]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/segment.c
Add support for the AudioInjector.net Octo sound card
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 struct inmem_pages *new;
173
174 f2fs_trace_pid(page);
175
176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 SetPagePrivate(page);
178
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181 /* add atomic page indices to the list */
182 new->page = page;
183 INIT_LIST_HEAD(&new->list);
184
185 /* increase reference count with clean state */
186 mutex_lock(&fi->inmem_lock);
187 get_page(page);
188 list_add_tail(&new->list, &fi->inmem_pages);
189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 mutex_unlock(&fi->inmem_lock);
191
192 trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196 struct list_head *head, bool drop, bool recover)
197 {
198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 struct inmem_pages *cur, *tmp;
200 int err = 0;
201
202 list_for_each_entry_safe(cur, tmp, head, list) {
203 struct page *page = cur->page;
204
205 if (drop)
206 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208 lock_page(page);
209
210 if (recover) {
211 struct dnode_of_data dn;
212 struct node_info ni;
213
214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216 set_new_dnode(&dn, inode, NULL, NULL, 0);
217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 err = -EAGAIN;
219 goto next;
220 }
221 get_node_info(sbi, dn.nid, &ni);
222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 cur->old_addr, ni.version, true, true);
224 f2fs_put_dnode(&dn);
225 }
226 next:
227 /* we don't need to invalidate this in the sccessful status */
228 if (drop || recover)
229 ClearPageUptodate(page);
230 set_page_private(page, 0);
231 ClearPagePrivate(page);
232 f2fs_put_page(page, 1);
233
234 list_del(&cur->list);
235 kmem_cache_free(inmem_entry_slab, cur);
236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 }
238 return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243 struct f2fs_inode_info *fi = F2FS_I(inode);
244
245 clear_inode_flag(inode, FI_ATOMIC_FILE);
246
247 mutex_lock(&fi->inmem_lock);
248 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
249 mutex_unlock(&fi->inmem_lock);
250 }
251
252 static int __commit_inmem_pages(struct inode *inode,
253 struct list_head *revoke_list)
254 {
255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256 struct f2fs_inode_info *fi = F2FS_I(inode);
257 struct inmem_pages *cur, *tmp;
258 struct f2fs_io_info fio = {
259 .sbi = sbi,
260 .type = DATA,
261 .op = REQ_OP_WRITE,
262 .op_flags = REQ_SYNC | REQ_PRIO,
263 .encrypted_page = NULL,
264 };
265 bool submit_bio = false;
266 int err = 0;
267
268 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
269 struct page *page = cur->page;
270
271 lock_page(page);
272 if (page->mapping == inode->i_mapping) {
273 trace_f2fs_commit_inmem_page(page, INMEM);
274
275 set_page_dirty(page);
276 f2fs_wait_on_page_writeback(page, DATA, true);
277 if (clear_page_dirty_for_io(page)) {
278 inode_dec_dirty_pages(inode);
279 remove_dirty_inode(inode);
280 }
281
282 fio.page = page;
283 err = do_write_data_page(&fio);
284 if (err) {
285 unlock_page(page);
286 break;
287 }
288
289 /* record old blkaddr for revoking */
290 cur->old_addr = fio.old_blkaddr;
291
292 submit_bio = true;
293 }
294 unlock_page(page);
295 list_move_tail(&cur->list, revoke_list);
296 }
297
298 if (submit_bio)
299 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
300
301 if (!err)
302 __revoke_inmem_pages(inode, revoke_list, false, false);
303
304 return err;
305 }
306
307 int commit_inmem_pages(struct inode *inode)
308 {
309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
310 struct f2fs_inode_info *fi = F2FS_I(inode);
311 struct list_head revoke_list;
312 int err;
313
314 INIT_LIST_HEAD(&revoke_list);
315 f2fs_balance_fs(sbi, true);
316 f2fs_lock_op(sbi);
317
318 mutex_lock(&fi->inmem_lock);
319 err = __commit_inmem_pages(inode, &revoke_list);
320 if (err) {
321 int ret;
322 /*
323 * try to revoke all committed pages, but still we could fail
324 * due to no memory or other reason, if that happened, EAGAIN
325 * will be returned, which means in such case, transaction is
326 * already not integrity, caller should use journal to do the
327 * recovery or rewrite & commit last transaction. For other
328 * error number, revoking was done by filesystem itself.
329 */
330 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
331 if (ret)
332 err = ret;
333
334 /* drop all uncommitted pages */
335 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
336 }
337 mutex_unlock(&fi->inmem_lock);
338
339 f2fs_unlock_op(sbi);
340 return err;
341 }
342
343 /*
344 * This function balances dirty node and dentry pages.
345 * In addition, it controls garbage collection.
346 */
347 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
348 {
349 #ifdef CONFIG_F2FS_FAULT_INJECTION
350 if (time_to_inject(sbi, FAULT_CHECKPOINT))
351 f2fs_stop_checkpoint(sbi, false);
352 #endif
353
354 if (!need)
355 return;
356
357 /* balance_fs_bg is able to be pending */
358 if (excess_cached_nats(sbi))
359 f2fs_balance_fs_bg(sbi);
360
361 /*
362 * We should do GC or end up with checkpoint, if there are so many dirty
363 * dir/node pages without enough free segments.
364 */
365 if (has_not_enough_free_secs(sbi, 0, 0)) {
366 mutex_lock(&sbi->gc_mutex);
367 f2fs_gc(sbi, false, false);
368 }
369 }
370
371 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
372 {
373 /* try to shrink extent cache when there is no enough memory */
374 if (!available_free_memory(sbi, EXTENT_CACHE))
375 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
376
377 /* check the # of cached NAT entries */
378 if (!available_free_memory(sbi, NAT_ENTRIES))
379 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
380
381 if (!available_free_memory(sbi, FREE_NIDS))
382 try_to_free_nids(sbi, MAX_FREE_NIDS);
383 else
384 build_free_nids(sbi, false);
385
386 if (!is_idle(sbi))
387 return;
388
389 /* checkpoint is the only way to shrink partial cached entries */
390 if (!available_free_memory(sbi, NAT_ENTRIES) ||
391 !available_free_memory(sbi, INO_ENTRIES) ||
392 excess_prefree_segs(sbi) ||
393 excess_dirty_nats(sbi) ||
394 f2fs_time_over(sbi, CP_TIME)) {
395 if (test_opt(sbi, DATA_FLUSH)) {
396 struct blk_plug plug;
397
398 blk_start_plug(&plug);
399 sync_dirty_inodes(sbi, FILE_INODE);
400 blk_finish_plug(&plug);
401 }
402 f2fs_sync_fs(sbi->sb, true);
403 stat_inc_bg_cp_count(sbi->stat_info);
404 }
405 }
406
407 static int __submit_flush_wait(struct block_device *bdev)
408 {
409 struct bio *bio = f2fs_bio_alloc(0);
410 int ret;
411
412 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
413 bio->bi_bdev = bdev;
414 ret = submit_bio_wait(bio);
415 bio_put(bio);
416 return ret;
417 }
418
419 static int submit_flush_wait(struct f2fs_sb_info *sbi)
420 {
421 int ret = __submit_flush_wait(sbi->sb->s_bdev);
422 int i;
423
424 if (sbi->s_ndevs && !ret) {
425 for (i = 1; i < sbi->s_ndevs; i++) {
426 ret = __submit_flush_wait(FDEV(i).bdev);
427 if (ret)
428 break;
429 }
430 }
431 return ret;
432 }
433
434 static int issue_flush_thread(void *data)
435 {
436 struct f2fs_sb_info *sbi = data;
437 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
438 wait_queue_head_t *q = &fcc->flush_wait_queue;
439 repeat:
440 if (kthread_should_stop())
441 return 0;
442
443 if (!llist_empty(&fcc->issue_list)) {
444 struct flush_cmd *cmd, *next;
445 int ret;
446
447 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
448 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
449
450 ret = submit_flush_wait(sbi);
451 llist_for_each_entry_safe(cmd, next,
452 fcc->dispatch_list, llnode) {
453 cmd->ret = ret;
454 complete(&cmd->wait);
455 }
456 fcc->dispatch_list = NULL;
457 }
458
459 wait_event_interruptible(*q,
460 kthread_should_stop() || !llist_empty(&fcc->issue_list));
461 goto repeat;
462 }
463
464 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
465 {
466 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
467 struct flush_cmd cmd;
468
469 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
470 test_opt(sbi, FLUSH_MERGE));
471
472 if (test_opt(sbi, NOBARRIER))
473 return 0;
474
475 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
476 int ret;
477
478 atomic_inc(&fcc->submit_flush);
479 ret = submit_flush_wait(sbi);
480 atomic_dec(&fcc->submit_flush);
481 return ret;
482 }
483
484 init_completion(&cmd.wait);
485
486 atomic_inc(&fcc->submit_flush);
487 llist_add(&cmd.llnode, &fcc->issue_list);
488
489 if (!fcc->dispatch_list)
490 wake_up(&fcc->flush_wait_queue);
491
492 if (fcc->f2fs_issue_flush) {
493 wait_for_completion(&cmd.wait);
494 atomic_dec(&fcc->submit_flush);
495 } else {
496 llist_del_all(&fcc->issue_list);
497 atomic_set(&fcc->submit_flush, 0);
498 }
499
500 return cmd.ret;
501 }
502
503 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
504 {
505 dev_t dev = sbi->sb->s_bdev->bd_dev;
506 struct flush_cmd_control *fcc;
507 int err = 0;
508
509 if (SM_I(sbi)->cmd_control_info) {
510 fcc = SM_I(sbi)->cmd_control_info;
511 goto init_thread;
512 }
513
514 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
515 if (!fcc)
516 return -ENOMEM;
517 atomic_set(&fcc->submit_flush, 0);
518 init_waitqueue_head(&fcc->flush_wait_queue);
519 init_llist_head(&fcc->issue_list);
520 SM_I(sbi)->cmd_control_info = fcc;
521 init_thread:
522 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
523 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
524 if (IS_ERR(fcc->f2fs_issue_flush)) {
525 err = PTR_ERR(fcc->f2fs_issue_flush);
526 kfree(fcc);
527 SM_I(sbi)->cmd_control_info = NULL;
528 return err;
529 }
530
531 return err;
532 }
533
534 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
535 {
536 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
537
538 if (fcc && fcc->f2fs_issue_flush) {
539 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
540
541 fcc->f2fs_issue_flush = NULL;
542 kthread_stop(flush_thread);
543 }
544 if (free) {
545 kfree(fcc);
546 SM_I(sbi)->cmd_control_info = NULL;
547 }
548 }
549
550 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
551 enum dirty_type dirty_type)
552 {
553 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
554
555 /* need not be added */
556 if (IS_CURSEG(sbi, segno))
557 return;
558
559 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
560 dirty_i->nr_dirty[dirty_type]++;
561
562 if (dirty_type == DIRTY) {
563 struct seg_entry *sentry = get_seg_entry(sbi, segno);
564 enum dirty_type t = sentry->type;
565
566 if (unlikely(t >= DIRTY)) {
567 f2fs_bug_on(sbi, 1);
568 return;
569 }
570 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
571 dirty_i->nr_dirty[t]++;
572 }
573 }
574
575 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
576 enum dirty_type dirty_type)
577 {
578 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
579
580 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
581 dirty_i->nr_dirty[dirty_type]--;
582
583 if (dirty_type == DIRTY) {
584 struct seg_entry *sentry = get_seg_entry(sbi, segno);
585 enum dirty_type t = sentry->type;
586
587 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
588 dirty_i->nr_dirty[t]--;
589
590 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
591 clear_bit(GET_SECNO(sbi, segno),
592 dirty_i->victim_secmap);
593 }
594 }
595
596 /*
597 * Should not occur error such as -ENOMEM.
