]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/f2fs/segment.c
Merge branch 'regulator-5.4' into regulator-next
[mirror_ubuntu-focal-kernel.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (test_opt(sbi, LFS))
176 return false;
177 if (sbi->gc_mode == GC_URGENT)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 struct f2fs_inode_info *fi = F2FS_I(inode);
190 struct inmem_pages *new;
191
192 f2fs_trace_pid(page);
193
194 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195
196 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
197
198 /* add atomic page indices to the list */
199 new->page = page;
200 INIT_LIST_HEAD(&new->list);
201
202 /* increase reference count with clean state */
203 mutex_lock(&fi->inmem_lock);
204 get_page(page);
205 list_add_tail(&new->list, &fi->inmem_pages);
206 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
207 if (list_empty(&fi->inmem_ilist))
208 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
209 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
210 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
211 mutex_unlock(&fi->inmem_lock);
212
213 trace_f2fs_register_inmem_page(page, INMEM);
214 }
215
216 static int __revoke_inmem_pages(struct inode *inode,
217 struct list_head *head, bool drop, bool recover,
218 bool trylock)
219 {
220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 struct inmem_pages *cur, *tmp;
222 int err = 0;
223
224 list_for_each_entry_safe(cur, tmp, head, list) {
225 struct page *page = cur->page;
226
227 if (drop)
228 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229
230 if (trylock) {
231 /*
232 * to avoid deadlock in between page lock and
233 * inmem_lock.
234 */
235 if (!trylock_page(page))
236 continue;
237 } else {
238 lock_page(page);
239 }
240
241 f2fs_wait_on_page_writeback(page, DATA, true, true);
242
243 if (recover) {
244 struct dnode_of_data dn;
245 struct node_info ni;
246
247 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
248 retry:
249 set_new_dnode(&dn, inode, NULL, NULL, 0);
250 err = f2fs_get_dnode_of_data(&dn, page->index,
251 LOOKUP_NODE);
252 if (err) {
253 if (err == -ENOMEM) {
254 congestion_wait(BLK_RW_ASYNC, HZ/50);
255 cond_resched();
256 goto retry;
257 }
258 err = -EAGAIN;
259 goto next;
260 }
261
262 err = f2fs_get_node_info(sbi, dn.nid, &ni);
263 if (err) {
264 f2fs_put_dnode(&dn);
265 return err;
266 }
267
268 if (cur->old_addr == NEW_ADDR) {
269 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
270 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
271 } else
272 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
273 cur->old_addr, ni.version, true, true);
274 f2fs_put_dnode(&dn);
275 }
276 next:
277 /* we don't need to invalidate this in the sccessful status */
278 if (drop || recover) {
279 ClearPageUptodate(page);
280 clear_cold_data(page);
281 }
282 f2fs_clear_page_private(page);
283 f2fs_put_page(page, 1);
284
285 list_del(&cur->list);
286 kmem_cache_free(inmem_entry_slab, cur);
287 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
288 }
289 return err;
290 }
291
292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
293 {
294 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
295 struct inode *inode;
296 struct f2fs_inode_info *fi;
297 next:
298 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
299 if (list_empty(head)) {
300 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 return;
302 }
303 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
304 inode = igrab(&fi->vfs_inode);
305 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306
307 if (inode) {
308 if (gc_failure) {
309 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
310 goto drop;
311 goto skip;
312 }
313 drop:
314 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
315 f2fs_drop_inmem_pages(inode);
316 iput(inode);
317 }
318 skip:
319 congestion_wait(BLK_RW_ASYNC, HZ/50);
320 cond_resched();
321 goto next;
322 }
323
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 struct f2fs_inode_info *fi = F2FS_I(inode);
328
329 while (!list_empty(&fi->inmem_pages)) {
330 mutex_lock(&fi->inmem_lock);
331 __revoke_inmem_pages(inode, &fi->inmem_pages,
332 true, false, true);
333
334 if (list_empty(&fi->inmem_pages)) {
335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 if (!list_empty(&fi->inmem_ilist))
337 list_del_init(&fi->inmem_ilist);
338 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
339 }
340 mutex_unlock(&fi->inmem_lock);
341 }
342
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
345 stat_dec_atomic_write(inode);
346 }
347
348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
349 {
350 struct f2fs_inode_info *fi = F2FS_I(inode);
351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
352 struct list_head *head = &fi->inmem_pages;
353 struct inmem_pages *cur = NULL;
354
355 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
356
357 mutex_lock(&fi->inmem_lock);
358 list_for_each_entry(cur, head, list) {
359 if (cur->page == page)
360 break;
361 }
362
363 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
364 list_del(&cur->list);
365 mutex_unlock(&fi->inmem_lock);
366
367 dec_page_count(sbi, F2FS_INMEM_PAGES);
368 kmem_cache_free(inmem_entry_slab, cur);
369
370 ClearPageUptodate(page);
371 f2fs_clear_page_private(page);
372 f2fs_put_page(page, 0);
373
374 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
375 }
376
377 static int __f2fs_commit_inmem_pages(struct inode *inode)
378 {
379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 struct f2fs_inode_info *fi = F2FS_I(inode);
381 struct inmem_pages *cur, *tmp;
382 struct f2fs_io_info fio = {
383 .sbi = sbi,
384 .ino = inode->i_ino,
385 .type = DATA,
386 .op = REQ_OP_WRITE,
387 .op_flags = REQ_SYNC | REQ_PRIO,
388 .io_type = FS_DATA_IO,
389 };
390 struct list_head revoke_list;
391 bool submit_bio = false;
392 int err = 0;
393
394 INIT_LIST_HEAD(&revoke_list);
395
396 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
397 struct page *page = cur->page;
398
399 lock_page(page);
400 if (page->mapping == inode->i_mapping) {
401 trace_f2fs_commit_inmem_page(page, INMEM);
402
403 f2fs_wait_on_page_writeback(page, DATA, true, true);
404
405 set_page_dirty(page);
406 if (clear_page_dirty_for_io(page)) {
407 inode_dec_dirty_pages(inode);
408 f2fs_remove_dirty_inode(inode);
409 }
410 retry:
411 fio.page = page;
412 fio.old_blkaddr = NULL_ADDR;
413 fio.encrypted_page = NULL;
414 fio.need_lock = LOCK_DONE;
415 err = f2fs_do_write_data_page(&fio);
416 if (err) {
417 if (err == -ENOMEM) {
418 congestion_wait(BLK_RW_ASYNC, HZ/50);
419 cond_resched();
420 goto retry;
421 }
422 unlock_page(page);
423 break;
424 }
425 /* record old blkaddr for revoking */
426 cur->old_addr = fio.old_blkaddr;
427 submit_bio = true;
428 }
429 unlock_page(page);
430 list_move_tail(&cur->list, &revoke_list);
431 }
432
433 if (submit_bio)
434 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
435
436 if (err) {
437 /*
438 * try to revoke all committed pages, but still we could fail
439 * due to no memory or other reason, if that happened, EAGAIN
440 * will be returned, which means in such case, transaction is
441 * already not integrity, caller should use journal to do the
442 * recovery or rewrite & commit last transaction. For other
443 * error number, revoking was done by filesystem itself.
444 */
445 err = __revoke_inmem_pages(inode, &revoke_list,
446 false, true, false);
447
448 /* drop all uncommitted pages */
449 __revoke_inmem_pages(inode, &fi->inmem_pages,
450 true, false, false);
451 } else {
452 __revoke_inmem_pages(inode, &revoke_list,
453 false, false, false);
454 }
455
456 return err;
457 }
458
459 int f2fs_commit_inmem_pages(struct inode *inode)
460 {
461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
462 struct f2fs_inode_info *fi = F2FS_I(inode);
463 int err;
464
465 f2fs_balance_fs(sbi, true);
466
467 down_write(&fi->i_gc_rwsem[WRITE]);
468
469 f2fs_lock_op(sbi);
470 set_inode_flag(inode, FI_ATOMIC_COMMIT);
471
472 mutex_lock(&fi->inmem_lock);
473 err = __f2fs_commit_inmem_pages(inode);
474
475 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
476 if (!list_empty(&fi->inmem_ilist))
477 list_del_init(&fi->inmem_ilist);
478 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
479 mutex_unlock(&fi->inmem_lock);
480
481 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
482
483 f2fs_unlock_op(sbi);
484 up_write(&fi->i_gc_rwsem[WRITE]);
485
486 return err;
487 }
488
489 /*
490 * This function balances dirty node and dentry pages.
491 * In addition, it controls garbage collection.
492 */
493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
494 {
495 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
496 f2fs_show_injection_info(FAULT_CHECKPOINT);
497 f2fs_stop_checkpoint(sbi, false);
498 }
499
500 /* balance_fs_bg is able to be pending */
501 if (need && excess_cached_nats(sbi))
502 f2fs_balance_fs_bg(sbi);
503
504 if (f2fs_is_checkpoint_ready(sbi))
505 return;
506
507 /*
508 * We should do GC or end up with checkpoint, if there are so many dirty
509 * dir/node pages without enough free segments.
510 */
511 if (has_not_enough_free_secs(sbi, 0, 0)) {
512 mutex_lock(&sbi->gc_mutex);
513 f2fs_gc(sbi, false, false, NULL_SEGNO);
514 }
515 }
516
517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
518 {
519 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
520 return;
521
522 /* try to shrink extent cache when there is no enough memory */
523 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
524 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
525
526 /* check the # of cached NAT entries */
527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
528 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
529
530 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
531 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
532 else
533 f2fs_build_free_nids(sbi, false, false);
534
535 if (!is_idle(sbi, REQ_TIME) &&
536 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
537 return;
538
539 /* checkpoint is the only way to shrink partial cached entries */
540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
541 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
542 excess_prefree_segs(sbi) ||
543 excess_dirty_nats(sbi) ||
544 excess_dirty_nodes(sbi) ||
545 f2fs_time_over(sbi, CP_TIME)) {
546 if (test_opt(sbi, DATA_FLUSH)) {
547 struct blk_plug plug;
548
549 mutex_lock(&sbi->flush_lock);
550
551 blk_start_plug(&plug);
552 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
553 blk_finish_plug(&plug);
554
555 mutex_unlock(&sbi->flush_lock);
556 }
557 f2fs_sync_fs(sbi->sb, true);
558 stat_inc_bg_cp_count(sbi->stat_info);
559 }
560 }
561
562 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
563 struct block_device *bdev)
564 {
565 struct bio *bio;
566 int ret;
567
568 bio = f2fs_bio_alloc(sbi, 0, false);
569 if (!bio)
570 return -ENOMEM;
571
572 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
573 bio_set_dev(bio, bdev);
574 ret = submit_bio_wait(bio);
575 bio_put(bio);
576
577 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
578 test_opt(sbi, FLUSH_MERGE), ret);
579 return ret;
580 }
581
582 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
583 {
584 int ret = 0;
585 int i;
586
587 if (!f2fs_is_multi_device(sbi))
588 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
589
590 for (i = 0; i < sbi->s_ndevs; i++) {
591 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
592 continue;
593 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
594 if (ret)
595 break;
596 }
597 return ret;
598 }
599
600 static int issue_flush_thread(void *data)
601 {
602 struct f2fs_sb_info *sbi = data;
603 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
604 wait_queue_head_t *q = &fcc->flush_wait_queue;
605 repeat:
606 if (kthread_should_stop())
607 return 0;
608
609 sb_start_intwrite(sbi->sb);
610
611 if (!llist_empty(&fcc->issue_list)) {
612 struct flush_cmd *cmd, *next;
613 int ret;
614
615 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
616 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
617
618 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
619
620 ret = submit_flush_wait(sbi, cmd->ino);
621 atomic_inc(&fcc->issued_flush);
622
623 llist_for_each_entry_safe(cmd, next,
624 fcc->dispatch_list, llnode) {
625 cmd->ret = ret;
626 complete(&cmd->wait);
627 }
628 fcc->dispatch_list = NULL;
629 }
630
631 sb_end_intwrite(sbi->sb);
632
633 wait_event_interruptible(*q,
634 kthread_should_stop() || !llist_empty(&fcc->issue_list));
635 goto repeat;
636 }
637
638 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
639 {
640 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
641 struct flush_cmd cmd;
642 int ret;
643
644 if (test_opt(sbi, NOBARRIER))
645 return 0;
646
647 if (!test_opt(sbi, FLUSH_MERGE)) {
648 atomic_inc(&fcc->queued_flush);
649 ret = submit_flush_wait(sbi, ino);
650 atomic_dec(&fcc->queued_flush);
651 atomic_inc(&fcc->issued_flush);
652 return ret;
653 }
654
655 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
656 f2fs_is_multi_device(sbi)) {
657 ret = submit_flush_wait(sbi, ino);
658 atomic_dec(&fcc->queued_flush);
659
660 atomic_inc(&fcc->issued_flush);
661 return ret;
662 }
663
664 cmd.ino = ino;
665 init_completion(&cmd.wait);
666
667 llist_add(&cmd.llnode, &fcc->issue_list);
668
669 /* update issue_list before we wake up issue_flush thread */
670 smp_mb();
671
672 if (waitqueue_active(&fcc->flush_wait_queue))
673 wake_up(&fcc->flush_wait_queue);
674
675 if (fcc->f2fs_issue_flush) {
676 wait_for_completion(&cmd.wait);
677 atomic_dec(&fcc->queued_flush);
678 } else {
679 struct llist_node *list;
680
681 list = llist_del_all(&fcc->issue_list);
682 if (!list) {
683 wait_for_completion(&cmd.wait);
684 atomic_dec(&fcc->queued_flush);
685 } else {
686 struct flush_cmd *tmp, *next;
687
688 ret = submit_flush_wait(sbi, ino);
689
690 llist_for_each_entry_safe(tmp, next, list, llnode) {
691 if (tmp == &cmd) {
692 cmd.ret = ret;
693 atomic_dec(&fcc->queued_flush);
694 continue;
695 }
696 tmp->ret = ret;
697 complete(&tmp->wait);
698 }
699 }
700 }
701
702 return cmd.ret;
703 }
704
705 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
706 {
707 dev_t dev = sbi->sb->s_bdev->bd_dev;
708 struct flush_cmd_control *fcc;
709 int err = 0;
710
711 if (SM_I(sbi)->fcc_info) {
712 fcc = SM_I(sbi)->fcc_info;
713 if (fcc->f2fs_issue_flush)
714 return err;
715 goto init_thread;
716 }
717
718 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
719 if (!fcc)
720 return -ENOMEM;
721 atomic_set(&fcc->issued_flush, 0);
722 atomic_set(&fcc->queued_flush, 0);
723 init_waitqueue_head(&fcc->flush_wait_queue);
724 init_llist_head(&fcc->issue_list);
725 SM_I(sbi)->fcc_info = fcc;
726 if (!test_opt(sbi, FLUSH_MERGE))
727 return err;
728
729 init_thread:
730 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
731 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
732 if (IS_ERR(fcc->f2fs_issue_flush)) {
733 err = PTR_ERR(fcc->f2fs_issue_flush);
734 kvfree(fcc);
735 SM_I(sbi)->fcc_info = NULL;
736 return err;
737 }
738
739 return err;
740 }
741
742 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
743 {
744 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
745
746 if (fcc && fcc->f2fs_issue_flush) {
747 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
748
749 fcc->f2fs_issue_flush = NULL;
750 kthread_stop(flush_thread);
751 }
752 if (free) {
753 kvfree(fcc);
754 SM_I(sbi)->fcc_info = NULL;
755 }
756 }
757
758 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
759 {
760 int ret = 0, i;
761
762 if (!f2fs_is_multi_device(sbi))
763 return 0;
764
765 for (i = 1; i < sbi->s_ndevs; i++) {
766 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
767 continue;
768 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
769 if (ret)
770 break;
771
772 spin_lock(&sbi->dev_lock);
773 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
774 spin_unlock(&sbi->dev_lock);
775 }
776
777 return ret;
778 }
779
780 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
781 enum dirty_type dirty_type)
782 {
783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
784
785 /* need not be added */
786 if (IS_CURSEG(sbi, segno))
787 return;
788
789 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
790 dirty_i->nr_dirty[dirty_type]++;
791
792 if (dirty_type == DIRTY) {
793 struct seg_entry *sentry = get_seg_entry(sbi, segno);
794 enum dirty_type t = sentry->type;
795
796 if (unlikely(t >= DIRTY)) {
797 f2fs_bug_on(sbi, 1);
798 return;
799 }
800 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
801 dirty_i->nr_dirty[t]++;
802 }
803 }
804
805 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
806 enum dirty_type dirty_type)
807 {
808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809
810 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
811 dirty_i->nr_dirty[dirty_type]--;
812
813 if (dirty_type == DIRTY) {
814 struct seg_entry *sentry = get_seg_entry(sbi, segno);
815 enum dirty_type t = sentry->type;
816
817 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
818 dirty_i->nr_dirty[t]--;
819
820 if (get_valid_blocks(sbi, segno, true) == 0)
821 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
822 dirty_i->victim_secmap);
823 }
824 }
825
826 /*
827 * Should not occur error such as -ENOMEM.
