]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/segment.c
f2fs: remove the needless parameter of f2fs_wait_on_page_writeback
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include <trace/events/f2fs.h>
23
24 #define __reverse_ffz(x) __reverse_ffs(~(x))
25
26 static struct kmem_cache *discard_entry_slab;
27
28 /*
29 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
30 * MSB and LSB are reversed in a byte by f2fs_set_bit.
31 */
32 static inline unsigned long __reverse_ffs(unsigned long word)
33 {
34 int num = 0;
35
36 #if BITS_PER_LONG == 64
37 if ((word & 0xffffffff) == 0) {
38 num += 32;
39 word >>= 32;
40 }
41 #endif
42 if ((word & 0xffff) == 0) {
43 num += 16;
44 word >>= 16;
45 }
46 if ((word & 0xff) == 0) {
47 num += 8;
48 word >>= 8;
49 }
50 if ((word & 0xf0) == 0)
51 num += 4;
52 else
53 word >>= 4;
54 if ((word & 0xc) == 0)
55 num += 2;
56 else
57 word >>= 2;
58 if ((word & 0x2) == 0)
59 num += 1;
60 return num;
61 }
62
63 /*
64 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
65 * f2fs_set_bit makes MSB and LSB reversed in a byte.
66 * Example:
67 * LSB <--> MSB
68 * f2fs_set_bit(0, bitmap) => 0000 0001
69 * f2fs_set_bit(7, bitmap) => 1000 0000
70 */
71 static unsigned long __find_rev_next_bit(const unsigned long *addr,
72 unsigned long size, unsigned long offset)
73 {
74 const unsigned long *p = addr + BIT_WORD(offset);
75 unsigned long result = offset & ~(BITS_PER_LONG - 1);
76 unsigned long tmp;
77 unsigned long mask, submask;
78 unsigned long quot, rest;
79
80 if (offset >= size)
81 return size;
82
83 size -= result;
84 offset %= BITS_PER_LONG;
85 if (!offset)
86 goto aligned;
87
88 tmp = *(p++);
89 quot = (offset >> 3) << 3;
90 rest = offset & 0x7;
91 mask = ~0UL << quot;
92 submask = (unsigned char)(0xff << rest) >> rest;
93 submask <<= quot;
94 mask &= submask;
95 tmp &= mask;
96 if (size < BITS_PER_LONG)
97 goto found_first;
98 if (tmp)
99 goto found_middle;
100
101 size -= BITS_PER_LONG;
102 result += BITS_PER_LONG;
103 aligned:
104 while (size & ~(BITS_PER_LONG-1)) {
105 tmp = *(p++);
106 if (tmp)
107 goto found_middle;
108 result += BITS_PER_LONG;
109 size -= BITS_PER_LONG;
110 }
111 if (!size)
112 return result;
113 tmp = *p;
114 found_first:
115 tmp &= (~0UL >> (BITS_PER_LONG - size));
116 if (tmp == 0UL) /* Are any bits set? */
117 return result + size; /* Nope. */
118 found_middle:
119 return result + __reverse_ffs(tmp);
120 }
121
122 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123 unsigned long size, unsigned long offset)
124 {
125 const unsigned long *p = addr + BIT_WORD(offset);
126 unsigned long result = offset & ~(BITS_PER_LONG - 1);
127 unsigned long tmp;
128 unsigned long mask, submask;
129 unsigned long quot, rest;
130
131 if (offset >= size)
132 return size;
133
134 size -= result;
135 offset %= BITS_PER_LONG;
136 if (!offset)
137 goto aligned;
138
139 tmp = *(p++);
140 quot = (offset >> 3) << 3;
141 rest = offset & 0x7;
142 mask = ~(~0UL << quot);
143 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144 submask <<= quot;
145 mask += submask;
146 tmp |= mask;
147 if (size < BITS_PER_LONG)
148 goto found_first;
149 if (~tmp)
150 goto found_middle;
151
152 size -= BITS_PER_LONG;
153 result += BITS_PER_LONG;
154 aligned:
155 while (size & ~(BITS_PER_LONG - 1)) {
156 tmp = *(p++);
157 if (~tmp)
158 goto found_middle;
159 result += BITS_PER_LONG;
160 size -= BITS_PER_LONG;
161 }
162 if (!size)
163 return result;
164 tmp = *p;
165
166 found_first:
167 tmp |= ~0UL << size;
168 if (tmp == ~0UL) /* Are any bits zero? */
169 return result + size; /* Nope. */
170 found_middle:
171 return result + __reverse_ffz(tmp);
172 }
173
174 /*
175 * This function balances dirty node and dentry pages.
176 * In addition, it controls garbage collection.
177 */
178 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
179 {
180 /*
181 * We should do GC or end up with checkpoint, if there are so many dirty
182 * dir/node pages without enough free segments.
183 */
184 if (has_not_enough_free_secs(sbi, 0)) {
185 mutex_lock(&sbi->gc_mutex);
186 f2fs_gc(sbi);
187 }
188 }
189
190 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
191 {
192 /* check the # of cached NAT entries and prefree segments */
193 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
194 excess_prefree_segs(sbi))
195 f2fs_sync_fs(sbi->sb, true);
196 }
197
198 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
199 enum dirty_type dirty_type)
200 {
201 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
202
203 /* need not be added */
204 if (IS_CURSEG(sbi, segno))
205 return;
206
207 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
208 dirty_i->nr_dirty[dirty_type]++;
209
210 if (dirty_type == DIRTY) {
211 struct seg_entry *sentry = get_seg_entry(sbi, segno);
212 enum dirty_type t = sentry->type;
213
214 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
215 dirty_i->nr_dirty[t]++;
216 }
217 }
218
219 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
220 enum dirty_type dirty_type)
221 {
222 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
223
224 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
225 dirty_i->nr_dirty[dirty_type]--;
226
227 if (dirty_type == DIRTY) {
228 struct seg_entry *sentry = get_seg_entry(sbi, segno);
229 enum dirty_type t = sentry->type;
230
231 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
232 dirty_i->nr_dirty[t]--;
233
234 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
235 clear_bit(GET_SECNO(sbi, segno),
236 dirty_i->victim_secmap);
237 }
238 }
239
240 /*
241 * Should not occur error such as -ENOMEM.
242 * Adding dirty entry into seglist is not critical operation.
243 * If a given segment is one of current working segments, it won't be added.
