046 /*
2047 * If a segment is written by LFS manner, next block offset is just obtained
2048 * by increasing the current block offset. However, if a segment is written by
2049 * SSR manner, next block offset obtained by calling __next_free_blkoff
2050 */
2051 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2052 struct curseg_info *seg)
2053 {
2054 if (seg->alloc_type == SSR)
2055 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2056 else
2057 seg->next_blkoff++;
2058 }
2059
2060 /*
2061 * This function always allocates a used segment(from dirty seglist) by SSR
2062 * manner, so it should recover the existing segment information of valid blocks
2063 */
2064 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2065 {
2066 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2067 struct curseg_info *curseg = CURSEG_I(sbi, type);
2068 unsigned int new_segno = curseg->next_segno;
2069 struct f2fs_summary_block *sum_node;
2070 struct page *sum_page;
2071
2072 write_sum_page(sbi, curseg->sum_blk,
2073 GET_SUM_BLOCK(sbi, curseg->segno));
2074 __set_test_and_inuse(sbi, new_segno);
2075
2076 mutex_lock(&dirty_i->seglist_lock);
2077 __remove_dirty_segment(sbi, new_segno, PRE);
2078 __remove_dirty_segment(sbi, new_segno, DIRTY);
2079 mutex_unlock(&dirty_i->seglist_lock);
2080
2081 reset_curseg(sbi, type, 1);
2082 curseg->alloc_type = SSR;
2083 __next_free_blkoff(sbi, curseg, 0);
2084
2085 sum_page = get_sum_page(sbi, new_segno);
2086 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2087 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2088 f2fs_put_page(sum_page, 1);
2089 }
2090
2091 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2092 {
2093 struct curseg_info *curseg = CURSEG_I(sbi, type);
2094 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2095 unsigned segno = NULL_SEGNO;
2096 int i, cnt;
2097 bool reversed = false;
2098
2099 /* need_SSR() already forces to do this */
2100 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2101 curseg->next_segno = segno;
2102 return 1;
2103 }
2104
2105 /* For node segments, let's do SSR more intensively */
2106 if (IS_NODESEG(type)) {
2107 if (type >= CURSEG_WARM_NODE) {
2108 reversed = true;
2109 i = CURSEG_COLD_NODE;
2110 } else {
2111 i = CURSEG_HOT_NODE;
2112 }
2113 cnt = NR_CURSEG_NODE_TYPE;
2114 } else {
2115 if (type >= CURSEG_WARM_DATA) {
2116 reversed = true;
2117 i = CURSEG_COLD_DATA;
2118 } else {
2119 i = CURSEG_HOT_DATA;
2120 }
2121 cnt = NR_CURSEG_DATA_TYPE;
2122 }
2123
2124 for (; cnt-- > 0; reversed ? i-- : i++) {
2125 if (i == type)
2126 continue;
2127 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2128 curseg->next_segno = segno;
2129 return 1;
2130 }
2131 }
2132 return 0;
2133 }
2134
2135 /*
2136 * flush out current segment and replace it with new segment
2137 * This function should be returned with success, otherwise BUG
2138 */
2139 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2140 int type, bool force)
2141 {
2142 struct curseg_info *curseg = CURSEG_I(sbi, type);
2143
2144 if (force)
2145 new_curseg(sbi, type, true);
2146 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2147 type == CURSEG_WARM_NODE)
2148 new_curseg(sbi, type, false);
2149 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2150 new_curseg(sbi, type, false);
2151 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2152 change_curseg(sbi, type);
2153 else
2154 new_curseg(sbi, type, false);
2155
2156 stat_inc_seg_type(sbi, curseg);
2157 }
2158
2159 void allocate_new_segments(struct f2fs_sb_info *sbi)
2160 {
2161 struct curseg_info *curseg;
2162 unsigned int old_segno;
2163 int i;
2164
2165 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2166 curseg = CURSEG_I(sbi, i);
2167 old_segno = curseg->segno;
2168 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2169 locate_dirty_segment(sbi, old_segno);
2170 }
2171 }
2172
2173 static const struct segment_allocation default_salloc_ops = {
2174 .allocate_segment = allocate_segment_by_default,
2175 };
2176
2177 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2178 {
2179 __u64 trim_start = cpc->trim_start;
2180 bool has_candidate = false;
2181
2182 mutex_lock(&SIT_I(sbi)->sentry_lock);
2183 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2184 if (add_discard_addrs(sbi, cpc, true)) {
2185 has_candidate = true;
2186 break;
2187 }
2188 }
2189 mutex_unlock(&SIT_I(sbi)->sentry_lock);
2190
2191 cpc->trim_start = trim_start;
2192 return has_candidate;
2193 }
2194
2195 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2196 {
2197 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2198 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2199 unsigned int start_segno, end_segno;
2200 struct cp_control cpc;
2201 int err = 0;
2202
2203 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2204 return -EINVAL;
2205
2206 cpc.trimmed = 0;
2207 if (end <= MAIN_BLKADDR(sbi))
2208 goto out;
2209
2210 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2211 f2fs_msg(sbi->sb, KERN_WARNING,
2212 "Found FS corruption, run fsck to fix.");
2213 goto out;
2214 }
2215
2216 /* start/end segment number in main_area */
2217 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2218 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2219 GET_SEGNO(sbi, end);
2220 cpc.reason = CP_DISCARD;
2221 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2222
2223 /* do checkpoint to issue discard commands safely */
2224 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
2225 cpc.trim_start = start_segno;
2226