828 * Adding dirty entry into seglist is not critical operation.
829 * If a given segment is one of current working segments, it won't be added.
830 */
831 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
832 {
833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 unsigned short valid_blocks, ckpt_valid_blocks;
835
836 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
837 return;
838
839 mutex_lock(&dirty_i->seglist_lock);
840
841 valid_blocks = get_valid_blocks(sbi, segno, false);
842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
843
844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
845 ckpt_valid_blocks == sbi->blocks_per_seg)) {
846 __locate_dirty_segment(sbi, segno, PRE);
847 __remove_dirty_segment(sbi, segno, DIRTY);
848 } else if (valid_blocks < sbi->blocks_per_seg) {
849 __locate_dirty_segment(sbi, segno, DIRTY);
850 } else {
851 /* Recovery routine with SSR needs this */
852 __remove_dirty_segment(sbi, segno, DIRTY);
853 }
854
855 mutex_unlock(&dirty_i->seglist_lock);
856 }
857
858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
860 {
861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
862 unsigned int segno;
863
864 mutex_lock(&dirty_i->seglist_lock);
865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 if (get_valid_blocks(sbi, segno, false))
867 continue;
868 if (IS_CURSEG(sbi, segno))
869 continue;
870 __locate_dirty_segment(sbi, segno, PRE);
871 __remove_dirty_segment(sbi, segno, DIRTY);
872 }
873 mutex_unlock(&dirty_i->seglist_lock);
874 }
875
876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
877 {
878 int ovp_hole_segs =
879 (overprovision_segments(sbi) - reserved_segments(sbi));
880 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
882 block_t holes[2] = {0, 0}; /* DATA and NODE */
883 block_t unusable;
884 struct seg_entry *se;
885 unsigned int segno;
886
887 mutex_lock(&dirty_i->seglist_lock);
888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
889 se = get_seg_entry(sbi, segno);
890 if (IS_NODESEG(se->type))
891 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
892 else
893 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
894 }
895 mutex_unlock(&dirty_i->seglist_lock);
896
897 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
898 if (unusable > ovp_holes)
899 return unusable - ovp_holes;
900 return 0;
901 }
902
903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
904 {
905 int ovp_hole_segs =
906 (overprovision_segments(sbi) - reserved_segments(sbi));
907 if (unusable > F2FS_OPTION(sbi).unusable_cap)
908 return -EAGAIN;
909 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
910 dirty_segments(sbi) > ovp_hole_segs)
911 return -EAGAIN;
912 return 0;
913 }
914
915 /* This is only used by SBI_CP_DISABLED */
916 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
917 {
918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
919 unsigned int segno = 0;
920
921 mutex_lock(&dirty_i->seglist_lock);
922 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
923 if (get_valid_blocks(sbi, segno, false))
924 continue;
925 if (get_ckpt_valid_blocks(sbi, segno))
926 continue;
927 mutex_unlock(&dirty_i->seglist_lock);
928 return segno;
929 }
930 mutex_unlock(&dirty_i->seglist_lock);
931 return NULL_SEGNO;
932 }
933
934 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
935 struct block_device *bdev, block_t lstart,
936 block_t start, block_t len)
937 {
938 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
939 struct list_head *pend_list;
940 struct discard_cmd *dc;
941
942 f2fs_bug_on(sbi, !len);
943
944 pend_list = &dcc->pend_list[plist_idx(len)];
945
946 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
947 INIT_LIST_HEAD(&dc->list);
948 dc->bdev = bdev;
949 dc->lstart = lstart;
950 dc->start = start;
951 dc->len = len;
952 dc->ref = 0;
953 dc->state = D_PREP;
954 dc->queued = 0;
955 dc->error = 0;
956 init_completion(&dc->wait);
957 list_add_tail(&dc->list, pend_list);
958 spin_lock_init(&dc->lock);
959 dc->bio_ref = 0;
960 atomic_inc(&dcc->discard_cmd_cnt);
961 dcc->undiscard_blks += len;
962
963 return dc;
964 }
965
966 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
967 struct block_device *bdev, block_t lstart,
968 block_t start, block_t len,
969 struct rb_node *parent, struct rb_node **p,
970 bool leftmost)
971 {
972 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
973 struct discard_cmd *dc;
974
975 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
976
977 rb_link_node(&dc->rb_node, parent, p);
978 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
979
980 return dc;
981 }
982
983 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
984 struct discard_cmd *dc)
985 {
986 if (dc->state == D_DONE)
987 atomic_sub(dc->queued, &dcc->queued_discard);
988
989 list_del(&dc->list);
990 rb_erase_cached(&dc->rb_node, &dcc->root);
991 dcc->undiscard_blks -= dc->len;
992
993 kmem_cache_free(discard_cmd_slab, dc);
994
995 atomic_dec(&dcc->discard_cmd_cnt);
996 }
997
998 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
999 struct discard_cmd *dc)
1000 {
1001 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002 unsigned long flags;
1003
1004 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1005
1006 spin_lock_irqsave(&dc->lock, flags);
1007 if (dc->bio_ref) {
1008 spin_unlock_irqrestore(&dc->lock, flags);
1009 return;
1010 }
1011 spin_unlock_irqrestore(&dc->lock, flags);
1012
1013 f2fs_bug_on(sbi, dc->ref);
1014
1015 if (dc->error == -EOPNOTSUPP)
1016 dc->error = 0;
1017
1018 if (dc->error)
1019 printk_ratelimited(
1020 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1021 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1022 __detach_discard_cmd(dcc, dc);
1023 }
1024
1025 static void f2fs_submit_discard_endio(struct bio *bio)
1026 {
1027 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1028 unsigned long flags;
1029
1030 dc->error = blk_status_to_errno(bio->bi_status);
1031
1032 spin_lock_irqsave(&dc->lock, flags);
1033 dc->bio_ref--;
1034 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1035 dc->state = D_DONE;
1036 complete_all(&dc->wait);
1037 }
1038 spin_unlock_irqrestore(&dc->lock, flags);
1039 bio_put(bio);
1040 }
1041
1042 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1043 block_t start, block_t end)
1044 {
1045 #ifdef CONFIG_F2FS_CHECK_FS
1046 struct seg_entry *sentry;
1047 unsigned int segno;
1048 block_t blk = start;
1049 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1050 unsigned long *map;
1051
1052 while (blk < end) {
1053 segno = GET_SEGNO(sbi, blk);
1054 sentry = get_seg_entry(sbi, segno);
1055 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1056
1057 if (end < START_BLOCK(sbi, segno + 1))
1058 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1059 else
1060 size = max_blocks;
1061 map = (unsigned long *)(sentry->cur_valid_map);
1062 offset = __find_rev_next_bit(map, size, offset);
1063 f2fs_bug_on(sbi, offset != size);
1064 blk = START_BLOCK(sbi, segno + 1);
1065 }
1066 #endif
1067 }
1068
1069 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1070 struct discard_policy *dpolicy,
1071 int discard_type, unsigned int granularity)
1072 {
1073 /* common policy */
1074 dpolicy->type = discard_type;
1075 dpolicy->sync = true;
1076 dpolicy->ordered = false;
1077 dpolicy->granularity = granularity;
1078
1079 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1080 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1081 dpolicy->timeout = 0;
1082
1083 if (discard_type == DPOLICY_BG) {
1084 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1085 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1086 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1087 dpolicy->io_aware = true;
1088 dpolicy->sync = false;
1089 dpolicy->ordered = true;
1090 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1091 dpolicy->granularity = 1;
1092 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1093 }
1094 } else if (discard_type == DPOLICY_FORCE) {
1095 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1096 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1097 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1098 dpolicy->io_aware = false;
1099 } else if (discard_type == DPOLICY_FSTRIM) {
1100 dpolicy->io_aware = false;
1101 } else if (discard_type == DPOLICY_UMOUNT) {
1102 dpolicy->max_requests = UINT_MAX;
1103 dpolicy->io_aware = false;
1104 /* we need to issue all to keep CP_TRIMMED_FLAG */
1105 dpolicy->granularity = 1;
1106 }
1107 }
1108
1109 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1110 struct block_device *bdev, block_t lstart,
1111 block_t start, block_t len);
1112 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1113 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1114 struct discard_policy *dpolicy,
1115 struct discard_cmd *dc,
1116 unsigned int *issued)
1117 {
1118 struct block_device *bdev = dc->bdev;
1119 struct request_queue *q = bdev_get_queue(bdev);
1120 unsigned int max_discard_blocks =
1121 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1122 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1123 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1124 &(dcc->fstrim_list) : &(dcc->wait_list);
1125 int flag = dpolicy->sync ? REQ_SYNC : 0;
1126 block_t lstart, start, len, total_len;
1127 int err = 0;
1128
1129 if (dc->state != D_PREP)
1130 return 0;
1131
1132 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1133 return 0;
1134
1135 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1136
1137 lstart = dc->lstart;
1138 start = dc->start;
1139 len = dc->len;
1140 total_len = len;
1141
1142 dc->len = 0;
1143
1144 while (total_len && *issued < dpolicy->max_requests && !err) {
1145 struct bio *bio = NULL;
1146 unsigned long flags;
1147 bool last = true;
1148
1149 if (len > max_discard_blocks) {
1150 len = max_discard_blocks;
1151 last = false;
1152 }
1153
1154 (*issued)++;
1155 if (*issued == dpolicy->max_requests)
1156 last = true;
1157
1158 dc->len += len;
1159
1160 if (time_to_inject(sbi, FAULT_DISCARD)) {
1161 f2fs_show_injection_info(FAULT_DISCARD);
1162 err = -EIO;
1163 goto submit;
1164 }
1165 err = __blkdev_issue_discard(bdev,
1166 SECTOR_FROM_BLOCK(start),
1167 SECTOR_FROM_BLOCK(len),
1168 GFP_NOFS, 0, &bio);
1169 submit:
1170 if (err) {
1171 spin_lock_irqsave(&dc->lock, flags);
1172 if (dc->state == D_PARTIAL)
1173 dc->state = D_SUBMIT;
1174 spin_unlock_irqrestore(&dc->lock, flags);
1175
1176 break;
1177 }
1178
1179 f2fs_bug_on(sbi, !bio);
1180
1181 /*
1182 * should keep before submission to avoid D_DONE
1183 * right away
1184 */
1185 spin_lock_irqsave(&dc->lock, flags);
1186 if (last)
1187 dc->state = D_SUBMIT;
1188 else
1189 dc->state = D_PARTIAL;
1190 dc->bio_ref++;
1191 spin_unlock_irqrestore(&dc->lock, flags);
1192
1193 atomic_inc(&dcc->queued_discard);
1194 dc->queued++;
1195 list_move_tail(&dc->list, wait_list);
1196
1197 /* sanity check on discard range */
1198 __check_sit_bitmap(sbi, lstart, lstart + len);
1199
1200 bio->bi_private = dc;
1201 bio->bi_end_io = f2fs_submit_discard_endio;
1202 bio->bi_opf |= flag;
1203 submit_bio(bio);
1204
1205 atomic_inc(&dcc->issued_discard);
1206
1207 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1208
1209 lstart += len;
1210 start += len;
1211 total_len -= len;
1212 len = total_len;
1213 }
1214
1215 if (!err && len)
1216 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1217 return err;
1218 }
1219
1220 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1221 struct block_device *bdev, block_t lstart,
1222 block_t start, block_t len,
1223 struct rb_node **insert_p,
1224 struct rb_node *insert_parent)
1225 {
1226 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1227 struct rb_node **p;
1228 struct rb_node *parent = NULL;
1229 struct discard_cmd *dc = NULL;
1230 bool leftmost = true;
1231
1232 if (insert_p && insert_parent) {
1233 parent = insert_parent;
1234 p = insert_p;
1235 goto do_insert;
1236 }
1237
1238 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1239 lstart, &leftmost);
1240 do_insert:
1241 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1242 p, leftmost);
1243 if (!dc)
1244 return NULL;
1245
1246 return dc;
1247 }
1248
1249 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1250 struct discard_cmd *dc)
1251 {
1252 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1253 }
1254
1255 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1256 struct discard_cmd *dc, block_t blkaddr)
1257 {
1258 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1259 struct discard_info di = dc->di;
1260 bool modified = false;
1261
1262 if (dc->state == D_DONE || dc->len == 1) {
1263 __remove_discard_cmd(sbi, dc);
1264 return;
1265 }
1266
1267 dcc->undiscard_blks -= di.len;
1268
1269 if (blkaddr > di.lstart) {
1270 dc->len = blkaddr - dc->lstart;
1271 dcc->undiscard_blks += dc->len;
1272 __relocate_discard_cmd(dcc, dc);
1273 modified = true;
1274 }
1275
1276 if (blkaddr < di.lstart + di.len - 1) {
1277 if (modified) {
1278 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1279 di.start + blkaddr + 1 - di.lstart,
1280 di.lstart + di.len - 1 - blkaddr,
1281 NULL, NULL);
1282 } else {
1283 dc->lstart++;
1284 dc->len--;
1285 dc->start++;
1286 dcc->undiscard_blks += dc->len;
1287 __relocate_discard_cmd(dcc, dc);
1288 }
1289 }
1290 }
1291
1292 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1293 struct block_device *bdev, block_t lstart,
1294 block_t start, block_t len)
1295 {
1296 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1297 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1298 struct discard_cmd *dc;
1299 struct discard_info di = {0};
1300 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1301 struct request_queue *q = bdev_get_queue(bdev);
1302 unsigned int max_discard_blocks =
1303 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1304 block_t end = lstart + len;
1305
1306 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1307 NULL, lstart,
1308 (struct rb_entry **)&prev_dc,
1309 (struct rb_entry **)&next_dc,
1310 &insert_p, &insert_parent, true, NULL);
1311 if (dc)
1312 prev_dc = dc;
1313
1314 if (!prev_dc) {
1315 di.lstart = lstart;
1316 di.len = next_dc ? next_dc->lstart - lstart : len;
1317 di.len = min(di.len, len);
1318 di.start = start;
1319 }
1320
1321 while (1) {
1322 struct rb_node *node;
1323 bool merged = false;
1324 struct discard_cmd *tdc = NULL;
1325
1326 if (prev_dc) {
1327 di.lstart = prev_dc->lstart + prev_dc->len;
1328 if (di.lstart < lstart)
1329 di.lstart = lstart;
1330 if (di.lstart >= end)
1331 break;
1332
1333 if (!next_dc || next_dc->lstart > end)
1334 di.len = end - di.lstart;
1335 else
1336 di.len = next_dc->lstart - di.lstart;
1337 di.start = start + di.lstart - lstart;
1338 }
1339
1340 if (!di.len)
1341 goto next;
1342
1343 if (prev_dc && prev_dc->state == D_PREP &&
1344 prev_dc->bdev == bdev &&
1345 __is_discard_back_mergeable(&di, &prev_dc->di,
1346 max_discard_blocks)) {
1347 prev_dc->di.len += di.len;
1348 dcc->undiscard_blks += di.len;
1349 __relocate_discard_cmd(dcc, prev_dc);
1350 di = prev_dc->di;
1351 tdc = prev_dc;
1352 merged = true;
1353 }
1354
1355 if (next_dc && next_dc->state == D_PREP &&
1356 next_dc->bdev == bdev &&
1357 __is_discard_front_mergeable(&di, &next_dc->di,
1358 max_discard_blocks)) {
1359 next_dc->di.lstart = di.lstart;
1360 next_dc->di.len += di.len;
1361 next_dc->di.start = di.start;
1362 dcc->undiscard_blks += di.len;
1363 __relocate_discard_cmd(dcc, next_dc);
1364 if (tdc)
1365 __remove_discard_cmd(sbi, tdc);
1366 merged = true;
1367 }
1368
1369 if (!merged) {
1370 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1371 di.len, NULL, NULL);
1372 }
1373 next:
1374 prev_dc = next_dc;
1375 if (!prev_dc)
1376 break;
1377
1378 node = rb_next(&prev_dc->rb_node);
1379 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1380 }
1381 }
1382
1383 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1384 struct block_device *bdev, block_t blkstart, block_t blklen)
1385 {
