1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
23 #include <trace/events/f2fs.h>
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 static struct kmem_cache
*discard_entry_slab
;
28 static struct kmem_cache
*discard_cmd_slab
;
29 static struct kmem_cache
*sit_entry_set_slab
;
30 static struct kmem_cache
*inmem_entry_slab
;
32 static unsigned long __reverse_ulong(unsigned char *str
)
34 unsigned long tmp
= 0;
35 int shift
= 24, idx
= 0;
37 #if BITS_PER_LONG == 64
41 tmp
|= (unsigned long)str
[idx
++] << shift
;
42 shift
-= BITS_PER_BYTE
;
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 static inline unsigned long __reverse_ffs(unsigned long word
)
55 #if BITS_PER_LONG == 64
56 if ((word
& 0xffffffff00000000UL
) == 0)
61 if ((word
& 0xffff0000) == 0)
66 if ((word
& 0xff00) == 0)
71 if ((word
& 0xf0) == 0)
76 if ((word
& 0xc) == 0)
81 if ((word
& 0x2) == 0)
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
95 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
96 unsigned long size
, unsigned long offset
)
98 const unsigned long *p
= addr
+ BIT_WORD(offset
);
99 unsigned long result
= size
;
105 size
-= (offset
& ~(BITS_PER_LONG
- 1));
106 offset
%= BITS_PER_LONG
;
112 tmp
= __reverse_ulong((unsigned char *)p
);
114 tmp
&= ~0UL >> offset
;
115 if (size
< BITS_PER_LONG
)
116 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
120 if (size
<= BITS_PER_LONG
)
122 size
-= BITS_PER_LONG
;
128 return result
- size
+ __reverse_ffs(tmp
);
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
132 unsigned long size
, unsigned long offset
)
134 const unsigned long *p
= addr
+ BIT_WORD(offset
);
135 unsigned long result
= size
;
141 size
-= (offset
& ~(BITS_PER_LONG
- 1));
142 offset
%= BITS_PER_LONG
;
148 tmp
= __reverse_ulong((unsigned char *)p
);
151 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
152 if (size
< BITS_PER_LONG
)
157 if (size
<= BITS_PER_LONG
)
159 size
-= BITS_PER_LONG
;
165 return result
- size
+ __reverse_ffz(tmp
);
168 bool f2fs_need_SSR(struct f2fs_sb_info
*sbi
)
170 int node_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_NODES
);
171 int dent_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_DENTS
);
172 int imeta_secs
= get_blocktype_secs(sbi
, F2FS_DIRTY_IMETA
);
174 if (f2fs_lfs_mode(sbi
))
176 if (sbi
->gc_mode
== GC_URGENT_HIGH
)
178 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
181 return free_sections(sbi
) <= (node_secs
+ 2 * dent_secs
+ imeta_secs
+
182 SM_I(sbi
)->min_ssr_sections
+ reserved_sections(sbi
));
185 void f2fs_register_inmem_page(struct inode
*inode
, struct page
*page
)
187 struct inmem_pages
*new;
189 set_page_private_atomic(page
);
191 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
193 /* add atomic page indices to the list */
195 INIT_LIST_HEAD(&new->list
);
197 /* increase reference count with clean state */
199 mutex_lock(&F2FS_I(inode
)->inmem_lock
);
200 list_add_tail(&new->list
, &F2FS_I(inode
)->inmem_pages
);
201 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
202 mutex_unlock(&F2FS_I(inode
)->inmem_lock
);
204 trace_f2fs_register_inmem_page(page
, INMEM
);
207 static int __revoke_inmem_pages(struct inode
*inode
,
208 struct list_head
*head
, bool drop
, bool recover
,
211 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
212 struct inmem_pages
*cur
, *tmp
;
215 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
216 struct page
*page
= cur
->page
;
219 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
223 * to avoid deadlock in between page lock and
226 if (!trylock_page(page
))
232 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
235 struct dnode_of_data dn
;
238 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
240 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
241 err
= f2fs_get_dnode_of_data(&dn
, page
->index
,
244 if (err
== -ENOMEM
) {
245 congestion_wait(BLK_RW_ASYNC
,
254 err
= f2fs_get_node_info(sbi
, dn
.nid
, &ni
);
260 if (cur
->old_addr
== NEW_ADDR
) {
261 f2fs_invalidate_blocks(sbi
, dn
.data_blkaddr
);
262 f2fs_update_data_blkaddr(&dn
, NEW_ADDR
);
264 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
265 cur
->old_addr
, ni
.version
, true, true);
269 /* we don't need to invalidate this in the sccessful status */
270 if (drop
|| recover
) {
271 ClearPageUptodate(page
);
272 clear_page_private_gcing(page
);
274 detach_page_private(page
);
275 set_page_private(page
, 0);
276 f2fs_put_page(page
, 1);
278 list_del(&cur
->list
);
279 kmem_cache_free(inmem_entry_slab
, cur
);
280 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
285 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info
*sbi
, bool gc_failure
)
287 struct list_head
*head
= &sbi
->inode_list
[ATOMIC_FILE
];
289 struct f2fs_inode_info
*fi
;
290 unsigned int count
= sbi
->atomic_files
;
291 unsigned int looped
= 0;
293 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
294 if (list_empty(head
)) {
295 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
298 fi
= list_first_entry(head
, struct f2fs_inode_info
, inmem_ilist
);
299 inode
= igrab(&fi
->vfs_inode
);
301 list_move_tail(&fi
->inmem_ilist
, head
);
302 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
306 if (!fi
->i_gc_failures
[GC_FAILURE_ATOMIC
])
309 set_inode_flag(inode
, FI_ATOMIC_REVOKE_REQUEST
);
310 f2fs_drop_inmem_pages(inode
);
314 congestion_wait(BLK_RW_ASYNC
, DEFAULT_IO_TIMEOUT
);
317 if (++looped
>= count
)
323 void f2fs_drop_inmem_pages(struct inode
*inode
)
325 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
326 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
329 mutex_lock(&fi
->inmem_lock
);
330 if (list_empty(&fi
->inmem_pages
)) {
331 fi
->i_gc_failures
[GC_FAILURE_ATOMIC
] = 0;
333 spin_lock(&sbi
->inode_lock
[ATOMIC_FILE
]);
334 if (!list_empty(&fi
->inmem_ilist
))
335 list_del_init(&fi
->inmem_ilist
);
336 if (f2fs_is_atomic_file(inode
)) {
337 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
340 spin_unlock(&sbi
->inode_lock
[ATOMIC_FILE
]);
342 mutex_unlock(&fi
->inmem_lock
);
345 __revoke_inmem_pages(inode
, &fi
->inmem_pages
,
347 mutex_unlock(&fi
->inmem_lock
);
351 void f2fs_drop_inmem_page(struct inode
*inode
, struct page
*page
)
353 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
354 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
355 struct list_head
*head
= &fi
->inmem_pages
;
356 struct inmem_pages
*cur
= NULL
;
358 f2fs_bug_on(sbi
, !page_private_atomic(page
));
360 mutex_lock(&fi
->inmem_lock
);
361 list_for_each_entry(cur
, head
, list
) {
362 if (cur
->page
== page
)
366 f2fs_bug_on(sbi
, list_empty(head
) || cur
->page
!= page
);
367 list_del(&cur
->list
);
368 mutex_unlock(&fi
->inmem_lock
);
370 dec_page_count(sbi
, F2FS_INMEM_PAGES
);
371 kmem_cache_free(inmem_entry_slab
, cur
);
373 ClearPageUptodate(page
);
374 clear_page_private_atomic(page
);
375 f2fs_put_page(page
, 0);
377 detach_page_private(page
);
378 set_page_private(page
, 0);
380 trace_f2fs_commit_inmem_page(page
, INMEM_INVALIDATE
);
383 static int __f2fs_commit_inmem_pages(struct inode
*inode
)
385 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
386 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
387 struct inmem_pages
*cur
, *tmp
;
388 struct f2fs_io_info fio
= {
393 .op_flags
= REQ_SYNC
| REQ_PRIO
,
394 .io_type
= FS_DATA_IO
,
396 struct list_head revoke_list
;
397 bool submit_bio
= false;
400 INIT_LIST_HEAD(&revoke_list
);
402 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
403 struct page
*page
= cur
->page
;
406 if (page
->mapping
== inode
->i_mapping
) {
407 trace_f2fs_commit_inmem_page(page
, INMEM
);
409 f2fs_wait_on_page_writeback(page
, DATA
, true, true);
411 set_page_dirty(page
);
412 if (clear_page_dirty_for_io(page
)) {
413 inode_dec_dirty_pages(inode
);
414 f2fs_remove_dirty_inode(inode
);
418 fio
.old_blkaddr
= NULL_ADDR
;
419 fio
.encrypted_page
= NULL
;
420 fio
.need_lock
= LOCK_DONE
;
421 err
= f2fs_do_write_data_page(&fio
);
423 if (err
== -ENOMEM
) {
424 congestion_wait(BLK_RW_ASYNC
,
432 /* record old blkaddr for revoking */
433 cur
->old_addr
= fio
.old_blkaddr
;
437 list_move_tail(&cur
->list
, &revoke_list
);
441 f2fs_submit_merged_write_cond(sbi
, inode
, NULL
, 0, DATA
);
445 * try to revoke all committed pages, but still we could fail
446 * due to no memory or other reason, if that happened, EAGAIN
447 * will be returned, which means in such case, transaction is
448 * already not integrity, caller should use journal to do the
449 * recovery or rewrite & commit last transaction. For other
450 * error number, revoking was done by filesystem itself.
452 err
= __revoke_inmem_pages(inode
, &revoke_list
,
455 /* drop all uncommitted pages */
456 __revoke_inmem_pages(inode
, &fi
->inmem_pages
,
459 __revoke_inmem_pages(inode
, &revoke_list
,
460 false, false, false);
466 int f2fs_commit_inmem_pages(struct inode
*inode
)
468 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
469 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
472 f2fs_balance_fs(sbi
, true);
474 down_write(&fi
->i_gc_rwsem
[WRITE
]);
477 set_inode_flag(inode
, FI_ATOMIC_COMMIT
);
479 mutex_lock(&fi
->inmem_lock
);
480 err
= __f2fs_commit_inmem_pages(inode
);
481 mutex_unlock(&fi
->inmem_lock
);
483 clear_inode_flag(inode
, FI_ATOMIC_COMMIT
);
486 up_write(&fi
->i_gc_rwsem
[WRITE
]);
492 * This function balances dirty node and dentry pages.
493 * In addition, it controls garbage collection.
495 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
497 if (time_to_inject(sbi
, FAULT_CHECKPOINT
)) {
498 f2fs_show_injection_info(sbi
, FAULT_CHECKPOINT
);
499 f2fs_stop_checkpoint(sbi
, false);
502 /* balance_fs_bg is able to be pending */
503 if (need
&& excess_cached_nats(sbi
))
504 f2fs_balance_fs_bg(sbi
, false);
506 if (!f2fs_is_checkpoint_ready(sbi
))
510 * We should do GC or end up with checkpoint, if there are so many dirty
511 * dir/node pages without enough free segments.
513 if (has_not_enough_free_secs(sbi
, 0, 0)) {
514 if (test_opt(sbi
, GC_MERGE
) && sbi
->gc_thread
&&
515 sbi
->gc_thread
->f2fs_gc_task
) {
518 prepare_to_wait(&sbi
->gc_thread
->fggc_wq
, &wait
,
519 TASK_UNINTERRUPTIBLE
);
520 wake_up(&sbi
->gc_thread
->gc_wait_queue_head
);
522 finish_wait(&sbi
->gc_thread
->fggc_wq
, &wait
);
524 down_write(&sbi
->gc_lock
);
525 f2fs_gc(sbi
, false, false, false, NULL_SEGNO
);
530 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
, bool from_bg
)
532 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
535 /* try to shrink extent cache when there is no enough memory */
536 if (!f2fs_available_free_memory(sbi
, EXTENT_CACHE
))
537 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
539 /* check the # of cached NAT entries */
540 if (!f2fs_available_free_memory(sbi
, NAT_ENTRIES
))
541 f2fs_try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
543 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
))
544 f2fs_try_to_free_nids(sbi
, MAX_FREE_NIDS
);
546 f2fs_build_free_nids(sbi
, false, false);
548 if (excess_dirty_nats(sbi
) || excess_dirty_nodes(sbi
) ||
549 excess_prefree_segs(sbi
))
552 /* there is background inflight IO or foreground operation recently */
553 if (is_inflight_io(sbi
, REQ_TIME
) ||
554 (!f2fs_time_over(sbi
, REQ_TIME
) && rwsem_is_locked(&sbi
->cp_rwsem
)))
557 /* exceed periodical checkpoint timeout threshold */
558 if (f2fs_time_over(sbi
, CP_TIME
))
561 /* checkpoint is the only way to shrink partial cached entries */
562 if (f2fs_available_free_memory(sbi
, NAT_ENTRIES
) ||
563 f2fs_available_free_memory(sbi
, INO_ENTRIES
))
567 if (test_opt(sbi
, DATA_FLUSH
) && from_bg
) {
568 struct blk_plug plug
;
570 mutex_lock(&sbi
->flush_lock
);
572 blk_start_plug(&plug
);
573 f2fs_sync_dirty_inodes(sbi
, FILE_INODE
);
574 blk_finish_plug(&plug
);
576 mutex_unlock(&sbi
->flush_lock
);
578 f2fs_sync_fs(sbi
->sb
, true);
579 stat_inc_bg_cp_count(sbi
->stat_info
);
582 static int __submit_flush_wait(struct f2fs_sb_info
*sbi
,
583 struct block_device
*bdev
)
585 int ret
= blkdev_issue_flush(bdev
);
587 trace_f2fs_issue_flush(bdev
, test_opt(sbi
, NOBARRIER
),
588 test_opt(sbi
, FLUSH_MERGE
), ret
);
592 static int submit_flush_wait(struct f2fs_sb_info
*sbi
, nid_t ino
)
597 if (!f2fs_is_multi_device(sbi
))
598 return __submit_flush_wait(sbi
, sbi
->sb
->s_bdev
);
600 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
601 if (!f2fs_is_dirty_device(sbi
, ino
, i
, FLUSH_INO
))
603 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
610 static int issue_flush_thread(void *data
)
612 struct f2fs_sb_info
*sbi
= data
;
613 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
614 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
616 if (kthread_should_stop())
619 if (!llist_empty(&fcc
->issue_list
)) {
620 struct flush_cmd
*cmd
, *next
;
623 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
624 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
626 cmd
= llist_entry(fcc
->dispatch_list
, struct flush_cmd
, llnode
);
628 ret
= submit_flush_wait(sbi
, cmd
->ino
);
629 atomic_inc(&fcc
->issued_flush
);
631 llist_for_each_entry_safe(cmd
, next
,
632 fcc
->dispatch_list
, llnode
) {
634 complete(&cmd
->wait
);
636 fcc
->dispatch_list
= NULL
;
639 wait_event_interruptible(*q
,
640 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
644 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
, nid_t ino
)
646 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
647 struct flush_cmd cmd
;
650 if (test_opt(sbi
, NOBARRIER
))
653 if (!test_opt(sbi
, FLUSH_MERGE
)) {
654 atomic_inc(&fcc
->queued_flush
);
655 ret
= submit_flush_wait(sbi
, ino
);
656 atomic_dec(&fcc
->queued_flush
);
657 atomic_inc(&fcc
->issued_flush
);
661 if (atomic_inc_return(&fcc
->queued_flush
) == 1 ||
662 f2fs_is_multi_device(sbi
)) {
663 ret
= submit_flush_wait(sbi
, ino
);
664 atomic_dec(&fcc
->queued_flush
);
666 atomic_inc(&fcc
->issued_flush
);
671 init_completion(&cmd
.wait
);
673 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
676 * update issue_list before we wake up issue_flush thread, this
677 * smp_mb() pairs with another barrier in ___wait_event(), see
678 * more details in comments of waitqueue_active().
682 if (waitqueue_active(&fcc
->flush_wait_queue
))
683 wake_up(&fcc
->flush_wait_queue
);
685 if (fcc
->f2fs_issue_flush
) {
686 wait_for_completion(&cmd
.wait
);
687 atomic_dec(&fcc
->queued_flush
);
689 struct llist_node
*list
;
691 list
= llist_del_all(&fcc
->issue_list
);
693 wait_for_completion(&cmd
.wait
);
694 atomic_dec(&fcc
->queued_flush
);
696 struct flush_cmd
*tmp
, *next
;
698 ret
= submit_flush_wait(sbi
, ino
);
700 llist_for_each_entry_safe(tmp
, next
, list
, llnode
) {
703 atomic_dec(&fcc
->queued_flush
);
707 complete(&tmp
->wait
);
715 int f2fs_create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
717 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
718 struct flush_cmd_control
*fcc
;
721 if (SM_I(sbi
)->fcc_info
) {
722 fcc
= SM_I(sbi
)->fcc_info
;
723 if (fcc
->f2fs_issue_flush
)
728 fcc
= f2fs_kzalloc(sbi
, sizeof(struct flush_cmd_control
), GFP_KERNEL
);
731 atomic_set(&fcc
->issued_flush
, 0);
732 atomic_set(&fcc
->queued_flush
, 0);
733 init_waitqueue_head(&fcc
->flush_wait_queue
);
734 init_llist_head(&fcc
->issue_list
);
735 SM_I(sbi
)->fcc_info
= fcc
;
736 if (!test_opt(sbi
, FLUSH_MERGE
))
740 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
741 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
742 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
743 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
745 SM_I(sbi
)->fcc_info
= NULL
;
752 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
, bool free
)
754 struct flush_cmd_control
*fcc
= SM_I(sbi
)->fcc_info
;
756 if (fcc
&& fcc
->f2fs_issue_flush
) {
757 struct task_struct
*flush_thread
= fcc
->f2fs_issue_flush
;
759 fcc
->f2fs_issue_flush
= NULL
;
760 kthread_stop(flush_thread
);
764 SM_I(sbi
)->fcc_info
= NULL
;
768 int f2fs_flush_device_cache(struct f2fs_sb_info
*sbi
)
772 if (!f2fs_is_multi_device(sbi
))
775 if (test_opt(sbi
, NOBARRIER
))
778 for (i
= 1; i
< sbi
->s_ndevs
; i
++) {
779 if (!f2fs_test_bit(i
, (char *)&sbi
->dirty_device
))
781 ret
= __submit_flush_wait(sbi
, FDEV(i
).bdev
);
785 spin_lock(&sbi
->dev_lock
);
786 f2fs_clear_bit(i
, (char *)&sbi
->dirty_device
);
787 spin_unlock(&sbi
->dev_lock
);
793 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
794 enum dirty_type dirty_type
)
796 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
798 /* need not be added */
799 if (IS_CURSEG(sbi
, segno
))
802 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
803 dirty_i
->nr_dirty
[dirty_type
]++;
805 if (dirty_type
== DIRTY
) {
806 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
807 enum dirty_type t
= sentry
->type
;
809 if (unlikely(t
>= DIRTY
)) {
813 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
814 dirty_i
->nr_dirty
[t
]++;
816 if (__is_large_section(sbi
)) {
817 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
818 block_t valid_blocks
=
819 get_valid_blocks(sbi
, segno
, true);
821 f2fs_bug_on(sbi
, unlikely(!valid_blocks
||
822 valid_blocks
== BLKS_PER_SEC(sbi
)));
824 if (!IS_CURSEC(sbi
, secno
))
825 set_bit(secno
, dirty_i
->dirty_secmap
);
830 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
831 enum dirty_type dirty_type
)
833 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
834 block_t valid_blocks
;
836 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
837 dirty_i
->nr_dirty
[dirty_type
]--;
839 if (dirty_type
== DIRTY
) {
840 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
841 enum dirty_type t
= sentry
->type
;
843 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
844 dirty_i
->nr_dirty
[t
]--;
846 valid_blocks
= get_valid_blocks(sbi
, segno
, true);
847 if (valid_blocks
== 0) {
848 clear_bit(GET_SEC_FROM_SEG(sbi
, segno
),
849 dirty_i
->victim_secmap
);
850 #ifdef CONFIG_F2FS_CHECK_FS
851 clear_bit(segno
, SIT_I(sbi
)->invalid_segmap
);
854 if (__is_large_section(sbi
)) {
855 unsigned int secno
= GET_SEC_FROM_SEG(sbi
, segno
);
858 valid_blocks
== BLKS_PER_SEC(sbi
)) {
859 clear_bit(secno
, dirty_i
->dirty_secmap
);
863 if (!IS_CURSEC(sbi
, secno
))
864 set_bit(secno
, dirty_i
->dirty_secmap
);
870 * Should not occur error such as -ENOMEM.