2227 if (sbi->discard_blks == 0)
2228 break;
2229 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2230 cpc.trim_end = end_segno;
2231 else
2232 cpc.trim_end = min_t(unsigned int,
2233 rounddown(start_segno +
2234 BATCHED_TRIM_SEGMENTS(sbi),
2235 sbi->segs_per_sec) - 1, end_segno);
2236
2237 mutex_lock(&sbi->gc_mutex);
2238 err = write_checkpoint(sbi, &cpc);
2239 mutex_unlock(&sbi->gc_mutex);
2240 if (err)
2241 break;
2242
2243 schedule();
2244 }
2245 /* It's time to issue all the filed discards */
2246 mark_discard_range_all(sbi);
2247 f2fs_wait_discard_bios(sbi);
2248 out:
2249 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
2250 return err;
2251 }
2252
2253 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2254 {
2255 struct curseg_info *curseg = CURSEG_I(sbi, type);
2256 if (curseg->next_blkoff < sbi->blocks_per_seg)
2257 return true;
2258 return false;
2259 }
2260
2261 static int __get_segment_type_2(struct f2fs_io_info *fio)
2262 {
2263 if (fio->type == DATA)
2264 return CURSEG_HOT_DATA;
2265 else
2266 return CURSEG_HOT_NODE;
2267 }
2268
2269 static int __get_segment_type_4(struct f2fs_io_info *fio)
2270 {
2271 if (fio->type == DATA) {
2272 struct inode *inode = fio->page->mapping->host;
2273
2274 if (S_ISDIR(inode->i_mode))
2275 return CURSEG_HOT_DATA;
2276 else
2277 return CURSEG_COLD_DATA;
2278 } else {
2279 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2280 return CURSEG_WARM_NODE;
2281 else
2282 return CURSEG_COLD_NODE;
2283 }
2284 }
2285
2286 static int __get_segment_type_6(struct f2fs_io_info *fio)
2287 {
2288 if (fio->type == DATA) {
2289 struct inode *inode = fio->page->mapping->host;
2290
2291 if (is_cold_data(fio->page) || file_is_cold(inode))
2292 return CURSEG_COLD_DATA;
2293 if (is_inode_flag_set(inode, FI_HOT_DATA))
2294 return CURSEG_HOT_DATA;
2295 return CURSEG_WARM_DATA;
2296 } else {
2297 if (IS_DNODE(fio->page))
2298 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2299 CURSEG_HOT_NODE;
2300 return CURSEG_COLD_NODE;
2301 }
2302 }
2303
2304 static int __get_segment_type(struct f2fs_io_info *fio)
2305 {
2306 int type = 0;
2307
2308 switch (fio->sbi->active_logs) {
2309 case 2:
2310 type = __get_segment_type_2(fio);
2311 break;
2312 case 4:
2313 type = __get_segment_type_4(fio);
2314 break;
2315 case 6:
2316 type = __get_segment_type_6(fio);
2317 break;
2318 default:
2319 f2fs_bug_on(fio->sbi, true);
2320 }
2321
2322 if (IS_HOT(type))
2323 fio->temp = HOT;
2324 else if (IS_WARM(type))
2325 fio->temp = WARM;
2326 else
2327 fio->temp = COLD;
2328 return type;
2329 }
2330
2331 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2332 block_t old_blkaddr, block_t *new_blkaddr,
2333 struct f2fs_summary *sum, int type,
2334 struct f2fs_io_info *fio, bool add_list)
2335 {
2336 struct sit_info *sit_i = SIT_I(sbi);
2337 struct curseg_info *curseg = CURSEG_I(sbi, type);
2338
2339 mutex_lock(&curseg->curseg_mutex);
2340 mutex_lock(&sit_i->sentry_lock);
2341
2342 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2343
2344 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2345
2346 /*
2347 * __add_sum_entry should be resided under the curseg_mutex
2348 * because, this function updates a summary entry in the
2349 * current summary block.
2350 */
2351 __add_sum_entry(sbi, type, sum);
2352
2353 __refresh_next_blkoff(sbi, curseg);
2354
2355 stat_inc_block_count(sbi, curseg);
2356
2357 if (!__has_curseg_space(sbi, type))
2358 sit_i->s_ops->allocate_segment(sbi, type, false);
2359 /*
2360 * SIT information should be updated after segment allocation,
2361 * since we need to keep dirty segments precisely under SSR.
2362 */
2363 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
2364
2365 mutex_unlock(&sit_i->sentry_lock);
2366
2367 if (page && IS_NODESEG(type)) {
2368 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2369
2370 f2fs_inode_chksum_set(sbi, page);
2371 }
2372
2373 if (add_list) {
2374 struct f2fs_bio_info *io;
2375
2376 INIT_LIST_HEAD(&fio->list);
2377 fio->in_list = true;
2378 io = sbi->write_io[fio->type] + fio->temp;
2379 spin_lock(&io->io_lock);
2380 list_add_tail(&fio->list, &io->io_list);
2381 spin_unlock(&io->io_lock);
2382 }
2383
2384 mutex_unlock(&curseg->curseg_mutex);
2385 }
2386
2387 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2388 {
2389 int type = __get_segment_type(fio);
2390 int err;
2391
2392 reallocate:
2393 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2394 &fio->new_blkaddr, sum, type, fio, true);
2395
2396 /* writeout dirty page into bdev */
2397 err = f2fs_submit_page_write(fio);
2398 if (err == -EAGAIN) {
2399 fio->old_blkaddr = fio->new_blkaddr;
2400 goto reallocate;
2401 }
2402 }
2403
2404 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2405 enum iostat_type io_type)
2406 {
2407 struct f2fs_io_info fio = {
2408 .sbi = sbi,
2409 .type = META,
2410 .op = REQ_OP_WRITE,
2411 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2412 .old_blkaddr = page->index,
2413 .new_blkaddr = page->index,
2414 .page = page,
2415 .encrypted_page = NULL,
2416 .in_list = false,
2417 };
2418
2419 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2420 fio.op_flags &= ~REQ_META;
2421
2422 set_page_writeback(page);
2423 f2fs_submit_page_write(&fio);
2424
2425 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2426 }
2427
2428 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2429 {
2430 struct f2fs_summary sum;
2431
2432 set_summary(&sum, nid, 0, 0);
2433 do_write_page(&sum, fio);
2434
2435 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2436 }