1386 block_t lblkstart = blkstart;
1387
1388 if (!f2fs_bdev_support_discard(bdev))
1389 return 0;
1390
1391 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1392
1393 if (f2fs_is_multi_device(sbi)) {
1394 int devi = f2fs_target_device_index(sbi, blkstart);
1395
1396 blkstart -= FDEV(devi).start_blk;
1397 }
1398 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1399 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1400 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1401 return 0;
1402 }
1403
1404 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1405 struct discard_policy *dpolicy)
1406 {
1407 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1408 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1409 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1410 struct discard_cmd *dc;
1411 struct blk_plug plug;
1412 unsigned int pos = dcc->next_pos;
1413 unsigned int issued = 0;
1414 bool io_interrupted = false;
1415
1416 mutex_lock(&dcc->cmd_lock);
1417 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1418 NULL, pos,
1419 (struct rb_entry **)&prev_dc,
1420 (struct rb_entry **)&next_dc,
1421 &insert_p, &insert_parent, true, NULL);
1422 if (!dc)
1423 dc = next_dc;
1424
1425 blk_start_plug(&plug);
1426
1427 while (dc) {
1428 struct rb_node *node;
1429 int err = 0;
1430
1431 if (dc->state != D_PREP)
1432 goto next;
1433
1434 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1435 io_interrupted = true;
1436 break;
1437 }
1438
1439 dcc->next_pos = dc->lstart + dc->len;
1440 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1441
1442 if (issued >= dpolicy->max_requests)
1443 break;
1444 next:
1445 node = rb_next(&dc->rb_node);
1446 if (err)
1447 __remove_discard_cmd(sbi, dc);
1448 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1449 }
1450
1451 blk_finish_plug(&plug);
1452
1453 if (!dc)
1454 dcc->next_pos = 0;
1455
1456 mutex_unlock(&dcc->cmd_lock);
1457
1458 if (!issued && io_interrupted)
1459 issued = -1;
1460
1461 return issued;
1462 }
1463
1464 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1465 struct discard_policy *dpolicy)
1466 {
1467 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1468 struct list_head *pend_list;
1469 struct discard_cmd *dc, *tmp;
1470 struct blk_plug plug;
1471 int i, issued = 0;
1472 bool io_interrupted = false;
1473
1474 if (dpolicy->timeout != 0)
1475 f2fs_update_time(sbi, dpolicy->timeout);
1476
1477 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1478 if (dpolicy->timeout != 0 &&
1479 f2fs_time_over(sbi, dpolicy->timeout))
1480 break;
1481
1482 if (i + 1 < dpolicy->granularity)
1483 break;
1484
1485 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1486 return __issue_discard_cmd_orderly(sbi, dpolicy);
1487
1488 pend_list = &dcc->pend_list[i];
1489
1490 mutex_lock(&dcc->cmd_lock);
1491 if (list_empty(pend_list))
1492 goto next;
1493 if (unlikely(dcc->rbtree_check))
1494 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1495 &dcc->root));
1496 blk_start_plug(&plug);
1497 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1498 f2fs_bug_on(sbi, dc->state != D_PREP);
1499
1500 if (dpolicy->timeout != 0 &&
1501 f2fs_time_over(sbi, dpolicy->timeout))
1502 break;
1503
1504 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1505 !is_idle(sbi, DISCARD_TIME)) {
1506 io_interrupted = true;
1507 break;
1508 }
1509
1510 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1511
1512 if (issued >= dpolicy->max_requests)
1513 break;
1514 }
1515 blk_finish_plug(&plug);
1516 next:
1517 mutex_unlock(&dcc->cmd_lock);
1518
1519 if (issued >= dpolicy->max_requests || io_interrupted)
1520 break;
1521 }
1522
1523 if (!issued && io_interrupted)
1524 issued = -1;
1525
1526 return issued;
1527 }
1528
1529 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1530 {
1531 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532 struct list_head *pend_list;
1533 struct discard_cmd *dc, *tmp;
1534 int i;
1535 bool dropped = false;
1536
1537 mutex_lock(&dcc->cmd_lock);
1538 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1539 pend_list = &dcc->pend_list[i];
1540 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1541 f2fs_bug_on(sbi, dc->state != D_PREP);
1542 __remove_discard_cmd(sbi, dc);
1543 dropped = true;
1544 }
1545 }
1546 mutex_unlock(&dcc->cmd_lock);
1547
1548 return dropped;
1549 }
1550
1551 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1552 {
1553 __drop_discard_cmd(sbi);
1554 }
1555
1556 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1557 struct discard_cmd *dc)
1558 {
1559 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1560 unsigned int len = 0;
1561
1562 wait_for_completion_io(&dc->wait);
1563 mutex_lock(&dcc->cmd_lock);
1564 f2fs_bug_on(sbi, dc->state != D_DONE);
1565 dc->ref--;
1566 if (!dc->ref) {
1567 if (!dc->error)
1568 len = dc->len;
1569 __remove_discard_cmd(sbi, dc);
1570 }
1571 mutex_unlock(&dcc->cmd_lock);
1572
1573 return len;
1574 }
1575
1576 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1577 struct discard_policy *dpolicy,
1578 block_t start, block_t end)
1579 {
1580 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1581 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1582 &(dcc->fstrim_list) : &(dcc->wait_list);
1583 struct discard_cmd *dc, *tmp;
1584 bool need_wait;
1585 unsigned int trimmed = 0;
1586
1587 next:
1588 need_wait = false;
1589
1590 mutex_lock(&dcc->cmd_lock);
1591 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1592 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1593 continue;
1594 if (dc->len < dpolicy->granularity)
1595 continue;
1596 if (dc->state == D_DONE && !dc->ref) {
1597 wait_for_completion_io(&dc->wait);
1598 if (!dc->error)
1599 trimmed += dc->len;
1600 __remove_discard_cmd(sbi, dc);
1601 } else {
1602 dc->ref++;
1603 need_wait = true;
1604 break;
1605 }
1606 }
1607 mutex_unlock(&dcc->cmd_lock);
1608
1609 if (need_wait) {
1610 trimmed += __wait_one_discard_bio(sbi, dc);
1611 goto next;
1612 }
1613
1614 return trimmed;
1615 }
1616
1617 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1618 struct discard_policy *dpolicy)
1619 {
1620 struct discard_policy dp;
1621 unsigned int discard_blks;
1622
1623 if (dpolicy)
1624 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1625
1626 /* wait all */
1627 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1628 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1629 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1630 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1631
1632 return discard_blks;
1633 }
1634
1635 /* This should be covered by global mutex, &sit_i->sentry_lock */
1636 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1637 {
1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 struct discard_cmd *dc;
1640 bool need_wait = false;
1641
1642 mutex_lock(&dcc->cmd_lock);
1643 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1644 NULL, blkaddr);
1645 if (dc) {
1646 if (dc->state == D_PREP) {
1647 __punch_discard_cmd(sbi, dc, blkaddr);
1648 } else {
1649 dc->ref++;
1650 need_wait = true;
1651 }
1652 }
1653 mutex_unlock(&dcc->cmd_lock);
1654
1655 if (need_wait)
1656 __wait_one_discard_bio(sbi, dc);
1657 }
1658
1659 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1660 {
1661 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1662
1663 if (dcc && dcc->f2fs_issue_discard) {
1664 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1665
1666 dcc->f2fs_issue_discard = NULL;
1667 kthread_stop(discard_thread);
1668 }
1669 }
1670
1671 /* This comes from f2fs_put_super */
1672 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1673 {
1674 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1675 struct discard_policy dpolicy;
1676 bool dropped;
1677
1678 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1679 dcc->discard_granularity);
1680 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1681 __issue_discard_cmd(sbi, &dpolicy);
1682 dropped = __drop_discard_cmd(sbi);
1683
1684 /* just to make sure there is no pending discard commands */
1685 __wait_all_discard_cmd(sbi, NULL);
1686
1687 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1688 return dropped;
1689 }
1690
1691 static int issue_discard_thread(void *data)
1692 {
1693 struct f2fs_sb_info *sbi = data;
1694 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1695 wait_queue_head_t *q = &dcc->discard_wait_queue;
1696 struct discard_policy dpolicy;
1697 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1698 int issued;
1699
1700 set_freezable();
1701
1702 do {
1703 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1704 dcc->discard_granularity);
1705
1706 wait_event_interruptible_timeout(*q,
1707 kthread_should_stop() || freezing(current) ||
1708 dcc->discard_wake,
1709 msecs_to_jiffies(wait_ms));
1710
1711 if (dcc->discard_wake)
1712 dcc->discard_wake = 0;
1713
1714 /* clean up pending candidates before going to sleep */
1715 if (atomic_read(&dcc->queued_discard))
1716 __wait_all_discard_cmd(sbi, NULL);
1717
1718 if (try_to_freeze())
1719 continue;
1720 if (f2fs_readonly(sbi->sb))
1721 continue;
1722 if (kthread_should_stop())
1723 return 0;
1724 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1725 wait_ms = dpolicy.max_interval;
1726 continue;
1727 }
1728
1729 if (sbi->gc_mode == GC_URGENT)
1730 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1731
1732 sb_start_intwrite(sbi->sb);
1733
1734 issued = __issue_discard_cmd(sbi, &dpolicy);
1735 if (issued > 0) {
1736 __wait_all_discard_cmd(sbi, &dpolicy);
1737 wait_ms = dpolicy.min_interval;
1738 } else if (issued == -1){
1739 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1740 if (!wait_ms)
1741 wait_ms = dpolicy.mid_interval;
1742 } else {
1743 wait_ms = dpolicy.max_interval;
1744 }
1745
1746 sb_end_intwrite(sbi->sb);
1747
1748 } while (!kthread_should_stop());
1749 return 0;
1750 }
1751
1752 #ifdef CONFIG_BLK_DEV_ZONED
1753 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1754 struct block_device *bdev, block_t blkstart, block_t blklen)
1755 {
1756 sector_t sector, nr_sects;
1757 block_t lblkstart = blkstart;
1758 int devi = 0;
1759
1760 if (f2fs_is_multi_device(sbi)) {
1761 devi = f2fs_target_device_index(sbi, blkstart);
1762 if (blkstart < FDEV(devi).start_blk ||
1763 blkstart > FDEV(devi).end_blk) {
1764 f2fs_err(sbi, "Invalid block %x", blkstart);
1765 return -EIO;
1766 }
1767 blkstart -= FDEV(devi).start_blk;
1768 }
1769
1770 /* For sequential zones, reset the zone write pointer */
1771 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1772 sector = SECTOR_FROM_BLOCK(blkstart);
1773 nr_sects = SECTOR_FROM_BLOCK(blklen);
1774
1775 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1776 nr_sects != bdev_zone_sectors(bdev)) {
1777 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1778 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1779 blkstart, blklen);
1780 return -EIO;
1781 }
1782 trace_f2fs_issue_reset_zone(bdev, blkstart);
1783 return blkdev_reset_zones(bdev, sector, nr_sects, GFP_NOFS);
1784 }
1785
1786 /* For conventional zones, use regular discard if supported */
1787 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1788 }
1789 #endif
1790
1791 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1792 struct block_device *bdev, block_t blkstart, block_t blklen)
1793 {
1794 #ifdef CONFIG_BLK_DEV_ZONED
1795 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1796 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1797 #endif
1798 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1799 }
1800
1801 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1802 block_t blkstart, block_t blklen)
1803 {
1804 sector_t start = blkstart, len = 0;
1805 struct block_device *bdev;
1806 struct seg_entry *se;
1807 unsigned int offset;
1808 block_t i;
1809 int err = 0;
1810
1811 bdev = f2fs_target_device(sbi, blkstart, NULL);
1812
1813 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1814 if (i != start) {
1815 struct block_device *bdev2 =
1816 f2fs_target_device(sbi, i, NULL);
1817
1818 if (bdev2 != bdev) {
1819 err = __issue_discard_async(sbi, bdev,
1820 start, len);
1821 if (err)
1822 return err;
1823 bdev = bdev2;
1824 start = i;
1825 len = 0;
1826 }
1827 }
1828
1829 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1830 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1831
1832 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1833 sbi->discard_blks--;
1834 }
1835
1836 if (len)
1837 err = __issue_discard_async(sbi, bdev, start, len);
1838 return err;
1839 }
1840
1841 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1842 bool check_only)
1843 {
1844 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1845 int max_blocks = sbi->blocks_per_seg;
1846 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1847 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1848 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1849 unsigned long *discard_map = (unsigned long *)se->discard_map;
1850 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1851 unsigned int start = 0, end = -1;
1852 bool force = (cpc->reason & CP_DISCARD);
1853 struct discard_entry *de = NULL;
1854 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1855 int i;
1856
1857 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1858 return false;
1859
1860 if (!force) {
1861 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1862 SM_I(sbi)->dcc_info->nr_discards >=
1863 SM_I(sbi)->dcc_info->max_discards)
1864 return false;
1865 }
1866
1867 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1868 for (i = 0; i < entries; i++)
1869 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1870 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1871
1872 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1873 SM_I(sbi)->dcc_info->max_discards) {
1874 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1875 if (start >= max_blocks)
1876 break;
1877
1878 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1879 if (force && start && end != max_blocks
1880 && (end - start) < cpc->trim_minlen)
1881 continue;
1882
1883 if (check_only)
1884 return true;
1885
1886 if (!de) {
1887 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1888 GFP_F2FS_ZERO);
1889 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1890 list_add_tail(&de->list, head);
1891 }
1892
1893 for (i = start; i < end; i++)
1894 __set_bit_le(i, (void *)de->discard_map);
1895
1896 SM_I(sbi)->dcc_info->nr_discards += end - start;
1897 }
1898 return false;
1899 }
1900
1901 static void release_discard_addr(struct discard_entry *entry)
1902 {
1903 list_del(&entry->list);
1904 kmem_cache_free(discard_entry_slab, entry);
1905 }
1906
1907 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1908 {
1909 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1910 struct discard_entry *entry, *this;
1911
1912 /* drop caches */
1913 list_for_each_entry_safe(entry, this, head, list)
1914 release_discard_addr(entry);
1915 }
1916
1917 /*
1918 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1919 */
1920 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1921 {
1922 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1923 unsigned int segno;
1924
1925 mutex_lock(&dirty_i->seglist_lock);
1926 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1927 __set_test_and_free(sbi, segno);
1928 mutex_unlock(&dirty_i->seglist_lock);
1929 }
1930
1931 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1932 struct cp_control *cpc)
1933 {
1934 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1935 struct list_head *head = &dcc->entry_list;
1936 struct discard_entry *entry, *this;
1937 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1938 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1939 unsigned int start = 0, end = -1;
1940 unsigned int secno, start_segno;
1941 bool force = (cpc->reason & CP_DISCARD);
1942 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1943
1944 mutex_lock(&dirty_i->seglist_lock);
1945
1946 while (1) {