244 */
245 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
246 {
247 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248 unsigned short valid_blocks;
249
250 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
251 return;
252
253 mutex_lock(&dirty_i->seglist_lock);
254
255 valid_blocks = get_valid_blocks(sbi, segno, 0);
256
257 if (valid_blocks == 0) {
258 __locate_dirty_segment(sbi, segno, PRE);
259 __remove_dirty_segment(sbi, segno, DIRTY);
260 } else if (valid_blocks < sbi->blocks_per_seg) {
261 __locate_dirty_segment(sbi, segno, DIRTY);
262 } else {
263 /* Recovery routine with SSR needs this */
264 __remove_dirty_segment(sbi, segno, DIRTY);
265 }
266
267 mutex_unlock(&dirty_i->seglist_lock);
268 }
269
270 static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271 block_t blkstart, block_t blklen)
272 {
273 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
275 blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
276 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
277 }
278
279 static void add_discard_addrs(struct f2fs_sb_info *sbi,
280 unsigned int segno, struct seg_entry *se)
281 {
282 struct list_head *head = &SM_I(sbi)->discard_list;
283 struct discard_entry *new;
284 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285 int max_blocks = sbi->blocks_per_seg;
286 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288 unsigned long dmap[entries];
289 unsigned int start = 0, end = -1;
290 int i;
291
292 if (!test_opt(sbi, DISCARD))
293 return;
294
295 /* zero block will be discarded through the prefree list */
296 if (!se->valid_blocks || se->valid_blocks == max_blocks)
297 return;
298
299 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300 for (i = 0; i < entries; i++)
301 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302
303 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305 if (start >= max_blocks)
306 break;
307
308 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309
310 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311 INIT_LIST_HEAD(&new->list);
312 new->blkaddr = START_BLOCK(sbi, segno) + start;
313 new->len = end - start;
314
315 list_add_tail(&new->list, head);
316 SM_I(sbi)->nr_discards += end - start;
317 }
318 }
319
320 /*
321 * Should call clear_prefree_segments after checkpoint is done.
322 */
323 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
324 {
325 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
326 unsigned int segno = -1;
327 unsigned int total_segs = TOTAL_SEGS(sbi);
328
329 mutex_lock(&dirty_i->seglist_lock);
330 while (1) {
331 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
332 segno + 1);
333 if (segno >= total_segs)
334 break;
335 __set_test_and_free(sbi, segno);
336 }
337 mutex_unlock(&dirty_i->seglist_lock);
338 }
339
340 void clear_prefree_segments(struct f2fs_sb_info *sbi)
341 {
342 struct list_head *head = &(SM_I(sbi)->discard_list);
343 struct list_head *this, *next;
344 struct discard_entry *entry;
345 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
346 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
347 unsigned int total_segs = TOTAL_SEGS(sbi);
348 unsigned int start = 0, end = -1;
349
350 mutex_lock(&dirty_i->seglist_lock);
351
352 while (1) {
353 int i;
354 start = find_next_bit(prefree_map, total_segs, end + 1);
355 if (start >= total_segs)
356 break;
357 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
358
359 for (i = start; i < end; i++)
360 clear_bit(i, prefree_map);
361
362 dirty_i->nr_dirty[PRE] -= end - start;
363
364 if (!test_opt(sbi, DISCARD))
365 continue;
366
367 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
368 (end - start) << sbi->log_blocks_per_seg);
369 }
370 mutex_unlock(&dirty_i->seglist_lock);
371
372 /* send small discards */
373 list_for_each_safe(this, next, head) {
374 entry = list_entry(this, struct discard_entry, list);
375 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
376 list_del(&entry->list);
377 SM_I(sbi)->nr_discards -= entry->len;
378 kmem_cache_free(discard_entry_slab, entry);
379 }
380 }
381
382 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
383 {
384 struct sit_info *sit_i = SIT_I(sbi);
385 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
386 sit_i->dirty_sentries++;
387 }
388
389 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
390 unsigned int segno, int modified)
391 {
392 struct seg_entry *se = get_seg_entry(sbi, segno);
393 se->type = type;
394 if (modified)
395 __mark_sit_entry_dirty(sbi, segno);
396 }
397
398 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
399 {
400 struct seg_entry *se;
401 unsigned int segno, offset;
402 long int new_vblocks;
403
404 segno = GET_SEGNO(sbi, blkaddr);
405
406 se = get_seg_entry(sbi, segno);
407 new_vblocks = se->valid_blocks + del;
408 offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
409
410 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
411 (new_vblocks > sbi->blocks_per_seg)));
412
413 se->valid_blocks = new_vblocks;
414 se->mtime = get_mtime(sbi);
415 SIT_I(sbi)->max_mtime = se->mtime;
416
417 /* Update valid block bitmap */
418 if (del > 0) {
419 if (f2fs_set_bit(offset, se->cur_valid_map))
420 BUG();
421 } else {
422 if (!f2fs_clear_bit(offset, se->cur_valid_map))
423 BUG();
424 }
425 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
426 se->ckpt_valid_blocks += del;
427
428 __mark_sit_entry_dirty(sbi, segno);
429
430 /* update total number of valid blocks to be written in ckpt area */
431 SIT_I(sbi)->written_valid_blocks += del;
432
433 if (sbi->segs_per_sec > 1)
434 get_sec_entry(sbi, segno)->valid_blocks += del;
435 }
436
437 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
438 block_t old_blkaddr, block_t new_blkaddr)
439 {
440 update_sit_entry(sbi, new_blkaddr, 1);
441 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
442 update_sit_entry(sbi, old_blkaddr, -1);
443 }
444
445 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
446 {
447 unsigned int segno = GET_SEGNO(sbi, addr);
448 struct sit_info *sit_i = SIT_I(sbi);
449
450 f2fs_bug_on(addr == NULL_ADDR);
451 if (addr == NEW_ADDR)
452 return;
453
454 /* add it into sit main buffer */
455 mutex_lock(&sit_i->sentry_lock);
456
457 update_sit_entry(sbi, addr, -1);
458
459 /* add it into dirty seglist */
460 locate_dirty_segment(sbi, segno);
461
462 mutex_unlock(&sit_i->sentry_lock);
463 }
464
465 /*
466 * This function should be resided under the curseg_mutex lock
467 */
468 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
469 struct f2fs_summary *sum)
470 {
471 struct curseg_info *curseg = CURSEG_I(sbi, type);
472 void *addr = curseg->sum_blk;
473 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
474 memcpy(addr, sum, sizeof(struct f2fs_summary));
475 }
476
477 /*
478 * Calculate the number of current summary pages for writing
479 */
480 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
481 {
482 int valid_sum_count = 0;
483 int i, sum_in_page;
484