598 * Adding dirty entry into seglist is not critical operation.
599 * If a given segment is one of current working segments, it won't be added.
600 */
601 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
602 {
603 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
604 unsigned short valid_blocks;
605
606 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
607 return;
608
609 mutex_lock(&dirty_i->seglist_lock);
610
611 valid_blocks = get_valid_blocks(sbi, segno, 0);
612
613 if (valid_blocks == 0) {
614 __locate_dirty_segment(sbi, segno, PRE);
615 __remove_dirty_segment(sbi, segno, DIRTY);
616 } else if (valid_blocks < sbi->blocks_per_seg) {
617 __locate_dirty_segment(sbi, segno, DIRTY);
618 } else {
619 /* Recovery routine with SSR needs this */
620 __remove_dirty_segment(sbi, segno, DIRTY);
621 }
622
623 mutex_unlock(&dirty_i->seglist_lock);
624 }
625
626 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
627 struct bio *bio)
628 {
629 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
630 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
631
632 INIT_LIST_HEAD(&be->list);
633 be->bio = bio;
634 init_completion(&be->event);
635 list_add_tail(&be->list, wait_list);
636
637 return be;
638 }
639
640 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
641 {
642 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
643 struct bio_entry *be, *tmp;
644
645 list_for_each_entry_safe(be, tmp, wait_list, list) {
646 struct bio *bio = be->bio;
647 int err;
648
649 wait_for_completion_io(&be->event);
650 err = be->error;
651 if (err == -EOPNOTSUPP)
652 err = 0;
653
654 if (err)
655 f2fs_msg(sbi->sb, KERN_INFO,
656 "Issue discard failed, ret: %d", err);
657
658 bio_put(bio);
659 list_del(&be->list);
660 kmem_cache_free(bio_entry_slab, be);
661 }
662 }
663
664 static void f2fs_submit_bio_wait_endio(struct bio *bio)
665 {
666 struct bio_entry *be = (struct bio_entry *)bio->bi_private;
667
668 be->error = bio->bi_error;
669 complete(&be->event);
670 }
671
672 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
673 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
674 struct block_device *bdev, block_t blkstart, block_t blklen)
675 {
676 struct bio *bio = NULL;
677 int err;
678
679 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
680
681 if (sbi->s_ndevs) {
682 int devi = f2fs_target_device_index(sbi, blkstart);
683
684 blkstart -= FDEV(devi).start_blk;
685 }
686 err = __blkdev_issue_discard(bdev,
687 SECTOR_FROM_BLOCK(blkstart),
688 SECTOR_FROM_BLOCK(blklen),
689 GFP_NOFS, 0, &bio);
690 if (!err && bio) {
691 struct bio_entry *be = __add_bio_entry(sbi, bio);
692
693 bio->bi_private = be;
694 bio->bi_end_io = f2fs_submit_bio_wait_endio;
695 bio->bi_opf |= REQ_SYNC;
696 submit_bio(bio);
697 }
698
699 return err;
700 }
701
702 #ifdef CONFIG_BLK_DEV_ZONED
703 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
704 struct block_device *bdev, block_t blkstart, block_t blklen)
705 {
706 sector_t nr_sects = SECTOR_FROM_BLOCK(blklen);
707 sector_t sector;
708 int devi = 0;
709
710 if (sbi->s_ndevs) {
711 devi = f2fs_target_device_index(sbi, blkstart);
712 blkstart -= FDEV(devi).start_blk;
713 }
714 sector = SECTOR_FROM_BLOCK(blkstart);
715
716 if (sector & (bdev_zone_sectors(bdev) - 1) ||
717 nr_sects != bdev_zone_sectors(bdev)) {
718 f2fs_msg(sbi->sb, KERN_INFO,
719 "(%d) %s: Unaligned discard attempted (block %x + %x)",
720 devi, sbi->s_ndevs ? FDEV(devi).path: "",
721 blkstart, blklen);
722 return -EIO;
723 }
724
725 /*
726 * We need to know the type of the zone: for conventional zones,
727 * use regular discard if the drive supports it. For sequential
728 * zones, reset the zone write pointer.
729 */
730 switch (get_blkz_type(sbi, bdev, blkstart)) {
731
732 case BLK_ZONE_TYPE_CONVENTIONAL:
733 if (!blk_queue_discard(bdev_get_queue(bdev)))
734 return 0;
735 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
736 case BLK_ZONE_TYPE_SEQWRITE_REQ:
737 case BLK_ZONE_TYPE_SEQWRITE_PREF:
738 trace_f2fs_issue_reset_zone(sbi->sb, blkstart);
739 return blkdev_reset_zones(bdev, sector,
740 nr_sects, GFP_NOFS);
741 default:
742 /* Unknown zone type: broken device ? */
743 return -EIO;
744 }
745 }
746 #endif
747
748 static int __issue_discard_async(struct f2fs_sb_info *sbi,
749 struct block_device *bdev, block_t blkstart, block_t blklen)
750 {
751 #ifdef CONFIG_BLK_DEV_ZONED
752 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
753 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
754 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
755 #endif
756 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
757 }
758
759 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
760 block_t blkstart, block_t blklen)
761 {
762 sector_t start = blkstart, len = 0;
763 struct block_device *bdev;
764 struct seg_entry *se;
765 unsigned int offset;
766 block_t i;
767 int err = 0;
768
769 bdev = f2fs_target_device(sbi, blkstart, NULL);
770
771 for (i = blkstart; i < blkstart + blklen; i++, len++) {
772 if (i != start) {
773 struct block_device *bdev2 =
774 f2fs_target_device(sbi, i, NULL);
775
776 if (bdev2 != bdev) {
777 err = __issue_discard_async(sbi, bdev,
778 start, len);
779 if (err)
780 return err;
781 bdev = bdev2;
782 start = i;
783 len = 0;
784 }
785 }
786
787 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
788 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
789
790 if (!f2fs_test_and_set_bit(offset, se->discard_map))
791 sbi->discard_blks--;
792 }
793
794 if (len)
795 err = __issue_discard_async(sbi, bdev, start, len);
796 return err;
797 }
798
799 static void __add_discard_entry(struct f2fs_sb_info *sbi,
800 struct cp_control *cpc, struct seg_entry *se,
801 unsigned int start, unsigned int end)
802 {
803 struct list_head *head = &SM_I(sbi)->discard_list;
804 struct discard_entry *new, *last;
805
806 if (!list_empty(head)) {
807 last = list_last_entry(head, struct discard_entry, list);
808 if (START_BLOCK(sbi, cpc->trim_start) + start ==
809 last->blkaddr + last->len) {
810 last->len += end - start;
811 goto done;
812 }
813 }
814
815 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
816 INIT_LIST_HEAD(&new->list);
817 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
818 new->len = end - start;
819 list_add_tail(&new->list, head);
820 done:
821 SM_I(sbi)->nr_discards += end - start;
822 }
823
824 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
825 {
826 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
827 int max_blocks = sbi->blocks_per_seg;
828 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
829 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
830 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
831 unsigned long *discard_map = (unsigned long *)se->discard_map;
832 unsigned long *dmap = SIT_I(sbi)->tmp_map;
833 unsigned int start = 0, end = -1;
834 bool force = (cpc->reason == CP_DISCARD);
835 int i;
836
837 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
838 return;
839
840 if (!force) {
841 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
842 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
843 return;
844 }
845
846 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
847 for (i = 0; i < entries; i++)
848 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
849 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
850
851 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
852 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
853 if (start >= max_blocks)
854 break;
855
856 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
857 if (force && start && end != max_blocks
858 && (end - start) < cpc->trim_minlen)
859 continue;
860
861 __add_discard_entry(sbi, cpc, se, start, end);
862 }
863 }
864
865 void release_discard_addrs(struct f2fs_sb_info *sbi)
866 {
867 struct list_head *head = &(SM_I(sbi)->discard_list);
868 struct discard_entry *entry, *this;
869
870 /* drop caches */
871 list_for_each_entry_safe(entry, this, head, list) {
872 list_del(&entry->list);
873 kmem_cache_free(discard_entry_slab, entry);
874 }
875 }
876
877 /*
878 * Should call clear_prefree_segments after checkpoint is done.