2437
2438 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2439 {
2440 struct f2fs_sb_info *sbi = fio->sbi;
2441 struct f2fs_summary sum;
2442 struct node_info ni;
2443
2444 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2445 get_node_info(sbi, dn->nid, &ni);
2446 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2447 do_write_page(&sum, fio);
2448 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2449
2450 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2451 }
2452
2453 int rewrite_data_page(struct f2fs_io_info *fio)
2454 {
2455 int err;
2456
2457 fio->new_blkaddr = fio->old_blkaddr;
2458 stat_inc_inplace_blocks(fio->sbi);
2459
2460 err = f2fs_submit_page_bio(fio);
2461
2462 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2463
2464 return err;
2465 }
2466
2467 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2468 block_t old_blkaddr, block_t new_blkaddr,
2469 bool recover_curseg, bool recover_newaddr)
2470 {
2471 struct sit_info *sit_i = SIT_I(sbi);
2472 struct curseg_info *curseg;
2473 unsigned int segno, old_cursegno;
2474 struct seg_entry *se;
2475 int type;
2476 unsigned short old_blkoff;
2477
2478 segno = GET_SEGNO(sbi, new_blkaddr);
2479 se = get_seg_entry(sbi, segno);
2480 type = se->type;
2481
2482 if (!recover_curseg) {
2483 /* for recovery flow */
2484 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2485 if (old_blkaddr == NULL_ADDR)
2486 type = CURSEG_COLD_DATA;
2487 else
2488 type = CURSEG_WARM_DATA;
2489 }
2490 } else {
2491 if (!IS_CURSEG(sbi, segno))
2492 type = CURSEG_WARM_DATA;
2493 }
2494
2495 curseg = CURSEG_I(sbi, type);
2496
2497 mutex_lock(&curseg->curseg_mutex);
2498 mutex_lock(&sit_i->sentry_lock);
2499
2500 old_cursegno = curseg->segno;
2501 old_blkoff = curseg->next_blkoff;
2502
2503 /* change the current segment */
2504 if (segno != curseg->segno) {
2505 curseg->next_segno = segno;
2506 change_curseg(sbi, type);
2507 }
2508
2509 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2510 __add_sum_entry(sbi, type, sum);
2511
2512 if (!recover_curseg || recover_newaddr)
2513 update_sit_entry(sbi, new_blkaddr, 1);
2514 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2515 update_sit_entry(sbi, old_blkaddr, -1);
2516
2517 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2518 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2519
2520 locate_dirty_segment(sbi, old_cursegno);
2521
2522 if (recover_curseg) {
2523 if (old_cursegno != curseg->segno) {
2524 curseg->next_segno = old_cursegno;
2525 change_curseg(sbi, type);
2526 }
2527 curseg->next_blkoff = old_blkoff;
2528 }
2529
2530 mutex_unlock(&sit_i->sentry_lock);
2531 mutex_unlock(&curseg->curseg_mutex);
2532 }
2533
2534 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2535 block_t old_addr, block_t new_addr,
2536 unsigned char version, bool recover_curseg,
2537 bool recover_newaddr)
2538 {
2539 struct f2fs_summary sum;
2540
2541 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2542
2543 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2544 recover_curseg, recover_newaddr);
2545
2546 f2fs_update_data_blkaddr(dn, new_addr);
2547 }
2548
2549 void f2fs_wait_on_page_writeback(struct page *page,
2550 enum page_type type, bool ordered)
2551 {
2552 if (PageWriteback(page)) {
2553 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2554
2555 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2556 0, page->index, type);
2557 if (ordered)
2558 wait_on_page_writeback(page);
2559 else
2560 wait_for_stable_page(page);
2561 }
2562 }
2563
2564 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2565 {
2566 struct page *cpage;
2567
2568 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2569 return;
2570
2571 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2572 if (cpage) {
2573 f2fs_wait_on_page_writeback(cpage, DATA, true);
2574 f2fs_put_page(cpage, 1);
2575 }
2576 }
2577
2578 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2579 {
2580 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2581 struct curseg_info *seg_i;
2582 unsigned char *kaddr;
2583 struct page *page;
2584 block_t start;
2585 int i, j, offset;
2586
2587 start = start_sum_block(sbi);
2588
2589 page = get_meta_page(sbi, start++);
2590 kaddr = (unsigned char *)page_address(page);
2591
2592 /* Step 1: restore nat cache */
2593 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2594 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2595
2596 /* Step 2: restore sit cache */
2597 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2598 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2599 offset = 2 * SUM_JOURNAL_SIZE;
2600
2601 /* Step 3: restore summary entries */
2602 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2603 unsigned short blk_off;
2604 unsigned int segno;
2605
2606 seg_i = CURSEG_I(sbi, i);
2607 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2608 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2609 seg_i->next_segno = segno;
2610 reset_curseg(sbi, i, 0);
2611 seg_i->alloc_type = ckpt->alloc_type[i];
2612 seg_i->next_blkoff = blk_off;
2613
2614 if (seg_i->alloc_type == SSR)
2615 blk_off = sbi->blocks_per_seg;
2616
2617 for (j = 0; j < blk_off; j++) {
2618 struct f2fs_summary *s;
2619 s = (struct f2fs_summary *)(kaddr + offset);
2620 seg_i->sum_blk->entries[j] = *s;
2621 offset += SUMMARY_SIZE;
2622 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2623 SUM_FOOTER_SIZE)
2624 continue;
2625
2626 f2fs_put_page(page, 1);
2627 page = NULL;
2628
2629 page = get_meta_page(sbi, start++);