871 * Adding dirty entry into seglist is not critical operation.
872 * If a given segment is one of current working segments, it won't be added.
874 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
876 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
877 unsigned short valid_blocks
, ckpt_valid_blocks
;
878 unsigned int usable_blocks
;
880 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
883 usable_blocks
= f2fs_usable_blks_in_seg(sbi
, segno
);
884 mutex_lock(&dirty_i
->seglist_lock
);
886 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
887 ckpt_valid_blocks
= get_ckpt_valid_blocks(sbi
, segno
, false);
889 if (valid_blocks
== 0 && (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) ||
890 ckpt_valid_blocks
== usable_blocks
)) {
891 __locate_dirty_segment(sbi
, segno
, PRE
);
892 __remove_dirty_segment(sbi
, segno
, DIRTY
);
893 } else if (valid_blocks
< usable_blocks
) {
894 __locate_dirty_segment(sbi
, segno
, DIRTY
);
896 /* Recovery routine with SSR needs this */
897 __remove_dirty_segment(sbi
, segno
, DIRTY
);
900 mutex_unlock(&dirty_i
->seglist_lock
);
903 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
904 void f2fs_dirty_to_prefree(struct f2fs_sb_info
*sbi
)
906 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
909 mutex_lock(&dirty_i
->seglist_lock
);
910 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
911 if (get_valid_blocks(sbi
, segno
, false))
913 if (IS_CURSEG(sbi
, segno
))
915 __locate_dirty_segment(sbi
, segno
, PRE
);
916 __remove_dirty_segment(sbi
, segno
, DIRTY
);
918 mutex_unlock(&dirty_i
->seglist_lock
);
921 block_t
f2fs_get_unusable_blocks(struct f2fs_sb_info
*sbi
)
924 (overprovision_segments(sbi
) - reserved_segments(sbi
));
925 block_t ovp_holes
= ovp_hole_segs
<< sbi
->log_blocks_per_seg
;
926 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
927 block_t holes
[2] = {0, 0}; /* DATA and NODE */
929 struct seg_entry
*se
;
932 mutex_lock(&dirty_i
->seglist_lock
);
933 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
934 se
= get_seg_entry(sbi
, segno
);
935 if (IS_NODESEG(se
->type
))
936 holes
[NODE
] += f2fs_usable_blks_in_seg(sbi
, segno
) -
939 holes
[DATA
] += f2fs_usable_blks_in_seg(sbi
, segno
) -
942 mutex_unlock(&dirty_i
->seglist_lock
);
944 unusable
= holes
[DATA
] > holes
[NODE
] ? holes
[DATA
] : holes
[NODE
];
945 if (unusable
> ovp_holes
)
946 return unusable
- ovp_holes
;
950 int f2fs_disable_cp_again(struct f2fs_sb_info
*sbi
, block_t unusable
)
953 (overprovision_segments(sbi
) - reserved_segments(sbi
));
954 if (unusable
> F2FS_OPTION(sbi
).unusable_cap
)
956 if (is_sbi_flag_set(sbi
, SBI_CP_DISABLED_QUICK
) &&
957 dirty_segments(sbi
) > ovp_hole_segs
)
962 /* This is only used by SBI_CP_DISABLED */
963 static unsigned int get_free_segment(struct f2fs_sb_info
*sbi
)
965 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
966 unsigned int segno
= 0;
968 mutex_lock(&dirty_i
->seglist_lock
);
969 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[DIRTY
], MAIN_SEGS(sbi
)) {
970 if (get_valid_blocks(sbi
, segno
, false))
972 if (get_ckpt_valid_blocks(sbi
, segno
, false))
974 mutex_unlock(&dirty_i
->seglist_lock
);
977 mutex_unlock(&dirty_i
->seglist_lock
);
981 static struct discard_cmd
*__create_discard_cmd(struct f2fs_sb_info
*sbi
,
982 struct block_device
*bdev
, block_t lstart
,
983 block_t start
, block_t len
)
985 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
986 struct list_head
*pend_list
;
987 struct discard_cmd
*dc
;
989 f2fs_bug_on(sbi
, !len
);
991 pend_list
= &dcc
->pend_list
[plist_idx(len
)];
993 dc
= f2fs_kmem_cache_alloc(discard_cmd_slab
, GFP_NOFS
);
994 INIT_LIST_HEAD(&dc
->list
);
1003 init_completion(&dc
->wait
);
1004 list_add_tail(&dc
->list
, pend_list
);
1005 spin_lock_init(&dc
->lock
);
1007 atomic_inc(&dcc
->discard_cmd_cnt
);
1008 dcc
->undiscard_blks
+= len
;
1013 static struct discard_cmd
*__attach_discard_cmd(struct f2fs_sb_info
*sbi
,
1014 struct block_device
*bdev
, block_t lstart
,
1015 block_t start
, block_t len
,
1016 struct rb_node
*parent
, struct rb_node
**p
,
1019 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1020 struct discard_cmd
*dc
;
1022 dc
= __create_discard_cmd(sbi
, bdev
, lstart
, start
, len
);
1024 rb_link_node(&dc
->rb_node
, parent
, p
);
1025 rb_insert_color_cached(&dc
->rb_node
, &dcc
->root
, leftmost
);
1030 static void __detach_discard_cmd(struct discard_cmd_control
*dcc
,
1031 struct discard_cmd
*dc
)
1033 if (dc
->state
== D_DONE
)
1034 atomic_sub(dc
->queued
, &dcc
->queued_discard
);
1036 list_del(&dc
->list
);
1037 rb_erase_cached(&dc
->rb_node
, &dcc
->root
);
1038 dcc
->undiscard_blks
-= dc
->len
;
1040 kmem_cache_free(discard_cmd_slab
, dc
);
1042 atomic_dec(&dcc
->discard_cmd_cnt
);
1045 static void __remove_discard_cmd(struct f2fs_sb_info
*sbi
,
1046 struct discard_cmd
*dc
)
1048 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1049 unsigned long flags
;
1051 trace_f2fs_remove_discard(dc
->bdev
, dc
->start
, dc
->len
);
1053 spin_lock_irqsave(&dc
->lock
, flags
);
1055 spin_unlock_irqrestore(&dc
->lock
, flags
);
1058 spin_unlock_irqrestore(&dc
->lock
, flags
);
1060 f2fs_bug_on(sbi
, dc
->ref
);
1062 if (dc
->error
== -EOPNOTSUPP
)
1067 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068 KERN_INFO
, sbi
->sb
->s_id
,
1069 dc
->lstart
, dc
->start
, dc
->len
, dc
->error
);
1070 __detach_discard_cmd(dcc
, dc
);
1073 static void f2fs_submit_discard_endio(struct bio
*bio
)
1075 struct discard_cmd
*dc
= (struct discard_cmd
*)bio
->bi_private
;
1076 unsigned long flags
;
1078 spin_lock_irqsave(&dc
->lock
, flags
);
1080 dc
->error
= blk_status_to_errno(bio
->bi_status
);
1082 if (!dc
->bio_ref
&& dc
->state
== D_SUBMIT
) {
1084 complete_all(&dc
->wait
);
1086 spin_unlock_irqrestore(&dc
->lock
, flags
);
1090 static void __check_sit_bitmap(struct f2fs_sb_info
*sbi
,
1091 block_t start
, block_t end
)
1093 #ifdef CONFIG_F2FS_CHECK_FS
1094 struct seg_entry
*sentry
;
1096 block_t blk
= start
;
1097 unsigned long offset
, size
, max_blocks
= sbi
->blocks_per_seg
;
1101 segno
= GET_SEGNO(sbi
, blk
);
1102 sentry
= get_seg_entry(sbi
, segno
);
1103 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blk
);
1105 if (end
< START_BLOCK(sbi
, segno
+ 1))
1106 size
= GET_BLKOFF_FROM_SEG0(sbi
, end
);
1109 map
= (unsigned long *)(sentry
->cur_valid_map
);
1110 offset
= __find_rev_next_bit(map
, size
, offset
);
1111 f2fs_bug_on(sbi
, offset
!= size
);
1112 blk
= START_BLOCK(sbi
, segno
+ 1);
1117 static void __init_discard_policy(struct f2fs_sb_info
*sbi
,
1118 struct discard_policy
*dpolicy
,
1119 int discard_type
, unsigned int granularity
)
1121 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1124 dpolicy
->type
= discard_type
;
1125 dpolicy
->sync
= true;
1126 dpolicy
->ordered
= false;
1127 dpolicy
->granularity
= granularity
;
1129 dpolicy
->max_requests
= DEF_MAX_DISCARD_REQUEST
;
1130 dpolicy
->io_aware_gran
= MAX_PLIST_NUM
;
1131 dpolicy
->timeout
= false;
1133 if (discard_type
== DPOLICY_BG
) {
1134 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1135 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
1136 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1137 dpolicy
->io_aware
= true;
1138 dpolicy
->sync
= false;
1139 dpolicy
->ordered
= true;
1140 if (utilization(sbi
) > DEF_DISCARD_URGENT_UTIL
) {
1141 dpolicy
->granularity
= 1;
1142 if (atomic_read(&dcc
->discard_cmd_cnt
))
1143 dpolicy
->max_interval
=
1144 DEF_MIN_DISCARD_ISSUE_TIME
;
1146 } else if (discard_type
== DPOLICY_FORCE
) {
1147 dpolicy
->min_interval
= DEF_MIN_DISCARD_ISSUE_TIME
;
1148 dpolicy
->mid_interval
= DEF_MID_DISCARD_ISSUE_TIME
;
1149 dpolicy
->max_interval
= DEF_MAX_DISCARD_ISSUE_TIME
;
1150 dpolicy
->io_aware
= false;
1151 } else if (discard_type
== DPOLICY_FSTRIM
) {
1152 dpolicy
->io_aware
= false;
1153 } else if (discard_type
== DPOLICY_UMOUNT
) {
1154 dpolicy
->io_aware
= false;
1155 /* we need to issue all to keep CP_TRIMMED_FLAG */
1156 dpolicy
->granularity
= 1;
1157 dpolicy
->timeout
= true;
1161 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1162 struct block_device
*bdev
, block_t lstart
,
1163 block_t start
, block_t len
);
1164 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165 static int __submit_discard_cmd(struct f2fs_sb_info
*sbi
,
1166 struct discard_policy
*dpolicy
,
1167 struct discard_cmd
*dc
,
1168 unsigned int *issued
)
1170 struct block_device
*bdev
= dc
->bdev
;
1171 struct request_queue
*q
= bdev_get_queue(bdev
);
1172 unsigned int max_discard_blocks
=
1173 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1174 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1175 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1176 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1177 int flag
= dpolicy
->sync
? REQ_SYNC
: 0;
1178 block_t lstart
, start
, len
, total_len
;
1181 if (dc
->state
!= D_PREP
)
1184 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1187 trace_f2fs_issue_discard(bdev
, dc
->start
, dc
->len
);
1189 lstart
= dc
->lstart
;
1196 while (total_len
&& *issued
< dpolicy
->max_requests
&& !err
) {
1197 struct bio
*bio
= NULL
;
1198 unsigned long flags
;
1201 if (len
> max_discard_blocks
) {
1202 len
= max_discard_blocks
;
1207 if (*issued
== dpolicy
->max_requests
)
1212 if (time_to_inject(sbi
, FAULT_DISCARD
)) {
1213 f2fs_show_injection_info(sbi
, FAULT_DISCARD
);
1217 err
= __blkdev_issue_discard(bdev
,
1218 SECTOR_FROM_BLOCK(start
),
1219 SECTOR_FROM_BLOCK(len
),
1223 spin_lock_irqsave(&dc
->lock
, flags
);
1224 if (dc
->state
== D_PARTIAL
)
1225 dc
->state
= D_SUBMIT
;
1226 spin_unlock_irqrestore(&dc
->lock
, flags
);
1231 f2fs_bug_on(sbi
, !bio
);
1234 * should keep before submission to avoid D_DONE
1237 spin_lock_irqsave(&dc
->lock
, flags
);
1239 dc
->state
= D_SUBMIT
;
1241 dc
->state
= D_PARTIAL
;
1243 spin_unlock_irqrestore(&dc
->lock
, flags
);
1245 atomic_inc(&dcc
->queued_discard
);
1247 list_move_tail(&dc
->list
, wait_list
);
1249 /* sanity check on discard range */
1250 __check_sit_bitmap(sbi
, lstart
, lstart
+ len
);
1252 bio
->bi_private
= dc
;
1253 bio
->bi_end_io
= f2fs_submit_discard_endio
;
1254 bio
->bi_opf
|= flag
;
1257 atomic_inc(&dcc
->issued_discard
);
1259 f2fs_update_iostat(sbi
, FS_DISCARD
, 1);
1268 dcc
->undiscard_blks
-= len
;
1269 __update_discard_tree_range(sbi
, bdev
, lstart
, start
, len
);
1274 static void __insert_discard_tree(struct f2fs_sb_info
*sbi
,
1275 struct block_device
*bdev
, block_t lstart
,
1276 block_t start
, block_t len
,
1277 struct rb_node
**insert_p
,
1278 struct rb_node
*insert_parent
)
1280 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1282 struct rb_node
*parent
= NULL
;
1283 bool leftmost
= true;
1285 if (insert_p
&& insert_parent
) {
1286 parent
= insert_parent
;
1291 p
= f2fs_lookup_rb_tree_for_insert(sbi
, &dcc
->root
, &parent
,
1294 __attach_discard_cmd(sbi
, bdev
, lstart
, start
, len
, parent
,
1298 static void __relocate_discard_cmd(struct discard_cmd_control
*dcc
,
1299 struct discard_cmd
*dc
)
1301 list_move_tail(&dc
->list
, &dcc
->pend_list
[plist_idx(dc
->len
)]);
1304 static void __punch_discard_cmd(struct f2fs_sb_info
*sbi
,
1305 struct discard_cmd
*dc
, block_t blkaddr
)
1307 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1308 struct discard_info di
= dc
->di
;
1309 bool modified
= false;
1311 if (dc
->state
== D_DONE
|| dc
->len
== 1) {
1312 __remove_discard_cmd(sbi
, dc
);
1316 dcc
->undiscard_blks
-= di
.len
;
1318 if (blkaddr
> di
.lstart
) {
1319 dc
->len
= blkaddr
- dc
->lstart
;
1320 dcc
->undiscard_blks
+= dc
->len
;
1321 __relocate_discard_cmd(dcc
, dc
);
1325 if (blkaddr
< di
.lstart
+ di
.len
- 1) {
1327 __insert_discard_tree(sbi
, dc
->bdev
, blkaddr
+ 1,
1328 di
.start
+ blkaddr
+ 1 - di
.lstart
,
1329 di
.lstart
+ di
.len
- 1 - blkaddr
,
1335 dcc
->undiscard_blks
+= dc
->len
;
1336 __relocate_discard_cmd(dcc
, dc
);
1341 static void __update_discard_tree_range(struct f2fs_sb_info
*sbi
,
1342 struct block_device
*bdev
, block_t lstart
,
1343 block_t start
, block_t len
)
1345 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1346 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1347 struct discard_cmd
*dc
;
1348 struct discard_info di
= {0};
1349 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1350 struct request_queue
*q
= bdev_get_queue(bdev
);
1351 unsigned int max_discard_blocks
=
1352 SECTOR_TO_BLOCK(q
->limits
.max_discard_sectors
);
1353 block_t end
= lstart
+ len
;
1355 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1357 (struct rb_entry
**)&prev_dc
,
1358 (struct rb_entry
**)&next_dc
,
1359 &insert_p
, &insert_parent
, true, NULL
);
1365 di
.len
= next_dc
? next_dc
->lstart
- lstart
: len
;
1366 di
.len
= min(di
.len
, len
);
1371 struct rb_node
*node
;
1372 bool merged
= false;
1373 struct discard_cmd
*tdc
= NULL
;
1376 di
.lstart
= prev_dc
->lstart
+ prev_dc
->len
;
1377 if (di
.lstart
< lstart
)
1379 if (di
.lstart
>= end
)
1382 if (!next_dc
|| next_dc
->lstart
> end
)
1383 di
.len
= end
- di
.lstart
;
1385 di
.len
= next_dc
->lstart
- di
.lstart
;
1386 di
.start
= start
+ di
.lstart
- lstart
;
1392 if (prev_dc
&& prev_dc
->state
== D_PREP
&&
1393 prev_dc
->bdev
== bdev
&&
1394 __is_discard_back_mergeable(&di
, &prev_dc
->di
,
1395 max_discard_blocks
)) {
1396 prev_dc
->di
.len
+= di
.len
;
1397 dcc
->undiscard_blks
+= di
.len
;
1398 __relocate_discard_cmd(dcc
, prev_dc
);
1404 if (next_dc
&& next_dc
->state
== D_PREP
&&
1405 next_dc
->bdev
== bdev
&&
1406 __is_discard_front_mergeable(&di
, &next_dc
->di
,
1407 max_discard_blocks
)) {
1408 next_dc
->di
.lstart
= di
.lstart
;
1409 next_dc
->di
.len
+= di
.len
;
1410 next_dc
->di
.start
= di
.start
;
1411 dcc
->undiscard_blks
+= di
.len
;
1412 __relocate_discard_cmd(dcc
, next_dc
);
1414 __remove_discard_cmd(sbi
, tdc
);
1419 __insert_discard_tree(sbi
, bdev
, di
.lstart
, di
.start
,
1420 di
.len
, NULL
, NULL
);
1427 node
= rb_next(&prev_dc
->rb_node
);
1428 next_dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1432 static int __queue_discard_cmd(struct f2fs_sb_info
*sbi
,
1433 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1435 block_t lblkstart
= blkstart
;
1437 if (!f2fs_bdev_support_discard(bdev
))
1440 trace_f2fs_queue_discard(bdev
, blkstart
, blklen
);
1442 if (f2fs_is_multi_device(sbi
)) {
1443 int devi
= f2fs_target_device_index(sbi
, blkstart
);
1445 blkstart
-= FDEV(devi
).start_blk
;
1447 mutex_lock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1448 __update_discard_tree_range(sbi
, bdev
, lblkstart
, blkstart
, blklen
);
1449 mutex_unlock(&SM_I(sbi
)->dcc_info
->cmd_lock
);
1453 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info
*sbi
,
1454 struct discard_policy
*dpolicy
)
1456 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1457 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
1458 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
1459 struct discard_cmd
*dc
;
1460 struct blk_plug plug
;
1461 unsigned int pos
= dcc
->next_pos
;
1462 unsigned int issued
= 0;
1463 bool io_interrupted
= false;
1465 mutex_lock(&dcc
->cmd_lock
);
1466 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
1468 (struct rb_entry
**)&prev_dc
,
1469 (struct rb_entry
**)&next_dc
,
1470 &insert_p
, &insert_parent
, true, NULL
);
1474 blk_start_plug(&plug
);
1477 struct rb_node
*node
;
1480 if (dc
->state
!= D_PREP
)
1483 if (dpolicy
->io_aware
&& !is_idle(sbi
, DISCARD_TIME
)) {
1484 io_interrupted
= true;
1488 dcc
->next_pos
= dc
->lstart
+ dc
->len
;
1489 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1491 if (issued
>= dpolicy
->max_requests
)
1494 node
= rb_next(&dc
->rb_node
);
1496 __remove_discard_cmd(sbi
, dc
);
1497 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
1500 blk_finish_plug(&plug
);
1505 mutex_unlock(&dcc
->cmd_lock
);
1507 if (!issued
&& io_interrupted
)
1512 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info
*sbi
,
1513 struct discard_policy
*dpolicy
);
1515 static int __issue_discard_cmd(struct f2fs_sb_info
*sbi
,
1516 struct discard_policy
*dpolicy
)
1518 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1519 struct list_head
*pend_list
;
1520 struct discard_cmd
*dc
, *tmp
;
1521 struct blk_plug plug
;
1523 bool io_interrupted
= false;
1525 if (dpolicy
->timeout
)
1526 f2fs_update_time(sbi
, UMOUNT_DISCARD_TIMEOUT
);
1530 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1531 if (dpolicy
->timeout
&&
1532 f2fs_time_over(sbi
, UMOUNT_DISCARD_TIMEOUT
))
1535 if (i
+ 1 < dpolicy
->granularity
)
1538 if (i
< DEFAULT_DISCARD_GRANULARITY
&& dpolicy
->ordered
)
1539 return __issue_discard_cmd_orderly(sbi
, dpolicy
);
1541 pend_list
= &dcc
->pend_list
[i
];
1543 mutex_lock(&dcc
->cmd_lock
);
1544 if (list_empty(pend_list
))
1546 if (unlikely(dcc
->rbtree_check
))
1547 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
1548 &dcc
->root
, false));
1549 blk_start_plug(&plug
);
1550 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1551 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1553 if (dpolicy
->timeout
&&
1554 f2fs_time_over(sbi
, UMOUNT_DISCARD_TIMEOUT
))
1557 if (dpolicy
->io_aware
&& i
< dpolicy
->io_aware_gran
&&
1558 !is_idle(sbi
, DISCARD_TIME
)) {
1559 io_interrupted
= true;
1563 __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
1565 if (issued
>= dpolicy
->max_requests
)
1568 blk_finish_plug(&plug
);
1570 mutex_unlock(&dcc
->cmd_lock
);
1572 if (issued
>= dpolicy
->max_requests
|| io_interrupted
)
1576 if (dpolicy
->type
== DPOLICY_UMOUNT
&& issued
) {
1577 __wait_all_discard_cmd(sbi
, dpolicy
);
1581 if (!issued
&& io_interrupted
)
1587 static bool __drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1589 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1590 struct list_head
*pend_list
;
1591 struct discard_cmd
*dc
, *tmp
;
1593 bool dropped
= false;
1595 mutex_lock(&dcc
->cmd_lock
);
1596 for (i
= MAX_PLIST_NUM
- 1; i
>= 0; i
--) {
1597 pend_list
= &dcc
->pend_list
[i
];
1598 list_for_each_entry_safe(dc
, tmp
, pend_list
, list
) {
1599 f2fs_bug_on(sbi
, dc
->state
!= D_PREP
);
1600 __remove_discard_cmd(sbi
, dc
);
1604 mutex_unlock(&dcc
->cmd_lock
);
1609 void f2fs_drop_discard_cmd(struct f2fs_sb_info
*sbi
)
1611 __drop_discard_cmd(sbi
);
1614 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info
*sbi
,
1615 struct discard_cmd
*dc
)
1617 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1618 unsigned int len
= 0;
1620 wait_for_completion_io(&dc
->wait
);
1621 mutex_lock(&dcc
->cmd_lock
);
1622 f2fs_bug_on(sbi
, dc
->state
!= D_DONE
);
1627 __remove_discard_cmd(sbi
, dc
);
1629 mutex_unlock(&dcc
->cmd_lock
);
1634 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info
*sbi
,
1635 struct discard_policy
*dpolicy
,
1636 block_t start
, block_t end
)
1638 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1639 struct list_head
*wait_list
= (dpolicy
->type
== DPOLICY_FSTRIM
) ?
