]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/segment.c
Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "trace.h"
25 #include <trace/events/f2fs.h>
26
27 #define __reverse_ffz(x) __reverse_ffs(~(x))
28
29 static struct kmem_cache *discard_entry_slab;
30 static struct kmem_cache *discard_cmd_slab;
31 static struct kmem_cache *sit_entry_set_slab;
32 static struct kmem_cache *inmem_entry_slab;
33
34 static unsigned long __reverse_ulong(unsigned char *str)
35 {
36 unsigned long tmp = 0;
37 int shift = 24, idx = 0;
38
39 #if BITS_PER_LONG == 64
40 shift = 56;
41 #endif
42 while (shift >= 0) {
43 tmp |= (unsigned long)str[idx++] << shift;
44 shift -= BITS_PER_BYTE;
45 }
46 return tmp;
47 }
48
49 /*
50 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
51 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 */
53 static inline unsigned long __reverse_ffs(unsigned long word)
54 {
55 int num = 0;
56
57 #if BITS_PER_LONG == 64
58 if ((word & 0xffffffff00000000UL) == 0)
59 num += 32;
60 else
61 word >>= 32;
62 #endif
63 if ((word & 0xffff0000) == 0)
64 num += 16;
65 else
66 word >>= 16;
67
68 if ((word & 0xff00) == 0)
69 num += 8;
70 else
71 word >>= 8;
72
73 if ((word & 0xf0) == 0)
74 num += 4;
75 else
76 word >>= 4;
77
78 if ((word & 0xc) == 0)
79 num += 2;
80 else
81 word >>= 2;
82
83 if ((word & 0x2) == 0)
84 num += 1;
85 return num;
86 }
87
88 /*
89 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
90 * f2fs_set_bit makes MSB and LSB reversed in a byte.
91 * @size must be integral times of unsigned long.
92 * Example:
93 * MSB <--> LSB
94 * f2fs_set_bit(0, bitmap) => 1000 0000
95 * f2fs_set_bit(7, bitmap) => 0000 0001
96 */
97 static unsigned long __find_rev_next_bit(const unsigned long *addr,
98 unsigned long size, unsigned long offset)
99 {
100 const unsigned long *p = addr + BIT_WORD(offset);
101 unsigned long result = size;
102 unsigned long tmp;
103
104 if (offset >= size)
105 return size;
106
107 size -= (offset & ~(BITS_PER_LONG - 1));
108 offset %= BITS_PER_LONG;
109
110 while (1) {
111 if (*p == 0)
112 goto pass;
113
114 tmp = __reverse_ulong((unsigned char *)p);
115
116 tmp &= ~0UL >> offset;
117 if (size < BITS_PER_LONG)
118 tmp &= (~0UL << (BITS_PER_LONG - size));
119 if (tmp)
120 goto found;
121 pass:
122 if (size <= BITS_PER_LONG)
123 break;
124 size -= BITS_PER_LONG;
125 offset = 0;
126 p++;
127 }
128 return result;
129 found:
130 return result - size + __reverse_ffs(tmp);
131 }
132
133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
134 unsigned long size, unsigned long offset)
135 {
136 const unsigned long *p = addr + BIT_WORD(offset);
137 unsigned long result = size;
138 unsigned long tmp;
139
140 if (offset >= size)
141 return size;
142
143 size -= (offset & ~(BITS_PER_LONG - 1));
144 offset %= BITS_PER_LONG;
145
146 while (1) {
147 if (*p == ~0UL)
148 goto pass;
149
150 tmp = __reverse_ulong((unsigned char *)p);
151
152 if (offset)
153 tmp |= ~0UL << (BITS_PER_LONG - offset);
154 if (size < BITS_PER_LONG)
155 tmp |= ~0UL >> size;
156 if (tmp != ~0UL)
157 goto found;
158 pass:
159 if (size <= BITS_PER_LONG)
160 break;
161 size -= BITS_PER_LONG;
162 offset = 0;
163 p++;
164 }
165 return result;
166 found:
167 return result - size + __reverse_ffz(tmp);
168 }
169
170 void register_inmem_page(struct inode *inode, struct page *page)
171 {
172 struct f2fs_inode_info *fi = F2FS_I(inode);
173 struct inmem_pages *new;
174
175 f2fs_trace_pid(page);
176
177 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
178 SetPagePrivate(page);
179
180 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
181
182 /* add atomic page indices to the list */
183 new->page = page;
184 INIT_LIST_HEAD(&new->list);
185
186 /* increase reference count with clean state */
187 mutex_lock(&fi->inmem_lock);
188 get_page(page);
189 list_add_tail(&new->list, &fi->inmem_pages);
190 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
191 mutex_unlock(&fi->inmem_lock);
192
193 trace_f2fs_register_inmem_page(page, INMEM);
194 }
195
196 static int __revoke_inmem_pages(struct inode *inode,
197 struct list_head *head, bool drop, bool recover)
198 {
199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
200 struct inmem_pages *cur, *tmp;
201 int err = 0;
202
203 list_for_each_entry_safe(cur, tmp, head, list) {
204 struct page *page = cur->page;
205
206 if (drop)
207 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
208
209 lock_page(page);
210
211 if (recover) {
212 struct dnode_of_data dn;
213 struct node_info ni;
214
215 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
216
217 set_new_dnode(&dn, inode, NULL, NULL, 0);
218 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
219 err = -EAGAIN;
220 goto next;
221 }
222 get_node_info(sbi, dn.nid, &ni);
223 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
224 cur->old_addr, ni.version, true, true);
225 f2fs_put_dnode(&dn);
226 }
227 next:
228 /* we don't need to invalidate this in the sccessful status */
229 if (drop || recover)
230 ClearPageUptodate(page);
231 set_page_private(page, 0);
232 ClearPagePrivate(page);
233 f2fs_put_page(page, 1);
234
235 list_del(&cur->list);
236 kmem_cache_free(inmem_entry_slab, cur);
237 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
238 }
239 return err;
240 }
241
242 void drop_inmem_pages(struct inode *inode)
243 {
244 struct f2fs_inode_info *fi = F2FS_I(inode);
245
246 mutex_lock(&fi->inmem_lock);
247 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
248 mutex_unlock(&fi->inmem_lock);
249
250 clear_inode_flag(inode, FI_ATOMIC_FILE);
251 stat_dec_atomic_write(inode);
252 }
253
254 void drop_inmem_page(struct inode *inode, struct page *page)
255 {
256 struct f2fs_inode_info *fi = F2FS_I(inode);
257 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
258 struct list_head *head = &fi->inmem_pages;
259 struct inmem_pages *cur = NULL;
260
261 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
262
263 mutex_lock(&fi->inmem_lock);
264 list_for_each_entry(cur, head, list) {
265 if (cur->page == page)
266 break;
267 }
268
269 f2fs_bug_on(sbi, !cur || cur->page != page);
270 list_del(&cur->list);
271 mutex_unlock(&fi->inmem_lock);
272
273 dec_page_count(sbi, F2FS_INMEM_PAGES);
274 kmem_cache_free(inmem_entry_slab, cur);
275
276 ClearPageUptodate(page);
277 set_page_private(page, 0);
278 ClearPagePrivate(page);
279 f2fs_put_page(page, 0);
280
281 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
282 }
283
284 static int __commit_inmem_pages(struct inode *inode,
285 struct list_head *revoke_list)
286 {
287 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
288 struct f2fs_inode_info *fi = F2FS_I(inode);
289 struct inmem_pages *cur, *tmp;
290 struct f2fs_io_info fio = {
291 .sbi = sbi,
292 .type = DATA,
293 .op = REQ_OP_WRITE,
294 .op_flags = REQ_SYNC | REQ_PRIO,
295 };
296 pgoff_t last_idx = ULONG_MAX;
297 int err = 0;
298
299 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
300 struct page *page = cur->page;
301
302 lock_page(page);
303 if (page->mapping == inode->i_mapping) {
304 trace_f2fs_commit_inmem_page(page, INMEM);
305
306 set_page_dirty(page);
307 f2fs_wait_on_page_writeback(page, DATA, true);
308 if (clear_page_dirty_for_io(page)) {
309 inode_dec_dirty_pages(inode);
310 remove_dirty_inode(inode);
311 }
312
313 fio.page = page;
314 fio.old_blkaddr = NULL_ADDR;
315 fio.encrypted_page = NULL;
316 fio.need_lock = LOCK_DONE;
317 err = do_write_data_page(&fio);
318 if (err) {
319 unlock_page(page);
320 break;
321 }
322
323 /* record old blkaddr for revoking */
324 cur->old_addr = fio.old_blkaddr;
325 last_idx = page->index;
326 }
327 unlock_page(page);
328 list_move_tail(&cur->list, revoke_list);
329 }
330
331 if (last_idx != ULONG_MAX)
332 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
333
334 if (!err)
335 __revoke_inmem_pages(inode, revoke_list, false, false);
336
337 return err;
338 }
339
340 int commit_inmem_pages(struct inode *inode)
341 {
342 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
343 struct f2fs_inode_info *fi = F2FS_I(inode);
344 struct list_head revoke_list;
345 int err;
346
347 INIT_LIST_HEAD(&revoke_list);
348 f2fs_balance_fs(sbi, true);
349 f2fs_lock_op(sbi);
350
351 set_inode_flag(inode, FI_ATOMIC_COMMIT);
352
353 mutex_lock(&fi->inmem_lock);
354 err = __commit_inmem_pages(inode, &revoke_list);
355 if (err) {
356 int ret;
357 /*
358 * try to revoke all committed pages, but still we could fail
359 * due to no memory or other reason, if that happened, EAGAIN
360 * will be returned, which means in such case, transaction is
361 * already not integrity, caller should use journal to do the
362 * recovery or rewrite & commit last transaction. For other
363 * error number, revoking was done by filesystem itself.
364 */
365 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
366 if (ret)
367 err = ret;
368
369 /* drop all uncommitted pages */
370 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
371 }
372 mutex_unlock(&fi->inmem_lock);
373
374 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
375
376 f2fs_unlock_op(sbi);
377 return err;
378 }
379
380 /*
381 * This function balances dirty node and dentry pages.
382 * In addition, it controls garbage collection.
383 */
384 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
385 {
386 #ifdef CONFIG_F2FS_FAULT_INJECTION
387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 f2fs_show_injection_info(FAULT_CHECKPOINT);
389 f2fs_stop_checkpoint(sbi, false);
390 }
391 #endif
392
393 /* balance_fs_bg is able to be pending */
394 if (need && excess_cached_nats(sbi))
395 f2fs_balance_fs_bg(sbi);
396
397 /*
398 * We should do GC or end up with checkpoint, if there are so many dirty
399 * dir/node pages without enough free segments.