2630 kaddr = (unsigned char *)page_address(page);
2631 offset = 0;
2632 }
2633 }
2634 f2fs_put_page(page, 1);
2635 return 0;
2636 }
2637
2638 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2639 {
2640 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2641 struct f2fs_summary_block *sum;
2642 struct curseg_info *curseg;
2643 struct page *new;
2644 unsigned short blk_off;
2645 unsigned int segno = 0;
2646 block_t blk_addr = 0;
2647
2648 /* get segment number and block addr */
2649 if (IS_DATASEG(type)) {
2650 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2651 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2652 CURSEG_HOT_DATA]);
2653 if (__exist_node_summaries(sbi))
2654 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2655 else
2656 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2657 } else {
2658 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2659 CURSEG_HOT_NODE]);
2660 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2661 CURSEG_HOT_NODE]);
2662 if (__exist_node_summaries(sbi))
2663 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2664 type - CURSEG_HOT_NODE);
2665 else
2666 blk_addr = GET_SUM_BLOCK(sbi, segno);
2667 }
2668
2669 new = get_meta_page(sbi, blk_addr);
2670 sum = (struct f2fs_summary_block *)page_address(new);
2671
2672 if (IS_NODESEG(type)) {
2673 if (__exist_node_summaries(sbi)) {
2674 struct f2fs_summary *ns = &sum->entries[0];
2675 int i;
2676 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2677 ns->version = 0;
2678 ns->ofs_in_node = 0;
2679 }
2680 } else {
2681 int err;
2682
2683 err = restore_node_summary(sbi, segno, sum);
2684 if (err) {
2685 f2fs_put_page(new, 1);
2686 return err;
2687 }
2688 }
2689 }
2690
2691 /* set uncompleted segment to curseg */
2692 curseg = CURSEG_I(sbi, type);
2693 mutex_lock(&curseg->curseg_mutex);
2694
2695 /* update journal info */
2696 down_write(&curseg->journal_rwsem);
2697 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2698 up_write(&curseg->journal_rwsem);
2699
2700 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2701 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2702 curseg->next_segno = segno;
2703 reset_curseg(sbi, type, 0);
2704 curseg->alloc_type = ckpt->alloc_type[type];
2705 curseg->next_blkoff = blk_off;
2706 mutex_unlock(&curseg->curseg_mutex);
2707 f2fs_put_page(new, 1);
2708 return 0;
2709 }
2710
2711 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2712 {
2713 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2714 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2715 int type = CURSEG_HOT_DATA;
2716 int err;
2717
2718 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2719 int npages = npages_for_summary_flush(sbi, true);
2720
2721 if (npages >= 2)
2722 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2723 META_CP, true);
2724
2725 /* restore for compacted data summary */
2726 if (read_compacted_summaries(sbi))
2727 return -EINVAL;
2728 type = CURSEG_HOT_NODE;
2729 }
2730
2731 if (__exist_node_summaries(sbi))
2732 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2733 NR_CURSEG_TYPE - type, META_CP, true);
2734
2735 for (; type <= CURSEG_COLD_NODE; type++) {
2736 err = read_normal_summaries(sbi, type);
2737 if (err)
2738 return err;
2739 }
2740
2741 /* sanity check for summary blocks */
2742 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2743 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2744 return -EINVAL;
2745
2746 return 0;
2747 }
2748
2749 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2750 {
2751 struct page *page;
2752 unsigned char *kaddr;
2753 struct f2fs_summary *summary;
2754 struct curseg_info *seg_i;
2755 int written_size = 0;
2756 int i, j;
2757
2758 page = grab_meta_page(sbi, blkaddr++);
2759 kaddr = (unsigned char *)page_address(page);
2760
2761 /* Step 1: write nat cache */
2762 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2763 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2764 written_size += SUM_JOURNAL_SIZE;
2765
2766 /* Step 2: write sit cache */
2767 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2768 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2769 written_size += SUM_JOURNAL_SIZE;
2770
2771 /* Step 3: write summary entries */
2772 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2773 unsigned short blkoff;
2774 seg_i = CURSEG_I(sbi, i);
2775 if (sbi->ckpt->alloc_type[i] == SSR)
2776 blkoff = sbi->blocks_per_seg;
2777 else
2778 blkoff = curseg_blkoff(sbi, i);
2779
2780 for (j = 0; j < blkoff; j++) {
2781 if (!page) {
2782 page = grab_meta_page(sbi, blkaddr++);
2783 kaddr = (unsigned char *)page_address(page);
2784 written_size = 0;
2785 }
2786 summary = (struct f2fs_summary *)(kaddr + written_size);
2787 *summary = seg_i->sum_blk->entries[j];
2788 written_size += SUMMARY_SIZE;
2789
2790 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2791 SUM_FOOTER_SIZE)
2792 continue;
2793
2794 set_page_dirty(page);
2795 f2fs_put_page(page, 1);
2796 page = NULL;
2797 }
2798 }
2799 if (page) {
2800 set_page_dirty(page);
2801 f2fs_put_page(page, 1);
2802 }
2803 }
2804
2805 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2806 block_t blkaddr, int type)
2807 {
2808 int i, end;
2809 if (IS_DATASEG(type))
2810 end = type + NR_CURSEG_DATA_TYPE;
2811 else
2812 end = type + NR_CURSEG_NODE_TYPE;
2813
2814 for (i = type; i < end; i++)
2815 write_current_sum_page(sbi, i, blkaddr + (i - type));
2816 }
2817
2818 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2819 {