1640 &(dcc
->fstrim_list
) : &(dcc
->wait_list
);
1641 struct discard_cmd
*dc
, *tmp
;
1643 unsigned int trimmed
= 0;
1648 mutex_lock(&dcc
->cmd_lock
);
1649 list_for_each_entry_safe(dc
, tmp
, wait_list
, list
) {
1650 if (dc
->lstart
+ dc
->len
<= start
|| end
<= dc
->lstart
)
1652 if (dc
->len
< dpolicy
->granularity
)
1654 if (dc
->state
== D_DONE
&& !dc
->ref
) {
1655 wait_for_completion_io(&dc
->wait
);
1658 __remove_discard_cmd(sbi
, dc
);
1665 mutex_unlock(&dcc
->cmd_lock
);
1668 trimmed
+= __wait_one_discard_bio(sbi
, dc
);
1675 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info
*sbi
,
1676 struct discard_policy
*dpolicy
)
1678 struct discard_policy dp
;
1679 unsigned int discard_blks
;
1682 return __wait_discard_cmd_range(sbi
, dpolicy
, 0, UINT_MAX
);
1685 __init_discard_policy(sbi
, &dp
, DPOLICY_FSTRIM
, 1);
1686 discard_blks
= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1687 __init_discard_policy(sbi
, &dp
, DPOLICY_UMOUNT
, 1);
1688 discard_blks
+= __wait_discard_cmd_range(sbi
, &dp
, 0, UINT_MAX
);
1690 return discard_blks
;
1693 /* This should be covered by global mutex, &sit_i->sentry_lock */
1694 static void f2fs_wait_discard_bio(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1696 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1697 struct discard_cmd
*dc
;
1698 bool need_wait
= false;
1700 mutex_lock(&dcc
->cmd_lock
);
1701 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree(&dcc
->root
,
1704 if (dc
->state
== D_PREP
) {
1705 __punch_discard_cmd(sbi
, dc
, blkaddr
);
1711 mutex_unlock(&dcc
->cmd_lock
);
1714 __wait_one_discard_bio(sbi
, dc
);
1717 void f2fs_stop_discard_thread(struct f2fs_sb_info
*sbi
)
1719 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1721 if (dcc
&& dcc
->f2fs_issue_discard
) {
1722 struct task_struct
*discard_thread
= dcc
->f2fs_issue_discard
;
1724 dcc
->f2fs_issue_discard
= NULL
;
1725 kthread_stop(discard_thread
);
1729 /* This comes from f2fs_put_super */
1730 bool f2fs_issue_discard_timeout(struct f2fs_sb_info
*sbi
)
1732 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1733 struct discard_policy dpolicy
;
1736 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_UMOUNT
,
1737 dcc
->discard_granularity
);
1738 __issue_discard_cmd(sbi
, &dpolicy
);
1739 dropped
= __drop_discard_cmd(sbi
);
1741 /* just to make sure there is no pending discard commands */
1742 __wait_all_discard_cmd(sbi
, NULL
);
1744 f2fs_bug_on(sbi
, atomic_read(&dcc
->discard_cmd_cnt
));
1748 static int issue_discard_thread(void *data
)
1750 struct f2fs_sb_info
*sbi
= data
;
1751 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
1752 wait_queue_head_t
*q
= &dcc
->discard_wait_queue
;
1753 struct discard_policy dpolicy
;
1754 unsigned int wait_ms
= DEF_MIN_DISCARD_ISSUE_TIME
;
1760 if (sbi
->gc_mode
== GC_URGENT_HIGH
||
1761 !f2fs_available_free_memory(sbi
, DISCARD_CACHE
))
1762 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FORCE
, 1);
1764 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_BG
,
1765 dcc
->discard_granularity
);
1767 if (!atomic_read(&dcc
->discard_cmd_cnt
))
1768 wait_ms
= dpolicy
.max_interval
;
1770 wait_event_interruptible_timeout(*q
,
1771 kthread_should_stop() || freezing(current
) ||
1773 msecs_to_jiffies(wait_ms
));
1775 if (dcc
->discard_wake
)
1776 dcc
->discard_wake
= 0;
1778 /* clean up pending candidates before going to sleep */
1779 if (atomic_read(&dcc
->queued_discard
))
1780 __wait_all_discard_cmd(sbi
, NULL
);
1782 if (try_to_freeze())
1784 if (f2fs_readonly(sbi
->sb
))
1786 if (kthread_should_stop())
1788 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1789 wait_ms
= dpolicy
.max_interval
;
1792 if (!atomic_read(&dcc
->discard_cmd_cnt
))
1795 sb_start_intwrite(sbi
->sb
);
1797 issued
= __issue_discard_cmd(sbi
, &dpolicy
);
1799 __wait_all_discard_cmd(sbi
, &dpolicy
);
1800 wait_ms
= dpolicy
.min_interval
;
1801 } else if (issued
== -1) {
1802 wait_ms
= f2fs_time_to_wait(sbi
, DISCARD_TIME
);
1804 wait_ms
= dpolicy
.mid_interval
;
1806 wait_ms
= dpolicy
.max_interval
;
1809 sb_end_intwrite(sbi
->sb
);
1811 } while (!kthread_should_stop());
1815 #ifdef CONFIG_BLK_DEV_ZONED
1816 static int __f2fs_issue_discard_zone(struct f2fs_sb_info
*sbi
,
1817 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1819 sector_t sector
, nr_sects
;
1820 block_t lblkstart
= blkstart
;
1823 if (f2fs_is_multi_device(sbi
)) {
1824 devi
= f2fs_target_device_index(sbi
, blkstart
);
1825 if (blkstart
< FDEV(devi
).start_blk
||
1826 blkstart
> FDEV(devi
).end_blk
) {
1827 f2fs_err(sbi
, "Invalid block %x", blkstart
);
1830 blkstart
-= FDEV(devi
).start_blk
;
1833 /* For sequential zones, reset the zone write pointer */
1834 if (f2fs_blkz_is_seq(sbi
, devi
, blkstart
)) {
1835 sector
= SECTOR_FROM_BLOCK(blkstart
);
1836 nr_sects
= SECTOR_FROM_BLOCK(blklen
);
1838 if (sector
& (bdev_zone_sectors(bdev
) - 1) ||
1839 nr_sects
!= bdev_zone_sectors(bdev
)) {
1840 f2fs_err(sbi
, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841 devi
, sbi
->s_ndevs
? FDEV(devi
).path
: "",
1845 trace_f2fs_issue_reset_zone(bdev
, blkstart
);
1846 return blkdev_zone_mgmt(bdev
, REQ_OP_ZONE_RESET
,
1847 sector
, nr_sects
, GFP_NOFS
);
1850 /* For conventional zones, use regular discard if supported */
1851 return __queue_discard_cmd(sbi
, bdev
, lblkstart
, blklen
);
1855 static int __issue_discard_async(struct f2fs_sb_info
*sbi
,
1856 struct block_device
*bdev
, block_t blkstart
, block_t blklen
)
1858 #ifdef CONFIG_BLK_DEV_ZONED
1859 if (f2fs_sb_has_blkzoned(sbi
) && bdev_is_zoned(bdev
))
1860 return __f2fs_issue_discard_zone(sbi
, bdev
, blkstart
, blklen
);
1862 return __queue_discard_cmd(sbi
, bdev
, blkstart
, blklen
);
1865 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
1866 block_t blkstart
, block_t blklen
)
1868 sector_t start
= blkstart
, len
= 0;
1869 struct block_device
*bdev
;
1870 struct seg_entry
*se
;
1871 unsigned int offset
;
1875 bdev
= f2fs_target_device(sbi
, blkstart
, NULL
);
1877 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++, len
++) {
1879 struct block_device
*bdev2
=
1880 f2fs_target_device(sbi
, i
, NULL
);
1882 if (bdev2
!= bdev
) {
1883 err
= __issue_discard_async(sbi
, bdev
,
1893 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
1894 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
1896 if (f2fs_block_unit_discard(sbi
) &&
1897 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
1898 sbi
->discard_blks
--;
1902 err
= __issue_discard_async(sbi
, bdev
, start
, len
);
1906 static bool add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
,
1909 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1910 int max_blocks
= sbi
->blocks_per_seg
;
1911 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
1912 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1913 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1914 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
1915 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
1916 unsigned int start
= 0, end
= -1;
1917 bool force
= (cpc
->reason
& CP_DISCARD
);
1918 struct discard_entry
*de
= NULL
;
1919 struct list_head
*head
= &SM_I(sbi
)->dcc_info
->entry_list
;
1922 if (se
->valid_blocks
== max_blocks
|| !f2fs_hw_support_discard(sbi
) ||
1923 !f2fs_block_unit_discard(sbi
))
1927 if (!f2fs_realtime_discard_enable(sbi
) || !se
->valid_blocks
||
1928 SM_I(sbi
)->dcc_info
->nr_discards
>=
1929 SM_I(sbi
)->dcc_info
->max_discards
)
1933 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1934 for (i
= 0; i
< entries
; i
++)
1935 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
1936 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
1938 while (force
|| SM_I(sbi
)->dcc_info
->nr_discards
<=
1939 SM_I(sbi
)->dcc_info
->max_discards
) {
1940 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
1941 if (start
>= max_blocks
)
1944 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
1945 if (force
&& start
&& end
!= max_blocks
1946 && (end
- start
) < cpc
->trim_minlen
)
1953 de
= f2fs_kmem_cache_alloc(discard_entry_slab
,
1955 de
->start_blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
);
1956 list_add_tail(&de
->list
, head
);
1959 for (i
= start
; i
< end
; i
++)
1960 __set_bit_le(i
, (void *)de
->discard_map
);
1962 SM_I(sbi
)->dcc_info
->nr_discards
+= end
- start
;
1967 static void release_discard_addr(struct discard_entry
*entry
)
1969 list_del(&entry
->list
);
1970 kmem_cache_free(discard_entry_slab
, entry
);
1973 void f2fs_release_discard_addrs(struct f2fs_sb_info
*sbi
)
1975 struct list_head
*head
= &(SM_I(sbi
)->dcc_info
->entry_list
);
1976 struct discard_entry
*entry
, *this;
1979 list_for_each_entry_safe(entry
, this, head
, list
)
1980 release_discard_addr(entry
);
1984 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1986 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
1988 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1991 mutex_lock(&dirty_i
->seglist_lock
);
1992 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
1993 __set_test_and_free(sbi
, segno
, false);
1994 mutex_unlock(&dirty_i
->seglist_lock
);
1997 void f2fs_clear_prefree_segments(struct f2fs_sb_info
*sbi
,
1998 struct cp_control
*cpc
)
2000 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
2001 struct list_head
*head
= &dcc
->entry_list
;
2002 struct discard_entry
*entry
, *this;
2003 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2004 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
2005 unsigned int start
= 0, end
= -1;
2006 unsigned int secno
, start_segno
;
2007 bool force
= (cpc
->reason
& CP_DISCARD
);
2008 bool section_alignment
= F2FS_OPTION(sbi
).discard_unit
==
2009 DISCARD_UNIT_SECTION
;
2011 if (f2fs_lfs_mode(sbi
) && __is_large_section(sbi
))
2012 section_alignment
= true;
2014 mutex_lock(&dirty_i
->seglist_lock
);
2019 if (section_alignment
&& end
!= -1)
2021 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
2022 if (start
>= MAIN_SEGS(sbi
))
2024 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
2027 if (section_alignment
) {
2028 start
= rounddown(start
, sbi
->segs_per_sec
);
2029 end
= roundup(end
, sbi
->segs_per_sec
);
2032 for (i
= start
; i
< end
; i
++) {
2033 if (test_and_clear_bit(i
, prefree_map
))
2034 dirty_i
->nr_dirty
[PRE
]--;
2037 if (!f2fs_realtime_discard_enable(sbi
))
2040 if (force
&& start
>= cpc
->trim_start
&&
2041 (end
- 1) <= cpc
->trim_end
)
2044 if (!f2fs_lfs_mode(sbi
) || !__is_large_section(sbi
)) {
2045 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
2046 (end
- start
) << sbi
->log_blocks_per_seg
);
2050 secno
= GET_SEC_FROM_SEG(sbi
, start
);
2051 start_segno
= GET_SEG_FROM_SEC(sbi
, secno
);
2052 if (!IS_CURSEC(sbi
, secno
) &&
2053 !get_valid_blocks(sbi
, start
, true))
2054 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
2055 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
2057 start
= start_segno
+ sbi
->segs_per_sec
;
2063 mutex_unlock(&dirty_i
->seglist_lock
);
2065 if (!f2fs_block_unit_discard(sbi
))
2068 /* send small discards */
2069 list_for_each_entry_safe(entry
, this, head
, list
) {
2070 unsigned int cur_pos
= 0, next_pos
, len
, total_len
= 0;
2071 bool is_valid
= test_bit_le(0, entry
->discard_map
);
2075 next_pos
= find_next_zero_bit_le(entry
->discard_map
,
2076 sbi
->blocks_per_seg
, cur_pos
);
2077 len
= next_pos
- cur_pos
;
2079 if (f2fs_sb_has_blkzoned(sbi
) ||
2080 (force
&& len
< cpc
->trim_minlen
))
2083 f2fs_issue_discard(sbi
, entry
->start_blkaddr
+ cur_pos
,
2087 next_pos
= find_next_bit_le(entry
->discard_map
,
2088 sbi
->blocks_per_seg
, cur_pos
);
2092 is_valid
= !is_valid
;
2094 if (cur_pos
< sbi
->blocks_per_seg
)
2097 release_discard_addr(entry
);
2098 dcc
->nr_discards
-= total_len
;
2102 wake_up_discard_thread(sbi
, false);
2105 static int create_discard_cmd_control(struct f2fs_sb_info
*sbi
)
2107 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
2108 struct discard_cmd_control
*dcc
;
2111 if (SM_I(sbi
)->dcc_info
) {
2112 dcc
= SM_I(sbi
)->dcc_info
;
2116 dcc
= f2fs_kzalloc(sbi
, sizeof(struct discard_cmd_control
), GFP_KERNEL
);
2120 dcc
->discard_granularity
= DEFAULT_DISCARD_GRANULARITY
;
2121 if (F2FS_OPTION(sbi
).discard_unit
== DISCARD_UNIT_SEGMENT
)
2122 dcc
->discard_granularity
= sbi
->blocks_per_seg
;
2123 else if (F2FS_OPTION(sbi
).discard_unit
== DISCARD_UNIT_SECTION
)
2124 dcc
->discard_granularity
= BLKS_PER_SEC(sbi
);
2126 INIT_LIST_HEAD(&dcc
->entry_list
);
2127 for (i
= 0; i
< MAX_PLIST_NUM
; i
++)
2128 INIT_LIST_HEAD(&dcc
->pend_list
[i
]);
2129 INIT_LIST_HEAD(&dcc
->wait_list
);
2130 INIT_LIST_HEAD(&dcc
->fstrim_list
);
2131 mutex_init(&dcc
->cmd_lock
);
2132 atomic_set(&dcc
->issued_discard
, 0);
2133 atomic_set(&dcc
->queued_discard
, 0);
2134 atomic_set(&dcc
->discard_cmd_cnt
, 0);
2135 dcc
->nr_discards
= 0;
2136 dcc
->max_discards
= MAIN_SEGS(sbi
) << sbi
->log_blocks_per_seg
;
2137 dcc
->undiscard_blks
= 0;
2139 dcc
->root
= RB_ROOT_CACHED
;
2140 dcc
->rbtree_check
= false;
2142 init_waitqueue_head(&dcc
->discard_wait_queue
);
2143 SM_I(sbi
)->dcc_info
= dcc
;
2145 dcc
->f2fs_issue_discard
= kthread_run(issue_discard_thread
, sbi
,
2146 "f2fs_discard-%u:%u", MAJOR(dev
), MINOR(dev
));
2147 if (IS_ERR(dcc
->f2fs_issue_discard
)) {
2148 err
= PTR_ERR(dcc
->f2fs_issue_discard
);
2150 SM_I(sbi
)->dcc_info
= NULL
;
2157 static void destroy_discard_cmd_control(struct f2fs_sb_info
*sbi
)
2159 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
2164 f2fs_stop_discard_thread(sbi
);
2167 * Recovery can cache discard commands, so in error path of
2168 * fill_super(), it needs to give a chance to handle them.