400 */
401 if (has_not_enough_free_secs(sbi, 0, 0)) {
402 mutex_lock(&sbi->gc_mutex);
403 f2fs_gc(sbi, false, false, NULL_SEGNO);
404 }
405 }
406
407 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
408 {
409 /* try to shrink extent cache when there is no enough memory */
410 if (!available_free_memory(sbi, EXTENT_CACHE))
411 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
412
413 /* check the # of cached NAT entries */
414 if (!available_free_memory(sbi, NAT_ENTRIES))
415 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
416
417 if (!available_free_memory(sbi, FREE_NIDS))
418 try_to_free_nids(sbi, MAX_FREE_NIDS);
419 else
420 build_free_nids(sbi, false, false);
421
422 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
423 return;
424
425 /* checkpoint is the only way to shrink partial cached entries */
426 if (!available_free_memory(sbi, NAT_ENTRIES) ||
427 !available_free_memory(sbi, INO_ENTRIES) ||
428 excess_prefree_segs(sbi) ||
429 excess_dirty_nats(sbi) ||
430 f2fs_time_over(sbi, CP_TIME)) {
431 if (test_opt(sbi, DATA_FLUSH)) {
432 struct blk_plug plug;
433
434 blk_start_plug(&plug);
435 sync_dirty_inodes(sbi, FILE_INODE);
436 blk_finish_plug(&plug);
437 }
438 f2fs_sync_fs(sbi->sb, true);
439 stat_inc_bg_cp_count(sbi->stat_info);
440 }
441 }
442
443 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
444 struct block_device *bdev)
445 {
446 struct bio *bio = f2fs_bio_alloc(0);
447 int ret;
448
449 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
450 bio->bi_bdev = bdev;
451 ret = submit_bio_wait(bio);
452 bio_put(bio);
453
454 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
455 test_opt(sbi, FLUSH_MERGE), ret);
456 return ret;
457 }
458
459 static int submit_flush_wait(struct f2fs_sb_info *sbi)
460 {
461 int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
462 int i;
463
464 if (!sbi->s_ndevs || ret)
465 return ret;
466
467 for (i = 1; i < sbi->s_ndevs; i++) {
468 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
469 if (ret)
470 break;
471 }
472 return ret;
473 }
474
475 static int issue_flush_thread(void *data)
476 {
477 struct f2fs_sb_info *sbi = data;
478 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
479 wait_queue_head_t *q = &fcc->flush_wait_queue;
480 repeat:
481 if (kthread_should_stop())
482 return 0;
483
484 if (!llist_empty(&fcc->issue_list)) {
485 struct flush_cmd *cmd, *next;
486 int ret;
487
488 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
489 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
490
491 ret = submit_flush_wait(sbi);
492 atomic_inc(&fcc->issued_flush);
493
494 llist_for_each_entry_safe(cmd, next,
495 fcc->dispatch_list, llnode) {
496 cmd->ret = ret;
497 complete(&cmd->wait);
498 }
499 fcc->dispatch_list = NULL;
500 }
501
502 wait_event_interruptible(*q,
503 kthread_should_stop() || !llist_empty(&fcc->issue_list));
504 goto repeat;
505 }
506
507 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
508 {
509 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
510 struct flush_cmd cmd;
511 int ret;
512
513 if (test_opt(sbi, NOBARRIER))
514 return 0;
515
516 if (!test_opt(sbi, FLUSH_MERGE)) {
517 ret = submit_flush_wait(sbi);
518 atomic_inc(&fcc->issued_flush);
519 return ret;
520 }
521
522 if (!atomic_read(&fcc->issing_flush)) {
523 atomic_inc(&fcc->issing_flush);
524 ret = submit_flush_wait(sbi);
525 atomic_dec(&fcc->issing_flush);
526
527 atomic_inc(&fcc->issued_flush);
528 return ret;
529 }
530
531 init_completion(&cmd.wait);
532
533 atomic_inc(&fcc->issing_flush);
534 llist_add(&cmd.llnode, &fcc->issue_list);
535
536 if (!fcc->dispatch_list)
537 wake_up(&fcc->flush_wait_queue);
538
539 if (fcc->f2fs_issue_flush) {
540 wait_for_completion(&cmd.wait);
541 atomic_dec(&fcc->issing_flush);
542 } else {
543 llist_del_all(&fcc->issue_list);
544 atomic_set(&fcc->issing_flush, 0);
545 }
546
547 return cmd.ret;
548 }
549
550 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
551 {
552 dev_t dev = sbi->sb->s_bdev->bd_dev;
553 struct flush_cmd_control *fcc;
554 int err = 0;
555
556 if (SM_I(sbi)->fcc_info) {
557 fcc = SM_I(sbi)->fcc_info;
558 if (fcc->f2fs_issue_flush)
559 return err;
560 goto init_thread;
561 }
562
563 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
564 if (!fcc)
565 return -ENOMEM;
566 atomic_set(&fcc->issued_flush, 0);
567 atomic_set(&fcc->issing_flush, 0);
568 init_waitqueue_head(&fcc->flush_wait_queue);
569 init_llist_head(&fcc->issue_list);
570 SM_I(sbi)->fcc_info = fcc;
571 if (!test_opt(sbi, FLUSH_MERGE))
572 return err;
573
574 init_thread:
575 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
576 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
577 if (IS_ERR(fcc->f2fs_issue_flush)) {
578 err = PTR_ERR(fcc->f2fs_issue_flush);
579 kfree(fcc);
580 SM_I(sbi)->fcc_info = NULL;
581 return err;
582 }
583
584 return err;
585 }
586
587 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
588 {
589 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590
591 if (fcc && fcc->f2fs_issue_flush) {
592 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
593
594 fcc->f2fs_issue_flush = NULL;
595 kthread_stop(flush_thread);
596 }
597 if (free) {
598 kfree(fcc);
599 SM_I(sbi)->fcc_info = NULL;
600 }
601 }
602
603 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
604 enum dirty_type dirty_type)
605 {
606 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
607
608 /* need not be added */
609 if (IS_CURSEG(sbi, segno))
610 return;
611
612 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
613 dirty_i->nr_dirty[dirty_type]++;
614
615 if (dirty_type == DIRTY) {
616 struct seg_entry *sentry = get_seg_entry(sbi, segno);
617 enum dirty_type t = sentry->type;
618
619 if (unlikely(t >= DIRTY)) {
620 f2fs_bug_on(sbi, 1);
621 return;
622 }
623 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
624 dirty_i->nr_dirty[t]++;
625 }
626 }
627
628 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
629 enum dirty_type dirty_type)
630 {
631 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
632
633 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
634 dirty_i->nr_dirty[dirty_type]--;
635
636 if (dirty_type == DIRTY) {
637 struct seg_entry *sentry = get_seg_entry(sbi, segno);
638 enum dirty_type t = sentry->type;
639
640 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
641 dirty_i->nr_dirty[t]--;
642
643 if (get_valid_blocks(sbi, segno, true) == 0)
644 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
645 dirty_i->victim_secmap);
646 }
647 }
648
649 /*
650 * Should not occur error such as -ENOMEM.
651 * Adding dirty entry into seglist is not critical operation.
652 * If a given segment is one of current working segments, it won't be added.
653 */
654 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
655 {
656 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
657 unsigned short valid_blocks;
658
659 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
660 return;
661
662 mutex_lock(&dirty_i->seglist_lock);
663
664 valid_blocks = get_valid_blocks(sbi, segno, false);
665
666 if (valid_blocks == 0) {
667 __locate_dirty_segment(sbi, segno, PRE);
668 __remove_dirty_segment(sbi, segno, DIRTY);
669 } else if (valid_blocks < sbi->blocks_per_seg) {
670 __locate_dirty_segment(sbi, segno, DIRTY);
671 } else {
672 /* Recovery routine with SSR needs this */
673 __remove_dirty_segment(sbi, segno, DIRTY);
674 }
675
676 mutex_unlock(&dirty_i->seglist_lock);
677 }
678
679 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
680 struct block_device *bdev, block_t lstart,
681 block_t start, block_t len)
682 {
683 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
684 struct list_head *pend_list;
685 struct discard_cmd *dc;
686
687 f2fs_bug_on(sbi, !len);
688
689 pend_list = &dcc->pend_list[plist_idx(len)];
690
691 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
692 INIT_LIST_HEAD(&dc->list);
693 dc->bdev = bdev;
694 dc->lstart = lstart;
695 dc->start = start;
696 dc->len = len;
697 dc->ref = 0;
698 dc->state = D_PREP;
699 dc->error = 0;
700 init_completion(&dc->wait);
701 list_add_tail(&dc->list, pend_list);
702 atomic_inc(&dcc->discard_cmd_cnt);
703 dcc->undiscard_blks += len;
704
705 return dc;
706 }
707
708 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
709 struct block_device *bdev, block_t lstart,
710 block_t start, block_t len,
711 struct rb_node *parent, struct rb_node **p)
712 {
713 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
714 struct discard_cmd *dc;
715
716 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
717
718 rb_link_node(&dc->rb_node, parent, p);
719 rb_insert_color(&dc->rb_node, &dcc->root);
720
721 return dc;
722 }
723
724 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
725 struct discard_cmd *dc)
726 {
727 if (dc->state == D_DONE)
728 atomic_dec(&dcc->issing_discard);
729
730 list_del(&dc->list);
731 rb_erase(&dc->rb_node, &dcc->root);
732 dcc->undiscard_blks -= dc->len;
733
734 kmem_cache_free(discard_cmd_slab, dc);
735
736 atomic_dec(&dcc->discard_cmd_cnt);
737 }
738
739 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
740 struct discard_cmd *dc)
741 {
742 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
743
744 f2fs_bug_on(sbi, dc->ref);
745
746 if (dc->error == -EOPNOTSUPP)
747 dc->error = 0;
748
749 if (dc->error)
750 f2fs_msg(sbi->sb, KERN_INFO,
751 "Issue discard(%u, %u, %u) failed, ret: %d",
752 dc->lstart, dc->start, dc->len, dc->error);
753 __detach_discard_cmd(dcc, dc);
754 }
755
756 static void f2fs_submit_discard_endio(struct bio *bio)
757 {
758 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
759
760 dc->error = blk_status_to_errno(bio->bi_status);
761 dc->state = D_DONE;
762 complete_all(&dc->wait);
763 bio_put(bio);
764 }
765
766 void __check_sit_bitmap(struct f2fs_sb_info *sbi,
767 block_t start, block_t end)
768 {
769 #ifdef CONFIG_F2FS_CHECK_FS
770 struct seg_entry *sentry;
771 unsigned int segno;
772 block_t blk = start;
773 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
774 unsigned long *map;
775
776 while (blk < end) {
777 segno = GET_SEGNO(sbi, blk);
778 sentry = get_seg_entry(sbi, segno);
779 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