485 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
486 if (sbi->ckpt->alloc_type[i] == SSR)
487 valid_sum_count += sbi->blocks_per_seg;
488 else
489 valid_sum_count += curseg_blkoff(sbi, i);
490 }
491
492 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
493 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
494 if (valid_sum_count <= sum_in_page)
495 return 1;
496 else if ((valid_sum_count - sum_in_page) <=
497 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
498 return 2;
499 return 3;
500 }
501
502 /*
503 * Caller should put this summary page
504 */
505 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
506 {
507 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
508 }
509
510 static void write_sum_page(struct f2fs_sb_info *sbi,
511 struct f2fs_summary_block *sum_blk, block_t blk_addr)
512 {
513 struct page *page = grab_meta_page(sbi, blk_addr);
514 void *kaddr = page_address(page);
515 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
516 set_page_dirty(page);
517 f2fs_put_page(page, 1);
518 }
519
520 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
521 {
522 struct curseg_info *curseg = CURSEG_I(sbi, type);
523 unsigned int segno = curseg->segno + 1;
524 struct free_segmap_info *free_i = FREE_I(sbi);
525
526 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
527 return !test_bit(segno, free_i->free_segmap);
528 return 0;
529 }
530
531 /*
532 * Find a new segment from the free segments bitmap to right order
533 * This function should be returned with success, otherwise BUG
534 */
535 static void get_new_segment(struct f2fs_sb_info *sbi,
536 unsigned int *newseg, bool new_sec, int dir)
537 {
538 struct free_segmap_info *free_i = FREE_I(sbi);
539 unsigned int segno, secno, zoneno;
540 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
541 unsigned int hint = *newseg / sbi->segs_per_sec;
542 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
543 unsigned int left_start = hint;
544 bool init = true;
545 int go_left = 0;
546 int i;
547
548 write_lock(&free_i->segmap_lock);
549
550 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
551 segno = find_next_zero_bit(free_i->free_segmap,
552 TOTAL_SEGS(sbi), *newseg + 1);
553 if (segno - *newseg < sbi->segs_per_sec -
554 (*newseg % sbi->segs_per_sec))
555 goto got_it;
556 }
557 find_other_zone:
558 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
559 if (secno >= TOTAL_SECS(sbi)) {
560 if (dir == ALLOC_RIGHT) {
561 secno = find_next_zero_bit(free_i->free_secmap,
562 TOTAL_SECS(sbi), 0);
563 f2fs_bug_on(secno >= TOTAL_SECS(sbi));
564 } else {
565 go_left = 1;
566 left_start = hint - 1;
567 }
568 }
569 if (go_left == 0)
570 goto skip_left;
571
572 while (test_bit(left_start, free_i->free_secmap)) {
573 if (left_start > 0) {
574 left_start--;
575 continue;
576 }
577 left_start = find_next_zero_bit(free_i->free_secmap,
578 TOTAL_SECS(sbi), 0);
579 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
580 break;
581 }
582 secno = left_start;
583 skip_left:
584 hint = secno;
585 segno = secno * sbi->segs_per_sec;
586 zoneno = secno / sbi->secs_per_zone;
587
588 /* give up on finding another zone */
589 if (!init)
590 goto got_it;
591 if (sbi->secs_per_zone == 1)
592 goto got_it;
593 if (zoneno == old_zoneno)
594 goto got_it;
595 if (dir == ALLOC_LEFT) {
596 if (!go_left && zoneno + 1 >= total_zones)
597 goto got_it;
598 if (go_left && zoneno == 0)
599 goto got_it;
600 }
601 for (i = 0; i < NR_CURSEG_TYPE; i++)
602 if (CURSEG_I(sbi, i)->zone == zoneno)
603 break;
604
605 if (i < NR_CURSEG_TYPE) {
606 /* zone is in user, try another */
607 if (go_left)
608 hint = zoneno * sbi->secs_per_zone - 1;
609 else if (zoneno + 1 >= total_zones)
610 hint = 0;
611 else
612 hint = (zoneno + 1) * sbi->secs_per_zone;
613 init = false;
614 goto find_other_zone;
615 }
616 got_it:
617 /* set it as dirty segment in free segmap */
618 f2fs_bug_on(test_bit(segno, free_i->free_segmap));
619 __set_inuse(sbi, segno);
620 *newseg = segno;
621 write_unlock(&free_i->segmap_lock);
622 }
623
624 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
625 {
626 struct curseg_info *curseg = CURSEG_I(sbi, type);
627 struct summary_footer *sum_footer;
628
629 curseg->segno = curseg->next_segno;
630 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
631 curseg->next_blkoff = 0;
632 curseg->next_segno = NULL_SEGNO;
633
634 sum_footer = &(curseg->sum_blk->footer);
635 memset(sum_footer, 0, sizeof(struct summary_footer));
636 if (IS_DATASEG(type))
637 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
638 if (IS_NODESEG(type))
639 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
640 __set_sit_entry_type(sbi, type, curseg->segno, modified);
641 }
642
643 /*
644 * Allocate a current working segment.
645 * This function always allocates a free segment in LFS manner.
646 */
647 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
648 {
649 struct curseg_info *curseg = CURSEG_I(sbi, type);
650 unsigned int segno = curseg->segno;
651 int dir = ALLOC_LEFT;
652
653 write_sum_page(sbi, curseg->sum_blk,
654 GET_SUM_BLOCK(sbi, segno));
655 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
656 dir = ALLOC_RIGHT;
657
658 if (test_opt(sbi, NOHEAP))
659 dir = ALLOC_RIGHT;
660
661 get_new_segment(sbi, &segno, new_sec, dir);
662 curseg->next_segno = segno;
663 reset_curseg(sbi, type, 1);
664 curseg->alloc_type = LFS;
665 }
666
667 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
668 struct curseg_info *seg, block_t start)
669 {
670 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
671 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
672 unsigned long target_map[entries];
673 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
674 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
675 int i, pos;
676
677 for (i = 0; i < entries; i++)
678 target_map[i] = ckpt_map[i] | cur_map[i];
679
680 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
681
682 seg->next_blkoff = pos;
683 }
684
685 /*
686 * If a segment is written by LFS manner, next block offset is just obtained
687 * by increasing the current block offset. However, if a segment is written by
688 * SSR manner, next block offset obtained by calling __next_free_blkoff
689 */
690 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
691 struct curseg_info *seg)
692 {
693 if (seg->alloc_type == SSR)
694 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
695 else
696 seg->next_blkoff++;
697 }
698
699 /*
700 * This function always allocates a used segment (from dirty seglist) by SSR
701 * manner, so it should recover the existing segment information of valid blocks
702 */
703 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
704 {
705 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706 struct curseg_info *curseg = CURSEG_I(sbi, type);
707 unsigned int new_segno = curseg->next_segno;
708 struct f2fs_summary_block *sum_node;
709 struct page *sum_page;
710
711 write_sum_page(sbi, curseg->sum_blk,