879 */
880 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
881 {
882 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
883 unsigned int segno;
884
885 mutex_lock(&dirty_i->seglist_lock);
886 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
887 __set_test_and_free(sbi, segno);
888 mutex_unlock(&dirty_i->seglist_lock);
889 }
890
891 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
892 {
893 struct list_head *head = &(SM_I(sbi)->discard_list);
894 struct discard_entry *entry, *this;
895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896 struct blk_plug plug;
897 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
898 unsigned int start = 0, end = -1;
899 unsigned int secno, start_segno;
900 bool force = (cpc->reason == CP_DISCARD);
901
902 blk_start_plug(&plug);
903
904 mutex_lock(&dirty_i->seglist_lock);
905
906 while (1) {
907 int i;
908 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
909 if (start >= MAIN_SEGS(sbi))
910 break;
911 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
912 start + 1);
913
914 for (i = start; i < end; i++)
915 clear_bit(i, prefree_map);
916
917 dirty_i->nr_dirty[PRE] -= end - start;
918
919 if (force || !test_opt(sbi, DISCARD))
920 continue;
921
922 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
923 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
924 (end - start) << sbi->log_blocks_per_seg);
925 continue;
926 }
927 next:
928 secno = GET_SECNO(sbi, start);
929 start_segno = secno * sbi->segs_per_sec;
930 if (!IS_CURSEC(sbi, secno) &&
931 !get_valid_blocks(sbi, start, sbi->segs_per_sec))
932 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
933 sbi->segs_per_sec << sbi->log_blocks_per_seg);
934
935 start = start_segno + sbi->segs_per_sec;
936 if (start < end)
937 goto next;
938 else
939 end = start - 1;
940 }
941 mutex_unlock(&dirty_i->seglist_lock);
942
943 /* send small discards */
944 list_for_each_entry_safe(entry, this, head, list) {
945 if (force && entry->len < cpc->trim_minlen)
946 goto skip;
947 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
948 cpc->trimmed += entry->len;
949 skip:
950 list_del(&entry->list);
951 SM_I(sbi)->nr_discards -= entry->len;
952 kmem_cache_free(discard_entry_slab, entry);
953 }
954
955 blk_finish_plug(&plug);
956 }
957
958 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
959 {
960 struct sit_info *sit_i = SIT_I(sbi);
961
962 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
963 sit_i->dirty_sentries++;
964 return false;
965 }
966
967 return true;
968 }
969
970 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
971 unsigned int segno, int modified)
972 {
973 struct seg_entry *se = get_seg_entry(sbi, segno);
974 se->type = type;
975 if (modified)
976 __mark_sit_entry_dirty(sbi, segno);
977 }
978
979 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
980 {
981 struct seg_entry *se;
982 unsigned int segno, offset;
983 long int new_vblocks;
984
985 segno = GET_SEGNO(sbi, blkaddr);
986
987 se = get_seg_entry(sbi, segno);
988 new_vblocks = se->valid_blocks + del;
989 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
990
991 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
992 (new_vblocks > sbi->blocks_per_seg)));
993
994 se->valid_blocks = new_vblocks;
995 se->mtime = get_mtime(sbi);
996 SIT_I(sbi)->max_mtime = se->mtime;
997
998 /* Update valid block bitmap */
999 if (del > 0) {
1000 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
1001 f2fs_bug_on(sbi, 1);
1002 if (f2fs_discard_en(sbi) &&
1003 !f2fs_test_and_set_bit(offset, se->discard_map))
1004 sbi->discard_blks--;
1005 } else {
1006 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
1007 f2fs_bug_on(sbi, 1);
1008 if (f2fs_discard_en(sbi) &&
1009 f2fs_test_and_clear_bit(offset, se->discard_map))
1010 sbi->discard_blks++;
1011 }
1012 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1013 se->ckpt_valid_blocks += del;
1014
1015 __mark_sit_entry_dirty(sbi, segno);
1016
1017 /* update total number of valid blocks to be written in ckpt area */
1018 SIT_I(sbi)->written_valid_blocks += del;
1019
1020 if (sbi->segs_per_sec > 1)
1021 get_sec_entry(sbi, segno)->valid_blocks += del;
1022 }
1023
1024 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1025 {
1026 update_sit_entry(sbi, new, 1);
1027 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1028 update_sit_entry(sbi, old, -1);
1029
1030 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1031 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1032 }
1033
1034 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1035 {
1036 unsigned int segno = GET_SEGNO(sbi, addr);
1037 struct sit_info *sit_i = SIT_I(sbi);
1038
1039 f2fs_bug_on(sbi, addr == NULL_ADDR);
1040 if (addr == NEW_ADDR)
1041 return;
1042
1043 /* add it into sit main buffer */
1044 mutex_lock(&sit_i->sentry_lock);
1045
1046 update_sit_entry(sbi, addr, -1);
1047
1048 /* add it into dirty seglist */
1049 locate_dirty_segment(sbi, segno);
1050
1051 mutex_unlock(&sit_i->sentry_lock);
1052 }
1053
1054 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1055 {
1056 struct sit_info *sit_i = SIT_I(sbi);
1057 unsigned int segno, offset;
1058 struct seg_entry *se;
1059 bool is_cp = false;
1060
1061 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1062 return true;
1063
1064 mutex_lock(&sit_i->sentry_lock);
1065
1066 segno = GET_SEGNO(sbi, blkaddr);
1067 se = get_seg_entry(sbi, segno);
1068 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1069
1070 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1071 is_cp = true;
1072
1073 mutex_unlock(&sit_i->sentry_lock);
1074
1075 return is_cp;
1076 }
1077
1078 /*
1079 * This function should be resided under the curseg_mutex lock
1080 */
1081 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1082 struct f2fs_summary *sum)
1083 {
1084 struct curseg_info *curseg = CURSEG_I(sbi, type);
1085 void *addr = curseg->sum_blk;
1086 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1087 memcpy(addr, sum, sizeof(struct f2fs_summary));
1088 }
1089
1090 /*
1091 * Calculate the number of current summary pages for writing
1092 */
1093 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1094 {
1095 int valid_sum_count = 0;
1096 int i, sum_in_page;
1097
1098 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1099 if (sbi->ckpt->alloc_type[i] == SSR)
1100 valid_sum_count += sbi->blocks_per_seg;
1101 else {
1102 if (for_ra)
1103 valid_sum_count += le16_to_cpu(
1104 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1105 else
1106 valid_sum_count += curseg_blkoff(sbi, i);
1107 }
1108 }
1109
1110 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1111 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1112 if (valid_sum_count <= sum_in_page)
1113 return 1;
1114 else if ((valid_sum_count - sum_in_page) <=
1115 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1116 return 2;
1117 return 3;
1118 }
1119
1120 /*
1121 * Caller should put this summary page
1122 */
1123 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1124 {
1125 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1126 }
1127
1128 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1129 {
1130 struct page *page = grab_meta_page(sbi, blk_addr);
1131 void *dst = page_address(page);
1132
1133 if (src)
1134 memcpy(dst, src, PAGE_SIZE);
1135 else
1136 memset(dst, 0, PAGE_SIZE);
1137 set_page_dirty(page);
1138 f2fs_put_page(page, 1);
1139 }
1140
1141 static void write_sum_page(struct f2fs_sb_info *sbi,
1142 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1143 {
1144 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1145 }
1146
1147 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1148 int type, block_t blk_addr)
1149 {
1150 struct curseg_info *curseg = CURSEG_I(sbi, type);
1151 struct page *page = grab_meta_page(sbi, blk_addr);
1152 struct f2fs_summary_block *src = curseg->sum_blk;
1153 struct f2fs_summary_block *dst;
1154
1155 dst = (struct f2fs_summary_block *)page_address(page);
1156
1157 mutex_lock(&curseg->curseg_mutex);
1158
1159 down_read(&curseg->journal_rwsem);
1160 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1161 up_read(&curseg->journal_rwsem);
1162
1163 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1164 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1165
1166 mutex_unlock(&curseg->curseg_mutex);
1167
1168 set_page_dirty(page);
1169 f2fs_put_page(page, 1);
1170 }
1171
1172 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1173 {
1174 struct curseg_info *curseg = CURSEG_I(sbi, type);
1175 unsigned int segno = curseg->segno + 1;
1176 struct free_segmap_info *free_i = FREE_I(sbi);
1177
1178 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1179 return !test_bit(segno, free_i->free_segmap);
1180 return 0;
1181 }
1182
1183 /*
1184 * Find a new segment from the free segments bitmap to right order
1185 * This function should be returned with success, otherwise BUG
1186 */
1187 static void get_new_segment(struct f2fs_sb_info *sbi,
1188 unsigned int *newseg, bool new_sec, int dir)
1189 {
1190 struct free_segmap_info *free_i = FREE_I(sbi);
1191 unsigned int segno, secno, zoneno;
1192 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1193 unsigned int hint = *newseg / sbi->segs_per_sec;
1194 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1195 unsigned int left_start = hint;
1196 bool init = true;
1197 int go_left = 0;
1198 int i;
1199
1200 spin_lock(&free_i->segmap_lock);
1201
1202 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1203 segno = find_next_zero_bit(free_i->free_segmap,
1204 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1205 if (segno < (hint + 1) * sbi->segs_per_sec)
1206 goto got_it;
1207 }
1208 find_other_zone:
1209 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1210 if (secno >= MAIN_SECS(sbi)) {
1211 if (dir == ALLOC_RIGHT) {
1212 secno = find_next_zero_bit(free_i->free_secmap,
1213 MAIN_SECS(sbi), 0);
1214 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1215 } else {
1216 go_left = 1;
1217 left_start = hint - 1;
1218 }
1219 }
1220 if (go_left == 0)
1221 goto skip_left;
1222
1223 while (test_bit(left_start, free_i->free_secmap)) {
1224 if (left_start > 0) {
1225 left_start--;
1226 continue;
1227 }
1228 left_start = find_next_zero_bit(free_i->free_secmap,
1229 MAIN_SECS(sbi), 0);
1230 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1231 break;
1232 }
1233 secno = left_start;
1234 skip_left:
1235 hint = secno;