780
781 size = min((unsigned long)(end - blk), max_blocks);
782 map = (unsigned long *)(sentry->cur_valid_map);
783 offset = __find_rev_next_bit(map, size, offset);
784 f2fs_bug_on(sbi, offset != size);
785 blk += size;
786 }
787 #endif
788 }
789
790 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
791 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
792 struct discard_cmd *dc)
793 {
794 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
795 struct bio *bio = NULL;
796
797 if (dc->state != D_PREP)
798 return;
799
800 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
801
802 dc->error = __blkdev_issue_discard(dc->bdev,
803 SECTOR_FROM_BLOCK(dc->start),
804 SECTOR_FROM_BLOCK(dc->len),
805 GFP_NOFS, 0, &bio);
806 if (!dc->error) {
807 /* should keep before submission to avoid D_DONE right away */
808 dc->state = D_SUBMIT;
809 atomic_inc(&dcc->issued_discard);
810 atomic_inc(&dcc->issing_discard);
811 if (bio) {
812 bio->bi_private = dc;
813 bio->bi_end_io = f2fs_submit_discard_endio;
814 bio->bi_opf |= REQ_SYNC;
815 submit_bio(bio);
816 list_move_tail(&dc->list, &dcc->wait_list);
817 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
818 }
819 } else {
820 __remove_discard_cmd(sbi, dc);
821 }
822 }
823
824 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
825 struct block_device *bdev, block_t lstart,
826 block_t start, block_t len,
827 struct rb_node **insert_p,
828 struct rb_node *insert_parent)
829 {
830 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
831 struct rb_node **p = &dcc->root.rb_node;
832 struct rb_node *parent = NULL;
833 struct discard_cmd *dc = NULL;
834
835 if (insert_p && insert_parent) {
836 parent = insert_parent;
837 p = insert_p;
838 goto do_insert;
839 }
840
841 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
842 do_insert:
843 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
844 if (!dc)
845 return NULL;
846
847 return dc;
848 }
849
850 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
851 struct discard_cmd *dc)
852 {
853 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
854 }
855
856 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
857 struct discard_cmd *dc, block_t blkaddr)
858 {
859 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
860 struct discard_info di = dc->di;
861 bool modified = false;
862
863 if (dc->state == D_DONE || dc->len == 1) {
864 __remove_discard_cmd(sbi, dc);
865 return;
866 }
867
868 dcc->undiscard_blks -= di.len;
869
870 if (blkaddr > di.lstart) {
871 dc->len = blkaddr - dc->lstart;
872 dcc->undiscard_blks += dc->len;
873 __relocate_discard_cmd(dcc, dc);
874 modified = true;
875 }
876
877 if (blkaddr < di.lstart + di.len - 1) {
878 if (modified) {
879 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
880 di.start + blkaddr + 1 - di.lstart,
881 di.lstart + di.len - 1 - blkaddr,
882 NULL, NULL);
883 } else {
884 dc->lstart++;
885 dc->len--;
886 dc->start++;
887 dcc->undiscard_blks += dc->len;
888 __relocate_discard_cmd(dcc, dc);
889 }
890 }
891 }
892
893 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
894 struct block_device *bdev, block_t lstart,
895 block_t start, block_t len)
896 {
897 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
898 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
899 struct discard_cmd *dc;
900 struct discard_info di = {0};
901 struct rb_node **insert_p = NULL, *insert_parent = NULL;
902 block_t end = lstart + len;
903
904 mutex_lock(&dcc->cmd_lock);
905
906 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
907 NULL, lstart,
908 (struct rb_entry **)&prev_dc,
909 (struct rb_entry **)&next_dc,
910 &insert_p, &insert_parent, true);
911 if (dc)
912 prev_dc = dc;
913
914 if (!prev_dc) {
915 di.lstart = lstart;
916 di.len = next_dc ? next_dc->lstart - lstart : len;
917 di.len = min(di.len, len);
918 di.start = start;
919 }
920
921 while (1) {
922 struct rb_node *node;
923 bool merged = false;
924 struct discard_cmd *tdc = NULL;
925
926 if (prev_dc) {
927 di.lstart = prev_dc->lstart + prev_dc->len;
928 if (di.lstart < lstart)
929 di.lstart = lstart;
930 if (di.lstart >= end)
931 break;
932
933 if (!next_dc || next_dc->lstart > end)
934 di.len = end - di.lstart;
935 else
936 di.len = next_dc->lstart - di.lstart;
937 di.start = start + di.lstart - lstart;
938 }
939
940 if (!di.len)
941 goto next;
942
943 if (prev_dc && prev_dc->state == D_PREP &&
944 prev_dc->bdev == bdev &&
945 __is_discard_back_mergeable(&di, &prev_dc->di)) {
946 prev_dc->di.len += di.len;
947 dcc->undiscard_blks += di.len;
948 __relocate_discard_cmd(dcc, prev_dc);
949 di = prev_dc->di;
950 tdc = prev_dc;
951 merged = true;
952 }
953
954 if (next_dc && next_dc->state == D_PREP &&
955 next_dc->bdev == bdev &&
956 __is_discard_front_mergeable(&di, &next_dc->di)) {
957 next_dc->di.lstart = di.lstart;
958 next_dc->di.len += di.len;
959 next_dc->di.start = di.start;
960 dcc->undiscard_blks += di.len;
961 __relocate_discard_cmd(dcc, next_dc);
962 if (tdc)
963 __remove_discard_cmd(sbi, tdc);
964 merged = true;
965 }
966
967 if (!merged) {
968 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
969 di.len, NULL, NULL);
970 }
971 next:
972 prev_dc = next_dc;
973 if (!prev_dc)
974 break;
975
976 node = rb_next(&prev_dc->rb_node);
977 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
978 }
979
980 mutex_unlock(&dcc->cmd_lock);
981 }
982
983 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
984 struct block_device *bdev, block_t blkstart, block_t blklen)
985 {
986 block_t lblkstart = blkstart;
987
988 trace_f2fs_queue_discard(bdev, blkstart, blklen);
989
990 if (sbi->s_ndevs) {
991 int devi = f2fs_target_device_index(sbi, blkstart);
992
993 blkstart -= FDEV(devi).start_blk;
994 }
995 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
996 return 0;
997 }
998
999 static void __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
1000 {
1001 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1002 struct list_head *pend_list;
1003 struct discard_cmd *dc, *tmp;
1004 struct blk_plug plug;
1005 int i, iter = 0;
1006
1007 mutex_lock(&dcc->cmd_lock);
1008 f2fs_bug_on(sbi,
1009 !__check_rb_tree_consistence(sbi, &dcc->root));
1010 blk_start_plug(&plug);
1011 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1012 pend_list = &dcc->pend_list[i];
1013 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1014 f2fs_bug_on(sbi, dc->state != D_PREP);
1015
1016 if (!issue_cond || is_idle(sbi))
1017 __submit_discard_cmd(sbi, dc);
1018 if (issue_cond && iter++ > DISCARD_ISSUE_RATE)
1019 goto out;
1020 }
1021 }
1022 out:
1023 blk_finish_plug(&plug);
1024 mutex_unlock(&dcc->cmd_lock);
1025 }
1026
1027 static void __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1028 struct discard_cmd *dc)
1029 {
1030 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1031
1032 wait_for_completion_io(&dc->wait);
1033 mutex_lock(&dcc->cmd_lock);
1034 f2fs_bug_on(sbi, dc->state != D_DONE);
1035 dc->ref--;
1036 if (!dc->ref)
1037 __remove_discard_cmd(sbi, dc);
1038 mutex_unlock(&dcc->cmd_lock);
1039 }
1040
1041 static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
1042 {
1043 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1044 struct list_head *wait_list = &(dcc->wait_list);
1045 struct discard_cmd *dc, *tmp;
1046 bool need_wait;
1047
1048 next:
1049 need_wait = false;
1050
1051 mutex_lock(&dcc->cmd_lock);
1052 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1053 if (!wait_cond || (dc->state == D_DONE && !dc->ref)) {
1054 wait_for_completion_io(&dc->wait);
1055 __remove_discard_cmd(sbi, dc);
1056 } else {
1057 dc->ref++;
1058 need_wait = true;
1059 break;
1060 }
1061 }
1062 mutex_unlock(&dcc->cmd_lock);
1063
1064 if (need_wait) {
1065 __wait_one_discard_bio(sbi, dc);
1066 goto next;
1067 }
1068 }
1069
1070 /* This should be covered by global mutex, &sit_i->sentry_lock */
1071 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1072 {
1073 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1074 struct discard_cmd *dc;
1075 bool need_wait = false;
1076
1077 mutex_lock(&dcc->cmd_lock);
1078 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1079 if (dc) {
1080 if (dc->state == D_PREP) {
1081 __punch_discard_cmd(sbi, dc, blkaddr);
1082 } else {
1083 dc->ref++;
1084 need_wait = true;
1085 }
1086 }
1087 mutex_unlock(&dcc->cmd_lock);
1088
1089 if (need_wait)
1090 __wait_one_discard_bio(sbi, dc);
1091 }
1092
1093 void stop_discard_thread(struct f2fs_sb_info *sbi)
1094 {
1095 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1096
1097 if (dcc && dcc->f2fs_issue_discard) {
1098 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1099
1100 dcc->f2fs_issue_discard = NULL;
1101 kthread_stop(discard_thread);
1102 }
1103 }
1104
1105 /* This comes from f2fs_put_super */
1106 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1107 {
1108 __issue_discard_cmd(sbi, false);
1109 __wait_discard_cmd(sbi, false);
1110 }
1111
1112 static int issue_discard_thread(void *data)
1113 {
1114 struct f2fs_sb_info *sbi = data;
1115 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1116 wait_queue_head_t *q = &dcc->discard_wait_queue;
1117
1118 set_freezable();
1119
1120 do {
1121 wait_event_interruptible(*q, kthread_should_stop() ||
1122 freezing(current) ||
1123 atomic_read(&dcc->discard_cmd_cnt));
1124 if (try_to_freeze())
1125 continue;
1126 if (kthread_should_stop())
1127 return 0;
1128
1129 __issue_discard_cmd(sbi, true);
1130 __wait_discard_cmd(sbi, true);
1131
1132 congestion_wait(BLK_RW_SYNC, HZ/50);
1133 } while (!kthread_should_stop());
1134 return 0;
1135 }
1136
1137 #ifdef CONFIG_BLK_DEV_ZONED
1138 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1139 struct block_device *bdev, block_t blkstart, block_t blklen)
1140 {
1141 sector_t sector, nr_sects;
1142 block_t lblkstart = blkstart;
1143 int devi = 0;
1144
1145 if (sbi->s_ndevs) {
1146 devi = f2fs_target_device_index(sbi, blkstart);
1147 blkstart -= FDEV(devi).start_blk;
1148 }
1149
1150 /*
1151 * We need to know the type of the zone: for conventional zones,
1152 * use regular discard if the drive supports it. For sequential
1153 * zones, reset the zone write pointer.