712 GET_SUM_BLOCK(sbi, curseg->segno));
713 __set_test_and_inuse(sbi, new_segno);
714
715 mutex_lock(&dirty_i->seglist_lock);
716 __remove_dirty_segment(sbi, new_segno, PRE);
717 __remove_dirty_segment(sbi, new_segno, DIRTY);
718 mutex_unlock(&dirty_i->seglist_lock);
719
720 reset_curseg(sbi, type, 1);
721 curseg->alloc_type = SSR;
722 __next_free_blkoff(sbi, curseg, 0);
723
724 if (reuse) {
725 sum_page = get_sum_page(sbi, new_segno);
726 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
727 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
728 f2fs_put_page(sum_page, 1);
729 }
730 }
731
732 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
733 {
734 struct curseg_info *curseg = CURSEG_I(sbi, type);
735 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
736
737 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
738 return v_ops->get_victim(sbi,
739 &(curseg)->next_segno, BG_GC, type, SSR);
740
741 /* For data segments, let's do SSR more intensively */
742 for (; type >= CURSEG_HOT_DATA; type--)
743 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
744 BG_GC, type, SSR))
745 return 1;
746 return 0;
747 }
748
749 /*
750 * flush out current segment and replace it with new segment
751 * This function should be returned with success, otherwise BUG
752 */
753 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
754 int type, bool force)
755 {
756 struct curseg_info *curseg = CURSEG_I(sbi, type);
757
758 if (force)
759 new_curseg(sbi, type, true);
760 else if (type == CURSEG_WARM_NODE)
761 new_curseg(sbi, type, false);
762 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
763 new_curseg(sbi, type, false);
764 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
765 change_curseg(sbi, type, true);
766 else
767 new_curseg(sbi, type, false);
768
769 stat_inc_seg_type(sbi, curseg);
770 }
771
772 void allocate_new_segments(struct f2fs_sb_info *sbi)
773 {
774 struct curseg_info *curseg;
775 unsigned int old_curseg;
776 int i;
777
778 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
779 curseg = CURSEG_I(sbi, i);
780 old_curseg = curseg->segno;
781 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
782 locate_dirty_segment(sbi, old_curseg);
783 }
784 }
785
786 static const struct segment_allocation default_salloc_ops = {
787 .allocate_segment = allocate_segment_by_default,
788 };
789
790 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
791 {
792 struct curseg_info *curseg = CURSEG_I(sbi, type);
793 if (curseg->next_blkoff < sbi->blocks_per_seg)
794 return true;
795 return false;
796 }
797
798 static int __get_segment_type_2(struct page *page, enum page_type p_type)
799 {
800 if (p_type == DATA)
801 return CURSEG_HOT_DATA;
802 else
803 return CURSEG_HOT_NODE;
804 }
805
806 static int __get_segment_type_4(struct page *page, enum page_type p_type)
807 {
808 if (p_type == DATA) {
809 struct inode *inode = page->mapping->host;
810
811 if (S_ISDIR(inode->i_mode))
812 return CURSEG_HOT_DATA;
813 else
814 return CURSEG_COLD_DATA;
815 } else {
816 if (IS_DNODE(page) && !is_cold_node(page))
817 return CURSEG_HOT_NODE;
818 else
819 return CURSEG_COLD_NODE;
820 }
821 }
822
823 static int __get_segment_type_6(struct page *page, enum page_type p_type)
824 {
825 if (p_type == DATA) {
826 struct inode *inode = page->mapping->host;
827
828 if (S_ISDIR(inode->i_mode))
829 return CURSEG_HOT_DATA;
830 else if (is_cold_data(page) || file_is_cold(inode))
831 return CURSEG_COLD_DATA;
832 else
833 return CURSEG_WARM_DATA;
834 } else {
835 if (IS_DNODE(page))
836 return is_cold_node(page) ? CURSEG_WARM_NODE :
837 CURSEG_HOT_NODE;
838 else
839 return CURSEG_COLD_NODE;
840 }
841 }
842
843 static int __get_segment_type(struct page *page, enum page_type p_type)
844 {
845 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
846 switch (sbi->active_logs) {
847 case 2:
848 return __get_segment_type_2(page, p_type);
849 case 4:
850 return __get_segment_type_4(page, p_type);
851 }
852 /* NR_CURSEG_TYPE(6) logs by default */
853 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
854 return __get_segment_type_6(page, p_type);
855 }
856
857 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
858 block_t old_blkaddr, block_t *new_blkaddr,
859 struct f2fs_summary *sum, int type)
860 {
861 struct sit_info *sit_i = SIT_I(sbi);
862 struct curseg_info *curseg;
863 unsigned int old_cursegno;
864
865 curseg = CURSEG_I(sbi, type);
866
867 mutex_lock(&curseg->curseg_mutex);
868
869 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
870 old_cursegno = curseg->segno;
871
872 /*
873 * __add_sum_entry should be resided under the curseg_mutex
874 * because, this function updates a summary entry in the
875 * current summary block.
876 */
877 __add_sum_entry(sbi, type, sum);
878
879 mutex_lock(&sit_i->sentry_lock);
880 __refresh_next_blkoff(sbi, curseg);
881
882 stat_inc_block_count(sbi, curseg);
883
884 /*
885 * SIT information should be updated before segment allocation,
886 * since SSR needs latest valid block information.
887 */
888 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
889
890 if (!__has_curseg_space(sbi, type))
891 sit_i->s_ops->allocate_segment(sbi, type, false);
892
893 locate_dirty_segment(sbi, old_cursegno);
894 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
895 mutex_unlock(&sit_i->sentry_lock);
896
897 if (page && IS_NODESEG(type))
898 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
899
900 mutex_unlock(&curseg->curseg_mutex);
901 }
902
903 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
904 block_t old_blkaddr, block_t *new_blkaddr,
905 struct f2fs_summary *sum, struct f2fs_io_info *fio)
906 {
907 int type = __get_segment_type(page, fio->type);
908
909 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
910
911 /* writeout dirty page into bdev */
912 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
913 }
914
915 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
916 {
917 struct f2fs_io_info fio = {
918 .type = META,
919 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
920 };
921
922 set_page_writeback(page);
923 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
924 }
925
926 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
927 struct f2fs_io_info *fio,
928 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
929 {
930 struct f2fs_summary sum;
931 set_summary(&sum, nid, 0, 0);
932 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
933 }
934
935 void write_data_page(struct page *page, struct dnode_of_data *dn,
936 block_t *new_blkaddr, struct f2fs_io_info *fio)
937 {
938 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
939 struct f2fs_summary sum;
940 struct node_info ni;
941
942 f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
943 get_node_info(sbi, dn->nid, &ni);
944 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
945
946 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
947 }
948