2820 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2821 write_compacted_summaries(sbi, start_blk);
2822 else
2823 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2824 }
2825
2826 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2827 {
2828 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2829 }
2830
2831 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2832 unsigned int val, int alloc)
2833 {
2834 int i;
2835
2836 if (type == NAT_JOURNAL) {
2837 for (i = 0; i < nats_in_cursum(journal); i++) {
2838 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2839 return i;
2840 }
2841 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2842 return update_nats_in_cursum(journal, 1);
2843 } else if (type == SIT_JOURNAL) {
2844 for (i = 0; i < sits_in_cursum(journal); i++)
2845 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2846 return i;
2847 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2848 return update_sits_in_cursum(journal, 1);
2849 }
2850 return -1;
2851 }
2852
2853 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2854 unsigned int segno)
2855 {
2856 return get_meta_page(sbi, current_sit_addr(sbi, segno));
2857 }
2858
2859 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2860 unsigned int start)
2861 {
2862 struct sit_info *sit_i = SIT_I(sbi);
2863 struct page *src_page, *dst_page;
2864 pgoff_t src_off, dst_off;
2865 void *src_addr, *dst_addr;
2866
2867 src_off = current_sit_addr(sbi, start);
2868 dst_off = next_sit_addr(sbi, src_off);
2869
2870 /* get current sit block page without lock */
2871 src_page = get_meta_page(sbi, src_off);
2872 dst_page = grab_meta_page(sbi, dst_off);
2873 f2fs_bug_on(sbi, PageDirty(src_page));
2874
2875 src_addr = page_address(src_page);
2876 dst_addr = page_address(dst_page);
2877 memcpy(dst_addr, src_addr, PAGE_SIZE);
2878
2879 set_page_dirty(dst_page);
2880 f2fs_put_page(src_page, 1);
2881
2882 set_to_next_sit(sit_i, start);
2883
2884 return dst_page;
2885 }
2886
2887 static struct sit_entry_set *grab_sit_entry_set(void)
2888 {
2889 struct sit_entry_set *ses =
2890 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2891
2892 ses->entry_cnt = 0;
2893 INIT_LIST_HEAD(&ses->set_list);
2894 return ses;
2895 }
2896
2897 static void release_sit_entry_set(struct sit_entry_set *ses)
2898 {
2899 list_del(&ses->set_list);
2900 kmem_cache_free(sit_entry_set_slab, ses);
2901 }
2902
2903 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2904 struct list_head *head)
2905 {
2906 struct sit_entry_set *next = ses;
2907
2908 if (list_is_last(&ses->set_list, head))
2909 return;
2910
2911 list_for_each_entry_continue(next, head, set_list)
2912 if (ses->entry_cnt <= next->entry_cnt)
2913 break;
2914
2915 list_move_tail(&ses->set_list, &next->set_list);
2916 }
2917
2918 static void add_sit_entry(unsigned int segno, struct list_head *head)
2919 {
2920 struct sit_entry_set *ses;
2921 unsigned int start_segno = START_SEGNO(segno);
2922
2923 list_for_each_entry(ses, head, set_list) {
2924 if (ses->start_segno == start_segno) {
2925 ses->entry_cnt++;
2926 adjust_sit_entry_set(ses, head);
2927 return;
2928 }
2929 }
2930
2931 ses = grab_sit_entry_set();
2932
2933 ses->start_segno = start_segno;
2934 ses->entry_cnt++;
2935 list_add(&ses->set_list, head);
2936 }
2937
2938 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2939 {
2940 struct f2fs_sm_info *sm_info = SM_I(sbi);
2941 struct list_head *set_list = &sm_info->sit_entry_set;
2942 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2943 unsigned int segno;
2944
2945 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2946 add_sit_entry(segno, set_list);
2947 }
2948
2949 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2950 {
2951 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2952 struct f2fs_journal *journal = curseg->journal;
2953 int i;
2954
2955 down_write(&curseg->journal_rwsem);
2956 for (i = 0; i < sits_in_cursum(journal); i++) {
2957 unsigned int segno;
2958 bool dirtied;
2959
2960 segno = le32_to_cpu(segno_in_journal(journal, i));
2961 dirtied = __mark_sit_entry_dirty(sbi, segno);
2962
2963 if (!dirtied)
2964 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2965 }
2966 update_sits_in_cursum(journal, -i);
2967 up_write(&curseg->journal_rwsem);
2968 }
2969
2970 /*
2971 * CP calls this function, which flushes SIT entries including sit_journal,
2972 * and moves prefree segs to free segs.
2973 */
2974 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2975 {
2976 struct sit_info *sit_i = SIT_I(sbi);
2977 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2978 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2979 struct f2fs_journal *journal = curseg->journal;
2980 struct sit_entry_set *ses, *tmp;
2981 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2982 bool to_journal = true;
2983 struct seg_entry *se;
2984
2985 mutex_lock(&sit_i->sentry_lock);
2986
2987 if (!sit_i->dirty_sentries)
2988 goto out;
2989
2990 /*
2991 * add and account sit entries of dirty bitmap in sit entry
2992 * set temporarily
2993 */
2994 add_sits_in_set(sbi);
2995
2996 /*
2997 * if there are no enough space in journal to store dirty sit
2998 * entries, remove all entries from journal and add and account
2999 * them in sit entry set.
3000 */
3001 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3002 remove_sits_in_journal(sbi);
3003
3004 /*
3005 * there are two steps to flush sit entries:
3006 * #1, flush sit entries to journal in current cold data summary block.
3007 * #2, flush sit entries to sit page.