1154 */
1155 switch (get_blkz_type(sbi, bdev, blkstart)) {
1156
1157 case BLK_ZONE_TYPE_CONVENTIONAL:
1158 if (!blk_queue_discard(bdev_get_queue(bdev)))
1159 return 0;
1160 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1161 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1162 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1163 sector = SECTOR_FROM_BLOCK(blkstart);
1164 nr_sects = SECTOR_FROM_BLOCK(blklen);
1165
1166 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1167 nr_sects != bdev_zone_sectors(bdev)) {
1168 f2fs_msg(sbi->sb, KERN_INFO,
1169 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1170 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1171 blkstart, blklen);
1172 return -EIO;
1173 }
1174 trace_f2fs_issue_reset_zone(bdev, blkstart);
1175 return blkdev_reset_zones(bdev, sector,
1176 nr_sects, GFP_NOFS);
1177 default:
1178 /* Unknown zone type: broken device ? */
1179 return -EIO;
1180 }
1181 }
1182 #endif
1183
1184 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1185 struct block_device *bdev, block_t blkstart, block_t blklen)
1186 {
1187 #ifdef CONFIG_BLK_DEV_ZONED
1188 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1189 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1190 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1191 #endif
1192 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1193 }
1194
1195 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1196 block_t blkstart, block_t blklen)
1197 {
1198 sector_t start = blkstart, len = 0;
1199 struct block_device *bdev;
1200 struct seg_entry *se;
1201 unsigned int offset;
1202 block_t i;
1203 int err = 0;
1204
1205 bdev = f2fs_target_device(sbi, blkstart, NULL);
1206
1207 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1208 if (i != start) {
1209 struct block_device *bdev2 =
1210 f2fs_target_device(sbi, i, NULL);
1211
1212 if (bdev2 != bdev) {
1213 err = __issue_discard_async(sbi, bdev,
1214 start, len);
1215 if (err)
1216 return err;
1217 bdev = bdev2;
1218 start = i;
1219 len = 0;
1220 }
1221 }
1222
1223 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1224 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1225
1226 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1227 sbi->discard_blks--;
1228 }
1229
1230 if (len)
1231 err = __issue_discard_async(sbi, bdev, start, len);
1232 return err;
1233 }
1234
1235 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1236 bool check_only)
1237 {
1238 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1239 int max_blocks = sbi->blocks_per_seg;
1240 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1241 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1242 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1243 unsigned long *discard_map = (unsigned long *)se->discard_map;
1244 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1245 unsigned int start = 0, end = -1;
1246 bool force = (cpc->reason & CP_DISCARD);
1247 struct discard_entry *de = NULL;
1248 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1249 int i;
1250
1251 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1252 return false;
1253
1254 if (!force) {
1255 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1256 SM_I(sbi)->dcc_info->nr_discards >=
1257 SM_I(sbi)->dcc_info->max_discards)
1258 return false;
1259 }
1260
1261 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1262 for (i = 0; i < entries; i++)
1263 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1264 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1265
1266 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1267 SM_I(sbi)->dcc_info->max_discards) {
1268 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1269 if (start >= max_blocks)
1270 break;
1271
1272 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1273 if (force && start && end != max_blocks
1274 && (end - start) < cpc->trim_minlen)
1275 continue;
1276
1277 if (check_only)
1278 return true;
1279
1280 if (!de) {
1281 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1282 GFP_F2FS_ZERO);
1283 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1284 list_add_tail(&de->list, head);
1285 }
1286
1287 for (i = start; i < end; i++)
1288 __set_bit_le(i, (void *)de->discard_map);
1289
1290 SM_I(sbi)->dcc_info->nr_discards += end - start;
1291 }
1292 return false;
1293 }
1294
1295 void release_discard_addrs(struct f2fs_sb_info *sbi)
1296 {
1297 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1298 struct discard_entry *entry, *this;
1299
1300 /* drop caches */
1301 list_for_each_entry_safe(entry, this, head, list) {
1302 list_del(&entry->list);
1303 kmem_cache_free(discard_entry_slab, entry);
1304 }
1305 }
1306
1307 /*
1308 * Should call clear_prefree_segments after checkpoint is done.
1309 */
1310 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1311 {
1312 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1313 unsigned int segno;
1314
1315 mutex_lock(&dirty_i->seglist_lock);
1316 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1317 __set_test_and_free(sbi, segno);
1318 mutex_unlock(&dirty_i->seglist_lock);
1319 }
1320
1321 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1322 {
1323 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1324 struct discard_entry *entry, *this;
1325 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1326 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1327 unsigned int start = 0, end = -1;
1328 unsigned int secno, start_segno;
1329 bool force = (cpc->reason & CP_DISCARD);
1330
1331 mutex_lock(&dirty_i->seglist_lock);
1332
1333 while (1) {
1334 int i;
1335 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1336 if (start >= MAIN_SEGS(sbi))
1337 break;
1338 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1339 start + 1);
1340
1341 for (i = start; i < end; i++)
1342 clear_bit(i, prefree_map);
1343
1344 dirty_i->nr_dirty[PRE] -= end - start;
1345
1346 if (!test_opt(sbi, DISCARD))
1347 continue;
1348
1349 if (force && start >= cpc->trim_start &&
1350 (end - 1) <= cpc->trim_end)
1351 continue;
1352
1353 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1354 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1355 (end - start) << sbi->log_blocks_per_seg);
1356 continue;
1357 }
1358 next:
1359 secno = GET_SEC_FROM_SEG(sbi, start);
1360 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1361 if (!IS_CURSEC(sbi, secno) &&
1362 !get_valid_blocks(sbi, start, true))
1363 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1364 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1365
1366 start = start_segno + sbi->segs_per_sec;
1367 if (start < end)
1368 goto next;
1369 else
1370 end = start - 1;
1371 }
1372 mutex_unlock(&dirty_i->seglist_lock);
1373
1374 /* send small discards */
1375 list_for_each_entry_safe(entry, this, head, list) {
1376 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1377 bool is_valid = test_bit_le(0, entry->discard_map);
1378
1379 find_next:
1380 if (is_valid) {
1381 next_pos = find_next_zero_bit_le(entry->discard_map,
1382 sbi->blocks_per_seg, cur_pos);
1383 len = next_pos - cur_pos;
1384
1385 if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1386 (force && len < cpc->trim_minlen))
1387 goto skip;
1388
1389 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1390 len);
1391 cpc->trimmed += len;
1392 total_len += len;
1393 } else {
1394 next_pos = find_next_bit_le(entry->discard_map,
1395 sbi->blocks_per_seg, cur_pos);
1396 }
1397 skip:
1398 cur_pos = next_pos;
1399 is_valid = !is_valid;
1400
1401 if (cur_pos < sbi->blocks_per_seg)
1402 goto find_next;
1403
1404 list_del(&entry->list);
1405 SM_I(sbi)->dcc_info->nr_discards -= total_len;
1406 kmem_cache_free(discard_entry_slab, entry);
1407 }
1408
1409 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
1410 }
1411
1412 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1413 {
1414 dev_t dev = sbi->sb->s_bdev->bd_dev;
1415 struct discard_cmd_control *dcc;
1416 int err = 0, i;
1417
1418 if (SM_I(sbi)->dcc_info) {
1419 dcc = SM_I(sbi)->dcc_info;
1420 goto init_thread;
1421 }
1422
1423 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1424 if (!dcc)
1425 return -ENOMEM;
1426
1427 INIT_LIST_HEAD(&dcc->entry_list);
1428 for (i = 0; i < MAX_PLIST_NUM; i++)
1429 INIT_LIST_HEAD(&dcc->pend_list[i]);
1430 INIT_LIST_HEAD(&dcc->wait_list);
1431 mutex_init(&dcc->cmd_lock);
1432 atomic_set(&dcc->issued_discard, 0);
1433 atomic_set(&dcc->issing_discard, 0);
1434 atomic_set(&dcc->discard_cmd_cnt, 0);
1435 dcc->nr_discards = 0;
1436 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1437 dcc->undiscard_blks = 0;
1438 dcc->root = RB_ROOT;
1439
1440 init_waitqueue_head(&dcc->discard_wait_queue);
1441 SM_I(sbi)->dcc_info = dcc;
1442 init_thread:
1443 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1444 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1445 if (IS_ERR(dcc->f2fs_issue_discard)) {
1446 err = PTR_ERR(dcc->f2fs_issue_discard);
1447 kfree(dcc);
1448 SM_I(sbi)->dcc_info = NULL;
1449 return err;
1450 }
1451
1452 return err;
1453 }
1454
1455 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1456 {
1457 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1458
1459 if (!dcc)
1460 return;
1461
1462 stop_discard_thread(sbi);
1463
1464 kfree(dcc);
1465 SM_I(sbi)->dcc_info = NULL;
1466 }
1467
1468 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1469 {
1470 struct sit_info *sit_i = SIT_I(sbi);
1471
1472 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1473 sit_i->dirty_sentries++;
1474 return false;
1475 }
1476
1477 return true;
1478 }
1479
1480 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1481 unsigned int segno, int modified)
1482 {
1483 struct seg_entry *se = get_seg_entry(sbi, segno);
1484 se->type = type;
1485 if (modified)
1486 __mark_sit_entry_dirty(sbi, segno);
1487 }
1488
1489 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1490 {
1491 struct seg_entry *se;
1492 unsigned int segno, offset;
1493 long int new_vblocks;
1494
1495 segno = GET_SEGNO(sbi, blkaddr);
1496
1497 se = get_seg_entry(sbi, segno);
1498 new_vblocks = se->valid_blocks + del;
1499 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1500