1236 segno = secno * sbi->segs_per_sec;
1237 zoneno = secno / sbi->secs_per_zone;
1238
1239 /* give up on finding another zone */
1240 if (!init)
1241 goto got_it;
1242 if (sbi->secs_per_zone == 1)
1243 goto got_it;
1244 if (zoneno == old_zoneno)
1245 goto got_it;
1246 if (dir == ALLOC_LEFT) {
1247 if (!go_left && zoneno + 1 >= total_zones)
1248 goto got_it;
1249 if (go_left && zoneno == 0)
1250 goto got_it;
1251 }
1252 for (i = 0; i < NR_CURSEG_TYPE; i++)
1253 if (CURSEG_I(sbi, i)->zone == zoneno)
1254 break;
1255
1256 if (i < NR_CURSEG_TYPE) {
1257 /* zone is in user, try another */
1258 if (go_left)
1259 hint = zoneno * sbi->secs_per_zone - 1;
1260 else if (zoneno + 1 >= total_zones)
1261 hint = 0;
1262 else
1263 hint = (zoneno + 1) * sbi->secs_per_zone;
1264 init = false;
1265 goto find_other_zone;
1266 }
1267 got_it:
1268 /* set it as dirty segment in free segmap */
1269 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1270 __set_inuse(sbi, segno);
1271 *newseg = segno;
1272 spin_unlock(&free_i->segmap_lock);
1273 }
1274
1275 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1276 {
1277 struct curseg_info *curseg = CURSEG_I(sbi, type);
1278 struct summary_footer *sum_footer;
1279
1280 curseg->segno = curseg->next_segno;
1281 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1282 curseg->next_blkoff = 0;
1283 curseg->next_segno = NULL_SEGNO;
1284
1285 sum_footer = &(curseg->sum_blk->footer);
1286 memset(sum_footer, 0, sizeof(struct summary_footer));
1287 if (IS_DATASEG(type))
1288 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1289 if (IS_NODESEG(type))
1290 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1291 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1292 }
1293
1294 /*
1295 * Allocate a current working segment.
1296 * This function always allocates a free segment in LFS manner.
1297 */
1298 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1299 {
1300 struct curseg_info *curseg = CURSEG_I(sbi, type);
1301 unsigned int segno = curseg->segno;
1302 int dir = ALLOC_LEFT;
1303
1304 write_sum_page(sbi, curseg->sum_blk,
1305 GET_SUM_BLOCK(sbi, segno));
1306 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1307 dir = ALLOC_RIGHT;
1308
1309 if (test_opt(sbi, NOHEAP))
1310 dir = ALLOC_RIGHT;
1311
1312 get_new_segment(sbi, &segno, new_sec, dir);
1313 curseg->next_segno = segno;
1314 reset_curseg(sbi, type, 1);
1315 curseg->alloc_type = LFS;
1316 }
1317
1318 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1319 struct curseg_info *seg, block_t start)
1320 {
1321 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1322 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1323 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1324 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1325 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1326 int i, pos;
1327
1328 for (i = 0; i < entries; i++)
1329 target_map[i] = ckpt_map[i] | cur_map[i];
1330
1331 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1332
1333 seg->next_blkoff = pos;
1334 }
1335
1336 /*
1337 * If a segment is written by LFS manner, next block offset is just obtained
1338 * by increasing the current block offset. However, if a segment is written by
1339 * SSR manner, next block offset obtained by calling __next_free_blkoff
1340 */
1341 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1342 struct curseg_info *seg)
1343 {
1344 if (seg->alloc_type == SSR)
1345 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1346 else
1347 seg->next_blkoff++;
1348 }
1349
1350 /*
1351 * This function always allocates a used segment(from dirty seglist) by SSR
1352 * manner, so it should recover the existing segment information of valid blocks
1353 */
1354 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1355 {
1356 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1357 struct curseg_info *curseg = CURSEG_I(sbi, type);
1358 unsigned int new_segno = curseg->next_segno;
1359 struct f2fs_summary_block *sum_node;
1360 struct page *sum_page;
1361
1362 write_sum_page(sbi, curseg->sum_blk,
1363 GET_SUM_BLOCK(sbi, curseg->segno));
1364 __set_test_and_inuse(sbi, new_segno);
1365
1366 mutex_lock(&dirty_i->seglist_lock);
1367 __remove_dirty_segment(sbi, new_segno, PRE);
1368 __remove_dirty_segment(sbi, new_segno, DIRTY);
1369 mutex_unlock(&dirty_i->seglist_lock);
1370
1371 reset_curseg(sbi, type, 1);
1372 curseg->alloc_type = SSR;
1373 __next_free_blkoff(sbi, curseg, 0);
1374
1375 if (reuse) {
1376 sum_page = get_sum_page(sbi, new_segno);
1377 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1378 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1379 f2fs_put_page(sum_page, 1);
1380 }
1381 }
1382
1383 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1384 {
1385 struct curseg_info *curseg = CURSEG_I(sbi, type);
1386 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1387
1388 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1389 return v_ops->get_victim(sbi,
1390 &(curseg)->next_segno, BG_GC, type, SSR);
1391
1392 /* For data segments, let's do SSR more intensively */
1393 for (; type >= CURSEG_HOT_DATA; type--)
1394 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1395 BG_GC, type, SSR))
1396 return 1;
1397 return 0;
1398 }
1399
1400 /*
1401 * flush out current segment and replace it with new segment
1402 * This function should be returned with success, otherwise BUG
1403 */
1404 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1405 int type, bool force)
1406 {
1407 struct curseg_info *curseg = CURSEG_I(sbi, type);
1408
1409 if (force)
1410 new_curseg(sbi, type, true);
1411 else if (type == CURSEG_WARM_NODE)
1412 new_curseg(sbi, type, false);
1413 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1414 new_curseg(sbi, type, false);
1415 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1416 change_curseg(sbi, type, true);
1417 else
1418 new_curseg(sbi, type, false);
1419
1420 stat_inc_seg_type(sbi, curseg);
1421 }
1422
1423 void allocate_new_segments(struct f2fs_sb_info *sbi)
1424 {
1425 struct curseg_info *curseg;
1426 unsigned int old_segno;
1427 int i;
1428
1429 if (test_opt(sbi, LFS))
1430 return;
1431
1432 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1433 curseg = CURSEG_I(sbi, i);
1434 old_segno = curseg->segno;
1435 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1436 locate_dirty_segment(sbi, old_segno);
1437 }
1438 }
1439
1440 static const struct segment_allocation default_salloc_ops = {
1441 .allocate_segment = allocate_segment_by_default,
1442 };
1443
1444 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1445 {
1446 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1447 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1448 unsigned int start_segno, end_segno;
1449 struct cp_control cpc;
1450 int err = 0;
1451
1452 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1453 return -EINVAL;
1454
1455 cpc.trimmed = 0;
1456 if (end <= MAIN_BLKADDR(sbi))
1457 goto out;
1458
1459 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1460 f2fs_msg(sbi->sb, KERN_WARNING,
1461 "Found FS corruption, run fsck to fix.");
1462 goto out;
1463 }
1464
1465 /* start/end segment number in main_area */
1466 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1467 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1468 GET_SEGNO(sbi, end);
1469 cpc.reason = CP_DISCARD;
1470 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1471
1472 /* do checkpoint to issue discard commands safely */
1473 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1474 cpc.trim_start = start_segno;
1475
1476 if (sbi->discard_blks == 0)
1477 break;
1478 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1479 cpc.trim_end = end_segno;
1480 else
1481 cpc.trim_end = min_t(unsigned int,
1482 rounddown(start_segno +
1483 BATCHED_TRIM_SEGMENTS(sbi),
1484 sbi->segs_per_sec) - 1, end_segno);
1485
1486 mutex_lock(&sbi->gc_mutex);
1487 err = write_checkpoint(sbi, &cpc);
1488 mutex_unlock(&sbi->gc_mutex);
1489 if (err)
1490 break;
1491
1492 schedule();
1493 }
1494 out:
1495 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1496 return err;
1497 }
1498
1499 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1500 {
1501 struct curseg_info *curseg = CURSEG_I(sbi, type);
1502 if (curseg->next_blkoff < sbi->blocks_per_seg)
1503 return true;
1504 return false;
1505 }
1506
1507 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1508 {
1509 if (p_type == DATA)
1510 return CURSEG_HOT_DATA;
1511 else
1512 return CURSEG_HOT_NODE;
1513 }
1514
1515 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1516 {
1517 if (p_type == DATA) {
1518 struct inode *inode = page->mapping->host;
1519
1520 if (S_ISDIR(inode->i_mode))
1521 return CURSEG_HOT_DATA;
1522 else
1523 return CURSEG_COLD_DATA;
1524 } else {
1525 if (IS_DNODE(page) && is_cold_node(page))
1526 return CURSEG_WARM_NODE;
1527 else
1528 return CURSEG_COLD_NODE;
1529 }
1530 }
1531
1532 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1533 {
1534 if (p_type == DATA) {
1535 struct inode *inode = page->mapping->host;
1536
1537 if (S_ISDIR(inode->i_mode))
1538 return CURSEG_HOT_DATA;
1539 else if (is_cold_data(page) || file_is_cold(inode))
1540 return CURSEG_COLD_DATA;
1541 else
1542 return CURSEG_WARM_DATA;
1543 } else {
1544 if (IS_DNODE(page))
1545 return is_cold_node(page) ? CURSEG_WARM_NODE :
1546 CURSEG_HOT_NODE;
1547 else
1548 return CURSEG_COLD_NODE;
1549 }
1550 }
1551
1552 static int __get_segment_type(struct page *page, enum page_type p_type)
1553 {
1554 switch (F2FS_P_SB(page)->active_logs) {
1555 case 2:
1556 return __get_segment_type_2(page, p_type);
1557 case 4:
1558 return __get_segment_type_4(page, p_type);
1559 }
1560 /* NR_CURSEG_TYPE(6) logs by default */
1561 f2fs_bug_on(F2FS_P_SB(page),
1562 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1563 return __get_segment_type_6(page, p_type);
1564 }
1565
1566 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1567 block_t old_blkaddr, block_t *new_blkaddr,
1568 struct f2fs_summary *sum, int type)
1569 {
1570 struct sit_info *sit_i = SIT_I(sbi);
1571 struct curseg_info *curseg = CURSEG_I(sbi, type);
1572
1573 mutex_lock(&curseg->curseg_mutex);
1574 mutex_lock(&sit_i->sentry_lock);
1575
1576 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1577
1578 /*
1579 * __add_sum_entry should be resided under the curseg_mutex
1580 * because, this function updates a summary entry in the
1581 * current summary block.