2170 if (unlikely(atomic_read(&dcc
->discard_cmd_cnt
)))
2171 f2fs_issue_discard_timeout(sbi
);
2174 SM_I(sbi
)->dcc_info
= NULL
;
2177 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
2179 struct sit_info
*sit_i
= SIT_I(sbi
);
2181 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
2182 sit_i
->dirty_sentries
++;
2189 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
2190 unsigned int segno
, int modified
)
2192 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
2196 __mark_sit_entry_dirty(sbi
, segno
);
2199 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info
*sbi
,
2202 unsigned int segno
= GET_SEGNO(sbi
, blkaddr
);
2204 if (segno
== NULL_SEGNO
)
2206 return get_seg_entry(sbi
, segno
)->mtime
;
2209 static void update_segment_mtime(struct f2fs_sb_info
*sbi
, block_t blkaddr
,
2210 unsigned long long old_mtime
)
2212 struct seg_entry
*se
;
2213 unsigned int segno
= GET_SEGNO(sbi
, blkaddr
);
2214 unsigned long long ctime
= get_mtime(sbi
, false);
2215 unsigned long long mtime
= old_mtime
? old_mtime
: ctime
;
2217 if (segno
== NULL_SEGNO
)
2220 se
= get_seg_entry(sbi
, segno
);
2225 se
->mtime
= div_u64(se
->mtime
* se
->valid_blocks
+ mtime
,
2226 se
->valid_blocks
+ 1);
2228 if (ctime
> SIT_I(sbi
)->max_mtime
)
2229 SIT_I(sbi
)->max_mtime
= ctime
;
2232 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
2234 struct seg_entry
*se
;
2235 unsigned int segno
, offset
;
2236 long int new_vblocks
;
2238 #ifdef CONFIG_F2FS_CHECK_FS
2242 segno
= GET_SEGNO(sbi
, blkaddr
);
2244 se
= get_seg_entry(sbi
, segno
);
2245 new_vblocks
= se
->valid_blocks
+ del
;
2246 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
2248 f2fs_bug_on(sbi
, (new_vblocks
< 0 ||
2249 (new_vblocks
> f2fs_usable_blks_in_seg(sbi
, segno
))));
2251 se
->valid_blocks
= new_vblocks
;
2253 /* Update valid block bitmap */
2255 exist
= f2fs_test_and_set_bit(offset
, se
->cur_valid_map
);
2256 #ifdef CONFIG_F2FS_CHECK_FS
2257 mir_exist
= f2fs_test_and_set_bit(offset
,
2258 se
->cur_valid_map_mir
);
2259 if (unlikely(exist
!= mir_exist
)) {
2260 f2fs_err(sbi
, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2262 f2fs_bug_on(sbi
, 1);
2265 if (unlikely(exist
)) {
2266 f2fs_err(sbi
, "Bitmap was wrongly set, blk:%u",
2268 f2fs_bug_on(sbi
, 1);
2273 if (f2fs_block_unit_discard(sbi
) &&
2274 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
2275 sbi
->discard_blks
--;
2278 * SSR should never reuse block which is checkpointed
2279 * or newly invalidated.
2281 if (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)) {
2282 if (!f2fs_test_and_set_bit(offset
, se
->ckpt_valid_map
))
2283 se
->ckpt_valid_blocks
++;
2286 exist
= f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
);
2287 #ifdef CONFIG_F2FS_CHECK_FS
2288 mir_exist
= f2fs_test_and_clear_bit(offset
,
2289 se
->cur_valid_map_mir
);
2290 if (unlikely(exist
!= mir_exist
)) {
2291 f2fs_err(sbi
, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2293 f2fs_bug_on(sbi
, 1);
2296 if (unlikely(!exist
)) {
2297 f2fs_err(sbi
, "Bitmap was wrongly cleared, blk:%u",
2299 f2fs_bug_on(sbi
, 1);
2302 } else if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
2304 * If checkpoints are off, we must not reuse data that
2305 * was used in the previous checkpoint. If it was used
2306 * before, we must track that to know how much space we
2309 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
)) {
2310 spin_lock(&sbi
->stat_lock
);
2311 sbi
->unusable_block_count
++;
2312 spin_unlock(&sbi
->stat_lock
);
2316 if (f2fs_block_unit_discard(sbi
) &&
2317 f2fs_test_and_clear_bit(offset
, se
->discard_map
))
2318 sbi
->discard_blks
++;
2320 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2321 se
->ckpt_valid_blocks
+= del
;
2323 __mark_sit_entry_dirty(sbi
, segno
);
2325 /* update total number of valid blocks to be written in ckpt area */
2326 SIT_I(sbi
)->written_valid_blocks
+= del
;
2328 if (__is_large_section(sbi
))
2329 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
2332 void f2fs_invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
2334 unsigned int segno
= GET_SEGNO(sbi
, addr
);
2335 struct sit_info
*sit_i
= SIT_I(sbi
);
2337 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
2338 if (addr
== NEW_ADDR
|| addr
== COMPRESS_ADDR
)
2341 invalidate_mapping_pages(META_MAPPING(sbi
), addr
, addr
);
2342 f2fs_invalidate_compress_page(sbi
, addr
);
2344 /* add it into sit main buffer */
2345 down_write(&sit_i
->sentry_lock
);
2347 update_segment_mtime(sbi
, addr
, 0);
2348 update_sit_entry(sbi
, addr
, -1);
2350 /* add it into dirty seglist */
2351 locate_dirty_segment(sbi
, segno
);
2353 up_write(&sit_i
->sentry_lock
);
2356 bool f2fs_is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
2358 struct sit_info
*sit_i
= SIT_I(sbi
);
2359 unsigned int segno
, offset
;
2360 struct seg_entry
*se
;
2363 if (!__is_valid_data_blkaddr(blkaddr
))
2366 down_read(&sit_i
->sentry_lock
);
2368 segno
= GET_SEGNO(sbi
, blkaddr
);
2369 se
= get_seg_entry(sbi
, segno
);
2370 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
2372 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
2375 up_read(&sit_i
->sentry_lock
);
2381 * This function should be resided under the curseg_mutex lock
2383 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
2384 struct f2fs_summary
*sum
)
2386 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2387 void *addr
= curseg
->sum_blk
;
2389 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
2390 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
2394 * Calculate the number of current summary pages for writing
2396 int f2fs_npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
2398 int valid_sum_count
= 0;
2401 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
2402 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
2403 valid_sum_count
+= sbi
->blocks_per_seg
;
2406 valid_sum_count
+= le16_to_cpu(
2407 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
2409 valid_sum_count
+= curseg_blkoff(sbi
, i
);
2413 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
2414 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
2415 if (valid_sum_count
<= sum_in_page
)
2417 else if ((valid_sum_count
- sum_in_page
) <=
2418 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
2424 * Caller should put this summary page
2426 struct page
*f2fs_get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
2428 if (unlikely(f2fs_cp_error(sbi
)))
2429 return ERR_PTR(-EIO
);
2430 return f2fs_get_meta_page_retry(sbi
, GET_SUM_BLOCK(sbi
, segno
));
2433 void f2fs_update_meta_page(struct f2fs_sb_info
*sbi
,
2434 void *src
, block_t blk_addr
)
2436 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2438 memcpy(page_address(page
), src
, PAGE_SIZE
);
2439 set_page_dirty(page
);
2440 f2fs_put_page(page
, 1);
2443 static void write_sum_page(struct f2fs_sb_info
*sbi
,
2444 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
2446 f2fs_update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
2449 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
2450 int type
, block_t blk_addr
)
2452 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2453 struct page
*page
= f2fs_grab_meta_page(sbi
, blk_addr
);
2454 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
2455 struct f2fs_summary_block
*dst
;
2457 dst
= (struct f2fs_summary_block
*)page_address(page
);
2458 memset(dst
, 0, PAGE_SIZE
);
2460 mutex_lock(&curseg
->curseg_mutex
);
2462 down_read(&curseg
->journal_rwsem
);
2463 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
2464 up_read(&curseg
->journal_rwsem
);
2466 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
2467 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
2469 mutex_unlock(&curseg
->curseg_mutex
);
2471 set_page_dirty(page
);
2472 f2fs_put_page(page
, 1);
2475 static int is_next_segment_free(struct f2fs_sb_info
*sbi
,
2476 struct curseg_info
*curseg
, int type
)
2478 unsigned int segno
= curseg
->segno
+ 1;
2479 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2481 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
2482 return !test_bit(segno
, free_i
->free_segmap
);
2487 * Find a new segment from the free segments bitmap to right order
2488 * This function should be returned with success, otherwise BUG
2490 static void get_new_segment(struct f2fs_sb_info
*sbi
,
2491 unsigned int *newseg
, bool new_sec
, int dir
)
2493 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2494 unsigned int segno
, secno
, zoneno
;
2495 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
2496 unsigned int hint
= GET_SEC_FROM_SEG(sbi
, *newseg
);
2497 unsigned int old_zoneno
= GET_ZONE_FROM_SEG(sbi
, *newseg
);
2498 unsigned int left_start
= hint
;
2503 spin_lock(&free_i
->segmap_lock
);
2505 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
2506 segno
= find_next_zero_bit(free_i
->free_segmap
,
2507 GET_SEG_FROM_SEC(sbi
, hint
+ 1), *newseg
+ 1);
2508 if (segno
< GET_SEG_FROM_SEC(sbi
, hint
+ 1))
2512 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
2513 if (secno
>= MAIN_SECS(sbi
)) {
2514 if (dir
== ALLOC_RIGHT
) {
2515 secno
= find_next_zero_bit(free_i
->free_secmap
,
2517 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
2520 left_start
= hint
- 1;
2526 while (test_bit(left_start
, free_i
->free_secmap
)) {
2527 if (left_start
> 0) {
2531 left_start
= find_next_zero_bit(free_i
->free_secmap
,
2533 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
2538 segno
= GET_SEG_FROM_SEC(sbi
, secno
);
2539 zoneno
= GET_ZONE_FROM_SEC(sbi
, secno
);
2541 /* give up on finding another zone */
2544 if (sbi
->secs_per_zone
== 1)
2546 if (zoneno
== old_zoneno
)
2548 if (dir
== ALLOC_LEFT
) {
2549 if (!go_left
&& zoneno
+ 1 >= total_zones
)
2551 if (go_left
&& zoneno
== 0)
2554 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
2555 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
2558 if (i
< NR_CURSEG_TYPE
) {
2559 /* zone is in user, try another */
2561 hint
= zoneno
* sbi
->secs_per_zone
- 1;
2562 else if (zoneno
+ 1 >= total_zones
)
2565 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
2567 goto find_other_zone
;
2570 /* set it as dirty segment in free segmap */
2571 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
2572 __set_inuse(sbi
, segno
);
2574 spin_unlock(&free_i
->segmap_lock
);
2577 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
2579 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2580 struct summary_footer
*sum_footer
;
2581 unsigned short seg_type
= curseg
->seg_type
;
2583 curseg
->inited
= true;
2584 curseg
->segno
= curseg
->next_segno
;
2585 curseg
->zone
= GET_ZONE_FROM_SEG(sbi
, curseg
->segno
);
2586 curseg
->next_blkoff
= 0;
2587 curseg
->next_segno
= NULL_SEGNO
;
2589 sum_footer
= &(curseg
->sum_blk
->footer
);
2590 memset(sum_footer
, 0, sizeof(struct summary_footer
));
2592 sanity_check_seg_type(sbi
, seg_type
);
2594 if (IS_DATASEG(seg_type
))
2595 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
2596 if (IS_NODESEG(seg_type
))
2597 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
2598 __set_sit_entry_type(sbi
, seg_type
, curseg
->segno
, modified
);
2601 static unsigned int __get_next_segno(struct f2fs_sb_info
*sbi
, int type
)
2603 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2604 unsigned short seg_type
= curseg
->seg_type
;
2606 sanity_check_seg_type(sbi
, seg_type
);
2608 /* if segs_per_sec is large than 1, we need to keep original policy. */
2609 if (__is_large_section(sbi
))
2610 return curseg
->segno
;
2612 /* inmem log may not locate on any segment after mount */
2613 if (!curseg
->inited
)
2616 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
2619 if (test_opt(sbi
, NOHEAP
) &&
2620 (seg_type
== CURSEG_HOT_DATA
|| IS_NODESEG(seg_type
)))
2623 if (SIT_I(sbi
)->last_victim
[ALLOC_NEXT
])
2624 return SIT_I(sbi
)->last_victim
[ALLOC_NEXT
];
2626 /* find segments from 0 to reuse freed segments */
2627 if (F2FS_OPTION(sbi
).alloc_mode
== ALLOC_MODE_REUSE
)
2630 return curseg
->segno
;
2634 * Allocate a current working segment.
2635 * This function always allocates a free segment in LFS manner.