1947 int i;
1948
1949 if (need_align && end != -1)
1950 end--;
1951 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1952 if (start >= MAIN_SEGS(sbi))
1953 break;
1954 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1955 start + 1);
1956
1957 if (need_align) {
1958 start = rounddown(start, sbi->segs_per_sec);
1959 end = roundup(end, sbi->segs_per_sec);
1960 }
1961
1962 for (i = start; i < end; i++) {
1963 if (test_and_clear_bit(i, prefree_map))
1964 dirty_i->nr_dirty[PRE]--;
1965 }
1966
1967 if (!f2fs_realtime_discard_enable(sbi))
1968 continue;
1969
1970 if (force && start >= cpc->trim_start &&
1971 (end - 1) <= cpc->trim_end)
1972 continue;
1973
1974 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1975 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1976 (end - start) << sbi->log_blocks_per_seg);
1977 continue;
1978 }
1979 next:
1980 secno = GET_SEC_FROM_SEG(sbi, start);
1981 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1982 if (!IS_CURSEC(sbi, secno) &&
1983 !get_valid_blocks(sbi, start, true))
1984 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1985 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1986
1987 start = start_segno + sbi->segs_per_sec;
1988 if (start < end)
1989 goto next;
1990 else
1991 end = start - 1;
1992 }
1993 mutex_unlock(&dirty_i->seglist_lock);
1994
1995 /* send small discards */
1996 list_for_each_entry_safe(entry, this, head, list) {
1997 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1998 bool is_valid = test_bit_le(0, entry->discard_map);
1999
2000 find_next:
2001 if (is_valid) {
2002 next_pos = find_next_zero_bit_le(entry->discard_map,
2003 sbi->blocks_per_seg, cur_pos);
2004 len = next_pos - cur_pos;
2005
2006 if (f2fs_sb_has_blkzoned(sbi) ||
2007 (force && len < cpc->trim_minlen))
2008 goto skip;
2009
2010 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2011 len);
2012 total_len += len;
2013 } else {
2014 next_pos = find_next_bit_le(entry->discard_map,
2015 sbi->blocks_per_seg, cur_pos);
2016 }
2017 skip:
2018 cur_pos = next_pos;
2019 is_valid = !is_valid;
2020
2021 if (cur_pos < sbi->blocks_per_seg)
2022 goto find_next;
2023
2024 release_discard_addr(entry);
2025 dcc->nr_discards -= total_len;
2026 }
2027
2028 wake_up_discard_thread(sbi, false);
2029 }
2030
2031 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2032 {
2033 dev_t dev = sbi->sb->s_bdev->bd_dev;
2034 struct discard_cmd_control *dcc;
2035 int err = 0, i;
2036
2037 if (SM_I(sbi)->dcc_info) {
2038 dcc = SM_I(sbi)->dcc_info;
2039 goto init_thread;
2040 }
2041
2042 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2043 if (!dcc)
2044 return -ENOMEM;
2045
2046 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2047 INIT_LIST_HEAD(&dcc->entry_list);
2048 for (i = 0; i < MAX_PLIST_NUM; i++)
2049 INIT_LIST_HEAD(&dcc->pend_list[i]);
2050 INIT_LIST_HEAD(&dcc->wait_list);
2051 INIT_LIST_HEAD(&dcc->fstrim_list);
2052 mutex_init(&dcc->cmd_lock);
2053 atomic_set(&dcc->issued_discard, 0);
2054 atomic_set(&dcc->queued_discard, 0);
2055 atomic_set(&dcc->discard_cmd_cnt, 0);
2056 dcc->nr_discards = 0;
2057 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2058 dcc->undiscard_blks = 0;
2059 dcc->next_pos = 0;
2060 dcc->root = RB_ROOT_CACHED;
2061 dcc->rbtree_check = false;
2062
2063 init_waitqueue_head(&dcc->discard_wait_queue);
2064 SM_I(sbi)->dcc_info = dcc;
2065 init_thread:
2066 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2067 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2068 if (IS_ERR(dcc->f2fs_issue_discard)) {
2069 err = PTR_ERR(dcc->f2fs_issue_discard);
2070 kvfree(dcc);
2071 SM_I(sbi)->dcc_info = NULL;
2072 return err;
2073 }
2074
2075 return err;
2076 }
2077
2078 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2079 {
2080 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2081
2082 if (!dcc)
2083 return;
2084
2085 f2fs_stop_discard_thread(sbi);
2086
2087 kvfree(dcc);
2088 SM_I(sbi)->dcc_info = NULL;
2089 }
2090
2091 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2092 {
2093 struct sit_info *sit_i = SIT_I(sbi);
2094
2095 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2096 sit_i->dirty_sentries++;
2097 return false;
2098 }
2099
2100 return true;
2101 }
2102
2103 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2104 unsigned int segno, int modified)
2105 {
2106 struct seg_entry *se = get_seg_entry(sbi, segno);
2107 se->type = type;
2108 if (modified)
2109 __mark_sit_entry_dirty(sbi, segno);
2110 }
2111
2112 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2113 {
2114 struct seg_entry *se;
2115 unsigned int segno, offset;
2116 long int new_vblocks;
2117 bool exist;
2118 #ifdef CONFIG_F2FS_CHECK_FS
2119 bool mir_exist;
2120 #endif
2121
2122 segno = GET_SEGNO(sbi, blkaddr);
2123
2124 se = get_seg_entry(sbi, segno);
2125 new_vblocks = se->valid_blocks + del;
2126 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2127
2128 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2129 (new_vblocks > sbi->blocks_per_seg)));
2130
2131 se->valid_blocks = new_vblocks;
2132 se->mtime = get_mtime(sbi, false);
2133 if (se->mtime > SIT_I(sbi)->max_mtime)
2134 SIT_I(sbi)->max_mtime = se->mtime;
2135
2136 /* Update valid block bitmap */
2137 if (del > 0) {
2138 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2139 #ifdef CONFIG_F2FS_CHECK_FS
2140 mir_exist = f2fs_test_and_set_bit(offset,
2141 se->cur_valid_map_mir);
2142 if (unlikely(exist != mir_exist)) {
2143 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2144 blkaddr, exist);
2145 f2fs_bug_on(sbi, 1);
2146 }
2147 #endif
2148 if (unlikely(exist)) {
2149 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2150 blkaddr);
2151 f2fs_bug_on(sbi, 1);
2152 se->valid_blocks--;
2153 del = 0;
2154 }
2155
2156 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2157 sbi->discard_blks--;
2158
2159 /* don't overwrite by SSR to keep node chain */
2160 if (IS_NODESEG(se->type) &&
2161 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2162 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2163 se->ckpt_valid_blocks++;
2164 }
2165 } else {
2166 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2167 #ifdef CONFIG_F2FS_CHECK_FS
2168 mir_exist = f2fs_test_and_clear_bit(offset,
2169 se->cur_valid_map_mir);
2170 if (unlikely(exist != mir_exist)) {
2171 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2172 blkaddr, exist);
2173 f2fs_bug_on(sbi, 1);
2174 }
2175 #endif
2176 if (unlikely(!exist)) {
2177 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2178 blkaddr);
2179 f2fs_bug_on(sbi, 1);
2180 se->valid_blocks++;
2181 del = 0;
2182 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2183 /*
2184 * If checkpoints are off, we must not reuse data that
2185 * was used in the previous checkpoint. If it was used
2186 * before, we must track that to know how much space we
2187 * really have.
2188 */
2189 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2190 spin_lock(&sbi->stat_lock);
2191 sbi->unusable_block_count++;
2192 spin_unlock(&sbi->stat_lock);
2193 }
2194 }
2195
2196 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2197 sbi->discard_blks++;
2198 }
2199 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2200 se->ckpt_valid_blocks += del;
2201
2202 __mark_sit_entry_dirty(sbi, segno);
2203
2204 /* update total number of valid blocks to be written in ckpt area */
2205 SIT_I(sbi)->written_valid_blocks += del;
2206
2207 if (__is_large_section(sbi))
2208 get_sec_entry(sbi, segno)->valid_blocks += del;
2209 }
2210
2211 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2212 {
2213 unsigned int segno = GET_SEGNO(sbi, addr);
2214 struct sit_info *sit_i = SIT_I(sbi);
2215
2216 f2fs_bug_on(sbi, addr == NULL_ADDR);
2217 if (addr == NEW_ADDR)
2218 return;
2219
2220 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2221
2222 /* add it into sit main buffer */
2223 down_write(&sit_i->sentry_lock);
2224
2225 update_sit_entry(sbi, addr, -1);
2226
2227 /* add it into dirty seglist */
2228 locate_dirty_segment(sbi, segno);
2229
2230 up_write(&sit_i->sentry_lock);
2231 }
2232
2233 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2234 {
2235 struct sit_info *sit_i = SIT_I(sbi);
2236 unsigned int segno, offset;
2237 struct seg_entry *se;
2238 bool is_cp = false;
2239
2240 if (!__is_valid_data_blkaddr(blkaddr))
2241 return true;
2242
2243 down_read(&sit_i->sentry_lock);
2244
2245 segno = GET_SEGNO(sbi, blkaddr);
2246 se = get_seg_entry(sbi, segno);
2247 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2248
2249 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2250 is_cp = true;
2251
2252 up_read(&sit_i->sentry_lock);
2253
2254 return is_cp;
2255 }
2256
2257 /*
2258 * This function should be resided under the curseg_mutex lock
2259 */
2260 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2261 struct f2fs_summary *sum)
2262 {
2263 struct curseg_info *curseg = CURSEG_I(sbi, type);
2264 void *addr = curseg->sum_blk;
2265 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2266 memcpy(addr, sum, sizeof(struct f2fs_summary));
2267 }
2268
2269 /*
2270 * Calculate the number of current summary pages for writing
2271 */
2272 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2273 {
2274 int valid_sum_count = 0;
2275 int i, sum_in_page;
2276
2277 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2278 if (sbi->ckpt->alloc_type[i] == SSR)
2279 valid_sum_count += sbi->blocks_per_seg;
2280 else {
2281 if (for_ra)
2282 valid_sum_count += le16_to_cpu(
2283 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2284 else
2285 valid_sum_count += curseg_blkoff(sbi, i);
2286 }
2287 }
2288
2289 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2290 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2291 if (valid_sum_count <= sum_in_page)
2292 return 1;
2293 else if ((valid_sum_count - sum_in_page) <=
2294 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2295 return 2;
2296 return 3;
2297 }
2298
2299 /*
2300 * Caller should put this summary page
2301 */
2302 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2303 {
2304 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2305 }
2306
2307 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2308 void *src, block_t blk_addr)
2309 {
2310 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311
2312 memcpy(page_address(page), src, PAGE_SIZE);
2313 set_page_dirty(page);
2314 f2fs_put_page(page, 1);
2315 }
2316
2317 static void write_sum_page(struct f2fs_sb_info *sbi,
2318 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2319 {
2320 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2321 }
2322
2323 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2324 int type, block_t blk_addr)
2325 {
2326 struct curseg_info *curseg = CURSEG_I(sbi, type);
2327 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2328 struct f2fs_summary_block *src = curseg->sum_blk;
2329 struct f2fs_summary_block *dst;
2330
2331 dst = (struct f2fs_summary_block *)page_address(page);
2332 memset(dst, 0, PAGE_SIZE);
2333
2334 mutex_lock(&curseg->curseg_mutex);
2335
2336 down_read(&curseg->journal_rwsem);
2337 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2338 up_read(&curseg->journal_rwsem);
2339
2340 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2341 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2342
2343 mutex_unlock(&curseg->curseg_mutex);
2344
2345 set_page_dirty(page);
2346 f2fs_put_page(page, 1);
2347 }
2348
2349 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2350 {
2351 struct curseg_info *curseg = CURSEG_I(sbi, type);
2352 unsigned int segno = curseg->segno + 1;
2353 struct free_segmap_info *free_i = FREE_I(sbi);
2354
2355 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2356 return !test_bit(segno, free_i->free_segmap);
2357 return 0;
2358 }
2359
2360 /*
2361 * Find a new segment from the free segments bitmap to right order
2362 * This function should be returned with success, otherwise BUG
2363 */
2364 static void get_new_segment(struct f2fs_sb_info *sbi,
2365 unsigned int *newseg, bool new_sec, int dir)
2366 {
2367 struct free_segmap_info *free_i = FREE_I(sbi);
2368 unsigned int segno, secno, zoneno;
2369 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2370 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2371 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2372 unsigned int left_start = hint;
2373 bool init = true;
2374 int go_left = 0;
2375 int i;
2376
2377 spin_lock(&free_i->segmap_lock);
2378
2379 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2380 segno = find_next_zero_bit(free_i->free_segmap,
2381 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2382 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2383 goto got_it;
2384 }
2385 find_other_zone:
2386 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2387 if (secno >= MAIN_SECS(sbi)) {
2388 if (dir == ALLOC_RIGHT) {
2389 secno = find_next_zero_bit(free_i->free_secmap,
2390 MAIN_SECS(sbi), 0);
2391 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2392 } else {
2393 go_left = 1;
2394 left_start = hint - 1;
2395 }
2396 }
2397 if (go_left == 0)
2398 goto skip_left;
2399
2400 while (test_bit(left_start, free_i->free_secmap)) {
2401 if (left_start > 0) {
2402 left_start--;
2403 continue;
2404 }
2405 left_start = find_next_zero_bit(free_i->free_secmap,
2406 MAIN_SECS(sbi), 0);
2407 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2408 break;
2409 }
2410 secno = left_start;
2411 skip_left:
2412 segno = GET_SEG_FROM_SEC(sbi, secno);
2413 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2414
2415 /* give up on finding another zone */
2416 if (!init)
2417 goto got_it;
2418 if (sbi->secs_per_zone == 1)
2419 goto got_it;
2420 if (zoneno == old_zoneno)
2421 goto got_it;
2422 if (dir == ALLOC_LEFT) {
2423 if (!go_left && zoneno + 1 >= total_zones)
2424 goto got_it;
2425 if (go_left && zoneno == 0)
2426 goto got_it;
2427 }
2428 for (i = 0; i < NR_CURSEG_TYPE; i++)
2429 if (CURSEG_I(sbi, i)->zone == zoneno)
2430 break;
2431
2432 if (i < NR_CURSEG_TYPE) {
2433 /* zone is in user, try another */
2434 if (go_left)
2435 hint = zoneno * sbi->secs_per_zone - 1;
2436 else if (zoneno + 1 >= total_zones)
2437 hint = 0;
2438 else
2439 hint = (zoneno + 1) * sbi->secs_per_zone;
2440 init = false;
2441 goto find_other_zone;
2442 }
2443 got_it:
2444 /* set it as dirty segment in free segmap */
2445 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2446 __set_inuse(sbi, segno);
2447 *newseg = segno;
2448 spin_unlock(&free_i->segmap_lock);
2449 }
2450
2451 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2452 {
2453 struct curseg_info *curseg = CURSEG_I(sbi, type);
2454 struct summary_footer *sum_footer;
2455
2456 curseg->segno = curseg->next_segno;
2457 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2458 curseg->next_blkoff = 0;
2459 curseg->next_segno = NULL_SEGNO;
2460
2461 sum_footer = &(curseg->sum_blk->footer);
2462 memset(sum_footer, 0, sizeof(struct summary_footer));
2463 if (IS_DATASEG(type))
2464 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2465 if (IS_NODESEG(type))
2466 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2467 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2468 }
2469
2470 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2471 {
2472 /* if segs_per_sec is large than 1, we need to keep original policy. */
2473 if (__is_large_section(sbi))
2474 return CURSEG_I(sbi, type)->segno;
2475
2476 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2477 return 0;
2478
2479 if (test_opt(sbi, NOHEAP) &&
2480 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2481 return 0;
2482
2483 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2484 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2485
2486 /* find segments from 0 to reuse freed segments */
2487 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2488 return 0;
2489
2490 return CURSEG_I(sbi, type)->segno;
2491 }
2492
2493 /*
2494 * Allocate a current working segment.