1582 */
1583 __add_sum_entry(sbi, type, sum);
1584
1585 __refresh_next_blkoff(sbi, curseg);
1586
1587 stat_inc_block_count(sbi, curseg);
1588
1589 if (!__has_curseg_space(sbi, type))
1590 sit_i->s_ops->allocate_segment(sbi, type, false);
1591 /*
1592 * SIT information should be updated before segment allocation,
1593 * since SSR needs latest valid block information.
1594 */
1595 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1596
1597 mutex_unlock(&sit_i->sentry_lock);
1598
1599 if (page && IS_NODESEG(type))
1600 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1601
1602 mutex_unlock(&curseg->curseg_mutex);
1603 }
1604
1605 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1606 {
1607 int type = __get_segment_type(fio->page, fio->type);
1608
1609 if (fio->type == NODE || fio->type == DATA)
1610 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1611
1612 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1613 &fio->new_blkaddr, sum, type);
1614
1615 /* writeout dirty page into bdev */
1616 f2fs_submit_page_mbio(fio);
1617
1618 if (fio->type == NODE || fio->type == DATA)
1619 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1620 }
1621
1622 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1623 {
1624 struct f2fs_io_info fio = {
1625 .sbi = sbi,
1626 .type = META,
1627 .op = REQ_OP_WRITE,
1628 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
1629 .old_blkaddr = page->index,
1630 .new_blkaddr = page->index,
1631 .page = page,
1632 .encrypted_page = NULL,
1633 };
1634
1635 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1636 fio.op_flags &= ~REQ_META;
1637
1638 set_page_writeback(page);
1639 f2fs_submit_page_mbio(&fio);
1640 }
1641
1642 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1643 {
1644 struct f2fs_summary sum;
1645
1646 set_summary(&sum, nid, 0, 0);
1647 do_write_page(&sum, fio);
1648 }
1649
1650 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1651 {
1652 struct f2fs_sb_info *sbi = fio->sbi;
1653 struct f2fs_summary sum;
1654 struct node_info ni;
1655
1656 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1657 get_node_info(sbi, dn->nid, &ni);
1658 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1659 do_write_page(&sum, fio);
1660 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1661 }
1662
1663 void rewrite_data_page(struct f2fs_io_info *fio)
1664 {
1665 fio->new_blkaddr = fio->old_blkaddr;
1666 stat_inc_inplace_blocks(fio->sbi);
1667 f2fs_submit_page_mbio(fio);
1668 }
1669
1670 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1671 block_t old_blkaddr, block_t new_blkaddr,
1672 bool recover_curseg, bool recover_newaddr)
1673 {
1674 struct sit_info *sit_i = SIT_I(sbi);
1675 struct curseg_info *curseg;
1676 unsigned int segno, old_cursegno;
1677 struct seg_entry *se;
1678 int type;
1679 unsigned short old_blkoff;
1680
1681 segno = GET_SEGNO(sbi, new_blkaddr);
1682 se = get_seg_entry(sbi, segno);
1683 type = se->type;
1684
1685 if (!recover_curseg) {
1686 /* for recovery flow */
1687 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1688 if (old_blkaddr == NULL_ADDR)
1689 type = CURSEG_COLD_DATA;
1690 else
1691 type = CURSEG_WARM_DATA;
1692 }
1693 } else {
1694 if (!IS_CURSEG(sbi, segno))
1695 type = CURSEG_WARM_DATA;
1696 }
1697
1698 curseg = CURSEG_I(sbi, type);
1699
1700 mutex_lock(&curseg->curseg_mutex);
1701 mutex_lock(&sit_i->sentry_lock);
1702
1703 old_cursegno = curseg->segno;
1704 old_blkoff = curseg->next_blkoff;
1705
1706 /* change the current segment */
1707 if (segno != curseg->segno) {
1708 curseg->next_segno = segno;
1709 change_curseg(sbi, type, true);
1710 }
1711
1712 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1713 __add_sum_entry(sbi, type, sum);
1714
1715 if (!recover_curseg || recover_newaddr)
1716 update_sit_entry(sbi, new_blkaddr, 1);
1717 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1718 update_sit_entry(sbi, old_blkaddr, -1);
1719
1720 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1721 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1722
1723 locate_dirty_segment(sbi, old_cursegno);
1724
1725 if (recover_curseg) {
1726 if (old_cursegno != curseg->segno) {
1727 curseg->next_segno = old_cursegno;
1728 change_curseg(sbi, type, true);
1729 }
1730 curseg->next_blkoff = old_blkoff;
1731 }
1732
1733 mutex_unlock(&sit_i->sentry_lock);
1734 mutex_unlock(&curseg->curseg_mutex);
1735 }
1736
1737 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1738 block_t old_addr, block_t new_addr,
1739 unsigned char version, bool recover_curseg,
1740 bool recover_newaddr)
1741 {
1742 struct f2fs_summary sum;
1743
1744 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1745
1746 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1747 recover_curseg, recover_newaddr);
1748
1749 f2fs_update_data_blkaddr(dn, new_addr);
1750 }
1751
1752 void f2fs_wait_on_page_writeback(struct page *page,
1753 enum page_type type, bool ordered)
1754 {
1755 if (PageWriteback(page)) {
1756 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1757
1758 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1759 if (ordered)
1760 wait_on_page_writeback(page);
1761 else
1762 wait_for_stable_page(page);
1763 }
1764 }
1765
1766 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1767 block_t blkaddr)
1768 {
1769 struct page *cpage;
1770
1771 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1772 return;
1773
1774 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1775 if (cpage) {
1776 f2fs_wait_on_page_writeback(cpage, DATA, true);
1777 f2fs_put_page(cpage, 1);
1778 }
1779 }
1780
1781 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1782 {
1783 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1784 struct curseg_info *seg_i;
1785 unsigned char *kaddr;
1786 struct page *page;
1787 block_t start;
1788 int i, j, offset;
1789
1790 start = start_sum_block(sbi);
1791
1792 page = get_meta_page(sbi, start++);
1793 kaddr = (unsigned char *)page_address(page);
1794
1795 /* Step 1: restore nat cache */
1796 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1797 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1798
1799 /* Step 2: restore sit cache */
1800 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1801 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1802 offset = 2 * SUM_JOURNAL_SIZE;
1803
1804 /* Step 3: restore summary entries */
1805 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1806 unsigned short blk_off;
1807 unsigned int segno;
1808
1809 seg_i = CURSEG_I(sbi, i);
1810 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1811 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1812 seg_i->next_segno = segno;
1813 reset_curseg(sbi, i, 0);
1814 seg_i->alloc_type = ckpt->alloc_type[i];
1815 seg_i->next_blkoff = blk_off;
1816
1817 if (seg_i->alloc_type == SSR)
1818 blk_off = sbi->blocks_per_seg;
1819
1820 for (j = 0; j < blk_off; j++) {
1821 struct f2fs_summary *s;
1822 s = (struct f2fs_summary *)(kaddr + offset);
1823 seg_i->sum_blk->entries[j] = *s;
1824 offset += SUMMARY_SIZE;
1825 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1826 SUM_FOOTER_SIZE)
1827 continue;
1828
1829 f2fs_put_page(page, 1);
1830 page = NULL;
1831
1832 page = get_meta_page(sbi, start++);
1833 kaddr = (unsigned char *)page_address(page);
1834 offset = 0;
1835 }
1836 }
1837 f2fs_put_page(page, 1);
1838 return 0;
1839 }
1840
1841 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1842 {
1843 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1844 struct f2fs_summary_block *sum;
1845 struct curseg_info *curseg;
1846 struct page *new;
1847 unsigned short blk_off;
1848 unsigned int segno = 0;
1849 block_t blk_addr = 0;
1850
1851 /* get segment number and block addr */
1852 if (IS_DATASEG(type)) {
1853 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1854 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1855 CURSEG_HOT_DATA]);
1856 if (__exist_node_summaries(sbi))
1857 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1858 else
1859 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1860 } else {
1861 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1862 CURSEG_HOT_NODE]);
1863 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1864 CURSEG_HOT_NODE]);
1865 if (__exist_node_summaries(sbi))
1866 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1867 type - CURSEG_HOT_NODE);
1868 else
1869 blk_addr = GET_SUM_BLOCK(sbi, segno);
1870 }