949 void rewrite_data_page(struct page *page, block_t old_blkaddr, struct f2fs_io_info *fio)
950 {
951 struct inode *inode = page->mapping->host;
952 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
953 f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
954 }
955
956 void recover_data_page(struct f2fs_sb_info *sbi,
957 struct page *page, struct f2fs_summary *sum,
958 block_t old_blkaddr, block_t new_blkaddr)
959 {
960 struct sit_info *sit_i = SIT_I(sbi);
961 struct curseg_info *curseg;
962 unsigned int segno, old_cursegno;
963 struct seg_entry *se;
964 int type;
965
966 segno = GET_SEGNO(sbi, new_blkaddr);
967 se = get_seg_entry(sbi, segno);
968 type = se->type;
969
970 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
971 if (old_blkaddr == NULL_ADDR)
972 type = CURSEG_COLD_DATA;
973 else
974 type = CURSEG_WARM_DATA;
975 }
976 curseg = CURSEG_I(sbi, type);
977
978 mutex_lock(&curseg->curseg_mutex);
979 mutex_lock(&sit_i->sentry_lock);
980
981 old_cursegno = curseg->segno;
982
983 /* change the current segment */
984 if (segno != curseg->segno) {
985 curseg->next_segno = segno;
986 change_curseg(sbi, type, true);
987 }
988
989 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
990 (sbi->blocks_per_seg - 1);
991 __add_sum_entry(sbi, type, sum);
992
993 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
994
995 locate_dirty_segment(sbi, old_cursegno);
996 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
997
998 mutex_unlock(&sit_i->sentry_lock);
999 mutex_unlock(&curseg->curseg_mutex);
1000 }
1001
1002 void rewrite_node_page(struct f2fs_sb_info *sbi,
1003 struct page *page, struct f2fs_summary *sum,
1004 block_t old_blkaddr, block_t new_blkaddr)
1005 {
1006 struct sit_info *sit_i = SIT_I(sbi);
1007 int type = CURSEG_WARM_NODE;
1008 struct curseg_info *curseg;
1009 unsigned int segno, old_cursegno;
1010 block_t next_blkaddr = next_blkaddr_of_node(page);
1011 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1012 struct f2fs_io_info fio = {
1013 .type = NODE,
1014 .rw = WRITE_SYNC,
1015 };
1016
1017 curseg = CURSEG_I(sbi, type);
1018
1019 mutex_lock(&curseg->curseg_mutex);
1020 mutex_lock(&sit_i->sentry_lock);
1021
1022 segno = GET_SEGNO(sbi, new_blkaddr);
1023 old_cursegno = curseg->segno;
1024
1025 /* change the current segment */
1026 if (segno != curseg->segno) {
1027 curseg->next_segno = segno;
1028 change_curseg(sbi, type, true);
1029 }
1030 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1031 (sbi->blocks_per_seg - 1);
1032 __add_sum_entry(sbi, type, sum);
1033
1034 /* change the current log to the next block addr in advance */
1035 if (next_segno != segno) {
1036 curseg->next_segno = next_segno;
1037 change_curseg(sbi, type, true);
1038 }
1039 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
1040 (sbi->blocks_per_seg - 1);
1041
1042 /* rewrite node page */
1043 set_page_writeback(page);
1044 f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1045 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1046 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1047
1048 locate_dirty_segment(sbi, old_cursegno);
1049 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1050
1051 mutex_unlock(&sit_i->sentry_lock);
1052 mutex_unlock(&curseg->curseg_mutex);
1053 }
1054
1055 void f2fs_wait_on_page_writeback(struct page *page,
1056 enum page_type type)
1057 {
1058 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1059 if (PageWriteback(page)) {
1060 f2fs_submit_merged_bio(sbi, type, WRITE);
1061 wait_on_page_writeback(page);
1062 }
1063 }
1064
1065 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1066 {
1067 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1068 struct curseg_info *seg_i;
1069 unsigned char *kaddr;
1070 struct page *page;
1071 block_t start;
1072 int i, j, offset;
1073
1074 start = start_sum_block(sbi);
1075
1076 page = get_meta_page(sbi, start++);
1077 kaddr = (unsigned char *)page_address(page);
1078
1079 /* Step 1: restore nat cache */
1080 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1081 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1082
1083 /* Step 2: restore sit cache */
1084 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1085 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1086 SUM_JOURNAL_SIZE);
1087 offset = 2 * SUM_JOURNAL_SIZE;
1088
1089 /* Step 3: restore summary entries */
1090 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1091 unsigned short blk_off;
1092 unsigned int segno;
1093
1094 seg_i = CURSEG_I(sbi, i);
1095 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1096 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1097 seg_i->next_segno = segno;
1098 reset_curseg(sbi, i, 0);
1099 seg_i->alloc_type = ckpt->alloc_type[i];
1100 seg_i->next_blkoff = blk_off;
1101
1102 if (seg_i->alloc_type == SSR)
1103 blk_off = sbi->blocks_per_seg;
1104
1105 for (j = 0; j < blk_off; j++) {
1106 struct f2fs_summary *s;
1107 s = (struct f2fs_summary *)(kaddr + offset);
1108 seg_i->sum_blk->entries[j] = *s;
1109 offset += SUMMARY_SIZE;
1110 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1111 SUM_FOOTER_SIZE)
1112 continue;
1113
1114 f2fs_put_page(page, 1);
1115 page = NULL;
1116
1117 page = get_meta_page(sbi, start++);
1118 kaddr = (unsigned char *)page_address(page);
1119 offset = 0;
1120 }
1121 }
1122 f2fs_put_page(page, 1);
1123 return 0;
1124 }
1125
1126 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1127 {
1128 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1129 struct f2fs_summary_block *sum;
1130 struct curseg_info *curseg;
1131 struct page *new;
1132 unsigned short blk_off;
1133 unsigned int segno = 0;
1134 block_t blk_addr = 0;
1135
1136 /* get segment number and block addr */
1137 if (IS_DATASEG(type)) {
1138 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1139 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1140 CURSEG_HOT_DATA]);
1141 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1142 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1143 else
1144 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1145 } else {
1146 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1147 CURSEG_HOT_NODE]);
1148 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1149 CURSEG_HOT_NODE]);
1150 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1151 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1152 type - CURSEG_HOT_NODE);
1153 else
1154 blk_addr = GET_SUM_BLOCK(sbi, segno);
1155 }
1156
1157 new = get_meta_page(sbi, blk_addr);
1158 sum = (struct f2fs_summary_block *)page_address(new);
1159
1160 if (IS_NODESEG(type)) {
1161 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1162 struct f2fs_summary *ns = &sum->entries[0];
1163 int i;
1164 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1165 ns->version = 0;
1166 ns->ofs_in_node = 0;
1167 }
1168 } else {
1169 if (restore_node_summary(sbi, segno, sum)) {
1170 f2fs_put_page(new, 1);
1171 return -EINVAL;
1172 }
1173 }
1174 }
1175
1176 /* set uncompleted segment to curseg */