3008 */
3009 list_for_each_entry_safe(ses, tmp, head, set_list) {
3010 struct page *page = NULL;
3011 struct f2fs_sit_block *raw_sit = NULL;
3012 unsigned int start_segno = ses->start_segno;
3013 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3014 (unsigned long)MAIN_SEGS(sbi));
3015 unsigned int segno = start_segno;
3016
3017 if (to_journal &&
3018 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3019 to_journal = false;
3020
3021 if (to_journal) {
3022 down_write(&curseg->journal_rwsem);
3023 } else {
3024 page = get_next_sit_page(sbi, start_segno);
3025 raw_sit = page_address(page);
3026 }
3027
3028 /* flush dirty sit entries in region of current sit set */
3029 for_each_set_bit_from(segno, bitmap, end) {
3030 int offset, sit_offset;
3031
3032 se = get_seg_entry(sbi, segno);
3033
3034 /* add discard candidates */
3035 if (!(cpc->reason & CP_DISCARD)) {
3036 cpc->trim_start = segno;
3037 add_discard_addrs(sbi, cpc, false);
3038 }
3039
3040 if (to_journal) {
3041 offset = lookup_journal_in_cursum(journal,
3042 SIT_JOURNAL, segno, 1);
3043 f2fs_bug_on(sbi, offset < 0);
3044 segno_in_journal(journal, offset) =
3045 cpu_to_le32(segno);
3046 seg_info_to_raw_sit(se,
3047 &sit_in_journal(journal, offset));
3048 } else {
3049 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3050 seg_info_to_raw_sit(se,
3051 &raw_sit->entries[sit_offset]);
3052 }
3053
3054 __clear_bit(segno, bitmap);
3055 sit_i->dirty_sentries--;
3056 ses->entry_cnt--;
3057 }
3058
3059 if (to_journal)
3060 up_write(&curseg->journal_rwsem);
3061 else
3062 f2fs_put_page(page, 1);
3063
3064 f2fs_bug_on(sbi, ses->entry_cnt);
3065 release_sit_entry_set(ses);
3066 }
3067
3068 f2fs_bug_on(sbi, !list_empty(head));
3069 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3070 out:
3071 if (cpc->reason & CP_DISCARD) {
3072 __u64 trim_start = cpc->trim_start;
3073
3074 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3075 add_discard_addrs(sbi, cpc, false);
3076
3077 cpc->trim_start = trim_start;
3078 }
3079 mutex_unlock(&sit_i->sentry_lock);
3080
3081 set_prefree_as_free_segments(sbi);
3082 }
3083
3084 static int build_sit_info(struct f2fs_sb_info *sbi)
3085 {
3086 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3087 struct sit_info *sit_i;
3088 unsigned int sit_segs, start;
3089 char *src_bitmap;
3090 unsigned int bitmap_size;
3091
3092 /* allocate memory for SIT information */
3093 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
3094 if (!sit_i)
3095 return -ENOMEM;
3096
3097 SM_I(sbi)->sit_info = sit_i;
3098
3099 sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
3100 sizeof(struct seg_entry), GFP_KERNEL);
3101 if (!sit_i->sentries)
3102 return -ENOMEM;
3103
3104 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3105 sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
3106 if (!sit_i->dirty_sentries_bitmap)
3107 return -ENOMEM;
3108
3109 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3110 sit_i->sentries[start].cur_valid_map
3111 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3112 sit_i->sentries[start].ckpt_valid_map
3113 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3114 if (!sit_i->sentries[start].cur_valid_map ||
3115 !sit_i->sentries[start].ckpt_valid_map)
3116 return -ENOMEM;
3117
3118 #ifdef CONFIG_F2FS_CHECK_FS
3119 sit_i->sentries[start].cur_valid_map_mir
3120 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3121 if (!sit_i->sentries[start].cur_valid_map_mir)
3122 return -ENOMEM;
3123 #endif
3124
3125 if (f2fs_discard_en(sbi)) {
3126 sit_i->sentries[start].discard_map
3127 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3128 if (!sit_i->sentries[start].discard_map)
3129 return -ENOMEM;
3130 }
3131 }
3132
3133 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3134 if (!sit_i->tmp_map)
3135 return -ENOMEM;
3136
3137 if (sbi->segs_per_sec > 1) {
3138 sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
3139 sizeof(struct sec_entry), GFP_KERNEL);
3140 if (!sit_i->sec_entries)
3141 return -ENOMEM;
3142 }
3143
3144 /* get information related with SIT */
3145 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3146
3147 /* setup SIT bitmap from ckeckpoint pack */
3148 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3149 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3150
3151 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3152 if (!sit_i->sit_bitmap)
3153 return -ENOMEM;
3154
3155 #ifdef CONFIG_F2FS_CHECK_FS
3156 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3157 if (!sit_i->sit_bitmap_mir)
3158 return -ENOMEM;
3159 #endif
3160
3161 /* init SIT information */
3162 sit_i->s_ops = &default_salloc_ops;
3163
3164 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3165 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3166 sit_i->written_valid_blocks = 0;
3167 sit_i->bitmap_size = bitmap_size;
3168 sit_i->dirty_sentries = 0;
3169 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3170 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3171 sit_i->mounted_time = ktime_get_real_seconds();
3172 mutex_init(&sit_i->sentry_lock);
3173 return 0;
3174 }
3175
3176 static int build_free_segmap(struct f2fs_sb_info *sbi)
3177 {
3178 struct free_segmap_info *free_i;
3179 unsigned int bitmap_size, sec_bitmap_size;
3180
3181 /* allocate memory for free segmap information */
3182 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
3183 if (!free_i)
3184 return -ENOMEM;
3185
3186 SM_I(sbi)->free_info = free_i;
3187
3188 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3189 free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
3190 if (!free_i->free_segmap)
3191 return -ENOMEM;
3192
3193 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3194 free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
3195 if (!free_i->free_secmap)
3196 return -ENOMEM;
3197
3198 /* set all segments as dirty temporarily */
3199 memset(free_i->free_segmap, 0xff, bitmap_size);
3200 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3201
3202 /* init free segmap information */
3203 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3204 free_i->free_segments = 0;
3205 free_i->free_sections = 0;
3206 spin_lock_init(&free_i->segmap_lock);
3207 return 0;
3208 }
3209
3210 static int build_curseg(struct f2fs_sb_info *sbi)