2637 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
2639 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2640 unsigned short seg_type
= curseg
->seg_type
;
2641 unsigned int segno
= curseg
->segno
;
2642 int dir
= ALLOC_LEFT
;
2645 write_sum_page(sbi
, curseg
->sum_blk
,
2646 GET_SUM_BLOCK(sbi
, segno
));
2647 if (seg_type
== CURSEG_WARM_DATA
|| seg_type
== CURSEG_COLD_DATA
)
2650 if (test_opt(sbi
, NOHEAP
))
2653 segno
= __get_next_segno(sbi
, type
);
2654 get_new_segment(sbi
, &segno
, new_sec
, dir
);
2655 curseg
->next_segno
= segno
;
2656 reset_curseg(sbi
, type
, 1);
2657 curseg
->alloc_type
= LFS
;
2660 static int __next_free_blkoff(struct f2fs_sb_info
*sbi
,
2661 int segno
, block_t start
)
2663 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
2664 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
2665 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
2666 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
2667 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
2670 for (i
= 0; i
< entries
; i
++)
2671 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
2673 return __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
2677 * If a segment is written by LFS manner, next block offset is just obtained
2678 * by increasing the current block offset. However, if a segment is written by
2679 * SSR manner, next block offset obtained by calling __next_free_blkoff
2681 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
2682 struct curseg_info
*seg
)
2684 if (seg
->alloc_type
== SSR
)
2686 __next_free_blkoff(sbi
, seg
->segno
,
2687 seg
->next_blkoff
+ 1);
2692 bool f2fs_segment_has_free_slot(struct f2fs_sb_info
*sbi
, int segno
)
2694 return __next_free_blkoff(sbi
, segno
, 0) < sbi
->blocks_per_seg
;
2698 * This function always allocates a used segment(from dirty seglist) by SSR
2699 * manner, so it should recover the existing segment information of valid blocks
2701 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool flush
)
2703 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2704 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2705 unsigned int new_segno
= curseg
->next_segno
;
2706 struct f2fs_summary_block
*sum_node
;
2707 struct page
*sum_page
;
2710 write_sum_page(sbi
, curseg
->sum_blk
,
2711 GET_SUM_BLOCK(sbi
, curseg
->segno
));
2713 __set_test_and_inuse(sbi
, new_segno
);
2715 mutex_lock(&dirty_i
->seglist_lock
);
2716 __remove_dirty_segment(sbi
, new_segno
, PRE
);
2717 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
2718 mutex_unlock(&dirty_i
->seglist_lock
);
2720 reset_curseg(sbi
, type
, 1);
2721 curseg
->alloc_type
= SSR
;
2722 curseg
->next_blkoff
= __next_free_blkoff(sbi
, curseg
->segno
, 0);
2724 sum_page
= f2fs_get_sum_page(sbi
, new_segno
);
2725 if (IS_ERR(sum_page
)) {
2726 /* GC won't be able to use stale summary pages by cp_error */
2727 memset(curseg
->sum_blk
, 0, SUM_ENTRY_SIZE
);
2730 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
2731 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
2732 f2fs_put_page(sum_page
, 1);
2735 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
,
2736 int alloc_mode
, unsigned long long age
);
2738 static void get_atssr_segment(struct f2fs_sb_info
*sbi
, int type
,
2739 int target_type
, int alloc_mode
,
2740 unsigned long long age
)
2742 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2744 curseg
->seg_type
= target_type
;
2746 if (get_ssr_segment(sbi
, type
, alloc_mode
, age
)) {
2747 struct seg_entry
*se
= get_seg_entry(sbi
, curseg
->next_segno
);
2749 curseg
->seg_type
= se
->type
;
2750 change_curseg(sbi
, type
, true);
2752 /* allocate cold segment by default */
2753 curseg
->seg_type
= CURSEG_COLD_DATA
;
2754 new_curseg(sbi
, type
, true);
2756 stat_inc_seg_type(sbi
, curseg
);
2759 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info
*sbi
)
2761 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_ALL_DATA_ATGC
);
2763 if (!sbi
->am
.atgc_enabled
)
2766 down_read(&SM_I(sbi
)->curseg_lock
);
2768 mutex_lock(&curseg
->curseg_mutex
);
2769 down_write(&SIT_I(sbi
)->sentry_lock
);
2771 get_atssr_segment(sbi
, CURSEG_ALL_DATA_ATGC
, CURSEG_COLD_DATA
, SSR
, 0);
2773 up_write(&SIT_I(sbi
)->sentry_lock
);
2774 mutex_unlock(&curseg
->curseg_mutex
);
2776 up_read(&SM_I(sbi
)->curseg_lock
);
2779 void f2fs_init_inmem_curseg(struct f2fs_sb_info
*sbi
)
2781 __f2fs_init_atgc_curseg(sbi
);
2784 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info
*sbi
, int type
)
2786 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2788 mutex_lock(&curseg
->curseg_mutex
);
2789 if (!curseg
->inited
)
2792 if (get_valid_blocks(sbi
, curseg
->segno
, false)) {
2793 write_sum_page(sbi
, curseg
->sum_blk
,
2794 GET_SUM_BLOCK(sbi
, curseg
->segno
));
2796 mutex_lock(&DIRTY_I(sbi
)->seglist_lock
);
2797 __set_test_and_free(sbi
, curseg
->segno
, true);
2798 mutex_unlock(&DIRTY_I(sbi
)->seglist_lock
);
2801 mutex_unlock(&curseg
->curseg_mutex
);
2804 void f2fs_save_inmem_curseg(struct f2fs_sb_info
*sbi
)
2806 __f2fs_save_inmem_curseg(sbi
, CURSEG_COLD_DATA_PINNED
);
2808 if (sbi
->am
.atgc_enabled
)
2809 __f2fs_save_inmem_curseg(sbi
, CURSEG_ALL_DATA_ATGC
);
2812 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info
*sbi
, int type
)
2814 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2816 mutex_lock(&curseg
->curseg_mutex
);
2817 if (!curseg
->inited
)
2819 if (get_valid_blocks(sbi
, curseg
->segno
, false))
2822 mutex_lock(&DIRTY_I(sbi
)->seglist_lock
);
2823 __set_test_and_inuse(sbi
, curseg
->segno
);
2824 mutex_unlock(&DIRTY_I(sbi
)->seglist_lock
);
2826 mutex_unlock(&curseg
->curseg_mutex
);
2829 void f2fs_restore_inmem_curseg(struct f2fs_sb_info
*sbi
)
2831 __f2fs_restore_inmem_curseg(sbi
, CURSEG_COLD_DATA_PINNED
);
2833 if (sbi
->am
.atgc_enabled
)
2834 __f2fs_restore_inmem_curseg(sbi
, CURSEG_ALL_DATA_ATGC
);
2837 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
,
2838 int alloc_mode
, unsigned long long age
)
2840 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2841 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
2842 unsigned segno
= NULL_SEGNO
;
2843 unsigned short seg_type
= curseg
->seg_type
;
2845 bool reversed
= false;
2847 sanity_check_seg_type(sbi
, seg_type
);
2849 /* f2fs_need_SSR() already forces to do this */
2850 if (!v_ops
->get_victim(sbi
, &segno
, BG_GC
, seg_type
, alloc_mode
, age
)) {
2851 curseg
->next_segno
= segno
;
2855 /* For node segments, let's do SSR more intensively */
2856 if (IS_NODESEG(seg_type
)) {
2857 if (seg_type
>= CURSEG_WARM_NODE
) {
2859 i
= CURSEG_COLD_NODE
;
2861 i
= CURSEG_HOT_NODE
;
2863 cnt
= NR_CURSEG_NODE_TYPE
;
2865 if (seg_type
>= CURSEG_WARM_DATA
) {
2867 i
= CURSEG_COLD_DATA
;
2869 i
= CURSEG_HOT_DATA
;
2871 cnt
= NR_CURSEG_DATA_TYPE
;
2874 for (; cnt
-- > 0; reversed
? i
-- : i
++) {
2877 if (!v_ops
->get_victim(sbi
, &segno
, BG_GC
, i
, alloc_mode
, age
)) {
2878 curseg
->next_segno
= segno
;
2883 /* find valid_blocks=0 in dirty list */
2884 if (unlikely(is_sbi_flag_set(sbi
, SBI_CP_DISABLED
))) {
2885 segno
= get_free_segment(sbi
);
2886 if (segno
!= NULL_SEGNO
) {
2887 curseg
->next_segno
= segno
;
2895 * flush out current segment and replace it with new segment
2896 * This function should be returned with success, otherwise BUG
2898 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
2899 int type
, bool force
)
2901 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2904 new_curseg(sbi
, type
, true);
2905 else if (!is_set_ckpt_flags(sbi
, CP_CRC_RECOVERY_FLAG
) &&
2906 curseg
->seg_type
== CURSEG_WARM_NODE
)
2907 new_curseg(sbi
, type
, false);
2908 else if (curseg
->alloc_type
== LFS
&&
2909 is_next_segment_free(sbi
, curseg
, type
) &&
2910 likely(!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
)))
2911 new_curseg(sbi
, type
, false);
2912 else if (f2fs_need_SSR(sbi
) &&
2913 get_ssr_segment(sbi
, type
, SSR
, 0))
2914 change_curseg(sbi
, type
, true);
2916 new_curseg(sbi
, type
, false);
2918 stat_inc_seg_type(sbi
, curseg
);
2921 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info
*sbi
, int type
,
2922 unsigned int start
, unsigned int end
)
2924 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2927 down_read(&SM_I(sbi
)->curseg_lock
);
2928 mutex_lock(&curseg
->curseg_mutex
);
2929 down_write(&SIT_I(sbi
)->sentry_lock
);
2931 segno
= CURSEG_I(sbi
, type
)->segno
;
2932 if (segno
< start
|| segno
> end
)
2935 if (f2fs_need_SSR(sbi
) && get_ssr_segment(sbi
, type
, SSR
, 0))
2936 change_curseg(sbi
, type
, true);
2938 new_curseg(sbi
, type
, true);
2940 stat_inc_seg_type(sbi
, curseg
);
2942 locate_dirty_segment(sbi
, segno
);
2944 up_write(&SIT_I(sbi
)->sentry_lock
);
2946 if (segno
!= curseg
->segno
)
2947 f2fs_notice(sbi
, "For resize: curseg of type %d: %u ==> %u",
2948 type
, segno
, curseg
->segno
);
2950 mutex_unlock(&curseg
->curseg_mutex
);
2951 up_read(&SM_I(sbi
)->curseg_lock
);
2954 static void __allocate_new_segment(struct f2fs_sb_info
*sbi
, int type
,
2955 bool new_sec
, bool force
)
2957 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
2958 unsigned int old_segno
;
2960 if (!curseg
->inited
)
2963 if (force
|| curseg
->next_blkoff
||
2964 get_valid_blocks(sbi
, curseg
->segno
, new_sec
))
2967 if (!get_ckpt_valid_blocks(sbi
, curseg
->segno
, new_sec
))
2970 old_segno
= curseg
->segno
;
2971 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, type
, true);
2972 locate_dirty_segment(sbi
, old_segno
);
2975 static void __allocate_new_section(struct f2fs_sb_info
*sbi
,
2976 int type
, bool force
)
2978 __allocate_new_segment(sbi
, type
, true, force
);
2981 void f2fs_allocate_new_section(struct f2fs_sb_info
*sbi
, int type
, bool force
)
2983 down_read(&SM_I(sbi
)->curseg_lock
);
2984 down_write(&SIT_I(sbi
)->sentry_lock
);
2985 __allocate_new_section(sbi
, type
, force
);
2986 up_write(&SIT_I(sbi
)->sentry_lock
);
2987 up_read(&SM_I(sbi
)->curseg_lock
);
2990 void f2fs_allocate_new_segments(struct f2fs_sb_info
*sbi
)
2994 down_read(&SM_I(sbi
)->curseg_lock
);
2995 down_write(&SIT_I(sbi
)->sentry_lock
);
2996 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++)
2997 __allocate_new_segment(sbi
, i
, false, false);
2998 up_write(&SIT_I(sbi
)->sentry_lock
);
2999 up_read(&SM_I(sbi
)->curseg_lock
);
3002 static const struct segment_allocation default_salloc_ops
= {
3003 .allocate_segment
= allocate_segment_by_default
,
3006 bool f2fs_exist_trim_candidates(struct f2fs_sb_info
*sbi
,
3007 struct cp_control
*cpc
)
3009 __u64 trim_start
= cpc
->trim_start
;
3010 bool has_candidate
= false;
3012 down_write(&SIT_I(sbi
)->sentry_lock
);
3013 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++) {
3014 if (add_discard_addrs(sbi
, cpc
, true)) {
3015 has_candidate
= true;
3019 up_write(&SIT_I(sbi
)->sentry_lock
);
3021 cpc
->trim_start
= trim_start
;
3022 return has_candidate
;
3025 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info
*sbi
,
3026 struct discard_policy
*dpolicy
,
3027 unsigned int start
, unsigned int end
)
3029 struct discard_cmd_control
*dcc
= SM_I(sbi
)->dcc_info
;
3030 struct discard_cmd
*prev_dc
= NULL
, *next_dc
= NULL
;
3031 struct rb_node
**insert_p
= NULL
, *insert_parent
= NULL
;
3032 struct discard_cmd
*dc
;
3033 struct blk_plug plug
;
3035 unsigned int trimmed
= 0;
3040 mutex_lock(&dcc
->cmd_lock
);
3041 if (unlikely(dcc
->rbtree_check
))
3042 f2fs_bug_on(sbi
, !f2fs_check_rb_tree_consistence(sbi
,
3043 &dcc
->root
, false));
3045 dc
= (struct discard_cmd
*)f2fs_lookup_rb_tree_ret(&dcc
->root
,
3047 (struct rb_entry
**)&prev_dc
,
3048 (struct rb_entry
**)&next_dc
,
3049 &insert_p
, &insert_parent
, true, NULL
);
3053 blk_start_plug(&plug
);
3055 while (dc
&& dc
->lstart
<= end
) {
3056 struct rb_node
*node
;
3059 if (dc
->len
< dpolicy
->granularity
)
3062 if (dc
->state
!= D_PREP
) {
3063 list_move_tail(&dc
->list
, &dcc
->fstrim_list
);
3067 err
= __submit_discard_cmd(sbi
, dpolicy
, dc
, &issued
);
3069 if (issued
>= dpolicy
->max_requests
) {
3070 start
= dc
->lstart
+ dc
->len
;
3073 __remove_discard_cmd(sbi
, dc
);
3075 blk_finish_plug(&plug
);
3076 mutex_unlock(&dcc
->cmd_lock
);
3077 trimmed
+= __wait_all_discard_cmd(sbi
, NULL
);
3078 congestion_wait(BLK_RW_ASYNC
, DEFAULT_IO_TIMEOUT
);
3082 node
= rb_next(&dc
->rb_node
);
3084 __remove_discard_cmd(sbi
, dc
);
3085 dc
= rb_entry_safe(node
, struct discard_cmd
, rb_node
);
3087 if (fatal_signal_pending(current
))
3091 blk_finish_plug(&plug
);
3092 mutex_unlock(&dcc
->cmd_lock
);
3097 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
3099 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
3100 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
3101 unsigned int start_segno
, end_segno
;
3102 block_t start_block
, end_block
;
3103 struct cp_control cpc
;
3104 struct discard_policy dpolicy
;
3105 unsigned long long trimmed
= 0;
3107 bool need_align
= f2fs_lfs_mode(sbi
) && __is_large_section(sbi
);
3109 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
3112 if (end
< MAIN_BLKADDR(sbi
))
3115 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
3116 f2fs_warn(sbi
, "Found FS corruption, run fsck to fix.");
3117 return -EFSCORRUPTED
;
3120 /* start/end segment number in main_area */
3121 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
3122 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
3123 GET_SEGNO(sbi
, end
);
3125 start_segno
= rounddown(start_segno
, sbi
->segs_per_sec
);
3126 end_segno
= roundup(end_segno
+ 1, sbi
->segs_per_sec
) - 1;
3129 cpc
.reason
= CP_DISCARD
;
3130 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
3131 cpc
.trim_start
= start_segno
;
3132 cpc
.trim_end
= end_segno
;
3134 if (sbi
->discard_blks
== 0)
3137 down_write(&sbi
->gc_lock
);
3138 err
= f2fs_write_checkpoint(sbi
, &cpc
);
3139 up_write(&sbi
->gc_lock
);
3144 * We filed discard candidates, but actually we don't need to wait for
3145 * all of them, since they'll be issued in idle time along with runtime
3146 * discard option. User configuration looks like using runtime discard
3147 * or periodic fstrim instead of it.
3149 if (f2fs_realtime_discard_enable(sbi
))
3152 start_block
= START_BLOCK(sbi
, start_segno
);
3153 end_block
= START_BLOCK(sbi
, end_segno
+ 1);
3155 __init_discard_policy(sbi
, &dpolicy
, DPOLICY_FSTRIM
, cpc
.trim_minlen
);
3156 trimmed
= __issue_discard_cmd_range(sbi
, &dpolicy
,
3157 start_block
, end_block
);
3159 trimmed
+= __wait_discard_cmd_range(sbi
, &dpolicy
,
3160 start_block
, end_block
);
3163 range
->len
= F2FS_BLK_TO_BYTES(trimmed
);
3167 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
,
3168 struct curseg_info
*curseg
)
3170 return curseg
->next_blkoff
< f2fs_usable_blks_in_seg(sbi
,
3174 int f2fs_rw_hint_to_seg_type(enum rw_hint hint
)
3177 case WRITE_LIFE_SHORT
:
3178 return CURSEG_HOT_DATA
;
3179 case WRITE_LIFE_EXTREME
:
3180 return CURSEG_COLD_DATA
;
3182 return CURSEG_WARM_DATA
;
3186 /* This returns write hints for each segment type. This hints will be
3187 * passed down to block layer. There are mapping tables which depend on
3188 * the mount option 'whint_mode'.
3190 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3192 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3196 * META WRITE_LIFE_NOT_SET
3200 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3201 * extension list " "
3204 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3205 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3206 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3207 * WRITE_LIFE_NONE " "
3208 * WRITE_LIFE_MEDIUM " "
3209 * WRITE_LIFE_LONG " "
3212 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3213 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3214 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3215 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3216 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3217 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3219 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3223 * META WRITE_LIFE_MEDIUM;
3224 * HOT_NODE WRITE_LIFE_NOT_SET
3226 * COLD_NODE WRITE_LIFE_NONE
3227 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
3228 * extension list " "
3231 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3232 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3233 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3234 * WRITE_LIFE_NONE " "
3235 * WRITE_LIFE_MEDIUM " "
3236 * WRITE_LIFE_LONG " "
3239 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3240 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3241 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3242 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3243 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3244 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3247 enum rw_hint
f2fs_io_type_to_rw_hint(struct f2fs_sb_info
*sbi
,
3248 enum page_type type
, enum temp_type temp
)
3250 if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_USER
) {
3253 return WRITE_LIFE_NOT_SET
;
3254 else if (temp
== HOT
)
3255 return WRITE_LIFE_SHORT
;
3256 else if (temp
== COLD
)
3257 return WRITE_LIFE_EXTREME
;
3259 return WRITE_LIFE_NOT_SET
;
3261 } else if (F2FS_OPTION(sbi
).whint_mode
== WHINT_MODE_FS
) {
3264 return WRITE_LIFE_LONG
;
3265 else if (temp
== HOT
)
3266 return WRITE_LIFE_SHORT
;
3267 else if (temp
== COLD
)
3268 return WRITE_LIFE_EXTREME
;
3269 } else if (type
== NODE
) {
3270 if (temp
== WARM
|| temp
== HOT
)
3271 return WRITE_LIFE_NOT_SET
;
3272 else if (temp
== COLD
)
3273 return WRITE_LIFE_NONE
;
3274 } else if (type
== META
) {
3275 return WRITE_LIFE_MEDIUM
;
3278 return WRITE_LIFE_NOT_SET
;
3281 static int __get_segment_type_2(struct f2fs_io_info
*fio
)
3283 if (fio
->type
== DATA
)
3284 return CURSEG_HOT_DATA
;
3286 return CURSEG_HOT_NODE
;
3289 static int __get_segment_type_4(struct f2fs_io_info
*fio
)
3291 if (fio
->type
== DATA
) {
3292 struct inode
*inode
= fio
->page
->mapping
->host
;
3294 if (S_ISDIR(inode
->i_mode
))
3295 return CURSEG_HOT_DATA
;
3297 return CURSEG_COLD_DATA
;
3299 if (IS_DNODE(fio
->page
) && is_cold_node(fio
->page
))
3300 return CURSEG_WARM_NODE
;
3302 return CURSEG_COLD_NODE
;
3306 static int __get_segment_type_6(struct f2fs_io_info
*fio
)
3308 if (fio
->type
== DATA
) {
3309 struct inode
*inode
= fio
->page
->mapping
->host
;
3311 if (is_inode_flag_set(inode
, FI_ALIGNED_WRITE
))
3312 return CURSEG_COLD_DATA_PINNED
;
3314 if (page_private_gcing(fio
->page
)) {
3315 if (fio
->sbi
->am
.atgc_enabled
&&
3316 (fio
->io_type
== FS_DATA_IO
) &&
3317 (fio
->sbi
->gc_mode
!= GC_URGENT_HIGH
))
3318 return CURSEG_ALL_DATA_ATGC
;
3320 return CURSEG_COLD_DATA
;
3322 if (file_is_cold(inode
) || f2fs_need_compress_data(inode
))
3323 return CURSEG_COLD_DATA
;
3324 if (file_is_hot(inode
) ||
3325 is_inode_flag_set(inode
, FI_HOT_DATA
) ||
3326 f2fs_is_atomic_file(inode
) ||
3327 f2fs_is_volatile_file(inode
))
3328 return CURSEG_HOT_DATA
;
3329 return f2fs_rw_hint_to_seg_type(inode
->i_write_hint
);
3331 if (IS_DNODE(fio
->page
))
3332 return is_cold_node(fio
->page
) ? CURSEG_WARM_NODE
:
3334 return CURSEG_COLD_NODE
;
3338 static int __get_segment_type(struct f2fs_io_info
*fio
)
3342 switch (F2FS_OPTION(fio
->sbi
).active_logs
) {
3344 type
= __get_segment_type_2(fio
);
3347 type
= __get_segment_type_4(fio
);
3350 type
= __get_segment_type_6(fio
);
3353 f2fs_bug_on(fio
->sbi
, true);
3358 else if (IS_WARM(type
))
3365 void f2fs_allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
3366 block_t old_blkaddr
, block_t
*new_blkaddr
,
3367 struct f2fs_summary
*sum
, int type
,
3368 struct f2fs_io_info
*fio
)
3370 struct sit_info
*sit_i
= SIT_I(sbi
);
3371 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
3372 unsigned long long old_mtime
;
3373 bool from_gc
= (type
== CURSEG_ALL_DATA_ATGC
);
3374 struct seg_entry
*se
= NULL
;
3376 down_read(&SM_I(sbi
)->curseg_lock
);
3378 mutex_lock(&curseg
->curseg_mutex
);
3379 down_write(&sit_i
->sentry_lock
);
3382 f2fs_bug_on(sbi
, GET_SEGNO(sbi
, old_blkaddr
) == NULL_SEGNO
);
3383 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3384 sanity_check_seg_type(sbi
, se
->type
);
3385 f2fs_bug_on(sbi
, IS_NODESEG(se
->type
));
3387 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
3389 f2fs_bug_on(sbi
, curseg
->next_blkoff
>= sbi
->blocks_per_seg
);
3391 f2fs_wait_discard_bio(sbi
, *new_blkaddr
);
3394 * __add_sum_entry should be resided under the curseg_mutex
3395 * because, this function updates a summary entry in the
3396 * current summary block.