1177 curseg = CURSEG_I(sbi, type);
1178 mutex_lock(&curseg->curseg_mutex);
1179 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1180 curseg->next_segno = segno;
1181 reset_curseg(sbi, type, 0);
1182 curseg->alloc_type = ckpt->alloc_type[type];
1183 curseg->next_blkoff = blk_off;
1184 mutex_unlock(&curseg->curseg_mutex);
1185 f2fs_put_page(new, 1);
1186 return 0;
1187 }
1188
1189 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1190 {
1191 int type = CURSEG_HOT_DATA;
1192
1193 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1194 /* restore for compacted data summary */
1195 if (read_compacted_summaries(sbi))
1196 return -EINVAL;
1197 type = CURSEG_HOT_NODE;
1198 }
1199
1200 for (; type <= CURSEG_COLD_NODE; type++)
1201 if (read_normal_summaries(sbi, type))
1202 return -EINVAL;
1203 return 0;
1204 }
1205
1206 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1207 {
1208 struct page *page;
1209 unsigned char *kaddr;
1210 struct f2fs_summary *summary;
1211 struct curseg_info *seg_i;
1212 int written_size = 0;
1213 int i, j;
1214
1215 page = grab_meta_page(sbi, blkaddr++);
1216 kaddr = (unsigned char *)page_address(page);
1217
1218 /* Step 1: write nat cache */
1219 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1220 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1221 written_size += SUM_JOURNAL_SIZE;
1222
1223 /* Step 2: write sit cache */
1224 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1225 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1226 SUM_JOURNAL_SIZE);
1227 written_size += SUM_JOURNAL_SIZE;
1228
1229 /* Step 3: write summary entries */
1230 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1231 unsigned short blkoff;
1232 seg_i = CURSEG_I(sbi, i);
1233 if (sbi->ckpt->alloc_type[i] == SSR)
1234 blkoff = sbi->blocks_per_seg;
1235 else
1236 blkoff = curseg_blkoff(sbi, i);
1237
1238 for (j = 0; j < blkoff; j++) {
1239 if (!page) {
1240 page = grab_meta_page(sbi, blkaddr++);
1241 kaddr = (unsigned char *)page_address(page);
1242 written_size = 0;
1243 }
1244 summary = (struct f2fs_summary *)(kaddr + written_size);
1245 *summary = seg_i->sum_blk->entries[j];
1246 written_size += SUMMARY_SIZE;
1247
1248 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1249 SUM_FOOTER_SIZE)
1250 continue;
1251
1252 set_page_dirty(page);
1253 f2fs_put_page(page, 1);
1254 page = NULL;
1255 }
1256 }
1257 if (page) {
1258 set_page_dirty(page);
1259 f2fs_put_page(page, 1);
1260 }
1261 }
1262
1263 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1264 block_t blkaddr, int type)
1265 {
1266 int i, end;
1267 if (IS_DATASEG(type))
1268 end = type + NR_CURSEG_DATA_TYPE;
1269 else
1270 end = type + NR_CURSEG_NODE_TYPE;
1271
1272 for (i = type; i < end; i++) {
1273 struct curseg_info *sum = CURSEG_I(sbi, i);
1274 mutex_lock(&sum->curseg_mutex);
1275 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1276 mutex_unlock(&sum->curseg_mutex);
1277 }
1278 }
1279
1280 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1281 {
1282 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1283 write_compacted_summaries(sbi, start_blk);
1284 else
1285 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1286 }
1287
1288 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1289 {
1290 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1291 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1292 }
1293
1294 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1295 unsigned int val, int alloc)
1296 {
1297 int i;
1298
1299 if (type == NAT_JOURNAL) {
1300 for (i = 0; i < nats_in_cursum(sum); i++) {
1301 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1302 return i;
1303 }
1304 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1305 return update_nats_in_cursum(sum, 1);
1306 } else if (type == SIT_JOURNAL) {
1307 for (i = 0; i < sits_in_cursum(sum); i++)
1308 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1309 return i;
1310 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1311 return update_sits_in_cursum(sum, 1);
1312 }
1313 return -1;
1314 }
1315
1316 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1317 unsigned int segno)
1318 {
1319 struct sit_info *sit_i = SIT_I(sbi);
1320 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1321 block_t blk_addr = sit_i->sit_base_addr + offset;
1322
1323 check_seg_range(sbi, segno);
1324
1325 /* calculate sit block address */
1326 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1327 blk_addr += sit_i->sit_blocks;
1328
1329 return get_meta_page(sbi, blk_addr);
1330 }
1331
1332 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1333 unsigned int start)
1334 {
1335 struct sit_info *sit_i = SIT_I(sbi);
1336 struct page *src_page, *dst_page;
1337 pgoff_t src_off, dst_off;
1338 void *src_addr, *dst_addr;
1339
1340 src_off = current_sit_addr(sbi, start);
1341 dst_off = next_sit_addr(sbi, src_off);
1342
1343 /* get current sit block page without lock */
1344 src_page = get_meta_page(sbi, src_off);
1345 dst_page = grab_meta_page(sbi, dst_off);
1346 f2fs_bug_on(PageDirty(src_page));
1347
1348 src_addr = page_address(src_page);
1349 dst_addr = page_address(dst_page);
1350 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1351
1352 set_page_dirty(dst_page);
1353 f2fs_put_page(src_page, 1);
1354
1355 set_to_next_sit(sit_i, start);
1356
1357 return dst_page;
1358 }
1359
1360 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1361 {
1362 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1363 struct f2fs_summary_block *sum = curseg->sum_blk;
1364 int i;
1365
1366 /*
1367 * If the journal area in the current summary is full of sit entries,
1368 * all the sit entries will be flushed. Otherwise the sit entries
1369 * are not able to replace with newly hot sit entries.
1370 */
1371 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1372 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1373 unsigned int segno;
1374 segno = le32_to_cpu(segno_in_journal(sum, i));
1375 __mark_sit_entry_dirty(sbi, segno);
1376 }
1377 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1378 return true;
1379 }
1380 return false;
1381 }
1382
1383 /*
1384 * CP calls this function, which flushes SIT entries including sit_journal,
1385 * and moves prefree segs to free segs.
1386 */
1387 void flush_sit_entries(struct f2fs_sb_info *sbi)
1388 {
1389 struct sit_info *sit_i = SIT_I(sbi);
1390 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1391 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1392 struct f2fs_summary_block *sum = curseg->sum_blk;
1393 unsigned long nsegs = TOTAL_SEGS(sbi);
1394 struct page *page = NULL;
1395 struct f2fs_sit_block *raw_sit = NULL;
1396 unsigned int start = 0, end = 0;
1397 unsigned int segno = -1;
1398 bool flushed;
1399
1400 mutex_lock(&curseg->curseg_mutex);
1401 mutex_lock(&sit_i->sentry_lock);
1402
1403 /*
1404 * "flushed" indicates whether sit entries in journal are flushed
1405 * to the SIT area or not.