1501 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1502 (new_vblocks > sbi->blocks_per_seg)));
1503
1504 se->valid_blocks = new_vblocks;
1505 se->mtime = get_mtime(sbi);
1506 SIT_I(sbi)->max_mtime = se->mtime;
1507
1508 /* Update valid block bitmap */
1509 if (del > 0) {
1510 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
1511 #ifdef CONFIG_F2FS_CHECK_FS
1512 if (f2fs_test_and_set_bit(offset,
1513 se->cur_valid_map_mir))
1514 f2fs_bug_on(sbi, 1);
1515 else
1516 WARN_ON(1);
1517 #else
1518 f2fs_bug_on(sbi, 1);
1519 #endif
1520 }
1521 if (f2fs_discard_en(sbi) &&
1522 !f2fs_test_and_set_bit(offset, se->discard_map))
1523 sbi->discard_blks--;
1524
1525 /* don't overwrite by SSR to keep node chain */
1526 if (se->type == CURSEG_WARM_NODE) {
1527 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1528 se->ckpt_valid_blocks++;
1529 }
1530 } else {
1531 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
1532 #ifdef CONFIG_F2FS_CHECK_FS
1533 if (!f2fs_test_and_clear_bit(offset,
1534 se->cur_valid_map_mir))
1535 f2fs_bug_on(sbi, 1);
1536 else
1537 WARN_ON(1);
1538 #else
1539 f2fs_bug_on(sbi, 1);
1540 #endif
1541 }
1542 if (f2fs_discard_en(sbi) &&
1543 f2fs_test_and_clear_bit(offset, se->discard_map))
1544 sbi->discard_blks++;
1545 }
1546 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1547 se->ckpt_valid_blocks += del;
1548
1549 __mark_sit_entry_dirty(sbi, segno);
1550
1551 /* update total number of valid blocks to be written in ckpt area */
1552 SIT_I(sbi)->written_valid_blocks += del;
1553
1554 if (sbi->segs_per_sec > 1)
1555 get_sec_entry(sbi, segno)->valid_blocks += del;
1556 }
1557
1558 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1559 {
1560 update_sit_entry(sbi, new, 1);
1561 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1562 update_sit_entry(sbi, old, -1);
1563
1564 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1565 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1566 }
1567
1568 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1569 {
1570 unsigned int segno = GET_SEGNO(sbi, addr);
1571 struct sit_info *sit_i = SIT_I(sbi);
1572
1573 f2fs_bug_on(sbi, addr == NULL_ADDR);
1574 if (addr == NEW_ADDR)
1575 return;
1576
1577 /* add it into sit main buffer */
1578 mutex_lock(&sit_i->sentry_lock);
1579
1580 update_sit_entry(sbi, addr, -1);
1581
1582 /* add it into dirty seglist */
1583 locate_dirty_segment(sbi, segno);
1584
1585 mutex_unlock(&sit_i->sentry_lock);
1586 }
1587
1588 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1589 {
1590 struct sit_info *sit_i = SIT_I(sbi);
1591 unsigned int segno, offset;
1592 struct seg_entry *se;
1593 bool is_cp = false;
1594
1595 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1596 return true;
1597
1598 mutex_lock(&sit_i->sentry_lock);
1599
1600 segno = GET_SEGNO(sbi, blkaddr);
1601 se = get_seg_entry(sbi, segno);
1602 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1603
1604 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1605 is_cp = true;
1606
1607 mutex_unlock(&sit_i->sentry_lock);
1608
1609 return is_cp;
1610 }
1611
1612 /*
1613 * This function should be resided under the curseg_mutex lock
1614 */
1615 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1616 struct f2fs_summary *sum)
1617 {
1618 struct curseg_info *curseg = CURSEG_I(sbi, type);
1619 void *addr = curseg->sum_blk;
1620 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1621 memcpy(addr, sum, sizeof(struct f2fs_summary));
1622 }
1623
1624 /*
1625 * Calculate the number of current summary pages for writing
1626 */
1627 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1628 {
1629 int valid_sum_count = 0;
1630 int i, sum_in_page;
1631
1632 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1633 if (sbi->ckpt->alloc_type[i] == SSR)
1634 valid_sum_count += sbi->blocks_per_seg;
1635 else {
1636 if (for_ra)
1637 valid_sum_count += le16_to_cpu(
1638 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1639 else
1640 valid_sum_count += curseg_blkoff(sbi, i);
1641 }
1642 }
1643
1644 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1645 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1646 if (valid_sum_count <= sum_in_page)
1647 return 1;
1648 else if ((valid_sum_count - sum_in_page) <=
1649 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1650 return 2;
1651 return 3;
1652 }
1653
1654 /*
1655 * Caller should put this summary page
1656 */
1657 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1658 {
1659 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1660 }
1661
1662 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1663 {
1664 struct page *page = grab_meta_page(sbi, blk_addr);
1665 void *dst = page_address(page);
1666
1667 if (src)
1668 memcpy(dst, src, PAGE_SIZE);
1669 else
1670 memset(dst, 0, PAGE_SIZE);
1671 set_page_dirty(page);
1672 f2fs_put_page(page, 1);
1673 }
1674
1675 static void write_sum_page(struct f2fs_sb_info *sbi,
1676 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1677 {
1678 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1679 }
1680
1681 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1682 int type, block_t blk_addr)
1683 {
1684 struct curseg_info *curseg = CURSEG_I(sbi, type);
1685 struct page *page = grab_meta_page(sbi, blk_addr);
1686 struct f2fs_summary_block *src = curseg->sum_blk;
1687 struct f2fs_summary_block *dst;
1688
1689 dst = (struct f2fs_summary_block *)page_address(page);
1690
1691 mutex_lock(&curseg->curseg_mutex);
1692
1693 down_read(&curseg->journal_rwsem);
1694 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1695 up_read(&curseg->journal_rwsem);
1696
1697 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1698 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1699
1700 mutex_unlock(&curseg->curseg_mutex);
1701
1702 set_page_dirty(page);
1703 f2fs_put_page(page, 1);
1704 }
1705
1706 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1707 {
1708 struct curseg_info *curseg = CURSEG_I(sbi, type);
1709 unsigned int segno = curseg->segno + 1;
1710 struct free_segmap_info *free_i = FREE_I(sbi);
1711
1712 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1713 return !test_bit(segno, free_i->free_segmap);
1714 return 0;
1715 }
1716
1717 /*
1718 * Find a new segment from the free segments bitmap to right order
1719 * This function should be returned with success, otherwise BUG
1720 */
1721 static void get_new_segment(struct f2fs_sb_info *sbi,
1722 unsigned int *newseg, bool new_sec, int dir)
1723 {
1724 struct free_segmap_info *free_i = FREE_I(sbi);
1725 unsigned int segno, secno, zoneno;
1726 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1727 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
1728 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
1729 unsigned int left_start = hint;
1730 bool init = true;
1731 int go_left = 0;
1732 int i;
1733
1734 spin_lock(&free_i->segmap_lock);
1735
1736 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1737 segno = find_next_zero_bit(free_i->free_segmap,
1738 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
1739 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
1740 goto got_it;
1741 }
1742 find_other_zone:
1743 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1744 if (secno >= MAIN_SECS(sbi)) {
1745 if (dir == ALLOC_RIGHT) {
1746 secno = find_next_zero_bit(free_i->free_secmap,
1747 MAIN_SECS(sbi), 0);
1748 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1749 } else {
1750 go_left = 1;
1751 left_start = hint - 1;
1752 }
1753 }
1754 if (go_left == 0)
1755 goto skip_left;
1756
1757 while (test_bit(left_start, free_i->free_secmap)) {
1758 if (left_start > 0) {
1759 left_start--;
1760 continue;
1761 }
1762 left_start = find_next_zero_bit(free_i->free_secmap,
1763 MAIN_SECS(sbi), 0);
1764 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1765 break;
1766 }
1767 secno = left_start;
1768 skip_left:
1769 hint = secno;
1770 segno = GET_SEG_FROM_SEC(sbi, secno);
1771 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
1772
1773 /* give up on finding another zone */
1774 if (!init)
1775 goto got_it;
1776 if (sbi->secs_per_zone == 1)
1777 goto got_it;
1778 if (zoneno == old_zoneno)
1779 goto got_it;
1780 if (dir == ALLOC_LEFT) {
1781 if (!go_left && zoneno + 1 >= total_zones)
1782 goto got_it;
1783 if (go_left && zoneno == 0)
1784 goto got_it;
1785 }
1786 for (i = 0; i < NR_CURSEG_TYPE; i++)
1787 if (CURSEG_I(sbi, i)->zone == zoneno)
1788 break;
1789
1790 if (i < NR_CURSEG_TYPE) {
1791 /* zone is in user, try another */
1792 if (go_left)
1793 hint = zoneno * sbi->secs_per_zone - 1;
1794 else if (zoneno + 1 >= total_zones)
1795 hint = 0;
1796 else
1797 hint = (zoneno + 1) * sbi->secs_per_zone;
1798 init = false;
1799 goto find_other_zone;
1800 }
1801 got_it:
1802 /* set it as dirty segment in free segmap */
1803 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1804 __set_inuse(sbi, segno);
1805 *newseg = segno;
1806 spin_unlock(&free_i->segmap_lock);
1807 }
1808
1809 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1810 {
1811 struct curseg_info *curseg = CURSEG_I(sbi, type);
1812 struct summary_footer *sum_footer;
1813
1814 curseg->segno = curseg->next_segno;
1815 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
1816 curseg->next_blkoff = 0;
1817 curseg->next_segno = NULL_SEGNO;
1818
1819 sum_footer = &(curseg->sum_blk->footer);
1820 memset(sum_footer, 0, sizeof(struct summary_footer));
1821 if (IS_DATASEG(type))
1822 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1823 if (IS_NODESEG(type))
1824 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1825 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1826 }
1827
1828 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
1829 {
1830 /* if segs_per_sec is large than 1, we need to keep original policy. */
1831 if (sbi->segs_per_sec != 1)
1832 return CURSEG_I(sbi, type)->segno;
1833
1834 if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
1835 return 0;
1836
1837 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
1838 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
1839 return CURSEG_I(sbi, type)->segno;
1840 }
1841
1842 /*
1843 * Allocate a current working segment.
1844 * This function always allocates a free segment in LFS manner.