3398 __add_sum_entry(sbi
, type
, sum
);
3400 __refresh_next_blkoff(sbi
, curseg
);
3402 stat_inc_block_count(sbi
, curseg
);
3405 old_mtime
= get_segment_mtime(sbi
, old_blkaddr
);
3407 update_segment_mtime(sbi
, old_blkaddr
, 0);
3410 update_segment_mtime(sbi
, *new_blkaddr
, old_mtime
);
3413 * SIT information should be updated before segment allocation,
3414 * since SSR needs latest valid block information.
3416 update_sit_entry(sbi
, *new_blkaddr
, 1);
3417 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
3418 update_sit_entry(sbi
, old_blkaddr
, -1);
3420 if (!__has_curseg_space(sbi
, curseg
)) {
3422 get_atssr_segment(sbi
, type
, se
->type
,
3425 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
3428 * segment dirty status should be updated after segment allocation,
3429 * so we just need to update status only one time after previous
3430 * segment being closed.
3432 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3433 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, *new_blkaddr
));
3435 up_write(&sit_i
->sentry_lock
);
3437 if (page
&& IS_NODESEG(type
)) {
3438 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
3440 f2fs_inode_chksum_set(sbi
, page
);
3444 struct f2fs_bio_info
*io
;
3446 if (F2FS_IO_ALIGNED(sbi
))
3449 INIT_LIST_HEAD(&fio
->list
);
3450 fio
->in_list
= true;
3451 io
= sbi
->write_io
[fio
->type
] + fio
->temp
;
3452 spin_lock(&io
->io_lock
);
3453 list_add_tail(&fio
->list
, &io
->io_list
);
3454 spin_unlock(&io
->io_lock
);
3457 mutex_unlock(&curseg
->curseg_mutex
);
3459 up_read(&SM_I(sbi
)->curseg_lock
);
3462 static void update_device_state(struct f2fs_io_info
*fio
)
3464 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3465 unsigned int devidx
;
3467 if (!f2fs_is_multi_device(sbi
))
3470 devidx
= f2fs_target_device_index(sbi
, fio
->new_blkaddr
);
3472 /* update device state for fsync */
3473 f2fs_set_dirty_device(sbi
, fio
->ino
, devidx
, FLUSH_INO
);
3475 /* update device state for checkpoint */
3476 if (!f2fs_test_bit(devidx
, (char *)&sbi
->dirty_device
)) {
3477 spin_lock(&sbi
->dev_lock
);
3478 f2fs_set_bit(devidx
, (char *)&sbi
->dirty_device
);
3479 spin_unlock(&sbi
->dev_lock
);
3483 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
3485 int type
= __get_segment_type(fio
);
3486 bool keep_order
= (f2fs_lfs_mode(fio
->sbi
) && type
== CURSEG_COLD_DATA
);
3489 down_read(&fio
->sbi
->io_order_lock
);
3491 f2fs_allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
3492 &fio
->new_blkaddr
, sum
, type
, fio
);
3493 if (GET_SEGNO(fio
->sbi
, fio
->old_blkaddr
) != NULL_SEGNO
) {
3494 invalidate_mapping_pages(META_MAPPING(fio
->sbi
),
3495 fio
->old_blkaddr
, fio
->old_blkaddr
);
3496 f2fs_invalidate_compress_page(fio
->sbi
, fio
->old_blkaddr
);
3499 /* writeout dirty page into bdev */
3500 f2fs_submit_page_write(fio
);
3502 fio
->old_blkaddr
= fio
->new_blkaddr
;
3506 update_device_state(fio
);
3509 up_read(&fio
->sbi
->io_order_lock
);
3512 void f2fs_do_write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
3513 enum iostat_type io_type
)
3515 struct f2fs_io_info fio
= {
3520 .op_flags
= REQ_SYNC
| REQ_META
| REQ_PRIO
,
3521 .old_blkaddr
= page
->index
,
3522 .new_blkaddr
= page
->index
,
3524 .encrypted_page
= NULL
,
3528 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
3529 fio
.op_flags
&= ~REQ_META
;
3531 set_page_writeback(page
);
3532 ClearPageError(page
);
3533 f2fs_submit_page_write(&fio
);
3535 stat_inc_meta_count(sbi
, page
->index
);
3536 f2fs_update_iostat(sbi
, io_type
, F2FS_BLKSIZE
);
3539 void f2fs_do_write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
3541 struct f2fs_summary sum
;
3543 set_summary(&sum
, nid
, 0, 0);
3544 do_write_page(&sum
, fio
);
3546 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3549 void f2fs_outplace_write_data(struct dnode_of_data
*dn
,
3550 struct f2fs_io_info
*fio
)
3552 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3553 struct f2fs_summary sum
;
3555 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
3556 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, fio
->version
);
3557 do_write_page(&sum
, fio
);
3558 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
3560 f2fs_update_iostat(sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3563 int f2fs_inplace_write_data(struct f2fs_io_info
*fio
)
3566 struct f2fs_sb_info
*sbi
= fio
->sbi
;
3569 fio
->new_blkaddr
= fio
->old_blkaddr
;
3570 /* i/o temperature is needed for passing down write hints */
3571 __get_segment_type(fio
);
3573 segno
= GET_SEGNO(sbi
, fio
->new_blkaddr
);
3575 if (!IS_DATASEG(get_seg_entry(sbi
, segno
)->type
)) {
3576 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
3577 f2fs_warn(sbi
, "%s: incorrect segment(%u) type, run fsck to fix.",
3579 err
= -EFSCORRUPTED
;
3583 if (f2fs_cp_error(sbi
)) {
3588 stat_inc_inplace_blocks(fio
->sbi
);
3590 if (fio
->bio
&& !(SM_I(sbi
)->ipu_policy
& (1 << F2FS_IPU_NOCACHE
)))
3591 err
= f2fs_merge_page_bio(fio
);
3593 err
= f2fs_submit_page_bio(fio
);
3595 update_device_state(fio
);
3596 f2fs_update_iostat(fio
->sbi
, fio
->io_type
, F2FS_BLKSIZE
);
3601 if (fio
->bio
&& *(fio
->bio
)) {
3602 struct bio
*bio
= *(fio
->bio
);
3604 bio
->bi_status
= BLK_STS_IOERR
;
3611 static inline int __f2fs_get_curseg(struct f2fs_sb_info
*sbi
,
3616 for (i
= CURSEG_HOT_DATA
; i
< NO_CHECK_TYPE
; i
++) {
3617 if (CURSEG_I(sbi
, i
)->segno
== segno
)
3623 void f2fs_do_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
3624 block_t old_blkaddr
, block_t new_blkaddr
,
3625 bool recover_curseg
, bool recover_newaddr
,
3628 struct sit_info
*sit_i
= SIT_I(sbi
);
3629 struct curseg_info
*curseg
;
3630 unsigned int segno
, old_cursegno
;
3631 struct seg_entry
*se
;
3633 unsigned short old_blkoff
;
3634 unsigned char old_alloc_type
;
3636 segno
= GET_SEGNO(sbi
, new_blkaddr
);
3637 se
= get_seg_entry(sbi
, segno
);
3640 down_write(&SM_I(sbi
)->curseg_lock
);
3642 if (!recover_curseg
) {
3643 /* for recovery flow */
3644 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
3645 if (old_blkaddr
== NULL_ADDR
)
3646 type
= CURSEG_COLD_DATA
;
3648 type
= CURSEG_WARM_DATA
;
3651 if (IS_CURSEG(sbi
, segno
)) {
3652 /* se->type is volatile as SSR allocation */
3653 type
= __f2fs_get_curseg(sbi
, segno
);
3654 f2fs_bug_on(sbi
, type
== NO_CHECK_TYPE
);
3656 type
= CURSEG_WARM_DATA
;
3660 f2fs_bug_on(sbi
, !IS_DATASEG(type
));
3661 curseg
= CURSEG_I(sbi
, type
);
3663 mutex_lock(&curseg
->curseg_mutex
);
3664 down_write(&sit_i
->sentry_lock
);
3666 old_cursegno
= curseg
->segno
;
3667 old_blkoff
= curseg
->next_blkoff
;
3668 old_alloc_type
= curseg
->alloc_type
;
3670 /* change the current segment */
3671 if (segno
!= curseg
->segno
) {
3672 curseg
->next_segno
= segno
;
3673 change_curseg(sbi
, type
, true);
3676 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
3677 __add_sum_entry(sbi
, type
, sum
);
3679 if (!recover_curseg
|| recover_newaddr
) {
3681 update_segment_mtime(sbi
, new_blkaddr
, 0);
3682 update_sit_entry(sbi
, new_blkaddr
, 1);
3684 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
) {
3685 invalidate_mapping_pages(META_MAPPING(sbi
),
3686 old_blkaddr
, old_blkaddr
);
3687 f2fs_invalidate_compress_page(sbi
, old_blkaddr
);
3689 update_segment_mtime(sbi
, old_blkaddr
, 0);
3690 update_sit_entry(sbi
, old_blkaddr
, -1);
3693 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
3694 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
3696 locate_dirty_segment(sbi
, old_cursegno
);
3698 if (recover_curseg
) {
3699 if (old_cursegno
!= curseg
->segno
) {
3700 curseg
->next_segno
= old_cursegno
;
3701 change_curseg(sbi
, type
, true);
3703 curseg
->next_blkoff
= old_blkoff
;
3704 curseg
->alloc_type
= old_alloc_type
;
3707 up_write(&sit_i
->sentry_lock
);
3708 mutex_unlock(&curseg
->curseg_mutex
);
3709 up_write(&SM_I(sbi
)->curseg_lock
);
3712 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
3713 block_t old_addr
, block_t new_addr
,
3714 unsigned char version
, bool recover_curseg
,
3715 bool recover_newaddr
)
3717 struct f2fs_summary sum
;
3719 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
3721 f2fs_do_replace_block(sbi
, &sum
, old_addr
, new_addr
,
3722 recover_curseg
, recover_newaddr
, false);
3724 f2fs_update_data_blkaddr(dn
, new_addr
);
3727 void f2fs_wait_on_page_writeback(struct page
*page
,
3728 enum page_type type
, bool ordered
, bool locked
)
3730 if (PageWriteback(page
)) {
3731 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
3733 /* submit cached LFS IO */
3734 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, type
);
3735 /* sbumit cached IPU IO */
3736 f2fs_submit_merged_ipu_write(sbi
, NULL
, page
);
3738 wait_on_page_writeback(page
);
3739 f2fs_bug_on(sbi
, locked
&& PageWriteback(page
));
3741 wait_for_stable_page(page
);
3746 void f2fs_wait_on_block_writeback(struct inode
*inode
, block_t blkaddr
)
3748 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
3751 if (!f2fs_post_read_required(inode
))
3754 if (!__is_valid_data_blkaddr(blkaddr
))
3757 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
3759 f2fs_wait_on_page_writeback(cpage
, DATA
, true, true);
3760 f2fs_put_page(cpage
, 1);
3764 void f2fs_wait_on_block_writeback_range(struct inode
*inode
, block_t blkaddr
,
3769 for (i
= 0; i
< len
; i
++)
3770 f2fs_wait_on_block_writeback(inode
, blkaddr
+ i
);
3773 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
3775 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3776 struct curseg_info
*seg_i
;
3777 unsigned char *kaddr
;
3782 start
= start_sum_block(sbi
);
3784 page
= f2fs_get_meta_page(sbi
, start
++);
3786 return PTR_ERR(page
);
3787 kaddr
= (unsigned char *)page_address(page
);
3789 /* Step 1: restore nat cache */
3790 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3791 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
3793 /* Step 2: restore sit cache */
3794 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3795 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
3796 offset
= 2 * SUM_JOURNAL_SIZE
;
3798 /* Step 3: restore summary entries */
3799 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3800 unsigned short blk_off
;
3803 seg_i
= CURSEG_I(sbi
, i
);
3804 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
3805 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
3806 seg_i
->next_segno
= segno
;
3807 reset_curseg(sbi
, i
, 0);
3808 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
3809 seg_i
->next_blkoff
= blk_off
;
3811 if (seg_i
->alloc_type
== SSR
)
3812 blk_off
= sbi
->blocks_per_seg
;
3814 for (j
= 0; j
< blk_off
; j
++) {
3815 struct f2fs_summary
*s
;
3817 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
3818 seg_i
->sum_blk
->entries
[j
] = *s
;
3819 offset
+= SUMMARY_SIZE
;
3820 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
3824 f2fs_put_page(page
, 1);
3827 page
= f2fs_get_meta_page(sbi
, start
++);
3829 return PTR_ERR(page
);
3830 kaddr
= (unsigned char *)page_address(page
);
3834 f2fs_put_page(page
, 1);
3838 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
3840 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
3841 struct f2fs_summary_block
*sum
;
3842 struct curseg_info
*curseg
;
3844 unsigned short blk_off
;
3845 unsigned int segno
= 0;
3846 block_t blk_addr
= 0;
3849 /* get segment number and block addr */
3850 if (IS_DATASEG(type
)) {
3851 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
3852 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
3854 if (__exist_node_summaries(sbi
))
3855 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_PERSIST_TYPE
, type
);
3857 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
3859 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
3861 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
3863 if (__exist_node_summaries(sbi
))
3864 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
3865 type
- CURSEG_HOT_NODE
);
3867 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
3870 new = f2fs_get_meta_page(sbi
, blk_addr
);
3872 return PTR_ERR(new);
3873 sum
= (struct f2fs_summary_block
*)page_address(new);
3875 if (IS_NODESEG(type
)) {
3876 if (__exist_node_summaries(sbi
)) {
3877 struct f2fs_summary
*ns
= &sum
->entries
[0];
3880 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
3882 ns
->ofs_in_node
= 0;
3885 err
= f2fs_restore_node_summary(sbi
, segno
, sum
);
3891 /* set uncompleted segment to curseg */
3892 curseg
= CURSEG_I(sbi
, type
);
3893 mutex_lock(&curseg
->curseg_mutex
);
3895 /* update journal info */
3896 down_write(&curseg
->journal_rwsem
);
3897 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
3898 up_write(&curseg
->journal_rwsem
);
3900 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
3901 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
3902 curseg
->next_segno
= segno
;
3903 reset_curseg(sbi
, type
, 0);
3904 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
3905 curseg
->next_blkoff
= blk_off
;
3906 mutex_unlock(&curseg
->curseg_mutex
);
3908 f2fs_put_page(new, 1);
3912 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
3914 struct f2fs_journal
*sit_j
= CURSEG_I(sbi
, CURSEG_COLD_DATA
)->journal
;
3915 struct f2fs_journal
*nat_j
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->journal
;
3916 int type
= CURSEG_HOT_DATA
;
3919 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
3920 int npages
= f2fs_npages_for_summary_flush(sbi
, true);
3923 f2fs_ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
3926 /* restore for compacted data summary */
3927 err
= read_compacted_summaries(sbi
);
3930 type
= CURSEG_HOT_NODE
;
3933 if (__exist_node_summaries(sbi
))
3934 f2fs_ra_meta_pages(sbi
,
3935 sum_blk_addr(sbi
, NR_CURSEG_PERSIST_TYPE
, type
),
3936 NR_CURSEG_PERSIST_TYPE
- type
, META_CP
, true);
3938 for (; type
<= CURSEG_COLD_NODE
; type
++) {
3939 err
= read_normal_summaries(sbi
, type
);
3944 /* sanity check for summary blocks */
3945 if (nats_in_cursum(nat_j
) > NAT_JOURNAL_ENTRIES
||
3946 sits_in_cursum(sit_j
) > SIT_JOURNAL_ENTRIES
) {
3947 f2fs_err(sbi
, "invalid journal entries nats %u sits %u",
3948 nats_in_cursum(nat_j
), sits_in_cursum(sit_j
));
3955 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
3958 unsigned char *kaddr
;
3959 struct f2fs_summary
*summary
;
3960 struct curseg_info
*seg_i
;
3961 int written_size
= 0;
3964 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3965 kaddr
= (unsigned char *)page_address(page
);
3966 memset(kaddr
, 0, PAGE_SIZE
);
3968 /* Step 1: write nat cache */
3969 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
3970 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3971 written_size
+= SUM_JOURNAL_SIZE
;
3973 /* Step 2: write sit cache */
3974 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
3975 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
3976 written_size
+= SUM_JOURNAL_SIZE
;
3978 /* Step 3: write summary entries */
3979 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
3980 unsigned short blkoff
;
3982 seg_i
= CURSEG_I(sbi
, i
);
3983 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
3984 blkoff
= sbi
->blocks_per_seg
;
3986 blkoff
= curseg_blkoff(sbi
, i
);
3988 for (j
= 0; j
< blkoff
; j
++) {
3990 page
= f2fs_grab_meta_page(sbi
, blkaddr
++);
3991 kaddr
= (unsigned char *)page_address(page
);
3992 memset(kaddr
, 0, PAGE_SIZE
);
3995 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
3996 *summary
= seg_i
->sum_blk
->entries
[j
];
3997 written_size
+= SUMMARY_SIZE
;
3999 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
4003 set_page_dirty(page
);
4004 f2fs_put_page(page
, 1);
4009 set_page_dirty(page
);
4010 f2fs_put_page(page
, 1);
4014 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
4015 block_t blkaddr
, int type
)
4019 if (IS_DATASEG(type
))
4020 end
= type
+ NR_CURSEG_DATA_TYPE
;
4022 end
= type
+ NR_CURSEG_NODE_TYPE
;
4024 for (i
= type
; i
< end
; i
++)
4025 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
4028 void f2fs_write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
4030 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
4031 write_compacted_summaries(sbi
, start_blk
);
4033 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
4036 void f2fs_write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
4038 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
4041 int f2fs_lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
4042 unsigned int val
, int alloc
)
4046 if (type
== NAT_JOURNAL
) {
4047 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
4048 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
4051 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
4052 return update_nats_in_cursum(journal
, 1);
4053 } else if (type
== SIT_JOURNAL
) {
4054 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
4055 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
4057 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
4058 return update_sits_in_cursum(journal
, 1);
4063 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
4066 return f2fs_get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
4069 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
4072 struct sit_info
*sit_i
= SIT_I(sbi
);
4074 pgoff_t src_off
, dst_off
;
4076 src_off
= current_sit_addr(sbi
, start
);
4077 dst_off
= next_sit_addr(sbi
, src_off
);
4079 page
= f2fs_grab_meta_page(sbi
, dst_off
);
4080 seg_info_to_sit_page(sbi
, page
, start
);
4082 set_page_dirty(page
);
4083 set_to_next_sit(sit_i
, start
);
4088 static struct sit_entry_set
*grab_sit_entry_set(void)
4090 struct sit_entry_set
*ses
=
4091 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
4094 INIT_LIST_HEAD(&ses
->set_list
);
4098 static void release_sit_entry_set(struct sit_entry_set
*ses
)
4100 list_del(&ses
->set_list
);
4101 kmem_cache_free(sit_entry_set_slab
, ses
);
4104 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
4105 struct list_head
*head
)
4107 struct sit_entry_set
*next
= ses
;
4109 if (list_is_last(&ses
->set_list
, head
))
4112 list_for_each_entry_continue(next
, head
, set_list
)
4113 if (ses
->entry_cnt
<= next
->entry_cnt
)
4116 list_move_tail(&ses
->set_list
, &next
->set_list
);
4119 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
4121 struct sit_entry_set
*ses
;
4122 unsigned int start_segno
= START_SEGNO(segno
);
4124 list_for_each_entry(ses
, head
, set_list
) {
4125 if (ses
->start_segno
== start_segno
) {
4127 adjust_sit_entry_set(ses
, head
);
4132 ses
= grab_sit_entry_set();
4134 ses
->start_segno
= start_segno
;
4136 list_add(&ses
->set_list
, head
);
4139 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
4141 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
4142 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
4143 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
4146 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
4147 add_sit_entry(segno
, set_list
);
4150 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
4152 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
4153 struct f2fs_journal
*journal
= curseg
->journal
;
4156 down_write(&curseg
->journal_rwsem
);
4157 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
4161 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
4162 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
4165 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
4167 update_sits_in_cursum(journal
, -i
);
4168 up_write(&curseg
->journal_rwsem
);
4172 * CP calls this function, which flushes SIT entries including sit_journal,
4173 * and moves prefree segs to free segs.