1406 */
1407 flushed = flush_sits_in_journal(sbi);
1408
1409 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1410 struct seg_entry *se = get_seg_entry(sbi, segno);
1411 int sit_offset, offset;
1412
1413 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1414
1415 /* add discard candidates */
1416 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1417 add_discard_addrs(sbi, segno, se);
1418
1419 if (flushed)
1420 goto to_sit_page;
1421
1422 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1423 if (offset >= 0) {
1424 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1425 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1426 goto flush_done;
1427 }
1428 to_sit_page:
1429 if (!page || (start > segno) || (segno > end)) {
1430 if (page) {
1431 f2fs_put_page(page, 1);
1432 page = NULL;
1433 }
1434
1435 start = START_SEGNO(sit_i, segno);
1436 end = start + SIT_ENTRY_PER_BLOCK - 1;
1437
1438 /* read sit block that will be updated */
1439 page = get_next_sit_page(sbi, start);
1440 raw_sit = page_address(page);
1441 }
1442
1443 /* udpate entry in SIT block */
1444 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1445 flush_done:
1446 __clear_bit(segno, bitmap);
1447 sit_i->dirty_sentries--;
1448 }
1449 mutex_unlock(&sit_i->sentry_lock);
1450 mutex_unlock(&curseg->curseg_mutex);
1451
1452 /* writeout last modified SIT block */
1453 f2fs_put_page(page, 1);
1454
1455 set_prefree_as_free_segments(sbi);
1456 }
1457
1458 static int build_sit_info(struct f2fs_sb_info *sbi)
1459 {
1460 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1461 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1462 struct sit_info *sit_i;
1463 unsigned int sit_segs, start;
1464 char *src_bitmap, *dst_bitmap;
1465 unsigned int bitmap_size;
1466
1467 /* allocate memory for SIT information */
1468 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1469 if (!sit_i)
1470 return -ENOMEM;
1471
1472 SM_I(sbi)->sit_info = sit_i;
1473
1474 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1475 if (!sit_i->sentries)
1476 return -ENOMEM;
1477
1478 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1479 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1480 if (!sit_i->dirty_sentries_bitmap)
1481 return -ENOMEM;
1482
1483 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1484 sit_i->sentries[start].cur_valid_map
1485 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1486 sit_i->sentries[start].ckpt_valid_map
1487 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1488 if (!sit_i->sentries[start].cur_valid_map
1489 || !sit_i->sentries[start].ckpt_valid_map)
1490 return -ENOMEM;
1491 }
1492
1493 if (sbi->segs_per_sec > 1) {
1494 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1495 sizeof(struct sec_entry));
1496 if (!sit_i->sec_entries)
1497 return -ENOMEM;
1498 }
1499
1500 /* get information related with SIT */
1501 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1502
1503 /* setup SIT bitmap from ckeckpoint pack */
1504 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1505 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1506
1507 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1508 if (!dst_bitmap)
1509 return -ENOMEM;
1510
1511 /* init SIT information */
1512 sit_i->s_ops = &default_salloc_ops;
1513
1514 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1515 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1516 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1517 sit_i->sit_bitmap = dst_bitmap;
1518 sit_i->bitmap_size = bitmap_size;
1519 sit_i->dirty_sentries = 0;
1520 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1521 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1522 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1523 mutex_init(&sit_i->sentry_lock);
1524 return 0;
1525 }
1526
1527 static int build_free_segmap(struct f2fs_sb_info *sbi)
1528 {
1529 struct f2fs_sm_info *sm_info = SM_I(sbi);
1530 struct free_segmap_info *free_i;
1531 unsigned int bitmap_size, sec_bitmap_size;
1532
1533 /* allocate memory for free segmap information */
1534 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1535 if (!free_i)
1536 return -ENOMEM;
1537
1538 SM_I(sbi)->free_info = free_i;
1539
1540 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1541 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1542 if (!free_i->free_segmap)
1543 return -ENOMEM;
1544
1545 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1546 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1547 if (!free_i->free_secmap)
1548 return -ENOMEM;
1549
1550 /* set all segments as dirty temporarily */
1551 memset(free_i->free_segmap, 0xff, bitmap_size);
1552 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1553
1554 /* init free segmap information */
1555 free_i->start_segno =
1556 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1557 free_i->free_segments = 0;
1558 free_i->free_sections = 0;
1559 rwlock_init(&free_i->segmap_lock);
1560 return 0;
1561 }
1562
1563 static int build_curseg(struct f2fs_sb_info *sbi)
1564 {
1565 struct curseg_info *array;
1566 int i;
1567
1568 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1569 if (!array)
1570 return -ENOMEM;
1571
1572 SM_I(sbi)->curseg_array = array;
1573
1574 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1575 mutex_init(&array[i].curseg_mutex);
1576 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1577 if (!array[i].sum_blk)
1578 return -ENOMEM;
1579 array[i].segno = NULL_SEGNO;
1580 array[i].next_blkoff = 0;
1581 }
1582 return restore_curseg_summaries(sbi);
1583 }
1584
1585 static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages)
1586 {
1587 struct address_space *mapping = sbi->meta_inode->i_mapping;
1588 struct page *page;
1589 block_t blk_addr, prev_blk_addr = 0;
1590 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1591 int blkno = start;
1592 struct f2fs_io_info fio = {
1593 .type = META,
1594 .rw = READ_SYNC | REQ_META | REQ_PRIO
1595 };
1596
1597 for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) {
1598
1599 blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK);
1600
1601 if (blkno != start && prev_blk_addr + 1 != blk_addr)
1602 break;
1603 prev_blk_addr = blk_addr;
1604 repeat:
1605 page = grab_cache_page(mapping, blk_addr);
1606 if (!page) {
1607 cond_resched();
1608 goto repeat;
1609 }
1610 if (PageUptodate(page)) {
1611 mark_page_accessed(page);
1612 f2fs_put_page(page, 1);
1613 continue;
1614 }
1615
1616 f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
1617
1618 mark_page_accessed(page);
1619 f2fs_put_page(page, 0);
1620 }
1621
1622 f2fs_submit_merged_bio(sbi, META, READ);
1623 return blkno - start;
1624 }
1625
1626 static void build_sit_entries(struct f2fs_sb_info *sbi)
1627 {
1628 struct sit_info *sit_i = SIT_I(sbi);
1629 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1630 struct f2fs_summary_block *sum = curseg->sum_blk;
1631 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1632 unsigned int i, start, end;
1633 unsigned int readed, start_blk = 0;
1634 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1635
1636 do {
1637 readed = ra_sit_pages(sbi, start_blk, nrpages);
1638
1639 start = start_blk * sit_i->sents_per_block;
1640 end = (start_blk + readed) * sit_i->sents_per_block;
1641
1642 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1643 struct seg_entry *se = &sit_i->sentries[start];
1644 struct f2fs_sit_block *sit_blk;
1645 struct f2fs_sit_entry sit;
1646 struct page *page;
1647
1648 mutex_lock(&curseg->curseg_mutex);
1649 for (i = 0; i < sits_in_cursum(sum); i++) {
1650 if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1651 sit = sit_in_journal(sum, i);
1652 mutex_unlock(&curseg->curseg_mutex);
1653 goto got_it;
1654 }
1655 }
1656 mutex_unlock(&curseg->curseg_mutex);
1657
1658 page = get_current_sit_page(sbi, start);