1845 */
1846 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1847 {
1848 struct curseg_info *curseg = CURSEG_I(sbi, type);
1849 unsigned int segno = curseg->segno;
1850 int dir = ALLOC_LEFT;
1851
1852 write_sum_page(sbi, curseg->sum_blk,
1853 GET_SUM_BLOCK(sbi, segno));
1854 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1855 dir = ALLOC_RIGHT;
1856
1857 if (test_opt(sbi, NOHEAP))
1858 dir = ALLOC_RIGHT;
1859
1860 segno = __get_next_segno(sbi, type);
1861 get_new_segment(sbi, &segno, new_sec, dir);
1862 curseg->next_segno = segno;
1863 reset_curseg(sbi, type, 1);
1864 curseg->alloc_type = LFS;
1865 }
1866
1867 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1868 struct curseg_info *seg, block_t start)
1869 {
1870 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1871 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1872 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1873 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1874 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1875 int i, pos;
1876
1877 for (i = 0; i < entries; i++)
1878 target_map[i] = ckpt_map[i] | cur_map[i];
1879
1880 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1881
1882 seg->next_blkoff = pos;
1883 }
1884
1885 /*
1886 * If a segment is written by LFS manner, next block offset is just obtained
1887 * by increasing the current block offset. However, if a segment is written by
1888 * SSR manner, next block offset obtained by calling __next_free_blkoff
1889 */
1890 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1891 struct curseg_info *seg)
1892 {
1893 if (seg->alloc_type == SSR)
1894 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1895 else
1896 seg->next_blkoff++;
1897 }
1898
1899 /*
1900 * This function always allocates a used segment(from dirty seglist) by SSR
1901 * manner, so it should recover the existing segment information of valid blocks
1902 */
1903 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1904 {
1905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1906 struct curseg_info *curseg = CURSEG_I(sbi, type);
1907 unsigned int new_segno = curseg->next_segno;
1908 struct f2fs_summary_block *sum_node;
1909 struct page *sum_page;
1910
1911 write_sum_page(sbi, curseg->sum_blk,
1912 GET_SUM_BLOCK(sbi, curseg->segno));
1913 __set_test_and_inuse(sbi, new_segno);
1914
1915 mutex_lock(&dirty_i->seglist_lock);
1916 __remove_dirty_segment(sbi, new_segno, PRE);
1917 __remove_dirty_segment(sbi, new_segno, DIRTY);
1918 mutex_unlock(&dirty_i->seglist_lock);
1919
1920 reset_curseg(sbi, type, 1);
1921 curseg->alloc_type = SSR;
1922 __next_free_blkoff(sbi, curseg, 0);
1923
1924 if (reuse) {
1925 sum_page = get_sum_page(sbi, new_segno);
1926 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1927 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1928 f2fs_put_page(sum_page, 1);
1929 }
1930 }
1931
1932 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1933 {
1934 struct curseg_info *curseg = CURSEG_I(sbi, type);
1935 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1936 unsigned segno = NULL_SEGNO;
1937 int i, cnt;
1938 bool reversed = false;
1939
1940 /* need_SSR() already forces to do this */
1941 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
1942 curseg->next_segno = segno;
1943 return 1;
1944 }
1945
1946 /* For node segments, let's do SSR more intensively */
1947 if (IS_NODESEG(type)) {
1948 if (type >= CURSEG_WARM_NODE) {
1949 reversed = true;
1950 i = CURSEG_COLD_NODE;
1951 } else {
1952 i = CURSEG_HOT_NODE;
1953 }
1954 cnt = NR_CURSEG_NODE_TYPE;
1955 } else {
1956 if (type >= CURSEG_WARM_DATA) {
1957 reversed = true;
1958 i = CURSEG_COLD_DATA;
1959 } else {
1960 i = CURSEG_HOT_DATA;
1961 }
1962 cnt = NR_CURSEG_DATA_TYPE;
1963 }
1964
1965 for (; cnt-- > 0; reversed ? i-- : i++) {
1966 if (i == type)
1967 continue;
1968 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
1969 curseg->next_segno = segno;
1970 return 1;
1971 }
1972 }
1973 return 0;
1974 }
1975
1976 /*
1977 * flush out current segment and replace it with new segment
1978 * This function should be returned with success, otherwise BUG
1979 */
1980 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1981 int type, bool force)
1982 {
1983 struct curseg_info *curseg = CURSEG_I(sbi, type);
1984
1985 if (force)
1986 new_curseg(sbi, type, true);
1987 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
1988 type == CURSEG_WARM_NODE)
1989 new_curseg(sbi, type, false);
1990 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1991 new_curseg(sbi, type, false);
1992 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1993 change_curseg(sbi, type, true);
1994 else
1995 new_curseg(sbi, type, false);
1996
1997 stat_inc_seg_type(sbi, curseg);
1998 }
1999
2000 void allocate_new_segments(struct f2fs_sb_info *sbi)
2001 {
2002 struct curseg_info *curseg;
2003 unsigned int old_segno;
2004 int i;
2005
2006 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2007 curseg = CURSEG_I(sbi, i);
2008 old_segno = curseg->segno;
2009 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2010 locate_dirty_segment(sbi, old_segno);
2011 }
2012 }
2013
2014 static const struct segment_allocation default_salloc_ops = {
2015 .allocate_segment = allocate_segment_by_default,
2016 };
2017
2018 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2019 {
2020 __u64 trim_start = cpc->trim_start;
2021 bool has_candidate = false;
2022
2023 mutex_lock(&SIT_I(sbi)->sentry_lock);
2024 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2025 if (add_discard_addrs(sbi, cpc, true)) {
2026 has_candidate = true;
2027 break;
2028 }
2029 }
2030 mutex_unlock(&SIT_I(sbi)->sentry_lock);
2031
2032 cpc->trim_start = trim_start;
2033 return has_candidate;
2034 }
2035
2036 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2037 {
2038 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2039 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2040 unsigned int start_segno, end_segno;
2041 struct cp_control cpc;
2042 int err = 0;
2043
2044 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2045 return -EINVAL;
2046
2047 cpc.trimmed = 0;
2048 if (end <= MAIN_BLKADDR(sbi))
2049 goto out;
2050
2051 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2052 f2fs_msg(sbi->sb, KERN_WARNING,
2053 "Found FS corruption, run fsck to fix.");
2054 goto out;
2055 }
2056
2057 /* start/end segment number in main_area */
2058 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2059 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2060 GET_SEGNO(sbi, end);
2061 cpc.reason = CP_DISCARD;
2062 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2063
2064 /* do checkpoint to issue discard commands safely */
2065 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
2066 cpc.trim_start = start_segno;
2067
2068 if (sbi->discard_blks == 0)
2069 break;
2070 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2071 cpc.trim_end = end_segno;
2072 else
2073 cpc.trim_end = min_t(unsigned int,
2074 rounddown(start_segno +
2075 BATCHED_TRIM_SEGMENTS(sbi),
2076 sbi->segs_per_sec) - 1, end_segno);
2077
2078 mutex_lock(&sbi->gc_mutex);
2079 err = write_checkpoint(sbi, &cpc);
2080 mutex_unlock(&sbi->gc_mutex);
2081 if (err)
2082 break;
2083
2084 schedule();
2085 }
2086 out:
2087 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
2088 return err;
2089 }
2090
2091 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2092 {
2093 struct curseg_info *curseg = CURSEG_I(sbi, type);
2094 if (curseg->next_blkoff < sbi->blocks_per_seg)
2095 return true;
2096 return false;
2097 }
2098
2099 static int __get_segment_type_2(struct f2fs_io_info *fio)
2100 {
2101 if (fio->type == DATA)
2102 return CURSEG_HOT_DATA;
2103 else
2104 return CURSEG_HOT_NODE;
2105 }
2106
2107 static int __get_segment_type_4(struct f2fs_io_info *fio)
2108 {
2109 if (fio->type == DATA) {
2110 struct inode *inode = fio->page->mapping->host;
2111
2112 if (S_ISDIR(inode->i_mode))
2113 return CURSEG_HOT_DATA;
2114 else
2115 return CURSEG_COLD_DATA;
2116 } else {
2117 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2118 return CURSEG_WARM_NODE;
2119 else
2120 return CURSEG_COLD_NODE;
2121 }
2122 }
2123
2124 static int __get_segment_type_6(struct f2fs_io_info *fio)
2125 {
2126 if (fio->type == DATA) {
2127 struct inode *inode = fio->page->mapping->host;
2128
2129 if (is_cold_data(fio->page) || file_is_cold(inode))
2130 return CURSEG_COLD_DATA;
2131 if (is_inode_flag_set(inode, FI_HOT_DATA))
2132 return CURSEG_HOT_DATA;
2133 return CURSEG_WARM_DATA;
2134 } else {
2135 if (IS_DNODE(fio->page))
2136 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2137 CURSEG_HOT_NODE;
2138 return CURSEG_COLD_NODE;
2139 }
2140 }
2141
2142 static int __get_segment_type(struct f2fs_io_info *fio)
2143 {
2144 int type = 0;
2145
2146 switch (fio->sbi->active_logs) {
2147 case 2:
2148 type = __get_segment_type_2(fio);
2149 break;
2150 case 4:
2151 type = __get_segment_type_4(fio);
2152 break;
2153 case 6:
2154 type = __get_segment_type_6(fio);
2155 break;
2156 default:
2157 f2fs_bug_on(fio->sbi, true);
2158 }
2159
2160 if (IS_HOT(type))
2161 fio->temp = HOT;
2162 else if (IS_WARM(type))
2163 fio->temp = WARM;
2164 else
2165 fio->temp = COLD;
2166 return type;
2167 }
2168
2169 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2170 block_t old_blkaddr, block_t *new_blkaddr,
2171 struct f2fs_summary *sum, int type,
2172 struct f2fs_io_info *fio, bool add_list)
2173 {
2174 struct sit_info *sit_i = SIT_I(sbi);
2175 struct curseg_info *curseg = CURSEG_I(sbi, type);
2176
2177 mutex_lock(&curseg->curseg_mutex);
2178 mutex_lock(&sit_i->sentry_lock);
2179
2180 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2181
2182 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2183
2184 /*
2185 * __add_sum_entry should be resided under the curseg_mutex
2186 * because, this function updates a summary entry in the
2187 * current summary block.
2188 */
2189 __add_sum_entry(sbi, type, sum);
2190
2191 __refresh_next_blkoff(sbi, curseg);
2192
2193 stat_inc_block_count(sbi, curseg);
2194
2195 if (!__has_curseg_space(sbi, type))
2196 sit_i->s_ops->allocate_segment(sbi, type, false);
2197 /*
2198 * SIT information should be updated after segment allocation,
2199 * since we need to keep dirty segments precisely under SSR.
2200 */
2201 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
2202
2203 mutex_unlock(&sit_i->sentry_lock);
2204
2205 if (page && IS_NODESEG(type))
2206 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2207
2208 if (add_list) {
2209 struct f2fs_bio_info *io;
2210
2211 INIT_LIST_HEAD(&fio->list);
2212 fio->in_list = true;
2213 io = sbi->write_io[fio->type] + fio->temp;
2214 spin_lock(&io->io_lock);
2215 list_add_tail(&fio->list, &io->io_list);
2216 spin_unlock(&io->io_lock);
2217 }
2218
2219 mutex_unlock(&curseg->curseg_mutex);
2220 }
2221
2222 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2223 {
2224 int type = __get_segment_type(fio);
2225 int err;
2226
2227 reallocate:
2228 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2229 &fio->new_blkaddr, sum, type, fio, true);
2230
2231 /* writeout dirty page into bdev */
2232 err = f2fs_submit_page_write(fio);
2233 if (err == -EAGAIN) {
2234 fio->old_blkaddr = fio->new_blkaddr;
2235 goto reallocate;
2236 }
2237 }
2238
2239 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
2240 {
2241 struct f2fs_io_info fio = {
2242 .sbi = sbi,
2243 .type = META,
2244 .op = REQ_OP_WRITE,
2245 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2246 .old_blkaddr = page->index,
2247 .new_blkaddr = page->index,
2248 .page = page,
2249 .encrypted_page = NULL,
2250 .in_list = false,
2251 };
2252
2253 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2254 fio.op_flags &= ~REQ_META;
2255
2256 set_page_writeback(page);
2257 f2fs_submit_page_write(&fio);
2258 }
2259
2260 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2261 {
2262 struct f2fs_summary sum;
2263
2264 set_summary(&sum, nid, 0, 0);
2265 do_write_page(&sum, fio);
2266 }
2267
2268 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2269 {
2270 struct f2fs_sb_info *sbi = fio->sbi;
2271 struct f2fs_summary sum;
2272 struct node_info ni;
2273
2274 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2275 get_node_info(sbi, dn->nid, &ni);
2276 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2277 do_write_page(&sum, fio);
2278 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2279 }
2280
2281 int rewrite_data_page(struct f2fs_io_info *fio)
2282 {
2283 fio->new_blkaddr = fio->old_blkaddr;
2284 stat_inc_inplace_blocks(fio->sbi);
2285 return f2fs_submit_page_bio(fio);
2286 }
2287
2288 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2289 block_t old_blkaddr, block_t new_blkaddr,
2290 bool recover_curseg, bool recover_newaddr)
2291 {
2292 struct sit_info *sit_i = SIT_I(sbi);
2293 struct curseg_info *curseg;
2294 unsigned int segno, old_cursegno;
2295 struct seg_entry *se;
2296 int type;
2297 unsigned short old_blkoff;
2298
2299 segno = GET_SEGNO(sbi, new_blkaddr);
2300 se = get_seg_entry(sbi, segno);
2301 type = se->type;
2302
2303 if (!recover_curseg) {
2304 /* for recovery flow */
2305 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2306 if (old_blkaddr == NULL_ADDR)
2307 type = CURSEG_COLD_DATA;
2308 else
2309 type = CURSEG_WARM_DATA;
2310 }
2311 } else {
2312 if (!IS_CURSEG(sbi, segno))
2313 type = CURSEG_WARM_DATA;
2314 }
2315
2316 curseg = CURSEG_I(sbi, type);
2317
2318 mutex_lock(&curseg->curseg_mutex);
2319 mutex_lock(&sit_i->sentry_lock);
2320
2321 old_cursegno = curseg->segno;
2322 old_blkoff = curseg->next_blkoff;
2323
2324 /* change the current segment */