1871
1872 new = get_meta_page(sbi, blk_addr);
1873 sum = (struct f2fs_summary_block *)page_address(new);
1874
1875 if (IS_NODESEG(type)) {
1876 if (__exist_node_summaries(sbi)) {
1877 struct f2fs_summary *ns = &sum->entries[0];
1878 int i;
1879 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1880 ns->version = 0;
1881 ns->ofs_in_node = 0;
1882 }
1883 } else {
1884 int err;
1885
1886 err = restore_node_summary(sbi, segno, sum);
1887 if (err) {
1888 f2fs_put_page(new, 1);
1889 return err;
1890 }
1891 }
1892 }
1893
1894 /* set uncompleted segment to curseg */
1895 curseg = CURSEG_I(sbi, type);
1896 mutex_lock(&curseg->curseg_mutex);
1897
1898 /* update journal info */
1899 down_write(&curseg->journal_rwsem);
1900 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1901 up_write(&curseg->journal_rwsem);
1902
1903 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1904 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1905 curseg->next_segno = segno;
1906 reset_curseg(sbi, type, 0);
1907 curseg->alloc_type = ckpt->alloc_type[type];
1908 curseg->next_blkoff = blk_off;
1909 mutex_unlock(&curseg->curseg_mutex);
1910 f2fs_put_page(new, 1);
1911 return 0;
1912 }
1913
1914 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1915 {
1916 int type = CURSEG_HOT_DATA;
1917 int err;
1918
1919 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1920 int npages = npages_for_summary_flush(sbi, true);
1921
1922 if (npages >= 2)
1923 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1924 META_CP, true);
1925
1926 /* restore for compacted data summary */
1927 if (read_compacted_summaries(sbi))
1928 return -EINVAL;
1929 type = CURSEG_HOT_NODE;
1930 }
1931
1932 if (__exist_node_summaries(sbi))
1933 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1934 NR_CURSEG_TYPE - type, META_CP, true);
1935
1936 for (; type <= CURSEG_COLD_NODE; type++) {
1937 err = read_normal_summaries(sbi, type);
1938 if (err)
1939 return err;
1940 }
1941
1942 return 0;
1943 }
1944
1945 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1946 {
1947 struct page *page;
1948 unsigned char *kaddr;
1949 struct f2fs_summary *summary;
1950 struct curseg_info *seg_i;
1951 int written_size = 0;
1952 int i, j;
1953
1954 page = grab_meta_page(sbi, blkaddr++);
1955 kaddr = (unsigned char *)page_address(page);
1956
1957 /* Step 1: write nat cache */
1958 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1959 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1960 written_size += SUM_JOURNAL_SIZE;
1961
1962 /* Step 2: write sit cache */
1963 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1964 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1965 written_size += SUM_JOURNAL_SIZE;
1966
1967 /* Step 3: write summary entries */
1968 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1969 unsigned short blkoff;
1970 seg_i = CURSEG_I(sbi, i);
1971 if (sbi->ckpt->alloc_type[i] == SSR)
1972 blkoff = sbi->blocks_per_seg;
1973 else
1974 blkoff = curseg_blkoff(sbi, i);
1975
1976 for (j = 0; j < blkoff; j++) {
1977 if (!page) {
1978 page = grab_meta_page(sbi, blkaddr++);
1979 kaddr = (unsigned char *)page_address(page);
1980 written_size = 0;
1981 }
1982 summary = (struct f2fs_summary *)(kaddr + written_size);
1983 *summary = seg_i->sum_blk->entries[j];
1984 written_size += SUMMARY_SIZE;
1985
1986 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1987 SUM_FOOTER_SIZE)
1988 continue;
1989
1990 set_page_dirty(page);
1991 f2fs_put_page(page, 1);
1992 page = NULL;
1993 }
1994 }
1995 if (page) {
1996 set_page_dirty(page);
1997 f2fs_put_page(page, 1);
1998 }
1999 }
2000
2001 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2002 block_t blkaddr, int type)
2003 {
2004 int i, end;
2005 if (IS_DATASEG(type))
2006 end = type + NR_CURSEG_DATA_TYPE;
2007 else
2008 end = type + NR_CURSEG_NODE_TYPE;
2009
2010 for (i = type; i < end; i++)
2011 write_current_sum_page(sbi, i, blkaddr + (i - type));
2012 }
2013
2014 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2015 {
2016 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2017 write_compacted_summaries(sbi, start_blk);
2018 else
2019 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2020 }
2021
2022 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2023 {
2024 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2025 }
2026
2027 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2028 unsigned int val, int alloc)
2029 {
2030 int i;
2031
2032 if (type == NAT_JOURNAL) {
2033 for (i = 0; i < nats_in_cursum(journal); i++) {
2034 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2035 return i;
2036 }
2037 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2038 return update_nats_in_cursum(journal, 1);
2039 } else if (type == SIT_JOURNAL) {
2040 for (i = 0; i < sits_in_cursum(journal); i++)
2041 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2042 return i;
2043 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2044 return update_sits_in_cursum(journal, 1);
2045 }
2046 return -1;
2047 }
2048
2049 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2050 unsigned int segno)
2051 {
2052 return get_meta_page(sbi, current_sit_addr(sbi, segno));
2053 }
2054
2055 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2056 unsigned int start)
2057 {
2058 struct sit_info *sit_i = SIT_I(sbi);
2059 struct page *src_page, *dst_page;
2060 pgoff_t src_off, dst_off;
2061 void *src_addr, *dst_addr;
2062
2063 src_off = current_sit_addr(sbi, start);
2064 dst_off = next_sit_addr(sbi, src_off);
2065
2066 /* get current sit block page without lock */
2067 src_page = get_meta_page(sbi, src_off);
2068 dst_page = grab_meta_page(sbi, dst_off);
2069 f2fs_bug_on(sbi, PageDirty(src_page));
2070
2071 src_addr = page_address(src_page);
2072 dst_addr = page_address(dst_page);
2073 memcpy(dst_addr, src_addr, PAGE_SIZE);
2074
2075 set_page_dirty(dst_page);
2076 f2fs_put_page(src_page, 1);
2077
2078 set_to_next_sit(sit_i, start);
2079
2080 return dst_page;
2081 }
2082
2083 static struct sit_entry_set *grab_sit_entry_set(void)
2084 {
2085 struct sit_entry_set *ses =
2086 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2087
2088 ses->entry_cnt = 0;
2089 INIT_LIST_HEAD(&ses->set_list);
2090 return ses;
2091 }
2092
2093 static void release_sit_entry_set(struct sit_entry_set *ses)
2094 {
2095 list_del(&ses->set_list);
2096 kmem_cache_free(sit_entry_set_slab, ses);
2097 }
2098
2099 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2100 struct list_head *head)
2101 {
2102 struct sit_entry_set *next = ses;
2103
2104 if (list_is_last(&ses->set_list, head))
2105 return;
2106
2107 list_for_each_entry_continue(next, head, set_list)
2108 if (ses->entry_cnt <= next->entry_cnt)
2109 break;
2110
2111 list_move_tail(&ses->set_list, &next->set_list);
2112 }
2113
2114 static void add_sit_entry(unsigned int segno, struct list_head *head)
2115 {
2116 struct sit_entry_set *ses;
2117 unsigned int start_segno = START_SEGNO(segno);
2118
2119 list_for_each_entry(ses, head, set_list) {
2120 if (ses->start_segno == start_segno) {
2121 ses->entry_cnt++;
2122 adjust_sit_entry_set(ses, head);
2123 return;
2124 }
2125 }
2126
2127 ses = grab_sit_entry_set();
2128
2129 ses->start_segno = start_segno;
2130 ses->entry_cnt++;
2131 list_add(&ses->set_list, head);
2132 }
2133
2134 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2135 {
2136 struct f2fs_sm_info *sm_info = SM_I(sbi);
2137 struct list_head *set_list = &sm_info->sit_entry_set;
2138 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2139 unsigned int segno;
2140
2141 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2142 add_sit_entry(segno, set_list);
2143 }
2144
2145 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2146 {
2147 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2148 struct f2fs_journal *journal = curseg->journal;
2149 int i;
2150
2151 down_write(&curseg->journal_rwsem);
2152 for (i = 0; i < sits_in_cursum(journal); i++) {
2153 unsigned int segno;
2154 bool dirtied;
2155
2156 segno = le32_to_cpu(segno_in_journal(journal, i));
2157 dirtied = __mark_sit_entry_dirty(sbi, segno);
2158
2159 if (!dirtied)
2160 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2161 }
2162 update_sits_in_cursum(journal, -i);
2163 up_write(&curseg->journal_rwsem);
2164 }
2165
2166 /*
2167 * CP calls this function, which flushes SIT entries including sit_journal,
2168 * and moves prefree segs to free segs.