1659 sit_blk = (struct f2fs_sit_block *)page_address(page);
1660 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1661 f2fs_put_page(page, 1);
1662 got_it:
1663 check_block_count(sbi, start, &sit);
1664 seg_info_from_raw_sit(se, &sit);
1665 if (sbi->segs_per_sec > 1) {
1666 struct sec_entry *e = get_sec_entry(sbi, start);
1667 e->valid_blocks += se->valid_blocks;
1668 }
1669 }
1670 start_blk += readed;
1671 } while (start_blk < sit_blk_cnt);
1672 }
1673
1674 static void init_free_segmap(struct f2fs_sb_info *sbi)
1675 {
1676 unsigned int start;
1677 int type;
1678
1679 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1680 struct seg_entry *sentry = get_seg_entry(sbi, start);
1681 if (!sentry->valid_blocks)
1682 __set_free(sbi, start);
1683 }
1684
1685 /* set use the current segments */
1686 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1687 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1688 __set_test_and_inuse(sbi, curseg_t->segno);
1689 }
1690 }
1691
1692 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1693 {
1694 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1695 struct free_segmap_info *free_i = FREE_I(sbi);
1696 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1697 unsigned short valid_blocks;
1698
1699 while (1) {
1700 /* find dirty segment based on free segmap */
1701 segno = find_next_inuse(free_i, total_segs, offset);
1702 if (segno >= total_segs)
1703 break;
1704 offset = segno + 1;
1705 valid_blocks = get_valid_blocks(sbi, segno, 0);
1706 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1707 continue;
1708 mutex_lock(&dirty_i->seglist_lock);
1709 __locate_dirty_segment(sbi, segno, DIRTY);
1710 mutex_unlock(&dirty_i->seglist_lock);
1711 }
1712 }
1713
1714 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1715 {
1716 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1717 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1718
1719 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1720 if (!dirty_i->victim_secmap)
1721 return -ENOMEM;
1722 return 0;
1723 }
1724
1725 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1726 {
1727 struct dirty_seglist_info *dirty_i;
1728 unsigned int bitmap_size, i;
1729
1730 /* allocate memory for dirty segments list information */
1731 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1732 if (!dirty_i)
1733 return -ENOMEM;
1734
1735 SM_I(sbi)->dirty_info = dirty_i;
1736 mutex_init(&dirty_i->seglist_lock);
1737
1738 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1739
1740 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1741 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1742 if (!dirty_i->dirty_segmap[i])
1743 return -ENOMEM;
1744 }
1745
1746 init_dirty_segmap(sbi);
1747 return init_victim_secmap(sbi);
1748 }
1749
1750 /*
1751 * Update min, max modified time for cost-benefit GC algorithm
1752 */
1753 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1754 {
1755 struct sit_info *sit_i = SIT_I(sbi);
1756 unsigned int segno;
1757
1758 mutex_lock(&sit_i->sentry_lock);
1759
1760 sit_i->min_mtime = LLONG_MAX;
1761
1762 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1763 unsigned int i;
1764 unsigned long long mtime = 0;
1765
1766 for (i = 0; i < sbi->segs_per_sec; i++)
1767 mtime += get_seg_entry(sbi, segno + i)->mtime;
1768
1769 mtime = div_u64(mtime, sbi->segs_per_sec);
1770
1771 if (sit_i->min_mtime > mtime)
1772 sit_i->min_mtime = mtime;
1773 }
1774 sit_i->max_mtime = get_mtime(sbi);
1775 mutex_unlock(&sit_i->sentry_lock);
1776 }
1777
1778 int build_segment_manager(struct f2fs_sb_info *sbi)
1779 {
1780 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1781 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1782 struct f2fs_sm_info *sm_info;
1783 int err;
1784
1785 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1786 if (!sm_info)
1787 return -ENOMEM;
1788
1789 /* init sm info */
1790 sbi->sm_info = sm_info;
1791 INIT_LIST_HEAD(&sm_info->wblist_head);
1792 spin_lock_init(&sm_info->wblist_lock);
1793 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1794 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1795 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1796 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1797 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1798 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1799 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1800 sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1801 sm_info->ipu_policy = F2FS_IPU_DISABLE;
1802 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1803
1804 INIT_LIST_HEAD(&sm_info->discard_list);
1805 sm_info->nr_discards = 0;
1806 sm_info->max_discards = 0;
1807
1808 err = build_sit_info(sbi);
1809 if (err)
1810 return err;
1811 err = build_free_segmap(sbi);
1812 if (err)
1813 return err;
1814 err = build_curseg(sbi);
1815 if (err)
1816 return err;
1817
1818 /* reinit free segmap based on SIT */
1819 build_sit_entries(sbi);
1820
1821 init_free_segmap(sbi);
1822 err = build_dirty_segmap(sbi);
1823 if (err)
1824 return err;
1825
1826 init_min_max_mtime(sbi);
1827 return 0;
1828 }
1829
1830 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1831 enum dirty_type dirty_type)
1832 {
1833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1834
1835 mutex_lock(&dirty_i->seglist_lock);
1836 kfree(dirty_i->dirty_segmap[dirty_type]);
1837 dirty_i->nr_dirty[dirty_type] = 0;
1838 mutex_unlock(&dirty_i->seglist_lock);
1839 }
1840
1841 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1842 {
1843 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1844 kfree(dirty_i->victim_secmap);
1845 }
1846
1847 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1848 {
1849 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1850 int i;
1851
1852 if (!dirty_i)
1853 return;
1854
1855 /* discard pre-free/dirty segments list */
1856 for (i = 0; i < NR_DIRTY_TYPE; i++)
1857 discard_dirty_segmap(sbi, i);
1858
1859 destroy_victim_secmap(sbi);
1860 SM_I(sbi)->dirty_info = NULL;
1861 kfree(dirty_i);
1862 }
1863
1864 static void destroy_curseg(struct f2fs_sb_info *sbi)
1865 {
1866 struct curseg_info *array = SM_I(sbi)->curseg_array;
1867 int i;
1868
1869 if (!array)
1870 return;
1871 SM_I(sbi)->curseg_array = NULL;
1872 for (i = 0; i < NR_CURSEG_TYPE; i++)
1873 kfree(array[i].sum_blk);
1874 kfree(array);
1875 }
1876
1877 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1878 {
1879 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1880 if (!free_i)
1881 return;
1882 SM_I(sbi)->free_info = NULL;
1883 kfree(free_i->free_segmap);
1884 kfree(free_i->free_secmap);
1885 kfree(free_i);
1886 }
1887
1888 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1889 {
1890 struct sit_info *sit_i = SIT_I(sbi);
1891 unsigned int start;
1892
1893 if (!sit_i)
1894 return;
1895
1896 if (sit_i->sentries) {
1897 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1898 kfree(sit_i->sentries[start].cur_valid_map);
1899 kfree(sit_i->sentries[start].ckpt_valid_map);
1900 }
1901 }
1902 vfree(sit_i->sentries);
1903 vfree(sit_i->sec_entries);
1904 kfree(sit_i->dirty_sentries_bitmap);
1905
1906 SM_I(sbi)->sit_info = NULL;
1907 kfree(sit_i->sit_bitmap);
1908 kfree(sit_i);
1909 }
1910
1911 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1912 {
1913 struct f2fs_sm_info *sm_info = SM_I(sbi);
1914 if (!sm_info)
1915 return;
1916 destroy_dirty_segmap(sbi);
1917 destroy_curseg(sbi);
1918 destroy_free_segmap(sbi);
1919 destroy_sit_info(sbi);
1920 sbi->sm_info = NULL;
1921 kfree(sm_info);
1922 }
1923
1924 int __init create_segment_manager_caches(void)
1925 {
1926 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1927 sizeof(struct discard_entry), NULL);
1928 if (!discard_entry_slab)
1929 return -ENOMEM;
1930 return 0;
1931 }
1932
1933 void destroy_segment_manager_caches(void)
1934 {
1935 kmem_cache_destroy(discard_entry_slab);
1936 }