3211 {
3212 struct curseg_info *array;
3213 int i;
3214
3215 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
3216 if (!array)
3217 return -ENOMEM;
3218
3219 SM_I(sbi)->curseg_array = array;
3220
3221 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3222 mutex_init(&array[i].curseg_mutex);
3223 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
3224 if (!array[i].sum_blk)
3225 return -ENOMEM;
3226 init_rwsem(&array[i].journal_rwsem);
3227 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
3228 GFP_KERNEL);
3229 if (!array[i].journal)
3230 return -ENOMEM;
3231 array[i].segno = NULL_SEGNO;
3232 array[i].next_blkoff = 0;
3233 }
3234 return restore_curseg_summaries(sbi);
3235 }
3236
3237 static void build_sit_entries(struct f2fs_sb_info *sbi)
3238 {
3239 struct sit_info *sit_i = SIT_I(sbi);
3240 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3241 struct f2fs_journal *journal = curseg->journal;
3242 struct seg_entry *se;
3243 struct f2fs_sit_entry sit;
3244 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3245 unsigned int i, start, end;
3246 unsigned int readed, start_blk = 0;
3247
3248 do {
3249 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3250 META_SIT, true);
3251
3252 start = start_blk * sit_i->sents_per_block;
3253 end = (start_blk + readed) * sit_i->sents_per_block;
3254
3255 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3256 struct f2fs_sit_block *sit_blk;
3257 struct page *page;
3258
3259 se = &sit_i->sentries[start];
3260 page = get_current_sit_page(sbi, start);
3261 sit_blk = (struct f2fs_sit_block *)page_address(page);
3262 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3263 f2fs_put_page(page, 1);
3264
3265 check_block_count(sbi, start, &sit);
3266 seg_info_from_raw_sit(se, &sit);
3267
3268 /* build discard map only one time */
3269 if (f2fs_discard_en(sbi)) {
3270 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3271 memset(se->discard_map, 0xff,
3272 SIT_VBLOCK_MAP_SIZE);
3273 } else {
3274 memcpy(se->discard_map,
3275 se->cur_valid_map,
3276 SIT_VBLOCK_MAP_SIZE);
3277 sbi->discard_blks +=
3278 sbi->blocks_per_seg -
3279 se->valid_blocks;
3280 }
3281 }
3282
3283 if (sbi->segs_per_sec > 1)
3284 get_sec_entry(sbi, start)->valid_blocks +=
3285 se->valid_blocks;
3286 }
3287 start_blk += readed;
3288 } while (start_blk < sit_blk_cnt);
3289
3290 down_read(&curseg->journal_rwsem);
3291 for (i = 0; i < sits_in_cursum(journal); i++) {
3292 unsigned int old_valid_blocks;
3293
3294 start = le32_to_cpu(segno_in_journal(journal, i));
3295 se = &sit_i->sentries[start];
3296 sit = sit_in_journal(journal, i);
3297
3298 old_valid_blocks = se->valid_blocks;
3299
3300 check_block_count(sbi, start, &sit);
3301 seg_info_from_raw_sit(se, &sit);
3302
3303 if (f2fs_discard_en(sbi)) {
3304 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3305 memset(se->discard_map, 0xff,
3306 SIT_VBLOCK_MAP_SIZE);
3307 } else {
3308 memcpy(se->discard_map, se->cur_valid_map,
3309 SIT_VBLOCK_MAP_SIZE);
3310 sbi->discard_blks += old_valid_blocks -
3311 se->valid_blocks;
3312 }
3313 }
3314
3315 if (sbi->segs_per_sec > 1)
3316 get_sec_entry(sbi, start)->valid_blocks +=
3317 se->valid_blocks - old_valid_blocks;
3318 }
3319 up_read(&curseg->journal_rwsem);
3320 }
3321
3322 static void init_free_segmap(struct f2fs_sb_info *sbi)
3323 {
3324 unsigned int start;
3325 int type;
3326
3327 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3328 struct seg_entry *sentry = get_seg_entry(sbi, start);
3329 if (!sentry->valid_blocks)
3330 __set_free(sbi, start);
3331 else
3332 SIT_I(sbi)->written_valid_blocks +=
3333 sentry->valid_blocks;
3334 }
3335
3336 /* set use the current segments */
3337 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3338 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3339 __set_test_and_inuse(sbi, curseg_t->segno);
3340 }
3341 }
3342
3343 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3344 {
3345 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3346 struct free_segmap_info *free_i = FREE_I(sbi);
3347 unsigned int segno = 0, offset = 0;
3348 unsigned short valid_blocks;
3349
3350 while (1) {
3351 /* find dirty segment based on free segmap */
3352 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3353 if (segno >= MAIN_SEGS(sbi))
3354 break;
3355 offset = segno + 1;
3356 valid_blocks = get_valid_blocks(sbi, segno, false);
3357 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3358 continue;
3359 if (valid_blocks > sbi->blocks_per_seg) {
3360 f2fs_bug_on(sbi, 1);
3361 continue;
3362 }
3363 mutex_lock(&dirty_i->seglist_lock);
3364 __locate_dirty_segment(sbi, segno, DIRTY);
3365 mutex_unlock(&dirty_i->seglist_lock);
3366 }
3367 }
3368
3369 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3370 {
3371 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3372 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3373
3374 dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3375 if (!dirty_i->victim_secmap)
3376 return -ENOMEM;
3377 return 0;
3378 }
3379
3380 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3381 {
3382 struct dirty_seglist_info *dirty_i;
3383 unsigned int bitmap_size, i;
3384
3385 /* allocate memory for dirty segments list information */
3386 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3387 if (!dirty_i)
3388 return -ENOMEM;
3389
3390 SM_I(sbi)->dirty_info = dirty_i;
3391 mutex_init(&dirty_i->seglist_lock);
3392
3393 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3394
3395 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3396 dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3397 if (!dirty_i->dirty_segmap[i])
3398 return -ENOMEM;
3399 }
3400
3401 init_dirty_segmap(sbi);
3402 return init_victim_secmap(sbi);
3403 }
3404
3405 /*
3406 * Update min, max modified time for cost-benefit GC algorithm
3407 */
3408 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3409 {
3410 struct sit_info *sit_i = SIT_I(sbi);
3411 unsigned int segno;
3412
3413 mutex_lock(&sit_i->sentry_lock);
3414
3415 sit_i->min_mtime = LLONG_MAX;
3416
3417 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3418 unsigned int i;
3419 unsigned long long mtime = 0;
3420
3421 for (i = 0; i < sbi->segs_per_sec; i++)
3422 mtime += get_seg_entry(sbi, segno + i)->mtime;
3423