2169 */
2170 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2171 {
2172 struct sit_info *sit_i = SIT_I(sbi);
2173 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2174 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2175 struct f2fs_journal *journal = curseg->journal;
2176 struct sit_entry_set *ses, *tmp;
2177 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2178 bool to_journal = true;
2179 struct seg_entry *se;
2180
2181 mutex_lock(&sit_i->sentry_lock);
2182
2183 if (!sit_i->dirty_sentries)
2184 goto out;
2185
2186 /*
2187 * add and account sit entries of dirty bitmap in sit entry
2188 * set temporarily
2189 */
2190 add_sits_in_set(sbi);
2191
2192 /*
2193 * if there are no enough space in journal to store dirty sit
2194 * entries, remove all entries from journal and add and account
2195 * them in sit entry set.
2196 */
2197 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2198 remove_sits_in_journal(sbi);
2199
2200 /*
2201 * there are two steps to flush sit entries:
2202 * #1, flush sit entries to journal in current cold data summary block.
2203 * #2, flush sit entries to sit page.
2204 */
2205 list_for_each_entry_safe(ses, tmp, head, set_list) {
2206 struct page *page = NULL;
2207 struct f2fs_sit_block *raw_sit = NULL;
2208 unsigned int start_segno = ses->start_segno;
2209 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2210 (unsigned long)MAIN_SEGS(sbi));
2211 unsigned int segno = start_segno;
2212
2213 if (to_journal &&
2214 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2215 to_journal = false;
2216
2217 if (to_journal) {
2218 down_write(&curseg->journal_rwsem);
2219 } else {
2220 page = get_next_sit_page(sbi, start_segno);
2221 raw_sit = page_address(page);
2222 }
2223
2224 /* flush dirty sit entries in region of current sit set */
2225 for_each_set_bit_from(segno, bitmap, end) {
2226 int offset, sit_offset;
2227
2228 se = get_seg_entry(sbi, segno);
2229
2230 /* add discard candidates */
2231 if (cpc->reason != CP_DISCARD) {
2232 cpc->trim_start = segno;
2233 add_discard_addrs(sbi, cpc);
2234 }
2235
2236 if (to_journal) {
2237 offset = lookup_journal_in_cursum(journal,
2238 SIT_JOURNAL, segno, 1);
2239 f2fs_bug_on(sbi, offset < 0);
2240 segno_in_journal(journal, offset) =
2241 cpu_to_le32(segno);
2242 seg_info_to_raw_sit(se,
2243 &sit_in_journal(journal, offset));
2244 } else {
2245 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2246 seg_info_to_raw_sit(se,
2247 &raw_sit->entries[sit_offset]);
2248 }
2249
2250 __clear_bit(segno, bitmap);
2251 sit_i->dirty_sentries--;
2252 ses->entry_cnt--;
2253 }
2254
2255 if (to_journal)
2256 up_write(&curseg->journal_rwsem);
2257 else
2258 f2fs_put_page(page, 1);
2259
2260 f2fs_bug_on(sbi, ses->entry_cnt);
2261 release_sit_entry_set(ses);
2262 }
2263
2264 f2fs_bug_on(sbi, !list_empty(head));
2265 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2266 out:
2267 if (cpc->reason == CP_DISCARD) {
2268 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2269 add_discard_addrs(sbi, cpc);
2270 }
2271 mutex_unlock(&sit_i->sentry_lock);
2272
2273 set_prefree_as_free_segments(sbi);
2274 }
2275
2276 static int build_sit_info(struct f2fs_sb_info *sbi)
2277 {
2278 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2279 struct sit_info *sit_i;
2280 unsigned int sit_segs, start;
2281 char *src_bitmap, *dst_bitmap;
2282 unsigned int bitmap_size;
2283
2284 /* allocate memory for SIT information */
2285 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2286 if (!sit_i)
2287 return -ENOMEM;
2288
2289 SM_I(sbi)->sit_info = sit_i;
2290
2291 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2292 sizeof(struct seg_entry), GFP_KERNEL);
2293 if (!sit_i->sentries)
2294 return -ENOMEM;
2295
2296 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2297 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2298 if (!sit_i->dirty_sentries_bitmap)
2299 return -ENOMEM;
2300
2301 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2302 sit_i->sentries[start].cur_valid_map
2303 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2304 sit_i->sentries[start].ckpt_valid_map
2305 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2306 if (!sit_i->sentries[start].cur_valid_map ||
2307 !sit_i->sentries[start].ckpt_valid_map)
2308 return -ENOMEM;
2309
2310 if (f2fs_discard_en(sbi)) {
2311 sit_i->sentries[start].discard_map
2312 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2313 if (!sit_i->sentries[start].discard_map)
2314 return -ENOMEM;
2315 }
2316 }
2317
2318 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2319 if (!sit_i->tmp_map)
2320 return -ENOMEM;
2321
2322 if (sbi->segs_per_sec > 1) {
2323 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2324 sizeof(struct sec_entry), GFP_KERNEL);
2325 if (!sit_i->sec_entries)
2326 return -ENOMEM;
2327 }
2328
2329 /* get information related with SIT */
2330 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2331
2332 /* setup SIT bitmap from ckeckpoint pack */
2333 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2334 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2335
2336 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2337 if (!dst_bitmap)
2338 return -ENOMEM;
2339
2340 /* init SIT information */
2341 sit_i->s_ops = &default_salloc_ops;
2342
2343 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2344 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2345 sit_i->written_valid_blocks = 0;
2346 sit_i->sit_bitmap = dst_bitmap;
2347 sit_i->bitmap_size = bitmap_size;
2348 sit_i->dirty_sentries = 0;
2349 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2350 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2351 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2352 mutex_init(&sit_i->sentry_lock);
2353 return 0;
2354 }
2355
2356 static int build_free_segmap(struct f2fs_sb_info *sbi)
2357 {
2358 struct free_segmap_info *free_i;
2359 unsigned int bitmap_size, sec_bitmap_size;
2360
2361 /* allocate memory for free segmap information */
2362 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2363 if (!free_i)
2364 return -ENOMEM;
2365
2366 SM_I(sbi)->free_info = free_i;
2367
2368 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2369 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2370 if (!free_i->free_segmap)
2371 return -ENOMEM;
2372
2373 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2374 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2375 if (!free_i->free_secmap)
2376 return -ENOMEM;
2377
2378 /* set all segments as dirty temporarily */
2379 memset(free_i->free_segmap, 0xff, bitmap_size);
2380 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2381
2382 /* init free segmap information */
2383 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2384 free_i->free_segments = 0;
2385 free_i->free_sections = 0;
2386 spin_lock_init(&free_i->segmap_lock);
2387 return 0;
2388 }
2389
2390 static int build_curseg(struct f2fs_sb_info *sbi)
2391 {
2392 struct curseg_info *array;
2393 int i;
2394
2395 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2396 if (!array)
2397 return -ENOMEM;
2398
2399 SM_I(sbi)->curseg_array = array;
2400
2401 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2402 mutex_init(&array[i].curseg_mutex);
2403 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2404 if (!array[i].sum_blk)
2405 return -ENOMEM;
2406 init_rwsem(&array[i].journal_rwsem);
2407 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2408 GFP_KERNEL);
2409 if (!array[i].journal)
2410 return -ENOMEM;
2411 array[i].segno = NULL_SEGNO;
2412 array[i].next_blkoff = 0;
2413 }
2414 return restore_curseg_summaries(sbi);
2415 }
2416
2417 static void build_sit_entries(struct f2fs_sb_info *sbi)
2418 {
2419 struct sit_info *sit_i = SIT_I(sbi);
2420 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2421 struct f2fs_journal *journal = curseg->journal;
2422 struct seg_entry *se;
2423 struct f2fs_sit_entry sit;
2424 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2425 unsigned int i, start, end;
2426 unsigned int readed, start_blk = 0;
2427
2428 do {
2429 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2430 META_SIT, true);
2431
2432 start = start_blk * sit_i->sents_per_block;
2433 end = (start_blk + readed) * sit_i->sents_per_block;
2434
2435 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2436 struct f2fs_sit_block *sit_blk;
2437 struct page *page;
2438
2439 se = &sit_i->sentries[start];
2440 page = get_current_sit_page(sbi, start);
2441 sit_blk = (struct f2fs_sit_block *)page_address(page);
2442 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2443 f2fs_put_page(page, 1);
2444
2445 check_block_count(sbi, start, &sit);
2446 seg_info_from_raw_sit(se, &sit);
2447
2448 /* build discard map only one time */
2449 if (f2fs_discard_en(sbi)) {
2450 memcpy(se->discard_map, se->cur_valid_map,
2451 SIT_VBLOCK_MAP_SIZE);
2452 sbi->discard_blks += sbi->blocks_per_seg -
2453 se->valid_blocks;
2454 }
2455
2456 if (sbi->segs_per_sec > 1)
2457 get_sec_entry(sbi, start)->valid_blocks +=
2458 se->valid_blocks;
2459 }
2460 start_blk += readed;
2461 } while (start_blk < sit_blk_cnt);
2462
2463 down_read(&curseg->journal_rwsem);
2464 for (i = 0; i < sits_in_cursum(journal); i++) {
2465 unsigned int old_valid_blocks;
2466
2467 start = le32_to_cpu(segno_in_journal(journal, i));
2468 se = &sit_i->sentries[start];
2469 sit = sit_in_journal(journal, i);
2470
2471 old_valid_blocks = se->valid_blocks;
2472
2473 check_block_count(sbi, start, &sit);
2474 seg_info_from_raw_sit(se, &sit);