2495 * This function always allocates a free segment in LFS manner.
2496 */
2497 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2498 {
2499 struct curseg_info *curseg = CURSEG_I(sbi, type);
2500 unsigned int segno = curseg->segno;
2501 int dir = ALLOC_LEFT;
2502
2503 write_sum_page(sbi, curseg->sum_blk,
2504 GET_SUM_BLOCK(sbi, segno));
2505 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2506 dir = ALLOC_RIGHT;
2507
2508 if (test_opt(sbi, NOHEAP))
2509 dir = ALLOC_RIGHT;
2510
2511 segno = __get_next_segno(sbi, type);
2512 get_new_segment(sbi, &segno, new_sec, dir);
2513 curseg->next_segno = segno;
2514 reset_curseg(sbi, type, 1);
2515 curseg->alloc_type = LFS;
2516 }
2517
2518 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2519 struct curseg_info *seg, block_t start)
2520 {
2521 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2522 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2523 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2524 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2525 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2526 int i, pos;
2527
2528 for (i = 0; i < entries; i++)
2529 target_map[i] = ckpt_map[i] | cur_map[i];
2530
2531 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2532
2533 seg->next_blkoff = pos;
2534 }
2535
2536 /*
2537 * If a segment is written by LFS manner, next block offset is just obtained
2538 * by increasing the current block offset. However, if a segment is written by
2539 * SSR manner, next block offset obtained by calling __next_free_blkoff
2540 */
2541 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2542 struct curseg_info *seg)
2543 {
2544 if (seg->alloc_type == SSR)
2545 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2546 else
2547 seg->next_blkoff++;
2548 }
2549
2550 /*
2551 * This function always allocates a used segment(from dirty seglist) by SSR
2552 * manner, so it should recover the existing segment information of valid blocks
2553 */
2554 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2555 {
2556 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2557 struct curseg_info *curseg = CURSEG_I(sbi, type);
2558 unsigned int new_segno = curseg->next_segno;
2559 struct f2fs_summary_block *sum_node;
2560 struct page *sum_page;
2561
2562 write_sum_page(sbi, curseg->sum_blk,
2563 GET_SUM_BLOCK(sbi, curseg->segno));
2564 __set_test_and_inuse(sbi, new_segno);
2565
2566 mutex_lock(&dirty_i->seglist_lock);
2567 __remove_dirty_segment(sbi, new_segno, PRE);
2568 __remove_dirty_segment(sbi, new_segno, DIRTY);
2569 mutex_unlock(&dirty_i->seglist_lock);
2570
2571 reset_curseg(sbi, type, 1);
2572 curseg->alloc_type = SSR;
2573 __next_free_blkoff(sbi, curseg, 0);
2574
2575 sum_page = f2fs_get_sum_page(sbi, new_segno);
2576 f2fs_bug_on(sbi, IS_ERR(sum_page));
2577 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2578 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2579 f2fs_put_page(sum_page, 1);
2580 }
2581
2582 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2583 {
2584 struct curseg_info *curseg = CURSEG_I(sbi, type);
2585 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2586 unsigned segno = NULL_SEGNO;
2587 int i, cnt;
2588 bool reversed = false;
2589
2590 /* f2fs_need_SSR() already forces to do this */
2591 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2592 curseg->next_segno = segno;
2593 return 1;
2594 }
2595
2596 /* For node segments, let's do SSR more intensively */
2597 if (IS_NODESEG(type)) {
2598 if (type >= CURSEG_WARM_NODE) {
2599 reversed = true;
2600 i = CURSEG_COLD_NODE;
2601 } else {
2602 i = CURSEG_HOT_NODE;
2603 }
2604 cnt = NR_CURSEG_NODE_TYPE;
2605 } else {
2606 if (type >= CURSEG_WARM_DATA) {
2607 reversed = true;
2608 i = CURSEG_COLD_DATA;
2609 } else {
2610 i = CURSEG_HOT_DATA;
2611 }
2612 cnt = NR_CURSEG_DATA_TYPE;
2613 }
2614
2615 for (; cnt-- > 0; reversed ? i-- : i++) {
2616 if (i == type)
2617 continue;
2618 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2619 curseg->next_segno = segno;
2620 return 1;
2621 }
2622 }
2623
2624 /* find valid_blocks=0 in dirty list */
2625 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2626 segno = get_free_segment(sbi);
2627 if (segno != NULL_SEGNO) {
2628 curseg->next_segno = segno;
2629 return 1;
2630 }
2631 }
2632 return 0;
2633 }
2634
2635 /*
2636 * flush out current segment and replace it with new segment
2637 * This function should be returned with success, otherwise BUG
2638 */
2639 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2640 int type, bool force)
2641 {
2642 struct curseg_info *curseg = CURSEG_I(sbi, type);
2643
2644 if (force)
2645 new_curseg(sbi, type, true);
2646 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2647 type == CURSEG_WARM_NODE)
2648 new_curseg(sbi, type, false);
2649 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2650 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2651 new_curseg(sbi, type, false);
2652 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2653 change_curseg(sbi, type);
2654 else
2655 new_curseg(sbi, type, false);
2656
2657 stat_inc_seg_type(sbi, curseg);
2658 }
2659
2660 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2661 unsigned int start, unsigned int end)
2662 {
2663 struct curseg_info *curseg = CURSEG_I(sbi, type);
2664 unsigned int segno;
2665
2666 down_read(&SM_I(sbi)->curseg_lock);
2667 mutex_lock(&curseg->curseg_mutex);
2668 down_write(&SIT_I(sbi)->sentry_lock);
2669
2670 segno = CURSEG_I(sbi, type)->segno;
2671 if (segno < start || segno > end)
2672 goto unlock;
2673
2674 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2675 change_curseg(sbi, type);
2676 else
2677 new_curseg(sbi, type, true);
2678
2679 stat_inc_seg_type(sbi, curseg);
2680
2681 locate_dirty_segment(sbi, segno);
2682 unlock:
2683 up_write(&SIT_I(sbi)->sentry_lock);
2684
2685 if (segno != curseg->segno)
2686 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2687 type, segno, curseg->segno);
2688
2689 mutex_unlock(&curseg->curseg_mutex);
2690 up_read(&SM_I(sbi)->curseg_lock);
2691 }
2692
2693 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2694 {
2695 struct curseg_info *curseg;
2696 unsigned int old_segno;
2697 int i;
2698
2699 down_write(&SIT_I(sbi)->sentry_lock);
2700
2701 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2702 curseg = CURSEG_I(sbi, i);
2703 old_segno = curseg->segno;
2704 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2705 locate_dirty_segment(sbi, old_segno);
2706 }
2707
2708 up_write(&SIT_I(sbi)->sentry_lock);
2709 }
2710
2711 static const struct segment_allocation default_salloc_ops = {
2712 .allocate_segment = allocate_segment_by_default,
2713 };
2714
2715 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2716 struct cp_control *cpc)
2717 {
2718 __u64 trim_start = cpc->trim_start;
2719 bool has_candidate = false;
2720
2721 down_write(&SIT_I(sbi)->sentry_lock);
2722 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2723 if (add_discard_addrs(sbi, cpc, true)) {
2724 has_candidate = true;
2725 break;
2726 }
2727 }
2728 up_write(&SIT_I(sbi)->sentry_lock);
2729
2730 cpc->trim_start = trim_start;
2731 return has_candidate;
2732 }
2733
2734 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2735 struct discard_policy *dpolicy,
2736 unsigned int start, unsigned int end)
2737 {
2738 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2739 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2740 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2741 struct discard_cmd *dc;
2742 struct blk_plug plug;
2743 int issued;
2744 unsigned int trimmed = 0;
2745
2746 next:
2747 issued = 0;
2748
2749 mutex_lock(&dcc->cmd_lock);
2750 if (unlikely(dcc->rbtree_check))
2751 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2752 &dcc->root));
2753
2754 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2755 NULL, start,
2756 (struct rb_entry **)&prev_dc,
2757 (struct rb_entry **)&next_dc,
2758 &insert_p, &insert_parent, true, NULL);
2759 if (!dc)
2760 dc = next_dc;
2761
2762 blk_start_plug(&plug);
2763
2764 while (dc && dc->lstart <= end) {
2765 struct rb_node *node;
2766 int err = 0;
2767
2768 if (dc->len < dpolicy->granularity)
2769 goto skip;
2770
2771 if (dc->state != D_PREP) {
2772 list_move_tail(&dc->list, &dcc->fstrim_list);
2773 goto skip;
2774 }
2775
2776 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2777
2778 if (issued >= dpolicy->max_requests) {
2779 start = dc->lstart + dc->len;
2780
2781 if (err)
2782 __remove_discard_cmd(sbi, dc);
2783
2784 blk_finish_plug(&plug);
2785 mutex_unlock(&dcc->cmd_lock);
2786 trimmed += __wait_all_discard_cmd(sbi, NULL);
2787 congestion_wait(BLK_RW_ASYNC, HZ/50);
2788 goto next;
2789 }
2790 skip:
2791 node = rb_next(&dc->rb_node);
2792 if (err)
2793 __remove_discard_cmd(sbi, dc);
2794 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2795
2796 if (fatal_signal_pending(current))
2797 break;
2798 }
2799
2800 blk_finish_plug(&plug);
2801 mutex_unlock(&dcc->cmd_lock);
2802
2803 return trimmed;
2804 }
2805
2806 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2807 {
2808 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2809 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2810 unsigned int start_segno, end_segno;
2811 block_t start_block, end_block;
2812 struct cp_control cpc;
2813 struct discard_policy dpolicy;
2814 unsigned long long trimmed = 0;
2815 int err = 0;
2816 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2817
2818 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2819 return -EINVAL;
2820
2821 if (end < MAIN_BLKADDR(sbi))
2822 goto out;
2823
2824 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2825 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2826 return -EFSCORRUPTED;
2827 }
2828
2829 /* start/end segment number in main_area */
2830 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2831 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2832 GET_SEGNO(sbi, end);
2833 if (need_align) {
2834 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2835 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2836 }
2837
2838 cpc.reason = CP_DISCARD;
2839 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2840 cpc.trim_start = start_segno;
2841 cpc.trim_end = end_segno;
2842
2843 if (sbi->discard_blks == 0)
2844 goto out;
2845
2846 mutex_lock(&sbi->gc_mutex);
2847 err = f2fs_write_checkpoint(sbi, &cpc);
2848 mutex_unlock(&sbi->gc_mutex);
2849 if (err)
2850 goto out;
2851
2852 /*
2853 * We filed discard candidates, but actually we don't need to wait for
2854 * all of them, since they'll be issued in idle time along with runtime
2855 * discard option. User configuration looks like using runtime discard
2856 * or periodic fstrim instead of it.
2857 */
2858 if (f2fs_realtime_discard_enable(sbi))
2859 goto out;
2860
2861 start_block = START_BLOCK(sbi, start_segno);
2862 end_block = START_BLOCK(sbi, end_segno + 1);
2863
2864 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2865 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2866 start_block, end_block);
2867
2868 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2869 start_block, end_block);
2870 out:
2871 if (!err)
2872 range->len = F2FS_BLK_TO_BYTES(trimmed);
2873 return err;
2874 }
2875
2876 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2877 {
2878 struct curseg_info *curseg = CURSEG_I(sbi, type);
2879 if (curseg->next_blkoff < sbi->blocks_per_seg)
2880 return true;
2881 return false;
2882 }
2883
2884 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2885 {
2886 switch (hint) {
2887 case WRITE_LIFE_SHORT:
2888 return CURSEG_HOT_DATA;
2889 case WRITE_LIFE_EXTREME:
2890 return CURSEG_COLD_DATA;
2891 default:
2892 return CURSEG_WARM_DATA;
2893 }
2894 }
2895
2896 /* This returns write hints for each segment type. This hints will be
2897 * passed down to block layer. There are mapping tables which depend on
2898 * the mount option 'whint_mode'.