4175 void f2fs_flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
4177 struct sit_info
*sit_i
= SIT_I(sbi
);
4178 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
4179 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
4180 struct f2fs_journal
*journal
= curseg
->journal
;
4181 struct sit_entry_set
*ses
, *tmp
;
4182 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
4183 bool to_journal
= !is_sbi_flag_set(sbi
, SBI_IS_RESIZEFS
);
4184 struct seg_entry
*se
;
4186 down_write(&sit_i
->sentry_lock
);
4188 if (!sit_i
->dirty_sentries
)
4192 * add and account sit entries of dirty bitmap in sit entry
4195 add_sits_in_set(sbi
);
4198 * if there are no enough space in journal to store dirty sit
4199 * entries, remove all entries from journal and add and account
4200 * them in sit entry set.
4202 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
) ||
4204 remove_sits_in_journal(sbi
);
4207 * there are two steps to flush sit entries:
4208 * #1, flush sit entries to journal in current cold data summary block.
4209 * #2, flush sit entries to sit page.
4211 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
4212 struct page
*page
= NULL
;
4213 struct f2fs_sit_block
*raw_sit
= NULL
;
4214 unsigned int start_segno
= ses
->start_segno
;
4215 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
4216 (unsigned long)MAIN_SEGS(sbi
));
4217 unsigned int segno
= start_segno
;
4220 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
4224 down_write(&curseg
->journal_rwsem
);
4226 page
= get_next_sit_page(sbi
, start_segno
);
4227 raw_sit
= page_address(page
);
4230 /* flush dirty sit entries in region of current sit set */
4231 for_each_set_bit_from(segno
, bitmap
, end
) {
4232 int offset
, sit_offset
;
4234 se
= get_seg_entry(sbi
, segno
);
4235 #ifdef CONFIG_F2FS_CHECK_FS
4236 if (memcmp(se
->cur_valid_map
, se
->cur_valid_map_mir
,
4237 SIT_VBLOCK_MAP_SIZE
))
4238 f2fs_bug_on(sbi
, 1);
4241 /* add discard candidates */
4242 if (!(cpc
->reason
& CP_DISCARD
)) {
4243 cpc
->trim_start
= segno
;
4244 add_discard_addrs(sbi
, cpc
, false);
4248 offset
= f2fs_lookup_journal_in_cursum(journal
,
4249 SIT_JOURNAL
, segno
, 1);
4250 f2fs_bug_on(sbi
, offset
< 0);
4251 segno_in_journal(journal
, offset
) =
4253 seg_info_to_raw_sit(se
,
4254 &sit_in_journal(journal
, offset
));
4255 check_block_count(sbi
, segno
,
4256 &sit_in_journal(journal
, offset
));
4258 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
4259 seg_info_to_raw_sit(se
,
4260 &raw_sit
->entries
[sit_offset
]);
4261 check_block_count(sbi
, segno
,
4262 &raw_sit
->entries
[sit_offset
]);
4265 __clear_bit(segno
, bitmap
);
4266 sit_i
->dirty_sentries
--;
4271 up_write(&curseg
->journal_rwsem
);
4273 f2fs_put_page(page
, 1);
4275 f2fs_bug_on(sbi
, ses
->entry_cnt
);
4276 release_sit_entry_set(ses
);
4279 f2fs_bug_on(sbi
, !list_empty(head
));
4280 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
4282 if (cpc
->reason
& CP_DISCARD
) {
4283 __u64 trim_start
= cpc
->trim_start
;
4285 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
4286 add_discard_addrs(sbi
, cpc
, false);
4288 cpc
->trim_start
= trim_start
;
4290 up_write(&sit_i
->sentry_lock
);
4292 set_prefree_as_free_segments(sbi
);
4295 static int build_sit_info(struct f2fs_sb_info
*sbi
)
4297 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
4298 struct sit_info
*sit_i
;
4299 unsigned int sit_segs
, start
;
4300 char *src_bitmap
, *bitmap
;
4301 unsigned int bitmap_size
, main_bitmap_size
, sit_bitmap_size
;
4302 unsigned int discard_map
= f2fs_block_unit_discard(sbi
) ? 1 : 0;
4304 /* allocate memory for SIT information */
4305 sit_i
= f2fs_kzalloc(sbi
, sizeof(struct sit_info
), GFP_KERNEL
);
4309 SM_I(sbi
)->sit_info
= sit_i
;
4312 f2fs_kvzalloc(sbi
, array_size(sizeof(struct seg_entry
),
4315 if (!sit_i
->sentries
)
4318 main_bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4319 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(sbi
, main_bitmap_size
,
4321 if (!sit_i
->dirty_sentries_bitmap
)
4324 #ifdef CONFIG_F2FS_CHECK_FS
4325 bitmap_size
= MAIN_SEGS(sbi
) * SIT_VBLOCK_MAP_SIZE
* (3 + discard_map
);
4327 bitmap_size
= MAIN_SEGS(sbi
) * SIT_VBLOCK_MAP_SIZE
* (2 + discard_map
);
4329 sit_i
->bitmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4333 bitmap
= sit_i
->bitmap
;
4335 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4336 sit_i
->sentries
[start
].cur_valid_map
= bitmap
;
4337 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4339 sit_i
->sentries
[start
].ckpt_valid_map
= bitmap
;
4340 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4342 #ifdef CONFIG_F2FS_CHECK_FS
4343 sit_i
->sentries
[start
].cur_valid_map_mir
= bitmap
;
4344 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4348 sit_i
->sentries
[start
].discard_map
= bitmap
;
4349 bitmap
+= SIT_VBLOCK_MAP_SIZE
;
4353 sit_i
->tmp_map
= f2fs_kzalloc(sbi
, SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
4354 if (!sit_i
->tmp_map
)
4357 if (__is_large_section(sbi
)) {
4358 sit_i
->sec_entries
=
4359 f2fs_kvzalloc(sbi
, array_size(sizeof(struct sec_entry
),
4362 if (!sit_i
->sec_entries
)
4366 /* get information related with SIT */
4367 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
4369 /* setup SIT bitmap from ckeckpoint pack */
4370 sit_bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
4371 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
4373 sit_i
->sit_bitmap
= kmemdup(src_bitmap
, sit_bitmap_size
, GFP_KERNEL
);
4374 if (!sit_i
->sit_bitmap
)
4377 #ifdef CONFIG_F2FS_CHECK_FS
4378 sit_i
->sit_bitmap_mir
= kmemdup(src_bitmap
,
4379 sit_bitmap_size
, GFP_KERNEL
);
4380 if (!sit_i
->sit_bitmap_mir
)
4383 sit_i
->invalid_segmap
= f2fs_kvzalloc(sbi
,
4384 main_bitmap_size
, GFP_KERNEL
);
4385 if (!sit_i
->invalid_segmap
)
4389 /* init SIT information */
4390 sit_i
->s_ops
= &default_salloc_ops
;
4392 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
4393 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
4394 sit_i
->written_valid_blocks
= 0;
4395 sit_i
->bitmap_size
= sit_bitmap_size
;
4396 sit_i
->dirty_sentries
= 0;
4397 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
4398 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
4399 sit_i
->mounted_time
= ktime_get_boottime_seconds();
4400 init_rwsem(&sit_i
->sentry_lock
);
4404 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
4406 struct free_segmap_info
*free_i
;
4407 unsigned int bitmap_size
, sec_bitmap_size
;
4409 /* allocate memory for free segmap information */
4410 free_i
= f2fs_kzalloc(sbi
, sizeof(struct free_segmap_info
), GFP_KERNEL
);
4414 SM_I(sbi
)->free_info
= free_i
;
4416 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4417 free_i
->free_segmap
= f2fs_kvmalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4418 if (!free_i
->free_segmap
)
4421 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4422 free_i
->free_secmap
= f2fs_kvmalloc(sbi
, sec_bitmap_size
, GFP_KERNEL
);
4423 if (!free_i
->free_secmap
)
4426 /* set all segments as dirty temporarily */
4427 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
4428 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
4430 /* init free segmap information */
4431 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
4432 free_i
->free_segments
= 0;
4433 free_i
->free_sections
= 0;
4434 spin_lock_init(&free_i
->segmap_lock
);
4438 static int build_curseg(struct f2fs_sb_info
*sbi
)
4440 struct curseg_info
*array
;
4443 array
= f2fs_kzalloc(sbi
, array_size(NR_CURSEG_TYPE
,
4444 sizeof(*array
)), GFP_KERNEL
);
4448 SM_I(sbi
)->curseg_array
= array
;
4450 for (i
= 0; i
< NO_CHECK_TYPE
; i
++) {
4451 mutex_init(&array
[i
].curseg_mutex
);
4452 array
[i
].sum_blk
= f2fs_kzalloc(sbi
, PAGE_SIZE
, GFP_KERNEL
);
4453 if (!array
[i
].sum_blk
)
4455 init_rwsem(&array
[i
].journal_rwsem
);
4456 array
[i
].journal
= f2fs_kzalloc(sbi
,
4457 sizeof(struct f2fs_journal
), GFP_KERNEL
);
4458 if (!array
[i
].journal
)
4460 if (i
< NR_PERSISTENT_LOG
)
4461 array
[i
].seg_type
= CURSEG_HOT_DATA
+ i
;
4462 else if (i
== CURSEG_COLD_DATA_PINNED
)
4463 array
[i
].seg_type
= CURSEG_COLD_DATA
;
4464 else if (i
== CURSEG_ALL_DATA_ATGC
)
4465 array
[i
].seg_type
= CURSEG_COLD_DATA
;
4466 array
[i
].segno
= NULL_SEGNO
;
4467 array
[i
].next_blkoff
= 0;
4468 array
[i
].inited
= false;
4470 return restore_curseg_summaries(sbi
);
4473 static int build_sit_entries(struct f2fs_sb_info
*sbi
)
4475 struct sit_info
*sit_i
= SIT_I(sbi
);
4476 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
4477 struct f2fs_journal
*journal
= curseg
->journal
;
4478 struct seg_entry
*se
;
4479 struct f2fs_sit_entry sit
;
4480 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
4481 unsigned int i
, start
, end
;
4482 unsigned int readed
, start_blk
= 0;
4484 block_t total_node_blocks
= 0;
4487 readed
= f2fs_ra_meta_pages(sbi
, start_blk
, BIO_MAX_VECS
,
4490 start
= start_blk
* sit_i
->sents_per_block
;
4491 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
4493 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
4494 struct f2fs_sit_block
*sit_blk
;
4497 se
= &sit_i
->sentries
[start
];
4498 page
= get_current_sit_page(sbi
, start
);
4500 return PTR_ERR(page
);
4501 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
4502 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
4503 f2fs_put_page(page
, 1);
4505 err
= check_block_count(sbi
, start
, &sit
);
4508 seg_info_from_raw_sit(se
, &sit
);
4509 if (IS_NODESEG(se
->type
))
4510 total_node_blocks
+= se
->valid_blocks
;
4512 if (f2fs_block_unit_discard(sbi
)) {
4513 /* build discard map only one time */
4514 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
4515 memset(se
->discard_map
, 0xff,
4516 SIT_VBLOCK_MAP_SIZE
);
4518 memcpy(se
->discard_map
,
4520 SIT_VBLOCK_MAP_SIZE
);
4521 sbi
->discard_blks
+=
4522 sbi
->blocks_per_seg
-
4527 if (__is_large_section(sbi
))
4528 get_sec_entry(sbi
, start
)->valid_blocks
+=
4531 start_blk
+= readed
;
4532 } while (start_blk
< sit_blk_cnt
);
4534 down_read(&curseg
->journal_rwsem
);
4535 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
4536 unsigned int old_valid_blocks
;
4538 start
= le32_to_cpu(segno_in_journal(journal
, i
));
4539 if (start
>= MAIN_SEGS(sbi
)) {
4540 f2fs_err(sbi
, "Wrong journal entry on segno %u",
4542 err
= -EFSCORRUPTED
;
4546 se
= &sit_i
->sentries
[start
];
4547 sit
= sit_in_journal(journal
, i
);
4549 old_valid_blocks
= se
->valid_blocks
;
4550 if (IS_NODESEG(se
->type
))
4551 total_node_blocks
-= old_valid_blocks
;
4553 err
= check_block_count(sbi
, start
, &sit
);
4556 seg_info_from_raw_sit(se
, &sit
);
4557 if (IS_NODESEG(se
->type
))
4558 total_node_blocks
+= se
->valid_blocks
;
4560 if (f2fs_block_unit_discard(sbi
)) {
4561 if (is_set_ckpt_flags(sbi
, CP_TRIMMED_FLAG
)) {
4562 memset(se
->discard_map
, 0xff, SIT_VBLOCK_MAP_SIZE
);
4564 memcpy(se
->discard_map
, se
->cur_valid_map
,
4565 SIT_VBLOCK_MAP_SIZE
);
4566 sbi
->discard_blks
+= old_valid_blocks
;
4567 sbi
->discard_blks
-= se
->valid_blocks
;
4571 if (__is_large_section(sbi
)) {
4572 get_sec_entry(sbi
, start
)->valid_blocks
+=
4574 get_sec_entry(sbi
, start
)->valid_blocks
-=
4578 up_read(&curseg
->journal_rwsem
);
4580 if (!err
&& total_node_blocks
!= valid_node_count(sbi
)) {
4581 f2fs_err(sbi
, "SIT is corrupted node# %u vs %u",
4582 total_node_blocks
, valid_node_count(sbi
));
4583 err
= -EFSCORRUPTED
;
4589 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
4593 struct seg_entry
*sentry
;
4595 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
4596 if (f2fs_usable_blks_in_seg(sbi
, start
) == 0)
4598 sentry
= get_seg_entry(sbi
, start
);
4599 if (!sentry
->valid_blocks
)
4600 __set_free(sbi
, start
);
4602 SIT_I(sbi
)->written_valid_blocks
+=
4603 sentry
->valid_blocks
;
4606 /* set use the current segments */
4607 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
4608 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
4610 __set_test_and_inuse(sbi
, curseg_t
->segno
);
4614 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
4616 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4617 struct free_segmap_info
*free_i
= FREE_I(sbi
);
4618 unsigned int segno
= 0, offset
= 0, secno
;
4619 block_t valid_blocks
, usable_blks_in_seg
;
4620 block_t blks_per_sec
= BLKS_PER_SEC(sbi
);
4623 /* find dirty segment based on free segmap */
4624 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
4625 if (segno
>= MAIN_SEGS(sbi
))
4628 valid_blocks
= get_valid_blocks(sbi
, segno
, false);
4629 usable_blks_in_seg
= f2fs_usable_blks_in_seg(sbi
, segno
);
4630 if (valid_blocks
== usable_blks_in_seg
|| !valid_blocks
)
4632 if (valid_blocks
> usable_blks_in_seg
) {
4633 f2fs_bug_on(sbi
, 1);
4636 mutex_lock(&dirty_i
->seglist_lock
);
4637 __locate_dirty_segment(sbi
, segno
, DIRTY
);
4638 mutex_unlock(&dirty_i
->seglist_lock
);
4641 if (!__is_large_section(sbi
))
4644 mutex_lock(&dirty_i
->seglist_lock
);
4645 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
4646 valid_blocks
= get_valid_blocks(sbi
, segno
, true);
4647 secno
= GET_SEC_FROM_SEG(sbi
, segno
);
4649 if (!valid_blocks
|| valid_blocks
== blks_per_sec
)
4651 if (IS_CURSEC(sbi
, secno
))
4653 set_bit(secno
, dirty_i
->dirty_secmap
);
4655 mutex_unlock(&dirty_i
->seglist_lock
);
4658 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
4660 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
4661 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4663 dirty_i
->victim_secmap
= f2fs_kvzalloc(sbi
, bitmap_size
, GFP_KERNEL
);
4664 if (!dirty_i
->victim_secmap
)
4669 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
4671 struct dirty_seglist_info
*dirty_i
;
4672 unsigned int bitmap_size
, i
;
4674 /* allocate memory for dirty segments list information */
4675 dirty_i
= f2fs_kzalloc(sbi
, sizeof(struct dirty_seglist_info
),
4680 SM_I(sbi
)->dirty_info
= dirty_i
;
4681 mutex_init(&dirty_i
->seglist_lock
);
4683 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
4685 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
4686 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(sbi
, bitmap_size
,
4688 if (!dirty_i
->dirty_segmap
[i
])
4692 if (__is_large_section(sbi
)) {
4693 bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
4694 dirty_i
->dirty_secmap
= f2fs_kvzalloc(sbi
,
4695 bitmap_size
, GFP_KERNEL
);
4696 if (!dirty_i
->dirty_secmap
)
4700 init_dirty_segmap(sbi
);
4701 return init_victim_secmap(sbi
);
4704 static int sanity_check_curseg(struct f2fs_sb_info
*sbi
)
4709 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4710 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4712 for (i
= 0; i
< NR_PERSISTENT_LOG
; i
++) {
4713 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
);
4714 struct seg_entry
*se
= get_seg_entry(sbi
, curseg
->segno
);
4715 unsigned int blkofs
= curseg
->next_blkoff
;
4717 if (f2fs_sb_has_readonly(sbi
) &&
4718 i
!= CURSEG_HOT_DATA
&& i
!= CURSEG_HOT_NODE
)
4721 sanity_check_seg_type(sbi
, curseg
->seg_type
);
4723 if (f2fs_test_bit(blkofs
, se
->cur_valid_map
))
4726 if (curseg
->alloc_type
== SSR
)
4729 for (blkofs
+= 1; blkofs
< sbi
->blocks_per_seg
; blkofs
++) {
4730 if (!f2fs_test_bit(blkofs
, se
->cur_valid_map
))
4734 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4735 i
, curseg
->segno
, curseg
->alloc_type
,
4736 curseg
->next_blkoff
, blkofs
);
4737 return -EFSCORRUPTED
;
4743 #ifdef CONFIG_BLK_DEV_ZONED
4745 static int check_zone_write_pointer(struct f2fs_sb_info
*sbi
,
4746 struct f2fs_dev_info
*fdev
,
4747 struct blk_zone
*zone
)
4749 unsigned int wp_segno
, wp_blkoff
, zone_secno
, zone_segno
, segno
;
4750 block_t zone_block
, wp_block
, last_valid_block
;
4751 unsigned int log_sectors_per_block
= sbi
->log_blocksize
- SECTOR_SHIFT
;
4753 struct seg_entry
*se
;
4755 if (zone
->type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4758 wp_block
= fdev
->start_blk
+ (zone
->wp
>> log_sectors_per_block
);
4759 wp_segno
= GET_SEGNO(sbi
, wp_block
);
4760 wp_blkoff
= wp_block
- START_BLOCK(sbi
, wp_segno
);
4761 zone_block
= fdev
->start_blk
+ (zone
->start
>> log_sectors_per_block
);
4762 zone_segno
= GET_SEGNO(sbi
, zone_block
);
4763 zone_secno
= GET_SEC_FROM_SEG(sbi
, zone_segno
);
4765 if (zone_segno
>= MAIN_SEGS(sbi
))
4769 * Skip check of zones cursegs point to, since
4770 * fix_curseg_write_pointer() checks them.