2325 if (segno != curseg->segno) {
2326 curseg->next_segno = segno;
2327 change_curseg(sbi, type, true);
2328 }
2329
2330 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2331 __add_sum_entry(sbi, type, sum);
2332
2333 if (!recover_curseg || recover_newaddr)
2334 update_sit_entry(sbi, new_blkaddr, 1);
2335 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2336 update_sit_entry(sbi, old_blkaddr, -1);
2337
2338 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2339 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2340
2341 locate_dirty_segment(sbi, old_cursegno);
2342
2343 if (recover_curseg) {
2344 if (old_cursegno != curseg->segno) {
2345 curseg->next_segno = old_cursegno;
2346 change_curseg(sbi, type, true);
2347 }
2348 curseg->next_blkoff = old_blkoff;
2349 }
2350
2351 mutex_unlock(&sit_i->sentry_lock);
2352 mutex_unlock(&curseg->curseg_mutex);
2353 }
2354
2355 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2356 block_t old_addr, block_t new_addr,
2357 unsigned char version, bool recover_curseg,
2358 bool recover_newaddr)
2359 {
2360 struct f2fs_summary sum;
2361
2362 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2363
2364 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2365 recover_curseg, recover_newaddr);
2366
2367 f2fs_update_data_blkaddr(dn, new_addr);
2368 }
2369
2370 void f2fs_wait_on_page_writeback(struct page *page,
2371 enum page_type type, bool ordered)
2372 {
2373 if (PageWriteback(page)) {
2374 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2375
2376 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2377 0, page->index, type);
2378 if (ordered)
2379 wait_on_page_writeback(page);
2380 else
2381 wait_for_stable_page(page);
2382 }
2383 }
2384
2385 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2386 block_t blkaddr)
2387 {
2388 struct page *cpage;
2389
2390 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2391 return;
2392
2393 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2394 if (cpage) {
2395 f2fs_wait_on_page_writeback(cpage, DATA, true);
2396 f2fs_put_page(cpage, 1);
2397 }
2398 }
2399
2400 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2401 {
2402 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2403 struct curseg_info *seg_i;
2404 unsigned char *kaddr;
2405 struct page *page;
2406 block_t start;
2407 int i, j, offset;
2408
2409 start = start_sum_block(sbi);
2410
2411 page = get_meta_page(sbi, start++);
2412 kaddr = (unsigned char *)page_address(page);
2413
2414 /* Step 1: restore nat cache */
2415 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2416 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2417
2418 /* Step 2: restore sit cache */
2419 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2420 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2421 offset = 2 * SUM_JOURNAL_SIZE;
2422
2423 /* Step 3: restore summary entries */
2424 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2425 unsigned short blk_off;
2426 unsigned int segno;
2427
2428 seg_i = CURSEG_I(sbi, i);
2429 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2430 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2431 seg_i->next_segno = segno;
2432 reset_curseg(sbi, i, 0);
2433 seg_i->alloc_type = ckpt->alloc_type[i];
2434 seg_i->next_blkoff = blk_off;
2435
2436 if (seg_i->alloc_type == SSR)
2437 blk_off = sbi->blocks_per_seg;
2438
2439 for (j = 0; j < blk_off; j++) {
2440 struct f2fs_summary *s;
2441 s = (struct f2fs_summary *)(kaddr + offset);
2442 seg_i->sum_blk->entries[j] = *s;
2443 offset += SUMMARY_SIZE;
2444 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2445 SUM_FOOTER_SIZE)
2446 continue;
2447
2448 f2fs_put_page(page, 1);
2449 page = NULL;
2450
2451 page = get_meta_page(sbi, start++);
2452 kaddr = (unsigned char *)page_address(page);
2453 offset = 0;
2454 }
2455 }
2456 f2fs_put_page(page, 1);
2457 return 0;
2458 }
2459
2460 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2461 {
2462 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2463 struct f2fs_summary_block *sum;
2464 struct curseg_info *curseg;
2465 struct page *new;
2466 unsigned short blk_off;
2467 unsigned int segno = 0;
2468 block_t blk_addr = 0;
2469
2470 /* get segment number and block addr */
2471 if (IS_DATASEG(type)) {
2472 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2473 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2474 CURSEG_HOT_DATA]);
2475 if (__exist_node_summaries(sbi))
2476 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2477 else
2478 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2479 } else {
2480 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2481 CURSEG_HOT_NODE]);
2482 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2483 CURSEG_HOT_NODE]);
2484 if (__exist_node_summaries(sbi))
2485 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2486 type - CURSEG_HOT_NODE);
2487 else
2488 blk_addr = GET_SUM_BLOCK(sbi, segno);
2489 }
2490
2491 new = get_meta_page(sbi, blk_addr);
2492 sum = (struct f2fs_summary_block *)page_address(new);
2493
2494 if (IS_NODESEG(type)) {
2495 if (__exist_node_summaries(sbi)) {
2496 struct f2fs_summary *ns = &sum->entries[0];
2497 int i;
2498 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2499 ns->version = 0;
2500 ns->ofs_in_node = 0;
2501 }
2502 } else {
2503 int err;
2504
2505 err = restore_node_summary(sbi, segno, sum);
2506 if (err) {
2507 f2fs_put_page(new, 1);
2508 return err;
2509 }
2510 }
2511 }
2512
2513 /* set uncompleted segment to curseg */
2514 curseg = CURSEG_I(sbi, type);
2515 mutex_lock(&curseg->curseg_mutex);
2516
2517 /* update journal info */
2518 down_write(&curseg->journal_rwsem);
2519 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2520 up_write(&curseg->journal_rwsem);
2521
2522 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2523 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2524 curseg->next_segno = segno;
2525 reset_curseg(sbi, type, 0);
2526 curseg->alloc_type = ckpt->alloc_type[type];
2527 curseg->next_blkoff = blk_off;
2528 mutex_unlock(&curseg->curseg_mutex);
2529 f2fs_put_page(new, 1);
2530 return 0;
2531 }
2532
2533 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2534 {
2535 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2536 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2537 int type = CURSEG_HOT_DATA;
2538 int err;
2539
2540 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2541 int npages = npages_for_summary_flush(sbi, true);
2542
2543 if (npages >= 2)
2544 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2545 META_CP, true);
2546
2547 /* restore for compacted data summary */
2548 if (read_compacted_summaries(sbi))
2549 return -EINVAL;
2550 type = CURSEG_HOT_NODE;
2551 }
2552
2553 if (__exist_node_summaries(sbi))
2554 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2555 NR_CURSEG_TYPE - type, META_CP, true);
2556
2557 for (; type <= CURSEG_COLD_NODE; type++) {
2558 err = read_normal_summaries(sbi, type);
2559 if (err)
2560 return err;
2561 }
2562
2563 /* sanity check for summary blocks */
2564 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2565 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2566 return -EINVAL;
2567
2568 return 0;
2569 }
2570
2571 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2572 {
2573 struct page *page;
2574 unsigned char *kaddr;
2575 struct f2fs_summary *summary;
2576 struct curseg_info *seg_i;
2577 int written_size = 0;
2578 int i, j;
2579
2580 page = grab_meta_page(sbi, blkaddr++);
2581 kaddr = (unsigned char *)page_address(page);
2582
2583 /* Step 1: write nat cache */
2584 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2585 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2586 written_size += SUM_JOURNAL_SIZE;
2587
2588 /* Step 2: write sit cache */
2589 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2590 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2591 written_size += SUM_JOURNAL_SIZE;
2592
2593 /* Step 3: write summary entries */
2594 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2595 unsigned short blkoff;
2596 seg_i = CURSEG_I(sbi, i);
2597 if (sbi->ckpt->alloc_type[i] == SSR)
2598 blkoff = sbi->blocks_per_seg;
2599 else
2600 blkoff = curseg_blkoff(sbi, i);
2601
2602 for (j = 0; j < blkoff; j++) {
2603 if (!page) {
2604 page = grab_meta_page(sbi, blkaddr++);
2605 kaddr = (unsigned char *)page_address(page);
2606 written_size = 0;
2607 }
2608 summary = (struct f2fs_summary *)(kaddr + written_size);
2609 *summary = seg_i->sum_blk->entries[j];
2610 written_size += SUMMARY_SIZE;
2611
2612 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2613 SUM_FOOTER_SIZE)
2614 continue;
2615
2616 set_page_dirty(page);
2617 f2fs_put_page(page, 1);
2618 page = NULL;
2619 }
2620 }
2621 if (page) {
2622 set_page_dirty(page);
2623 f2fs_put_page(page, 1);
2624 }
2625 }
2626
2627 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2628 block_t blkaddr, int type)
2629 {
2630 int i, end;
2631 if (IS_DATASEG(type))
2632 end = type + NR_CURSEG_DATA_TYPE;
2633 else
2634 end = type + NR_CURSEG_NODE_TYPE;
2635
2636 for (i = type; i < end; i++)
2637 write_current_sum_page(sbi, i, blkaddr + (i - type));
2638 }
2639
2640 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2641 {
2642 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2643 write_compacted_summaries(sbi, start_blk);
2644 else
2645 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2646 }
2647
2648 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2649 {
2650 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2651 }
2652
2653 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2654 unsigned int val, int alloc)
2655 {
2656 int i;
2657
2658 if (type == NAT_JOURNAL) {
2659 for (i = 0; i < nats_in_cursum(journal); i++) {
2660 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2661 return i;
2662 }
2663 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2664 return update_nats_in_cursum(journal, 1);
2665 } else if (type == SIT_JOURNAL) {
2666 for (i = 0; i < sits_in_cursum(journal); i++)
2667 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2668 return i;
2669 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2670 return update_sits_in_cursum(journal, 1);
2671 }
2672 return -1;
2673 }
2674
2675 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2676 unsigned int segno)
2677 {
2678 return get_meta_page(sbi, current_sit_addr(sbi, segno));
2679 }
2680
2681 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2682 unsigned int start)
2683 {
2684 struct sit_info *sit_i = SIT_I(sbi);
2685 struct page *src_page, *dst_page;
2686 pgoff_t src_off, dst_off;
2687 void *src_addr, *dst_addr;
2688
2689 src_off = current_sit_addr(sbi, start);
2690 dst_off = next_sit_addr(sbi, src_off);
2691
2692 /* get current sit block page without lock */
2693 src_page = get_meta_page(sbi, src_off);
2694 dst_page = grab_meta_page(sbi, dst_off);
2695 f2fs_bug_on(sbi, PageDirty(src_page));
2696
2697 src_addr = page_address(src_page);
2698 dst_addr = page_address(dst_page);
2699 memcpy(dst_addr, src_addr, PAGE_SIZE);
2700
2701 set_page_dirty(dst_page);
2702 f2fs_put_page(src_page, 1);
2703
2704 set_to_next_sit(sit_i, start);
2705
2706 return dst_page;
2707 }
2708
2709 static struct sit_entry_set *grab_sit_entry_set(void)
2710 {
2711 struct sit_entry_set *ses =
2712 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2713
2714 ses->entry_cnt = 0;
2715 INIT_LIST_HEAD(&ses->set_list);
2716 return ses;
2717 }
2718
2719 static void release_sit_entry_set(struct sit_entry_set *ses)
2720 {
2721 list_del(&ses->set_list);
2722 kmem_cache_free(sit_entry_set_slab, ses);
2723 }
2724
2725 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2726 struct list_head *head)
2727 {
2728 struct sit_entry_set *next = ses;
2729
2730 if (list_is_last(&ses->set_list, head))
2731 return;
2732
2733 list_for_each_entry_continue(next, head, set_list)
2734 if (ses->entry_cnt <= next->entry_cnt)
2735 break;
2736
2737 list_move_tail(&ses->set_list, &next->set_list);
2738 }
2739
2740 static void add_sit_entry(unsigned int segno, struct list_head *head)
2741 {
2742 struct sit_entry_set *ses;
2743 unsigned int start_segno = START_SEGNO(segno);
2744
2745 list_for_each_entry(ses, head, set_list) {
2746 if (ses->start_segno == start_segno) {
2747 ses->entry_cnt++;
2748 adjust_sit_entry_set(ses, head);
2749 return;
2750 }
2751 }
2752
2753 ses = grab_sit_entry_set();
2754
2755 ses->start_segno = start_segno;
2756 ses->entry_cnt++;
2757 list_add(&ses->set_list, head);
2758 }
2759
2760 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2761 {
2762 struct f2fs_sm_info *sm_info = SM_I(sbi);
2763 struct list_head *set_list = &sm_info->sit_entry_set;
2764 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2765 unsigned int segno;
2766
2767 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2768 add_sit_entry(segno, set_list);
2769 }
2770
2771 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2772 {
2773 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2774 struct f2fs_journal *journal = curseg->journal;
2775 int i;
2776
2777 down_write(&curseg->journal_rwsem);
2778 for (i = 0; i < sits_in_cursum(journal); i++) {
2779 unsigned int segno;
2780 bool dirtied;
2781
2782 segno = le32_to_cpu(segno_in_journal(journal, i));
2783 dirtied = __mark_sit_entry_dirty(sbi, segno);
2784
2785 if (!dirtied)
2786 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2787 }
2788 update_sits_in_cursum(journal, -i);
2789 up_write(&curseg->journal_rwsem);
2790 }
2791
2792 /*
2793 * CP calls this function, which flushes SIT entries including sit_journal,
2794 * and moves prefree segs to free segs.