2899 *
2900 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2901 *
2902 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2903 *
2904 * User F2FS Block
2905 * ---- ---- -----
2906 * META WRITE_LIFE_NOT_SET
2907 * HOT_NODE "
2908 * WARM_NODE "
2909 * COLD_NODE "
2910 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2911 * extension list " "
2912 *
2913 * -- buffered io
2914 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2915 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2916 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2917 * WRITE_LIFE_NONE " "
2918 * WRITE_LIFE_MEDIUM " "
2919 * WRITE_LIFE_LONG " "
2920 *
2921 * -- direct io
2922 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2923 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2924 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2925 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2926 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2927 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2928 *
2929 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2930 *
2931 * User F2FS Block
2932 * ---- ---- -----
2933 * META WRITE_LIFE_MEDIUM;
2934 * HOT_NODE WRITE_LIFE_NOT_SET
2935 * WARM_NODE "
2936 * COLD_NODE WRITE_LIFE_NONE
2937 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2938 * extension list " "
2939 *
2940 * -- buffered io
2941 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2942 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2943 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2944 * WRITE_LIFE_NONE " "
2945 * WRITE_LIFE_MEDIUM " "
2946 * WRITE_LIFE_LONG " "
2947 *
2948 * -- direct io
2949 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2950 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2951 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2952 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2953 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2954 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2955 */
2956
2957 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2958 enum page_type type, enum temp_type temp)
2959 {
2960 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2961 if (type == DATA) {
2962 if (temp == WARM)
2963 return WRITE_LIFE_NOT_SET;
2964 else if (temp == HOT)
2965 return WRITE_LIFE_SHORT;
2966 else if (temp == COLD)
2967 return WRITE_LIFE_EXTREME;
2968 } else {
2969 return WRITE_LIFE_NOT_SET;
2970 }
2971 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2972 if (type == DATA) {
2973 if (temp == WARM)
2974 return WRITE_LIFE_LONG;
2975 else if (temp == HOT)
2976 return WRITE_LIFE_SHORT;
2977 else if (temp == COLD)
2978 return WRITE_LIFE_EXTREME;
2979 } else if (type == NODE) {
2980 if (temp == WARM || temp == HOT)
2981 return WRITE_LIFE_NOT_SET;
2982 else if (temp == COLD)
2983 return WRITE_LIFE_NONE;
2984 } else if (type == META) {
2985 return WRITE_LIFE_MEDIUM;
2986 }
2987 }
2988 return WRITE_LIFE_NOT_SET;
2989 }
2990
2991 static int __get_segment_type_2(struct f2fs_io_info *fio)
2992 {
2993 if (fio->type == DATA)
2994 return CURSEG_HOT_DATA;
2995 else
2996 return CURSEG_HOT_NODE;
2997 }
2998
2999 static int __get_segment_type_4(struct f2fs_io_info *fio)
3000 {
3001 if (fio->type == DATA) {
3002 struct inode *inode = fio->page->mapping->host;
3003
3004 if (S_ISDIR(inode->i_mode))
3005 return CURSEG_HOT_DATA;
3006 else
3007 return CURSEG_COLD_DATA;
3008 } else {
3009 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3010 return CURSEG_WARM_NODE;
3011 else
3012 return CURSEG_COLD_NODE;
3013 }
3014 }
3015
3016 static int __get_segment_type_6(struct f2fs_io_info *fio)
3017 {
3018 if (fio->type == DATA) {
3019 struct inode *inode = fio->page->mapping->host;
3020
3021 if (is_cold_data(fio->page) || file_is_cold(inode))
3022 return CURSEG_COLD_DATA;
3023 if (file_is_hot(inode) ||
3024 is_inode_flag_set(inode, FI_HOT_DATA) ||
3025 f2fs_is_atomic_file(inode) ||
3026 f2fs_is_volatile_file(inode))
3027 return CURSEG_HOT_DATA;
3028 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3029 } else {
3030 if (IS_DNODE(fio->page))
3031 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3032 CURSEG_HOT_NODE;
3033 return CURSEG_COLD_NODE;
3034 }
3035 }
3036
3037 static int __get_segment_type(struct f2fs_io_info *fio)
3038 {
3039 int type = 0;
3040
3041 switch (F2FS_OPTION(fio->sbi).active_logs) {
3042 case 2:
3043 type = __get_segment_type_2(fio);
3044 break;
3045 case 4:
3046 type = __get_segment_type_4(fio);
3047 break;
3048 case 6:
3049 type = __get_segment_type_6(fio);
3050 break;
3051 default:
3052 f2fs_bug_on(fio->sbi, true);
3053 }
3054
3055 if (IS_HOT(type))
3056 fio->temp = HOT;
3057 else if (IS_WARM(type))
3058 fio->temp = WARM;
3059 else
3060 fio->temp = COLD;
3061 return type;
3062 }
3063
3064 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3065 block_t old_blkaddr, block_t *new_blkaddr,
3066 struct f2fs_summary *sum, int type,
3067 struct f2fs_io_info *fio, bool add_list)
3068 {
3069 struct sit_info *sit_i = SIT_I(sbi);
3070 struct curseg_info *curseg = CURSEG_I(sbi, type);
3071
3072 down_read(&SM_I(sbi)->curseg_lock);
3073
3074 mutex_lock(&curseg->curseg_mutex);
3075 down_write(&sit_i->sentry_lock);
3076
3077 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3078
3079 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3080
3081 /*
3082 * __add_sum_entry should be resided under the curseg_mutex
3083 * because, this function updates a summary entry in the
3084 * current summary block.
3085 */
3086 __add_sum_entry(sbi, type, sum);
3087
3088 __refresh_next_blkoff(sbi, curseg);
3089
3090 stat_inc_block_count(sbi, curseg);
3091
3092 /*
3093 * SIT information should be updated before segment allocation,
3094 * since SSR needs latest valid block information.
3095 */
3096 update_sit_entry(sbi, *new_blkaddr, 1);
3097 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3098 update_sit_entry(sbi, old_blkaddr, -1);
3099
3100 if (!__has_curseg_space(sbi, type))
3101 sit_i->s_ops->allocate_segment(sbi, type, false);
3102
3103 /*
3104 * segment dirty status should be updated after segment allocation,
3105 * so we just need to update status only one time after previous
3106 * segment being closed.
3107 */
3108 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3109 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3110
3111 up_write(&sit_i->sentry_lock);
3112
3113 if (page && IS_NODESEG(type)) {
3114 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3115
3116 f2fs_inode_chksum_set(sbi, page);
3117 }
3118
3119 if (add_list) {
3120 struct f2fs_bio_info *io;
3121
3122 INIT_LIST_HEAD(&fio->list);
3123 fio->in_list = true;
3124 fio->retry = false;
3125 io = sbi->write_io[fio->type] + fio->temp;
3126 spin_lock(&io->io_lock);
3127 list_add_tail(&fio->list, &io->io_list);
3128 spin_unlock(&io->io_lock);
3129 }
3130
3131 mutex_unlock(&curseg->curseg_mutex);
3132
3133 up_read(&SM_I(sbi)->curseg_lock);
3134 }
3135
3136 static void update_device_state(struct f2fs_io_info *fio)
3137 {
3138 struct f2fs_sb_info *sbi = fio->sbi;
3139 unsigned int devidx;
3140
3141 if (!f2fs_is_multi_device(sbi))
3142 return;
3143
3144 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3145
3146 /* update device state for fsync */
3147 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3148
3149 /* update device state for checkpoint */
3150 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3151 spin_lock(&sbi->dev_lock);
3152 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3153 spin_unlock(&sbi->dev_lock);
3154 }
3155 }
3156
3157 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3158 {
3159 int type = __get_segment_type(fio);
3160 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3161
3162 if (keep_order)
3163 down_read(&fio->sbi->io_order_lock);
3164 reallocate:
3165 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3166 &fio->new_blkaddr, sum, type, fio, true);
3167 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3168 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3169 fio->old_blkaddr, fio->old_blkaddr);
3170
3171 /* writeout dirty page into bdev */
3172 f2fs_submit_page_write(fio);
3173 if (fio->retry) {
3174 fio->old_blkaddr = fio->new_blkaddr;
3175 goto reallocate;
3176 }
3177
3178 update_device_state(fio);
3179
3180 if (keep_order)
3181 up_read(&fio->sbi->io_order_lock);
3182 }
3183
3184 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3185 enum iostat_type io_type)
3186 {
3187 struct f2fs_io_info fio = {
3188 .sbi = sbi,
3189 .type = META,
3190 .temp = HOT,
3191 .op = REQ_OP_WRITE,
3192 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3193 .old_blkaddr = page->index,
3194 .new_blkaddr = page->index,
3195 .page = page,
3196 .encrypted_page = NULL,
3197 .in_list = false,
3198 };
3199
3200 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3201 fio.op_flags &= ~REQ_META;
3202
3203 set_page_writeback(page);
3204 ClearPageError(page);
3205 f2fs_submit_page_write(&fio);
3206
3207 stat_inc_meta_count(sbi, page->index);
3208 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3209 }
3210
3211 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3212 {
3213 struct f2fs_summary sum;
3214
3215 set_summary(&sum, nid, 0, 0);
3216 do_write_page(&sum, fio);
3217
3218 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3219 }
3220
3221 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3222 struct f2fs_io_info *fio)
3223 {
3224 struct f2fs_sb_info *sbi = fio->sbi;
3225 struct f2fs_summary sum;
3226
3227 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3228 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3229 do_write_page(&sum, fio);
3230 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3231
3232 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3233 }
3234
3235 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3236 {
3237 int err;
3238 struct f2fs_sb_info *sbi = fio->sbi;
3239 unsigned int segno;
3240
3241 fio->new_blkaddr = fio->old_blkaddr;
3242 /* i/o temperature is needed for passing down write hints */
3243 __get_segment_type(fio);
3244
3245 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3246
3247 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3248 set_sbi_flag(sbi, SBI_NEED_FSCK);
3249 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3250 __func__, segno);
3251 return -EFSCORRUPTED;
3252 }
3253
3254 stat_inc_inplace_blocks(fio->sbi);
3255
3256 if (fio->bio)
3257 err = f2fs_merge_page_bio(fio);
3258 else
3259 err = f2fs_submit_page_bio(fio);
3260 if (!err) {
3261 update_device_state(fio);
3262 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3263 }
3264
3265 return err;
3266 }
3267
3268 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3269 unsigned int segno)
3270 {
3271 int i;
3272
3273 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3274 if (CURSEG_I(sbi, i)->segno == segno)
3275 break;
3276 }
3277 return i;
3278 }
3279
3280 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3281 block_t old_blkaddr, block_t new_blkaddr,
3282 bool recover_curseg, bool recover_newaddr)
3283 {
3284 struct sit_info *sit_i = SIT_I(sbi);
3285 struct curseg_info *curseg;
3286 unsigned int segno, old_cursegno;
3287 struct seg_entry *se;
3288 int type;
3289 unsigned short old_blkoff;
3290
3291 segno = GET_SEGNO(sbi, new_blkaddr);
3292 se = get_seg_entry(sbi, segno);
3293 type = se->type;
3294
3295 down_write(&SM_I(sbi)->curseg_lock);
3296
3297 if (!recover_curseg) {
3298 /* for recovery flow */
3299 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3300 if (old_blkaddr == NULL_ADDR)
3301 type = CURSEG_COLD_DATA;
3302 else
3303 type = CURSEG_WARM_DATA;
3304 }
3305 } else {
3306 if (IS_CURSEG(sbi, segno)) {
3307 /* se->type is volatile as SSR allocation */
3308 type = __f2fs_get_curseg(sbi, segno);
3309 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3310 } else {
3311 type = CURSEG_WARM_DATA;
3312 }
3313 }
3314
3315 f2fs_bug_on(sbi, !IS_DATASEG(type));
3316 curseg = CURSEG_I(sbi, type);
3317
3318 mutex_lock(&curseg->curseg_mutex);
3319 down_write(&sit_i->sentry_lock);
3320
3321 old_cursegno = curseg->segno;
3322 old_blkoff = curseg->next_blkoff;
3323
3324 /* change the current segment */
3325 if (segno != curseg->segno) {
3326 curseg->next_segno = segno;
3327 change_curseg(sbi, type);
3328 }
3329
3330 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3331 __add_sum_entry(sbi, type, sum);
3332
3333 if (!recover_curseg || recover_newaddr)
3334 update_sit_entry(sbi, new_blkaddr, 1);
3335 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3336 invalidate_mapping_pages(META_MAPPING(sbi),
3337 old_blkaddr, old_blkaddr);
3338 update_sit_entry(sbi, old_blkaddr, -1);
3339 }
3340
3341 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3342 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3343
3344 locate_dirty_segment(sbi, old_cursegno);
3345
3346 if (recover_curseg) {
3347 if (old_cursegno != curseg->segno) {
3348 curseg->next_segno = old_cursegno;
3349 change_curseg(sbi, type);
3350 }
3351 curseg->next_blkoff = old_blkoff;
3352 }
3353
3354 up_write(&sit_i->sentry_lock);
3355 mutex_unlock(&curseg->curseg_mutex);
3356 up_write(&SM_I(sbi)->curseg_lock);
3357 }
3358
3359 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3360 block_t old_addr, block_t new_addr,
3361 unsigned char version, bool recover_curseg,
3362 bool recover_newaddr)
3363 {
3364 struct f2fs_summary sum;
3365
3366 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3367
3368 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3369 recover_curseg, recover_newaddr);
3370
3371 f2fs_update_data_blkaddr(dn, new_addr);
3372 }
3373
3374 void f2fs_wait_on_page_writeback(struct page *page,
3375 enum page_type type, bool ordered, bool locked)
3376 {
3377 if (PageWriteback(page)) {
3378 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3379
3380 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3381 if (ordered) {
3382 wait_on_page_writeback(page);
3383 f2fs_bug_on(sbi, locked && PageWriteback(page));
3384 } else {
3385 wait_for_stable_page(page);
3386 }
3387 }
3388 }
3389
3390 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3391 {
3392 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3393 struct page *cpage;
3394
3395 if (!f2fs_post_read_required(inode))
3396 return;
3397
3398 if (!__is_valid_data_blkaddr(blkaddr))
3399 return;
3400
3401 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3402 if (cpage) {
3403 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3404 f2fs_put_page(cpage, 1);
3405 }
3406 }
3407
3408 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3409 block_t len)
3410 {
3411 block_t i;
3412
3413 for (i = 0; i < len; i++)
3414 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3415 }
3416
3417 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3418 {
3419 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3420 struct curseg_info *seg_i;
3421 unsigned char *kaddr;
3422 struct page *page;
3423 block_t start;
3424 int i, j, offset;
3425
3426 start = start_sum_block(sbi);
3427
3428 page = f2fs_get_meta_page(sbi, start++);
3429 if (IS_ERR(page))
3430 return PTR_ERR(page);
3431 kaddr = (unsigned char *)page_address(page);
3432
3433 /* Step 1: restore nat cache */
3434 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3435 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3436
3437 /* Step 2: restore sit cache */
3438 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3439 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3440 offset = 2 * SUM_JOURNAL_SIZE;
3441
3442 /* Step 3: restore summary entries */
3443 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3444 unsigned short blk_off;
3445 unsigned int segno;
3446
3447 seg_i = CURSEG_I(sbi, i);
3448 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3449 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3450 if (blk_off > ENTRIES_IN_SUM) {
3451 f2fs_bug_on(sbi, 1);
3452 f2fs_put_page(page, 1);
3453 return -EFAULT;
3454 }
3455 seg_i->next_segno = segno;
3456 reset_curseg(sbi, i, 0);
3457 seg_i->alloc_type = ckpt->alloc_type[i];
3458 seg_i->next_blkoff = blk_off;
3459
3460 if (seg_i->alloc_type == SSR)
3461 blk_off = sbi->blocks_per_seg;
3462
3463 for (j = 0; j < blk_off; j++) {
3464 struct f2fs_summary *s;
3465 s = (struct f2fs_summary *)(kaddr + offset);