4772 for (i
= 0; i
< NO_CHECK_TYPE
; i
++)
4773 if (zone_secno
== GET_SEC_FROM_SEG(sbi
,
4774 CURSEG_I(sbi
, i
)->segno
))
4778 * Get last valid block of the zone.
4780 last_valid_block
= zone_block
- 1;
4781 for (s
= sbi
->segs_per_sec
- 1; s
>= 0; s
--) {
4782 segno
= zone_segno
+ s
;
4783 se
= get_seg_entry(sbi
, segno
);
4784 for (b
= sbi
->blocks_per_seg
- 1; b
>= 0; b
--)
4785 if (f2fs_test_bit(b
, se
->cur_valid_map
)) {
4786 last_valid_block
= START_BLOCK(sbi
, segno
) + b
;
4789 if (last_valid_block
>= zone_block
)
4794 * If last valid block is beyond the write pointer, report the
4795 * inconsistency. This inconsistency does not cause write error
4796 * because the zone will not be selected for write operation until
4797 * it get discarded. Just report it.
4799 if (last_valid_block
>= wp_block
) {
4800 f2fs_notice(sbi
, "Valid block beyond write pointer: "
4801 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4802 GET_SEGNO(sbi
, last_valid_block
),
4803 GET_BLKOFF_FROM_SEG0(sbi
, last_valid_block
),
4804 wp_segno
, wp_blkoff
);
4809 * If there is no valid block in the zone and if write pointer is
4810 * not at zone start, reset the write pointer.
4812 if (last_valid_block
+ 1 == zone_block
&& zone
->wp
!= zone
->start
) {
4814 "Zone without valid block has non-zero write "
4815 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4816 wp_segno
, wp_blkoff
);
4817 ret
= __f2fs_issue_discard_zone(sbi
, fdev
->bdev
, zone_block
,
4818 zone
->len
>> log_sectors_per_block
);
4820 f2fs_err(sbi
, "Discard zone failed: %s (errno=%d)",
4829 static struct f2fs_dev_info
*get_target_zoned_dev(struct f2fs_sb_info
*sbi
,
4830 block_t zone_blkaddr
)
4834 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
4835 if (!bdev_is_zoned(FDEV(i
).bdev
))
4837 if (sbi
->s_ndevs
== 1 || (FDEV(i
).start_blk
<= zone_blkaddr
&&
4838 zone_blkaddr
<= FDEV(i
).end_blk
))
4845 static int report_one_zone_cb(struct blk_zone
*zone
, unsigned int idx
,
4848 memcpy(data
, zone
, sizeof(struct blk_zone
));
4852 static int fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
, int type
)
4854 struct curseg_info
*cs
= CURSEG_I(sbi
, type
);
4855 struct f2fs_dev_info
*zbd
;
4856 struct blk_zone zone
;
4857 unsigned int cs_section
, wp_segno
, wp_blkoff
, wp_sector_off
;
4858 block_t cs_zone_block
, wp_block
;
4859 unsigned int log_sectors_per_block
= sbi
->log_blocksize
- SECTOR_SHIFT
;
4860 sector_t zone_sector
;
4863 cs_section
= GET_SEC_FROM_SEG(sbi
, cs
->segno
);
4864 cs_zone_block
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, cs_section
));
4866 zbd
= get_target_zoned_dev(sbi
, cs_zone_block
);
4870 /* report zone for the sector the curseg points to */
4871 zone_sector
= (sector_t
)(cs_zone_block
- zbd
->start_blk
)
4872 << log_sectors_per_block
;
4873 err
= blkdev_report_zones(zbd
->bdev
, zone_sector
, 1,
4874 report_one_zone_cb
, &zone
);
4876 f2fs_err(sbi
, "Report zone failed: %s errno=(%d)",
4881 if (zone
.type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4884 wp_block
= zbd
->start_blk
+ (zone
.wp
>> log_sectors_per_block
);
4885 wp_segno
= GET_SEGNO(sbi
, wp_block
);
4886 wp_blkoff
= wp_block
- START_BLOCK(sbi
, wp_segno
);
4887 wp_sector_off
= zone
.wp
& GENMASK(log_sectors_per_block
- 1, 0);
4889 if (cs
->segno
== wp_segno
&& cs
->next_blkoff
== wp_blkoff
&&
4893 f2fs_notice(sbi
, "Unaligned curseg[%d] with write pointer: "
4894 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4895 type
, cs
->segno
, cs
->next_blkoff
, wp_segno
, wp_blkoff
);
4897 f2fs_notice(sbi
, "Assign new section to curseg[%d]: "
4898 "curseg[0x%x,0x%x]", type
, cs
->segno
, cs
->next_blkoff
);
4900 f2fs_allocate_new_section(sbi
, type
, true);
4902 /* check consistency of the zone curseg pointed to */
4903 if (check_zone_write_pointer(sbi
, zbd
, &zone
))
4906 /* check newly assigned zone */
4907 cs_section
= GET_SEC_FROM_SEG(sbi
, cs
->segno
);
4908 cs_zone_block
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, cs_section
));
4910 zbd
= get_target_zoned_dev(sbi
, cs_zone_block
);
4914 zone_sector
= (sector_t
)(cs_zone_block
- zbd
->start_blk
)
4915 << log_sectors_per_block
;
4916 err
= blkdev_report_zones(zbd
->bdev
, zone_sector
, 1,
4917 report_one_zone_cb
, &zone
);
4919 f2fs_err(sbi
, "Report zone failed: %s errno=(%d)",
4924 if (zone
.type
!= BLK_ZONE_TYPE_SEQWRITE_REQ
)
4927 if (zone
.wp
!= zone
.start
) {
4929 "New zone for curseg[%d] is not yet discarded. "
4930 "Reset the zone: curseg[0x%x,0x%x]",
4931 type
, cs
->segno
, cs
->next_blkoff
);
4932 err
= __f2fs_issue_discard_zone(sbi
, zbd
->bdev
,
4933 zone_sector
>> log_sectors_per_block
,
4934 zone
.len
>> log_sectors_per_block
);
4936 f2fs_err(sbi
, "Discard zone failed: %s (errno=%d)",
4945 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
)
4949 for (i
= 0; i
< NR_PERSISTENT_LOG
; i
++) {
4950 ret
= fix_curseg_write_pointer(sbi
, i
);
4958 struct check_zone_write_pointer_args
{
4959 struct f2fs_sb_info
*sbi
;
4960 struct f2fs_dev_info
*fdev
;
4963 static int check_zone_write_pointer_cb(struct blk_zone
*zone
, unsigned int idx
,
4966 struct check_zone_write_pointer_args
*args
;
4968 args
= (struct check_zone_write_pointer_args
*)data
;
4970 return check_zone_write_pointer(args
->sbi
, args
->fdev
, zone
);
4973 int f2fs_check_write_pointer(struct f2fs_sb_info
*sbi
)
4976 struct check_zone_write_pointer_args args
;
4978 for (i
= 0; i
< sbi
->s_ndevs
; i
++) {
4979 if (!bdev_is_zoned(FDEV(i
).bdev
))
4983 args
.fdev
= &FDEV(i
);
4984 ret
= blkdev_report_zones(FDEV(i
).bdev
, 0, BLK_ALL_ZONES
,
4985 check_zone_write_pointer_cb
, &args
);
4993 static bool is_conv_zone(struct f2fs_sb_info
*sbi
, unsigned int zone_idx
,
4994 unsigned int dev_idx
)
4996 if (!bdev_is_zoned(FDEV(dev_idx
).bdev
))
4998 return !test_bit(zone_idx
, FDEV(dev_idx
).blkz_seq
);
5001 /* Return the zone index in the given device */
5002 static unsigned int get_zone_idx(struct f2fs_sb_info
*sbi
, unsigned int secno
,
5005 block_t sec_start_blkaddr
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, secno
));
5007 return (sec_start_blkaddr
- FDEV(dev_idx
).start_blk
) >>
5008 sbi
->log_blocks_per_blkz
;
5012 * Return the usable segments in a section based on the zone's
5013 * corresponding zone capacity. Zone is equal to a section.
5015 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5016 struct f2fs_sb_info
*sbi
, unsigned int segno
)
5018 unsigned int dev_idx
, zone_idx
, unusable_segs_in_sec
;
5020 dev_idx
= f2fs_target_device_index(sbi
, START_BLOCK(sbi
, segno
));
5021 zone_idx
= get_zone_idx(sbi
, GET_SEC_FROM_SEG(sbi
, segno
), dev_idx
);
5023 /* Conventional zone's capacity is always equal to zone size */
5024 if (is_conv_zone(sbi
, zone_idx
, dev_idx
))
5025 return sbi
->segs_per_sec
;
5028 * If the zone_capacity_blocks array is NULL, then zone capacity
5029 * is equal to the zone size for all zones
5031 if (!FDEV(dev_idx
).zone_capacity_blocks
)
5032 return sbi
->segs_per_sec
;
5034 /* Get the segment count beyond zone capacity block */
5035 unusable_segs_in_sec
= (sbi
->blocks_per_blkz
-
5036 FDEV(dev_idx
).zone_capacity_blocks
[zone_idx
]) >>
5037 sbi
->log_blocks_per_seg
;
5038 return sbi
->segs_per_sec
- unusable_segs_in_sec
;
5042 * Return the number of usable blocks in a segment. The number of blocks
5043 * returned is always equal to the number of blocks in a segment for
5044 * segments fully contained within a sequential zone capacity or a
5045 * conventional zone. For segments partially contained in a sequential
5046 * zone capacity, the number of usable blocks up to the zone capacity
5047 * is returned. 0 is returned in all other cases.
5049 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5050 struct f2fs_sb_info
*sbi
, unsigned int segno
)
5052 block_t seg_start
, sec_start_blkaddr
, sec_cap_blkaddr
;
5053 unsigned int zone_idx
, dev_idx
, secno
;
5055 secno
= GET_SEC_FROM_SEG(sbi
, segno
);
5056 seg_start
= START_BLOCK(sbi
, segno
);
5057 dev_idx
= f2fs_target_device_index(sbi
, seg_start
);
5058 zone_idx
= get_zone_idx(sbi
, secno
, dev_idx
);
5061 * Conventional zone's capacity is always equal to zone size,
5062 * so, blocks per segment is unchanged.
5064 if (is_conv_zone(sbi
, zone_idx
, dev_idx
))
5065 return sbi
->blocks_per_seg
;
5067 if (!FDEV(dev_idx
).zone_capacity_blocks
)
5068 return sbi
->blocks_per_seg
;
5070 sec_start_blkaddr
= START_BLOCK(sbi
, GET_SEG_FROM_SEC(sbi
, secno
));
5071 sec_cap_blkaddr
= sec_start_blkaddr
+
5072 FDEV(dev_idx
).zone_capacity_blocks
[zone_idx
];
5075 * If segment starts before zone capacity and spans beyond
5076 * zone capacity, then usable blocks are from seg start to
5077 * zone capacity. If the segment starts after the zone capacity,
5078 * then there are no usable blocks.
5080 if (seg_start
>= sec_cap_blkaddr
)
5082 if (seg_start
+ sbi
->blocks_per_seg
> sec_cap_blkaddr
)
5083 return sec_cap_blkaddr
- seg_start
;
5085 return sbi
->blocks_per_seg
;
5088 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info
*sbi
)
5093 int f2fs_check_write_pointer(struct f2fs_sb_info
*sbi
)
5098 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info
*sbi
,
5104 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info
*sbi
,
5110 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info
*sbi
,
5113 if (f2fs_sb_has_blkzoned(sbi
))
5114 return f2fs_usable_zone_blks_in_seg(sbi
, segno
);
5116 return sbi
->blocks_per_seg
;
5119 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info
*sbi
,
5122 if (f2fs_sb_has_blkzoned(sbi
))
5123 return f2fs_usable_zone_segs_in_sec(sbi
, segno
);
5125 return sbi
->segs_per_sec
;
5129 * Update min, max modified time for cost-benefit GC algorithm
5131 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
5133 struct sit_info
*sit_i
= SIT_I(sbi
);
5136 down_write(&sit_i
->sentry_lock
);
5138 sit_i
->min_mtime
= ULLONG_MAX
;
5140 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
5142 unsigned long long mtime
= 0;
5144 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
5145 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
5147 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
5149 if (sit_i
->min_mtime
> mtime
)
5150 sit_i
->min_mtime
= mtime
;
5152 sit_i
->max_mtime
= get_mtime(sbi
, false);
5153 sit_i
->dirty_max_mtime
= 0;
5154 up_write(&sit_i
->sentry_lock
);
5157 int f2fs_build_segment_manager(struct f2fs_sb_info
*sbi
)
5159 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
5160 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
5161 struct f2fs_sm_info
*sm_info
;
5164 sm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
5169 sbi
->sm_info
= sm_info
;
5170 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
5171 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
5172 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
5173 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
5174 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
5175 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
5176 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
5177 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
5178 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
5179 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
5180 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
5182 if (!f2fs_lfs_mode(sbi
))
5183 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
5184 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
5185 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
5186 sm_info
->min_seq_blocks
= sbi
->blocks_per_seg
;
5187 sm_info
->min_hot_blocks
= DEF_MIN_HOT_BLOCKS
;
5188 sm_info
->min_ssr_sections
= reserved_sections(sbi
);
5190 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
5192 init_rwsem(&sm_info
->curseg_lock
);
5194 if (!f2fs_readonly(sbi
->sb
)) {
5195 err
= f2fs_create_flush_cmd_control(sbi
);
5200 err
= create_discard_cmd_control(sbi
);
5204 err
= build_sit_info(sbi
);
5207 err
= build_free_segmap(sbi
);
5210 err
= build_curseg(sbi
);
5214 /* reinit free segmap based on SIT */
5215 err
= build_sit_entries(sbi
);
5219 init_free_segmap(sbi
);
5220 err
= build_dirty_segmap(sbi
);
5224 err
= sanity_check_curseg(sbi
);
5228 init_min_max_mtime(sbi
);
5232 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
5233 enum dirty_type dirty_type
)
5235 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
5237 mutex_lock(&dirty_i
->seglist_lock
);
5238 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
5239 dirty_i
->nr_dirty
[dirty_type
] = 0;
5240 mutex_unlock(&dirty_i
->seglist_lock
);
5243 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
5245 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
5247 kvfree(dirty_i
->victim_secmap
);
5250 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
5252 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
5258 /* discard pre-free/dirty segments list */
5259 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
5260 discard_dirty_segmap(sbi
, i
);
5262 if (__is_large_section(sbi
)) {
5263 mutex_lock(&dirty_i
->seglist_lock
);
5264 kvfree(dirty_i
->dirty_secmap
);
5265 mutex_unlock(&dirty_i
->seglist_lock
);
5268 destroy_victim_secmap(sbi
);
5269 SM_I(sbi
)->dirty_info
= NULL
;
5273 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
5275 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
5280 SM_I(sbi
)->curseg_array
= NULL
;
5281 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
5282 kfree(array
[i
].sum_blk
);
5283 kfree(array
[i
].journal
);
5288 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
5290 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
5294 SM_I(sbi
)->free_info
= NULL
;
5295 kvfree(free_i
->free_segmap
);
5296 kvfree(free_i
->free_secmap
);
5300 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
5302 struct sit_info
*sit_i
= SIT_I(sbi
);
5307 if (sit_i
->sentries
)
5308 kvfree(sit_i
->bitmap
);
5309 kfree(sit_i
->tmp_map
);
5311 kvfree(sit_i
->sentries
);
5312 kvfree(sit_i
->sec_entries
);
5313 kvfree(sit_i
->dirty_sentries_bitmap
);
5315 SM_I(sbi
)->sit_info
= NULL
;
5316 kvfree(sit_i
->sit_bitmap
);
5317 #ifdef CONFIG_F2FS_CHECK_FS
5318 kvfree(sit_i
->sit_bitmap_mir
);
5319 kvfree(sit_i
->invalid_segmap
);
5324 void f2fs_destroy_segment_manager(struct f2fs_sb_info
*sbi
)
5326 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
5330 f2fs_destroy_flush_cmd_control(sbi
, true);
5331 destroy_discard_cmd_control(sbi
);
5332 destroy_dirty_segmap(sbi
);
5333 destroy_curseg(sbi
);
5334 destroy_free_segmap(sbi
);
5335 destroy_sit_info(sbi
);
5336 sbi
->sm_info
= NULL
;
5340 int __init
f2fs_create_segment_manager_caches(void)
5342 discard_entry_slab
= f2fs_kmem_cache_create("f2fs_discard_entry",
5343 sizeof(struct discard_entry
));
5344 if (!discard_entry_slab
)
5347 discard_cmd_slab
= f2fs_kmem_cache_create("f2fs_discard_cmd",
5348 sizeof(struct discard_cmd
));
5349 if (!discard_cmd_slab
)
5350 goto destroy_discard_entry
;
5352 sit_entry_set_slab
= f2fs_kmem_cache_create("f2fs_sit_entry_set",
5353 sizeof(struct sit_entry_set
));
5354 if (!sit_entry_set_slab
)
5355 goto destroy_discard_cmd
;
5357 inmem_entry_slab
= f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5358 sizeof(struct inmem_pages
));
5359 if (!inmem_entry_slab
)
5360 goto destroy_sit_entry_set
;
5363 destroy_sit_entry_set
:
5364 kmem_cache_destroy(sit_entry_set_slab
);
5365 destroy_discard_cmd
:
5366 kmem_cache_destroy(discard_cmd_slab
);
5367 destroy_discard_entry
:
5368 kmem_cache_destroy(discard_entry_slab
);
5373 void f2fs_destroy_segment_manager_caches(void)
5375 kmem_cache_destroy(sit_entry_set_slab
);
5376 kmem_cache_destroy(discard_cmd_slab
);
5377 kmem_cache_destroy(discard_entry_slab
);
5378 kmem_cache_destroy(inmem_entry_slab
);