3424 mtime = div_u64(mtime, sbi->segs_per_sec);
3425
3426 if (sit_i->min_mtime > mtime)
3427 sit_i->min_mtime = mtime;
3428 }
3429 sit_i->max_mtime = get_mtime(sbi);
3430 mutex_unlock(&sit_i->sentry_lock);
3431 }
3432
3433 int build_segment_manager(struct f2fs_sb_info *sbi)
3434 {
3435 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3436 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3437 struct f2fs_sm_info *sm_info;
3438 int err;
3439
3440 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3441 if (!sm_info)
3442 return -ENOMEM;
3443
3444 /* init sm info */
3445 sbi->sm_info = sm_info;
3446 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3447 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3448 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3449 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3450 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3451 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3452 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3453 sm_info->rec_prefree_segments = sm_info->main_segments *
3454 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3455 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3456 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3457
3458 if (!test_opt(sbi, LFS))
3459 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3460 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3461 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3462 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3463
3464 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3465
3466 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3467
3468 if (!f2fs_readonly(sbi->sb)) {
3469 err = create_flush_cmd_control(sbi);
3470 if (err)
3471 return err;
3472 }
3473
3474 err = create_discard_cmd_control(sbi);
3475 if (err)
3476 return err;
3477
3478 err = build_sit_info(sbi);
3479 if (err)
3480 return err;
3481 err = build_free_segmap(sbi);
3482 if (err)
3483 return err;
3484 err = build_curseg(sbi);
3485 if (err)
3486 return err;
3487
3488 /* reinit free segmap based on SIT */
3489 build_sit_entries(sbi);
3490
3491 init_free_segmap(sbi);
3492 err = build_dirty_segmap(sbi);
3493 if (err)
3494 return err;
3495
3496 init_min_max_mtime(sbi);
3497 return 0;
3498 }
3499
3500 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3501 enum dirty_type dirty_type)
3502 {
3503 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3504
3505 mutex_lock(&dirty_i->seglist_lock);
3506 kvfree(dirty_i->dirty_segmap[dirty_type]);
3507 dirty_i->nr_dirty[dirty_type] = 0;
3508 mutex_unlock(&dirty_i->seglist_lock);
3509 }
3510
3511 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3512 {
3513 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3514 kvfree(dirty_i->victim_secmap);
3515 }
3516
3517 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3518 {
3519 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3520 int i;
3521
3522 if (!dirty_i)
3523 return;
3524
3525 /* discard pre-free/dirty segments list */
3526 for (i = 0; i < NR_DIRTY_TYPE; i++)
3527 discard_dirty_segmap(sbi, i);
3528
3529 destroy_victim_secmap(sbi);
3530 SM_I(sbi)->dirty_info = NULL;
3531 kfree(dirty_i);
3532 }
3533
3534 static void destroy_curseg(struct f2fs_sb_info *sbi)
3535 {
3536 struct curseg_info *array = SM_I(sbi)->curseg_array;
3537 int i;
3538
3539 if (!array)
3540 return;
3541 SM_I(sbi)->curseg_array = NULL;
3542 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3543 kfree(array[i].sum_blk);
3544 kfree(array[i].journal);
3545 }
3546 kfree(array);
3547 }
3548
3549 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3550 {
3551 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3552 if (!free_i)
3553 return;
3554 SM_I(sbi)->free_info = NULL;
3555 kvfree(free_i->free_segmap);
3556 kvfree(free_i->free_secmap);
3557 kfree(free_i);
3558 }
3559
3560 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3561 {
3562 struct sit_info *sit_i = SIT_I(sbi);
3563 unsigned int start;
3564
3565 if (!sit_i)
3566 return;
3567
3568 if (sit_i->sentries) {
3569 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3570 kfree(sit_i->sentries[start].cur_valid_map);
3571 #ifdef CONFIG_F2FS_CHECK_FS
3572 kfree(sit_i->sentries[start].cur_valid_map_mir);
3573 #endif
3574 kfree(sit_i->sentries[start].ckpt_valid_map);
3575 kfree(sit_i->sentries[start].discard_map);
3576 }
3577 }
3578 kfree(sit_i->tmp_map);
3579
3580 kvfree(sit_i->sentries);
3581 kvfree(sit_i->sec_entries);
3582 kvfree(sit_i->dirty_sentries_bitmap);
3583
3584 SM_I(sbi)->sit_info = NULL;
3585 kfree(sit_i->sit_bitmap);
3586 #ifdef CONFIG_F2FS_CHECK_FS
3587 kfree(sit_i->sit_bitmap_mir);
3588 #endif
3589 kfree(sit_i);
3590 }
3591
3592 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3593 {
3594 struct f2fs_sm_info *sm_info = SM_I(sbi);
3595
3596 if (!sm_info)
3597 return;
3598 destroy_flush_cmd_control(sbi, true);
3599 destroy_discard_cmd_control(sbi);
3600 destroy_dirty_segmap(sbi);
3601 destroy_curseg(sbi);
3602 destroy_free_segmap(sbi);
3603 destroy_sit_info(sbi);
3604 sbi->sm_info = NULL;
3605 kfree(sm_info);
3606 }
3607
3608 int __init create_segment_manager_caches(void)
3609 {
3610 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3611 sizeof(struct discard_entry));
3612 if (!discard_entry_slab)
3613 goto fail;
3614
3615 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3616 sizeof(struct discard_cmd));
3617 if (!discard_cmd_slab)
3618 goto destroy_discard_entry;
3619
3620 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3621 sizeof(struct sit_entry_set));
3622 if (!sit_entry_set_slab)
3623 goto destroy_discard_cmd;
3624
3625 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3626 sizeof(struct inmem_pages));
3627 if (!inmem_entry_slab)
3628 goto destroy_sit_entry_set;
3629 return 0;
3630
3631 destroy_sit_entry_set:
3632 kmem_cache_destroy(sit_entry_set_slab);
3633 destroy_discard_cmd:
3634 kmem_cache_destroy(discard_cmd_slab);
3635 destroy_discard_entry:
3636 kmem_cache_destroy(discard_entry_slab);
3637 fail:
3638 return -ENOMEM;
3639 }
3640
3641 void destroy_segment_manager_caches(void)
3642 {
3643 kmem_cache_destroy(sit_entry_set_slab);
3644 kmem_cache_destroy(discard_cmd_slab);
3645 kmem_cache_destroy(discard_entry_slab);
3646 kmem_cache_destroy(inmem_entry_slab);
3647 }