3466 seg_i->sum_blk->entries[j] = *s;
3467 offset += SUMMARY_SIZE;
3468 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3469 SUM_FOOTER_SIZE)
3470 continue;
3471
3472 f2fs_put_page(page, 1);
3473 page = NULL;
3474
3475 page = f2fs_get_meta_page(sbi, start++);
3476 if (IS_ERR(page))
3477 return PTR_ERR(page);
3478 kaddr = (unsigned char *)page_address(page);
3479 offset = 0;
3480 }
3481 }
3482 f2fs_put_page(page, 1);
3483 return 0;
3484 }
3485
3486 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3487 {
3488 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3489 struct f2fs_summary_block *sum;
3490 struct curseg_info *curseg;
3491 struct page *new;
3492 unsigned short blk_off;
3493 unsigned int segno = 0;
3494 block_t blk_addr = 0;
3495 int err = 0;
3496
3497 /* get segment number and block addr */
3498 if (IS_DATASEG(type)) {
3499 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3500 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3501 CURSEG_HOT_DATA]);
3502 if (__exist_node_summaries(sbi))
3503 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3504 else
3505 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3506 } else {
3507 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3508 CURSEG_HOT_NODE]);
3509 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3510 CURSEG_HOT_NODE]);
3511 if (__exist_node_summaries(sbi))
3512 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3513 type - CURSEG_HOT_NODE);
3514 else
3515 blk_addr = GET_SUM_BLOCK(sbi, segno);
3516 }
3517
3518 new = f2fs_get_meta_page(sbi, blk_addr);
3519 if (IS_ERR(new))
3520 return PTR_ERR(new);
3521 sum = (struct f2fs_summary_block *)page_address(new);
3522
3523 if (IS_NODESEG(type)) {
3524 if (__exist_node_summaries(sbi)) {
3525 struct f2fs_summary *ns = &sum->entries[0];
3526 int i;
3527 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3528 ns->version = 0;
3529 ns->ofs_in_node = 0;
3530 }
3531 } else {
3532 err = f2fs_restore_node_summary(sbi, segno, sum);
3533 if (err)
3534 goto out;
3535 }
3536 }
3537
3538 /* set uncompleted segment to curseg */
3539 curseg = CURSEG_I(sbi, type);
3540 mutex_lock(&curseg->curseg_mutex);
3541
3542 /* update journal info */
3543 down_write(&curseg->journal_rwsem);
3544 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3545 up_write(&curseg->journal_rwsem);
3546
3547 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3548 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3549 curseg->next_segno = segno;
3550 reset_curseg(sbi, type, 0);
3551 curseg->alloc_type = ckpt->alloc_type[type];
3552 curseg->next_blkoff = blk_off;
3553 mutex_unlock(&curseg->curseg_mutex);
3554 out:
3555 f2fs_put_page(new, 1);
3556 return err;
3557 }
3558
3559 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3560 {
3561 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3562 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3563 int type = CURSEG_HOT_DATA;
3564 int err;
3565
3566 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3567 int npages = f2fs_npages_for_summary_flush(sbi, true);
3568
3569 if (npages >= 2)
3570 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3571 META_CP, true);
3572
3573 /* restore for compacted data summary */
3574 err = read_compacted_summaries(sbi);
3575 if (err)
3576 return err;
3577 type = CURSEG_HOT_NODE;
3578 }
3579
3580 if (__exist_node_summaries(sbi))
3581 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3582 NR_CURSEG_TYPE - type, META_CP, true);
3583
3584 for (; type <= CURSEG_COLD_NODE; type++) {
3585 err = read_normal_summaries(sbi, type);
3586 if (err)
3587 return err;
3588 }
3589
3590 /* sanity check for summary blocks */
3591 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3592 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3593 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3594 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3595 return -EINVAL;
3596 }
3597
3598 return 0;
3599 }
3600
3601 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3602 {
3603 struct page *page;
3604 unsigned char *kaddr;
3605 struct f2fs_summary *summary;
3606 struct curseg_info *seg_i;
3607 int written_size = 0;
3608 int i, j;
3609
3610 page = f2fs_grab_meta_page(sbi, blkaddr++);
3611 kaddr = (unsigned char *)page_address(page);
3612 memset(kaddr, 0, PAGE_SIZE);
3613
3614 /* Step 1: write nat cache */
3615 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3616 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3617 written_size += SUM_JOURNAL_SIZE;
3618
3619 /* Step 2: write sit cache */
3620 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3621 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3622 written_size += SUM_JOURNAL_SIZE;
3623
3624 /* Step 3: write summary entries */
3625 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3626 unsigned short blkoff;
3627 seg_i = CURSEG_I(sbi, i);
3628 if (sbi->ckpt->alloc_type[i] == SSR)
3629 blkoff = sbi->blocks_per_seg;
3630 else
3631 blkoff = curseg_blkoff(sbi, i);
3632
3633 for (j = 0; j < blkoff; j++) {
3634 if (!page) {
3635 page = f2fs_grab_meta_page(sbi, blkaddr++);
3636 kaddr = (unsigned char *)page_address(page);
3637 memset(kaddr, 0, PAGE_SIZE);
3638 written_size = 0;
3639 }
3640 summary = (struct f2fs_summary *)(kaddr + written_size);
3641 *summary = seg_i->sum_blk->entries[j];
3642 written_size += SUMMARY_SIZE;
3643
3644 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3645 SUM_FOOTER_SIZE)
3646 continue;
3647
3648 set_page_dirty(page);
3649 f2fs_put_page(page, 1);
3650 page = NULL;
3651 }
3652 }
3653 if (page) {
3654 set_page_dirty(page);
3655 f2fs_put_page(page, 1);
3656 }
3657 }
3658
3659 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3660 block_t blkaddr, int type)
3661 {
3662 int i, end;
3663 if (IS_DATASEG(type))
3664 end = type + NR_CURSEG_DATA_TYPE;
3665 else
3666 end = type + NR_CURSEG_NODE_TYPE;
3667
3668 for (i = type; i < end; i++)
3669 write_current_sum_page(sbi, i, blkaddr + (i - type));
3670 }
3671
3672 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3673 {
3674 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3675 write_compacted_summaries(sbi, start_blk);
3676 else
3677 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3678 }
3679
3680 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3681 {
3682 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3683 }
3684
3685 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3686 unsigned int val, int alloc)
3687 {
3688 int i;
3689
3690 if (type == NAT_JOURNAL) {
3691 for (i = 0; i < nats_in_cursum(journal); i++) {
3692 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3693 return i;
3694 }
3695 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3696 return update_nats_in_cursum(journal, 1);
3697 } else if (type == SIT_JOURNAL) {
3698 for (i = 0; i < sits_in_cursum(journal); i++)
3699 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3700 return i;
3701 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3702 return update_sits_in_cursum(journal, 1);
3703 }
3704 return -1;
3705 }
3706
3707 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3708 unsigned int segno)
3709 {
3710 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3711 }
3712
3713 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3714 unsigned int start)
3715 {
3716 struct sit_info *sit_i = SIT_I(sbi);
3717 struct page *page;
3718 pgoff_t src_off, dst_off;
3719
3720 src_off = current_sit_addr(sbi, start);
3721 dst_off = next_sit_addr(sbi, src_off);
3722
3723 page = f2fs_grab_meta_page(sbi, dst_off);
3724 seg_info_to_sit_page(sbi, page, start);
3725
3726 set_page_dirty(page);
3727 set_to_next_sit(sit_i, start);
3728
3729 return page;
3730 }
3731
3732 static struct sit_entry_set *grab_sit_entry_set(void)
3733 {
3734 struct sit_entry_set *ses =
3735 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3736
3737 ses->entry_cnt = 0;
3738 INIT_LIST_HEAD(&ses->set_list);
3739 return ses;
3740 }
3741
3742 static void release_sit_entry_set(struct sit_entry_set *ses)
3743 {
3744 list_del(&ses->set_list);
3745 kmem_cache_free(sit_entry_set_slab, ses);
3746 }
3747
3748 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3749 struct list_head *head)
3750 {
3751 struct sit_entry_set *next = ses;
3752
3753 if (list_is_last(&ses->set_list, head))
3754 return;
3755
3756 list_for_each_entry_continue(next, head, set_list)
3757 if (ses->entry_cnt <= next->entry_cnt)
3758 break;
3759
3760 list_move_tail(&ses->set_list, &next->set_list);
3761 }
3762
3763 static void add_sit_entry(unsigned int segno, struct list_head *head)
3764 {
3765 struct sit_entry_set *ses;
3766 unsigned int start_segno = START_SEGNO(segno);
3767
3768 list_for_each_entry(ses, head, set_list) {
3769 if (ses->start_segno == start_segno) {
3770 ses->entry_cnt++;
3771 adjust_sit_entry_set(ses, head);
3772 return;
3773 }
3774 }
3775
3776 ses = grab_sit_entry_set();
3777
3778 ses->start_segno = start_segno;
3779 ses->entry_cnt++;
3780 list_add(&ses->set_list, head);
3781 }
3782
3783 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3784 {
3785 struct f2fs_sm_info *sm_info = SM_I(sbi);
3786 struct list_head *set_list = &sm_info->sit_entry_set;
3787 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3788 unsigned int segno;
3789
3790 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3791 add_sit_entry(segno, set_list);
3792 }
3793
3794 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3795 {
3796 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3797 struct f2fs_journal *journal = curseg->journal;
3798 int i;
3799
3800 down_write(&curseg->journal_rwsem);
3801 for (i = 0; i < sits_in_cursum(journal); i++) {
3802 unsigned int segno;
3803 bool dirtied;
3804
3805 segno = le32_to_cpu(segno_in_journal(journal, i));
3806 dirtied = __mark_sit_entry_dirty(sbi, segno);
3807
3808 if (!dirtied)
3809 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3810 }
3811 update_sits_in_cursum(journal, -i);
3812 up_write(&curseg->journal_rwsem);
3813 }
3814
3815 /*
3816 * CP calls this function, which flushes SIT entries including sit_journal,
3817 * and moves prefree segs to free segs.
3818 */
3819 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3820 {
3821 struct sit_info *sit_i = SIT_I(sbi);
3822 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3823 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3824 struct f2fs_journal *journal = curseg->journal;
3825 struct sit_entry_set *ses, *tmp;
3826 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3827 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3828 struct seg_entry *se;
3829
3830 down_write(&sit_i->sentry_lock);
3831
3832 if (!sit_i->dirty_sentries)
3833 goto out;
3834
3835 /*
3836 * add and account sit entries of dirty bitmap in sit entry
3837 * set temporarily
3838 */
3839 add_sits_in_set(sbi);
3840
3841 /*
3842 * if there are no enough space in journal to store dirty sit
3843 * entries, remove all entries from journal and add and account
3844 * them in sit entry set.
3845 */
3846 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3847 !to_journal)
3848 remove_sits_in_journal(sbi);
3849
3850 /*
3851 * there are two steps to flush sit entries:
3852 * #1, flush sit entries to journal in current cold data summary block.
3853 * #2, flush sit entries to sit page.
3854 */
3855 list_for_each_entry_safe(ses, tmp, head, set_list) {
3856 struct page *page = NULL;
3857 struct f2fs_sit_block *raw_sit = NULL;
3858 unsigned int start_segno = ses->start_segno;
3859 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3860 (unsigned long)MAIN_SEGS(sbi));
3861 unsigned int segno = start_segno;
3862
3863 if (to_journal &&
3864 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3865 to_journal = false;
3866
3867 if (to_journal) {
3868 down_write(&curseg->journal_rwsem);
3869 } else {
3870 page = get_next_sit_page(sbi, start_segno);
3871 raw_sit = page_address(page);
3872 }
3873
3874 /* flush dirty sit entries in region of current sit set */
3875 for_each_set_bit_from(segno, bitmap, end) {
3876 int offset, sit_offset;
3877
3878 se = get_seg_entry(sbi, segno);
3879 #ifdef CONFIG_F2FS_CHECK_FS
3880 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3881 SIT_VBLOCK_MAP_SIZE))
3882 f2fs_bug_on(sbi, 1);
3883 #endif
3884
3885 /* add discard candidates */
3886 if (!(cpc->reason & CP_DISCARD)) {
3887 cpc->trim_start = segno;
3888 add_discard_addrs(sbi, cpc, false);
3889 }
3890
3891 if (to_journal) {
3892 offset = f2fs_lookup_journal_in_cursum(journal,
3893 SIT_JOURNAL, segno, 1);
3894 f2fs_bug_on(sbi, offset < 0);
3895 segno_in_journal(journal, offset) =
3896 cpu_to_le32(segno);
3897 seg_info_to_raw_sit(se,
3898 &sit_in_journal(journal, offset));
3899 check_block_count(sbi, segno,
3900 &sit_in_journal(journal, offset));
3901 } else {
3902 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3903 seg_info_to_raw_sit(se,
3904 &raw_sit->entries[sit_offset]);
3905 check_block_count(sbi, segno,
3906 &raw_sit->entries[sit_offset]);
3907 }
3908
3909 __clear_bit(segno, bitmap);
3910 sit_i->dirty_sentries--;
3911 ses->entry_cnt--;
3912 }
3913
3914 if (to_journal)
3915 up_write(&curseg->journal_rwsem);
3916 else
3917 f2fs_put_page(page, 1);
3918
3919 f2fs_bug_on(sbi, ses->entry_cnt);
3920 release_sit_entry_set(ses);
3921 }
3922
3923 f2fs_bug_on(sbi, !list_empty(head));
3924 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3925 out:
3926 if (cpc->reason & CP_DISCARD) {
3927 __u64 trim_start = cpc->trim_start;
3928
3929 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3930 add_discard_addrs(sbi, cpc, false);
3931
3932 cpc->trim_start = trim_start;
3933 }
3934 up_write(&sit_i->sentry_lock);
3935
3936 set_prefree_as_free_segments(sbi);
3937 }
3938
3939 static int build_sit_info(struct f2fs_sb_info *sbi)
3940 {
3941 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3942 struct sit_info *sit_i;
3943 unsigned int sit_segs, start;
3944 char *src_bitmap;
3945 unsigned int bitmap_size;
3946
3947 /* allocate memory for SIT information */
3948 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3949 if (!sit_i)
3950 return -ENOMEM;
3951
3952 SM_I(sbi)->sit_info = sit_i;
3953
3954 sit_i->sentries =
3955 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3956 MAIN_SEGS(sbi)),
3957 GFP_KERNEL);
3958 if (!sit_i->sentries)
3959 return -ENOMEM;
3960
3961 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3962 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3963 GFP_KERNEL);
3964 if (!sit_i->dirty_sentries_bitmap)
3965 return -ENOMEM;
3966
3967 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3968 sit_i->sentries[start].cur_valid_map
3969 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3970 sit_i->sentries[start].ckpt_valid_map
3971 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3972 if (!sit_i->sentries[start].cur_valid_map ||
3973 !sit_i->sentries[start].ckpt_valid_map)
3974 return -ENOMEM;
3975
3976 #ifdef CONFIG_F2FS_CHECK_FS
3977 sit_i->sentries[start].cur_valid_map_mir
3978 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3979 if (!sit_i->sentries[start].cur_valid_map_mir)
3980 return -ENOMEM;
3981 #endif
3982
3983 sit_i->sentries[start].discard_map
3984 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3985 GFP_KERNEL);
3986 if (!sit_i->sentries[start].discard_map)
3987 return -ENOMEM;
3988 }
3989
3990 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3991 if (!sit_i->tmp_map)
3992 return -ENOMEM;
3993
3994 if (__is_large_section(sbi)) {
3995 sit_i->sec_entries =
3996 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3997 MAIN_SECS(sbi)),
3998 GFP_KERNEL);
3999 if (!sit_i->sec_entries)
4000 return -ENOMEM;
4001 }
4002
4003 /* get information related with SIT */
4004 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4005
4006 /* setup SIT bitmap from ckeckpoint pack */
4007 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4008 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4009
4010 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4011 if (!sit_i->sit_bitmap)
4012 return -ENOMEM;
4013
4014 #ifdef CONFIG_F2FS_CHECK_FS
4015 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
4016 if (!sit_i->sit_bitmap_mir)
4017 return -ENOMEM;
4018 #endif
4019
4020 /* init SIT information */
4021 sit_i->s_ops = &default_salloc_ops;