2475
2476 if (f2fs_discard_en(sbi)) {
2477 memcpy(se->discard_map, se->cur_valid_map,
2478 SIT_VBLOCK_MAP_SIZE);
2479 sbi->discard_blks += old_valid_blocks -
2480 se->valid_blocks;
2481 }
2482
2483 if (sbi->segs_per_sec > 1)
2484 get_sec_entry(sbi, start)->valid_blocks +=
2485 se->valid_blocks - old_valid_blocks;
2486 }
2487 up_read(&curseg->journal_rwsem);
2488 }
2489
2490 static void init_free_segmap(struct f2fs_sb_info *sbi)
2491 {
2492 unsigned int start;
2493 int type;
2494
2495 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2496 struct seg_entry *sentry = get_seg_entry(sbi, start);
2497 if (!sentry->valid_blocks)
2498 __set_free(sbi, start);
2499 else
2500 SIT_I(sbi)->written_valid_blocks +=
2501 sentry->valid_blocks;
2502 }
2503
2504 /* set use the current segments */
2505 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2506 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2507 __set_test_and_inuse(sbi, curseg_t->segno);
2508 }
2509 }
2510
2511 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2512 {
2513 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2514 struct free_segmap_info *free_i = FREE_I(sbi);
2515 unsigned int segno = 0, offset = 0;
2516 unsigned short valid_blocks;
2517
2518 while (1) {
2519 /* find dirty segment based on free segmap */
2520 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2521 if (segno >= MAIN_SEGS(sbi))
2522 break;
2523 offset = segno + 1;
2524 valid_blocks = get_valid_blocks(sbi, segno, 0);
2525 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2526 continue;
2527 if (valid_blocks > sbi->blocks_per_seg) {
2528 f2fs_bug_on(sbi, 1);
2529 continue;
2530 }
2531 mutex_lock(&dirty_i->seglist_lock);
2532 __locate_dirty_segment(sbi, segno, DIRTY);
2533 mutex_unlock(&dirty_i->seglist_lock);
2534 }
2535 }
2536
2537 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2538 {
2539 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2540 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2541
2542 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2543 if (!dirty_i->victim_secmap)
2544 return -ENOMEM;
2545 return 0;
2546 }
2547
2548 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2549 {
2550 struct dirty_seglist_info *dirty_i;
2551 unsigned int bitmap_size, i;
2552
2553 /* allocate memory for dirty segments list information */
2554 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2555 if (!dirty_i)
2556 return -ENOMEM;
2557
2558 SM_I(sbi)->dirty_info = dirty_i;
2559 mutex_init(&dirty_i->seglist_lock);
2560
2561 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2562
2563 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2564 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2565 if (!dirty_i->dirty_segmap[i])
2566 return -ENOMEM;
2567 }
2568
2569 init_dirty_segmap(sbi);
2570 return init_victim_secmap(sbi);
2571 }
2572
2573 /*
2574 * Update min, max modified time for cost-benefit GC algorithm
2575 */
2576 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2577 {
2578 struct sit_info *sit_i = SIT_I(sbi);
2579 unsigned int segno;
2580
2581 mutex_lock(&sit_i->sentry_lock);
2582
2583 sit_i->min_mtime = LLONG_MAX;
2584
2585 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2586 unsigned int i;
2587 unsigned long long mtime = 0;
2588
2589 for (i = 0; i < sbi->segs_per_sec; i++)
2590 mtime += get_seg_entry(sbi, segno + i)->mtime;
2591
2592 mtime = div_u64(mtime, sbi->segs_per_sec);
2593
2594 if (sit_i->min_mtime > mtime)
2595 sit_i->min_mtime = mtime;
2596 }
2597 sit_i->max_mtime = get_mtime(sbi);
2598 mutex_unlock(&sit_i->sentry_lock);
2599 }
2600
2601 int build_segment_manager(struct f2fs_sb_info *sbi)
2602 {
2603 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2604 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2605 struct f2fs_sm_info *sm_info;
2606 int err;
2607
2608 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2609 if (!sm_info)
2610 return -ENOMEM;
2611
2612 /* init sm info */
2613 sbi->sm_info = sm_info;
2614 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2615 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2616 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2617 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2618 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2619 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2620 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2621 sm_info->rec_prefree_segments = sm_info->main_segments *
2622 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2623 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2624 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2625
2626 if (!test_opt(sbi, LFS))
2627 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2628 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2629 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2630
2631 INIT_LIST_HEAD(&sm_info->discard_list);
2632 INIT_LIST_HEAD(&sm_info->wait_list);
2633 sm_info->nr_discards = 0;
2634 sm_info->max_discards = 0;
2635
2636 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2637
2638 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2639
2640 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2641 err = create_flush_cmd_control(sbi);
2642 if (err)
2643 return err;
2644 }
2645
2646 err = build_sit_info(sbi);
2647 if (err)
2648 return err;
2649 err = build_free_segmap(sbi);
2650 if (err)
2651 return err;
2652 err = build_curseg(sbi);
2653 if (err)
2654 return err;
2655
2656 /* reinit free segmap based on SIT */
2657 build_sit_entries(sbi);
2658
2659 init_free_segmap(sbi);
2660 err = build_dirty_segmap(sbi);
2661 if (err)
2662 return err;
2663
2664 init_min_max_mtime(sbi);
2665 return 0;
2666 }
2667
2668 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2669 enum dirty_type dirty_type)
2670 {
2671 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2672
2673 mutex_lock(&dirty_i->seglist_lock);
2674 kvfree(dirty_i->dirty_segmap[dirty_type]);
2675 dirty_i->nr_dirty[dirty_type] = 0;
2676 mutex_unlock(&dirty_i->seglist_lock);
2677 }
2678
2679 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2680 {
2681 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2682 kvfree(dirty_i->victim_secmap);
2683 }
2684
2685 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2686 {
2687 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2688 int i;
2689
2690 if (!dirty_i)
2691 return;
2692
2693 /* discard pre-free/dirty segments list */
2694 for (i = 0; i < NR_DIRTY_TYPE; i++)
2695 discard_dirty_segmap(sbi, i);
2696
2697 destroy_victim_secmap(sbi);
2698 SM_I(sbi)->dirty_info = NULL;
2699 kfree(dirty_i);
2700 }
2701
2702 static void destroy_curseg(struct f2fs_sb_info *sbi)
2703 {
2704 struct curseg_info *array = SM_I(sbi)->curseg_array;
2705 int i;
2706
2707 if (!array)
2708 return;
2709 SM_I(sbi)->curseg_array = NULL;
2710 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2711 kfree(array[i].sum_blk);
2712 kfree(array[i].journal);
2713 }
2714 kfree(array);
2715 }
2716
2717 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2718 {
2719 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2720 if (!free_i)
2721 return;
2722 SM_I(sbi)->free_info = NULL;
2723 kvfree(free_i->free_segmap);
2724 kvfree(free_i->free_secmap);
2725 kfree(free_i);
2726 }
2727
2728 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2729 {
2730 struct sit_info *sit_i = SIT_I(sbi);
2731 unsigned int start;
2732
2733 if (!sit_i)
2734 return;
2735
2736 if (sit_i->sentries) {
2737 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2738 kfree(sit_i->sentries[start].cur_valid_map);
2739 kfree(sit_i->sentries[start].ckpt_valid_map);
2740 kfree(sit_i->sentries[start].discard_map);
2741 }
2742 }
2743 kfree(sit_i->tmp_map);
2744
2745 kvfree(sit_i->sentries);
2746 kvfree(sit_i->sec_entries);
2747 kvfree(sit_i->dirty_sentries_bitmap);
2748
2749 SM_I(sbi)->sit_info = NULL;
2750 kfree(sit_i->sit_bitmap);
2751 kfree(sit_i);
2752 }
2753
2754 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2755 {
2756 struct f2fs_sm_info *sm_info = SM_I(sbi);
2757
2758 if (!sm_info)
2759 return;
2760 destroy_flush_cmd_control(sbi, true);
2761 destroy_dirty_segmap(sbi);
2762 destroy_curseg(sbi);
2763 destroy_free_segmap(sbi);
2764 destroy_sit_info(sbi);
2765 sbi->sm_info = NULL;
2766 kfree(sm_info);
2767 }
2768
2769 int __init create_segment_manager_caches(void)
2770 {
2771 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2772 sizeof(struct discard_entry));
2773 if (!discard_entry_slab)
2774 goto fail;
2775
2776 bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2777 sizeof(struct bio_entry));
2778 if (!bio_entry_slab)
2779 goto destroy_discard_entry;
2780
2781 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2782 sizeof(struct sit_entry_set));
2783 if (!sit_entry_set_slab)
2784 goto destroy_bio_entry;
2785
2786 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2787 sizeof(struct inmem_pages));
2788 if (!inmem_entry_slab)
2789 goto destroy_sit_entry_set;
2790 return 0;
2791
2792 destroy_sit_entry_set:
2793 kmem_cache_destroy(sit_entry_set_slab);
2794 destroy_bio_entry:
2795 kmem_cache_destroy(bio_entry_slab);
2796 destroy_discard_entry:
2797 kmem_cache_destroy(discard_entry_slab);
2798 fail:
2799 return -ENOMEM;
2800 }
2801
2802 void destroy_segment_manager_caches(void)
2803 {
2804 kmem_cache_destroy(sit_entry_set_slab);
2805 kmem_cache_destroy(bio_entry_slab);
2806 kmem_cache_destroy(discard_entry_slab);
2807 kmem_cache_destroy(inmem_entry_slab);
2808 }