4022
4023 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4024 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4025 sit_i->written_valid_blocks = 0;
4026 sit_i->bitmap_size = bitmap_size;
4027 sit_i->dirty_sentries = 0;
4028 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4029 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4030 sit_i->mounted_time = ktime_get_real_seconds();
4031 init_rwsem(&sit_i->sentry_lock);
4032 return 0;
4033 }
4034
4035 static int build_free_segmap(struct f2fs_sb_info *sbi)
4036 {
4037 struct free_segmap_info *free_i;
4038 unsigned int bitmap_size, sec_bitmap_size;
4039
4040 /* allocate memory for free segmap information */
4041 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4042 if (!free_i)
4043 return -ENOMEM;
4044
4045 SM_I(sbi)->free_info = free_i;
4046
4047 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4048 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4049 if (!free_i->free_segmap)
4050 return -ENOMEM;
4051
4052 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4053 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4054 if (!free_i->free_secmap)
4055 return -ENOMEM;
4056
4057 /* set all segments as dirty temporarily */
4058 memset(free_i->free_segmap, 0xff, bitmap_size);
4059 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4060
4061 /* init free segmap information */
4062 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4063 free_i->free_segments = 0;
4064 free_i->free_sections = 0;
4065 spin_lock_init(&free_i->segmap_lock);
4066 return 0;
4067 }
4068
4069 static int build_curseg(struct f2fs_sb_info *sbi)
4070 {
4071 struct curseg_info *array;
4072 int i;
4073
4074 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4075 GFP_KERNEL);
4076 if (!array)
4077 return -ENOMEM;
4078
4079 SM_I(sbi)->curseg_array = array;
4080
4081 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4082 mutex_init(&array[i].curseg_mutex);
4083 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4084 if (!array[i].sum_blk)
4085 return -ENOMEM;
4086 init_rwsem(&array[i].journal_rwsem);
4087 array[i].journal = f2fs_kzalloc(sbi,
4088 sizeof(struct f2fs_journal), GFP_KERNEL);
4089 if (!array[i].journal)
4090 return -ENOMEM;
4091 array[i].segno = NULL_SEGNO;
4092 array[i].next_blkoff = 0;
4093 }
4094 return restore_curseg_summaries(sbi);
4095 }
4096
4097 static int build_sit_entries(struct f2fs_sb_info *sbi)
4098 {
4099 struct sit_info *sit_i = SIT_I(sbi);
4100 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4101 struct f2fs_journal *journal = curseg->journal;
4102 struct seg_entry *se;
4103 struct f2fs_sit_entry sit;
4104 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4105 unsigned int i, start, end;
4106 unsigned int readed, start_blk = 0;
4107 int err = 0;
4108 block_t total_node_blocks = 0;
4109
4110 do {
4111 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4112 META_SIT, true);
4113
4114 start = start_blk * sit_i->sents_per_block;
4115 end = (start_blk + readed) * sit_i->sents_per_block;
4116
4117 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4118 struct f2fs_sit_block *sit_blk;
4119 struct page *page;
4120
4121 se = &sit_i->sentries[start];
4122 page = get_current_sit_page(sbi, start);
4123 if (IS_ERR(page))
4124 return PTR_ERR(page);
4125 sit_blk = (struct f2fs_sit_block *)page_address(page);
4126 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4127 f2fs_put_page(page, 1);
4128
4129 err = check_block_count(sbi, start, &sit);
4130 if (err)
4131 return err;
4132 seg_info_from_raw_sit(se, &sit);
4133 if (IS_NODESEG(se->type))
4134 total_node_blocks += se->valid_blocks;
4135
4136 /* build discard map only one time */
4137 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4138 memset(se->discard_map, 0xff,
4139 SIT_VBLOCK_MAP_SIZE);
4140 } else {
4141 memcpy(se->discard_map,
4142 se->cur_valid_map,
4143 SIT_VBLOCK_MAP_SIZE);
4144 sbi->discard_blks +=
4145 sbi->blocks_per_seg -
4146 se->valid_blocks;
4147 }
4148
4149 if (__is_large_section(sbi))
4150 get_sec_entry(sbi, start)->valid_blocks +=
4151 se->valid_blocks;
4152 }
4153 start_blk += readed;
4154 } while (start_blk < sit_blk_cnt);
4155
4156 down_read(&curseg->journal_rwsem);
4157 for (i = 0; i < sits_in_cursum(journal); i++) {
4158 unsigned int old_valid_blocks;
4159
4160 start = le32_to_cpu(segno_in_journal(journal, i));
4161 if (start >= MAIN_SEGS(sbi)) {
4162 f2fs_err(sbi, "Wrong journal entry on segno %u",
4163 start);
4164 set_sbi_flag(sbi, SBI_NEED_FSCK);
4165 err = -EFSCORRUPTED;
4166 break;
4167 }
4168
4169 se = &sit_i->sentries[start];
4170 sit = sit_in_journal(journal, i);
4171
4172 old_valid_blocks = se->valid_blocks;
4173 if (IS_NODESEG(se->type))
4174 total_node_blocks -= old_valid_blocks;
4175
4176 err = check_block_count(sbi, start, &sit);
4177 if (err)
4178 break;
4179 seg_info_from_raw_sit(se, &sit);
4180 if (IS_NODESEG(se->type))
4181 total_node_blocks += se->valid_blocks;
4182
4183 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4184 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4185 } else {
4186 memcpy(se->discard_map, se->cur_valid_map,
4187 SIT_VBLOCK_MAP_SIZE);
4188 sbi->discard_blks += old_valid_blocks;
4189 sbi->discard_blks -= se->valid_blocks;
4190 }
4191
4192 if (__is_large_section(sbi)) {
4193 get_sec_entry(sbi, start)->valid_blocks +=
4194 se->valid_blocks;
4195 get_sec_entry(sbi, start)->valid_blocks -=
4196 old_valid_blocks;
4197 }
4198 }
4199 up_read(&curseg->journal_rwsem);
4200
4201 if (!err && total_node_blocks != valid_node_count(sbi)) {
4202 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4203 total_node_blocks, valid_node_count(sbi));
4204 set_sbi_flag(sbi, SBI_NEED_FSCK);
4205 err = -EFSCORRUPTED;
4206 }
4207
4208 return err;
4209 }
4210
4211 static void init_free_segmap(struct f2fs_sb_info *sbi)
4212 {
4213 unsigned int start;
4214 int type;
4215
4216 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4217 struct seg_entry *sentry = get_seg_entry(sbi, start);
4218 if (!sentry->valid_blocks)
4219 __set_free(sbi, start);
4220 else
4221 SIT_I(sbi)->written_valid_blocks +=
4222 sentry->valid_blocks;
4223 }
4224
4225 /* set use the current segments */
4226 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4227 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4228 __set_test_and_inuse(sbi, curseg_t->segno);
4229 }
4230 }
4231
4232 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4233 {
4234 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4235 struct free_segmap_info *free_i = FREE_I(sbi);
4236 unsigned int segno = 0, offset = 0;
4237 unsigned short valid_blocks;
4238
4239 while (1) {
4240 /* find dirty segment based on free segmap */
4241 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4242 if (segno >= MAIN_SEGS(sbi))
4243 break;
4244 offset = segno + 1;
4245 valid_blocks = get_valid_blocks(sbi, segno, false);
4246 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4247 continue;
4248 if (valid_blocks > sbi->blocks_per_seg) {
4249 f2fs_bug_on(sbi, 1);
4250 continue;
4251 }
4252 mutex_lock(&dirty_i->seglist_lock);
4253 __locate_dirty_segment(sbi, segno, DIRTY);
4254 mutex_unlock(&dirty_i->seglist_lock);
4255 }
4256 }
4257
4258 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4259 {
4260 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4261 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4262
4263 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4264 if (!dirty_i->victim_secmap)
4265 return -ENOMEM;
4266 return 0;
4267 }
4268
4269 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4270 {
4271 struct dirty_seglist_info *dirty_i;
4272 unsigned int bitmap_size, i;
4273
4274 /* allocate memory for dirty segments list information */
4275 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4276 GFP_KERNEL);
4277 if (!dirty_i)
4278 return -ENOMEM;
4279
4280 SM_I(sbi)->dirty_info = dirty_i;
4281 mutex_init(&dirty_i->seglist_lock);
4282
4283 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4284
4285 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4286 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4287 GFP_KERNEL);
4288 if (!dirty_i->dirty_segmap[i])
4289 return -ENOMEM;
4290 }
4291
4292 init_dirty_segmap(sbi);
4293 return init_victim_secmap(sbi);
4294 }
4295
4296 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4297 {
4298 int i;
4299
4300 /*
4301 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4302 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4303 */
4304 for (i = 0; i < NO_CHECK_TYPE; i++) {
4305 struct curseg_info *curseg = CURSEG_I(sbi, i);
4306 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4307 unsigned int blkofs = curseg->next_blkoff;
4308
4309 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4310 goto out;
4311
4312 if (curseg->alloc_type == SSR)
4313 continue;
4314
4315 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4316 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4317 continue;
4318 out:
4319 f2fs_err(sbi,
4320 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4321 i, curseg->segno, curseg->alloc_type,
4322 curseg->next_blkoff, blkofs);
4323 return -EFSCORRUPTED;
4324 }
4325 }
4326 return 0;
4327 }
4328
4329 /*
4330 * Update min, max modified time for cost-benefit GC algorithm
4331 */
4332 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4333 {
4334 struct sit_info *sit_i = SIT_I(sbi);
4335 unsigned int segno;
4336
4337 down_write(&sit_i->sentry_lock);
4338
4339 sit_i->min_mtime = ULLONG_MAX;
4340
4341 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4342 unsigned int i;
4343 unsigned long long mtime = 0;
4344
4345 for (i = 0; i < sbi->segs_per_sec; i++)
4346 mtime += get_seg_entry(sbi, segno + i)->mtime;
4347
4348 mtime = div_u64(mtime, sbi->segs_per_sec);
4349
4350 if (sit_i->min_mtime > mtime)
4351 sit_i->min_mtime = mtime;
4352 }
4353 sit_i->max_mtime = get_mtime(sbi, false);
4354 up_write(&sit_i->sentry_lock);
4355 }
4356
4357 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4358 {
4359 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4360 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4361 struct f2fs_sm_info *sm_info;
4362 int err;
4363
4364 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4365 if (!sm_info)
4366 return -ENOMEM;
4367
4368 /* init sm info */
4369 sbi->sm_info = sm_info;
4370 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4371 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4372 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4373 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4374 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4375 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4376 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4377 sm_info->rec_prefree_segments = sm_info->main_segments *
4378 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4379 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4380 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4381
4382 if (!test_opt(sbi, LFS))
4383 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4384 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4385 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4386 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4387 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4388 sm_info->min_ssr_sections = reserved_sections(sbi);
4389
4390 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4391
4392 init_rwsem(&sm_info->curseg_lock);
4393
4394 if (!f2fs_readonly(sbi->sb)) {
4395 err = f2fs_create_flush_cmd_control(sbi);
4396 if (err)
4397 return err;
4398 }
4399
4400 err = create_discard_cmd_control(sbi);
4401 if (err)
4402 return err;
4403
4404 err = build_sit_info(sbi);
4405 if (err)
4406 return err;
4407 err = build_free_segmap(sbi);
4408 if (err)
4409 return err;
4410 err = build_curseg(sbi);
4411 if (err)
4412 return err;
4413
4414 /* reinit free segmap based on SIT */
4415 err = build_sit_entries(sbi);
4416 if (err)
4417 return err;
4418
4419 init_free_segmap(sbi);
4420 err = build_dirty_segmap(sbi);
4421 if (err)
4422 return err;
4423
4424 err = sanity_check_curseg(sbi);
4425 if (err)
4426 return err;
4427
4428 init_min_max_mtime(sbi);
4429 return 0;
4430 }
4431
4432 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4433 enum dirty_type dirty_type)
4434 {
4435 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4436
4437 mutex_lock(&dirty_i->seglist_lock);
4438 kvfree(dirty_i->dirty_segmap[dirty_type]);
4439 dirty_i->nr_dirty[dirty_type] = 0;
4440 mutex_unlock(&dirty_i->seglist_lock);
4441 }
4442
4443 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4444 {
4445 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4446 kvfree(dirty_i->victim_secmap);
4447 }
4448
4449 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4450 {
4451 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4452 int i;
4453
4454 if (!dirty_i)
4455 return;
4456
4457 /* discard pre-free/dirty segments list */
4458 for (i = 0; i < NR_DIRTY_TYPE; i++)
4459 discard_dirty_segmap(sbi, i);
4460
4461 destroy_victim_secmap(sbi);
4462 SM_I(sbi)->dirty_info = NULL;
4463 kvfree(dirty_i);
4464 }
4465
4466 static void destroy_curseg(struct f2fs_sb_info *sbi)
4467 {
4468 struct curseg_info *array = SM_I(sbi)->curseg_array;
4469 int i;
4470
4471 if (!array)
4472 return;
4473 SM_I(sbi)->curseg_array = NULL;
4474 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4475 kvfree(array[i].sum_blk);
4476 kvfree(array[i].journal);
4477 }
4478 kvfree(array);
4479 }
4480
4481 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4482 {
4483 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4484 if (!free_i)
4485 return;
4486 SM_I(sbi)->free_info = NULL;
4487 kvfree(free_i->free_segmap);
4488 kvfree(free_i->free_secmap);
4489 kvfree(free_i);
4490 }
4491
4492 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4493 {
4494 struct sit_info *sit_i = SIT_I(sbi);
4495 unsigned int start;
4496
4497 if (!sit_i)
4498 return;
4499
4500 if (sit_i->sentries) {
4501 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4502 kvfree(sit_i->sentries[start].cur_valid_map);
4503 #ifdef CONFIG_F2FS_CHECK_FS
4504 kvfree(sit_i->sentries[start].cur_valid_map_mir);
4505 #endif
4506 kvfree(sit_i->sentries[start].ckpt_valid_map);
4507 kvfree(sit_i->sentries[start].discard_map);
4508 }
4509 }
4510 kvfree(sit_i->tmp_map);
4511
4512 kvfree(sit_i->sentries);
4513 kvfree(sit_i->sec_entries);
4514 kvfree(sit_i->dirty_sentries_bitmap);
4515
4516 SM_I(sbi)->sit_info = NULL;
4517 kvfree(sit_i->sit_bitmap);
4518 #ifdef CONFIG_F2FS_CHECK_FS
4519 kvfree(sit_i->sit_bitmap_mir);
4520 #endif
4521 kvfree(sit_i);
4522 }
4523
4524 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4525 {
4526 struct f2fs_sm_info *sm_info = SM_I(sbi);
4527
4528 if (!sm_info)
4529 return;
4530 f2fs_destroy_flush_cmd_control(sbi, true);
4531 destroy_discard_cmd_control(sbi);
4532 destroy_dirty_segmap(sbi);
4533 destroy_curseg(sbi);
4534 destroy_free_segmap(sbi);
4535 destroy_sit_info(sbi);
4536 sbi->sm_info = NULL;
4537 kvfree(sm_info);
4538 }
4539
4540 int __init f2fs_create_segment_manager_caches(void)
4541 {
4542 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4543 sizeof(struct discard_entry));
4544 if (!discard_entry_slab)
4545 goto fail;
4546
4547 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4548 sizeof(struct discard_cmd));
4549 if (!discard_cmd_slab)
4550 goto destroy_discard_entry;
4551
4552 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4553 sizeof(struct sit_entry_set));
4554 if (!sit_entry_set_slab)
4555 goto destroy_discard_cmd;
4556
4557 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4558 sizeof(struct inmem_pages));
4559 if (!inmem_entry_slab)
4560 goto destroy_sit_entry_set;
4561 return 0;
4562
4563 destroy_sit_entry_set:
4564 kmem_cache_destroy(sit_entry_set_slab);
4565 destroy_discard_cmd:
4566 kmem_cache_destroy(discard_cmd_slab);
4567 destroy_discard_entry:
4568 kmem_cache_destroy(discard_entry_slab);
4569 fail:
4570 return -ENOMEM;
4571 }
4572
4573 void f2fs_destroy_segment_manager_caches(void)
4574 {
4575 kmem_cache_destroy(sit_entry_set_slab);
4576 kmem_cache_destroy(discard_cmd_slab);
4577 kmem_cache_destroy(discard_entry_slab);
4578 kmem_cache_destroy(inmem_entry_slab);
4579 }