2795 */
2796 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2797 {
2798 struct sit_info *sit_i = SIT_I(sbi);
2799 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2800 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2801 struct f2fs_journal *journal = curseg->journal;
2802 struct sit_entry_set *ses, *tmp;
2803 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2804 bool to_journal = true;
2805 struct seg_entry *se;
2806
2807 mutex_lock(&sit_i->sentry_lock);
2808
2809 if (!sit_i->dirty_sentries)
2810 goto out;
2811
2812 /*
2813 * add and account sit entries of dirty bitmap in sit entry
2814 * set temporarily
2815 */
2816 add_sits_in_set(sbi);
2817
2818 /*
2819 * if there are no enough space in journal to store dirty sit
2820 * entries, remove all entries from journal and add and account
2821 * them in sit entry set.
2822 */
2823 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2824 remove_sits_in_journal(sbi);
2825
2826 /*
2827 * there are two steps to flush sit entries:
2828 * #1, flush sit entries to journal in current cold data summary block.
2829 * #2, flush sit entries to sit page.
2830 */
2831 list_for_each_entry_safe(ses, tmp, head, set_list) {
2832 struct page *page = NULL;
2833 struct f2fs_sit_block *raw_sit = NULL;
2834 unsigned int start_segno = ses->start_segno;
2835 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2836 (unsigned long)MAIN_SEGS(sbi));
2837 unsigned int segno = start_segno;
2838
2839 if (to_journal &&
2840 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2841 to_journal = false;
2842
2843 if (to_journal) {
2844 down_write(&curseg->journal_rwsem);
2845 } else {
2846 page = get_next_sit_page(sbi, start_segno);
2847 raw_sit = page_address(page);
2848 }
2849
2850 /* flush dirty sit entries in region of current sit set */
2851 for_each_set_bit_from(segno, bitmap, end) {
2852 int offset, sit_offset;
2853
2854 se = get_seg_entry(sbi, segno);
2855
2856 /* add discard candidates */
2857 if (!(cpc->reason & CP_DISCARD)) {
2858 cpc->trim_start = segno;
2859 add_discard_addrs(sbi, cpc, false);
2860 }
2861
2862 if (to_journal) {
2863 offset = lookup_journal_in_cursum(journal,
2864 SIT_JOURNAL, segno, 1);
2865 f2fs_bug_on(sbi, offset < 0);
2866 segno_in_journal(journal, offset) =
2867 cpu_to_le32(segno);
2868 seg_info_to_raw_sit(se,
2869 &sit_in_journal(journal, offset));
2870 } else {
2871 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2872 seg_info_to_raw_sit(se,
2873 &raw_sit->entries[sit_offset]);
2874 }
2875
2876 __clear_bit(segno, bitmap);
2877 sit_i->dirty_sentries--;
2878 ses->entry_cnt--;
2879 }
2880
2881 if (to_journal)
2882 up_write(&curseg->journal_rwsem);
2883 else
2884 f2fs_put_page(page, 1);
2885
2886 f2fs_bug_on(sbi, ses->entry_cnt);
2887 release_sit_entry_set(ses);
2888 }
2889
2890 f2fs_bug_on(sbi, !list_empty(head));
2891 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2892 out:
2893 if (cpc->reason & CP_DISCARD) {
2894 __u64 trim_start = cpc->trim_start;
2895
2896 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2897 add_discard_addrs(sbi, cpc, false);
2898
2899 cpc->trim_start = trim_start;
2900 }
2901 mutex_unlock(&sit_i->sentry_lock);
2902
2903 set_prefree_as_free_segments(sbi);
2904 }
2905
2906 static int build_sit_info(struct f2fs_sb_info *sbi)
2907 {
2908 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2909 struct sit_info *sit_i;
2910 unsigned int sit_segs, start;
2911 char *src_bitmap;
2912 unsigned int bitmap_size;
2913
2914 /* allocate memory for SIT information */
2915 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2916 if (!sit_i)
2917 return -ENOMEM;
2918
2919 SM_I(sbi)->sit_info = sit_i;
2920
2921 sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
2922 sizeof(struct seg_entry), GFP_KERNEL);
2923 if (!sit_i->sentries)
2924 return -ENOMEM;
2925
2926 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2927 sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
2928 if (!sit_i->dirty_sentries_bitmap)
2929 return -ENOMEM;
2930
2931 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2932 sit_i->sentries[start].cur_valid_map
2933 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2934 sit_i->sentries[start].ckpt_valid_map
2935 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2936 if (!sit_i->sentries[start].cur_valid_map ||
2937 !sit_i->sentries[start].ckpt_valid_map)
2938 return -ENOMEM;
2939
2940 #ifdef CONFIG_F2FS_CHECK_FS
2941 sit_i->sentries[start].cur_valid_map_mir
2942 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2943 if (!sit_i->sentries[start].cur_valid_map_mir)
2944 return -ENOMEM;
2945 #endif
2946
2947 if (f2fs_discard_en(sbi)) {
2948 sit_i->sentries[start].discard_map
2949 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2950 if (!sit_i->sentries[start].discard_map)
2951 return -ENOMEM;
2952 }
2953 }
2954
2955 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2956 if (!sit_i->tmp_map)
2957 return -ENOMEM;
2958
2959 if (sbi->segs_per_sec > 1) {
2960 sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
2961 sizeof(struct sec_entry), GFP_KERNEL);
2962 if (!sit_i->sec_entries)
2963 return -ENOMEM;
2964 }
2965
2966 /* get information related with SIT */
2967 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2968
2969 /* setup SIT bitmap from ckeckpoint pack */
2970 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2971 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2972
2973 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2974 if (!sit_i->sit_bitmap)
2975 return -ENOMEM;
2976
2977 #ifdef CONFIG_F2FS_CHECK_FS
2978 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2979 if (!sit_i->sit_bitmap_mir)
2980 return -ENOMEM;
2981 #endif
2982
2983 /* init SIT information */
2984 sit_i->s_ops = &default_salloc_ops;
2985
2986 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2987 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2988 sit_i->written_valid_blocks = 0;
2989 sit_i->bitmap_size = bitmap_size;
2990 sit_i->dirty_sentries = 0;
2991 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2992 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2993 sit_i->mounted_time = ktime_get_real_seconds();
2994 mutex_init(&sit_i->sentry_lock);
2995 return 0;
2996 }
2997
2998 static int build_free_segmap(struct f2fs_sb_info *sbi)
2999 {
3000 struct free_segmap_info *free_i;
3001 unsigned int bitmap_size, sec_bitmap_size;
3002
3003 /* allocate memory for free segmap information */
3004 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
3005 if (!free_i)
3006 return -ENOMEM;
3007
3008 SM_I(sbi)->free_info = free_i;
3009
3010 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3011 free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
3012 if (!free_i->free_segmap)
3013 return -ENOMEM;
3014
3015 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3016 free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
3017 if (!free_i->free_secmap)
3018 return -ENOMEM;
3019
3020 /* set all segments as dirty temporarily */
3021 memset(free_i->free_segmap, 0xff, bitmap_size);
3022 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3023
3024 /* init free segmap information */
3025 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3026 free_i->free_segments = 0;
3027 free_i->free_sections = 0;
3028 spin_lock_init(&free_i->segmap_lock);
3029 return 0;
3030 }
3031
3032 static int build_curseg(struct f2fs_sb_info *sbi)
3033 {
3034 struct curseg_info *array;
3035 int i;
3036
3037 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
3038 if (!array)
3039 return -ENOMEM;
3040
3041 SM_I(sbi)->curseg_array = array;
3042
3043 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3044 mutex_init(&array[i].curseg_mutex);
3045 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
3046 if (!array[i].sum_blk)
3047 return -ENOMEM;
3048 init_rwsem(&array[i].journal_rwsem);
3049 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
3050 GFP_KERNEL);
3051 if (!array[i].journal)
3052 return -ENOMEM;
3053 array[i].segno = NULL_SEGNO;
3054 array[i].next_blkoff = 0;
3055 }
3056 return restore_curseg_summaries(sbi);
3057 }
3058
3059 static void build_sit_entries(struct f2fs_sb_info *sbi)
3060 {
3061 struct sit_info *sit_i = SIT_I(sbi);
3062 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3063 struct f2fs_journal *journal = curseg->journal;
3064 struct seg_entry *se;
3065 struct f2fs_sit_entry sit;
3066 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3067 unsigned int i, start, end;
3068 unsigned int readed, start_blk = 0;
3069
3070 do {
3071 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3072 META_SIT, true);
3073
3074 start = start_blk * sit_i->sents_per_block;
3075 end = (start_blk + readed) * sit_i->sents_per_block;
3076
3077 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3078 struct f2fs_sit_block *sit_blk;
3079 struct page *page;
3080
3081 se = &sit_i->sentries[start];
3082 page = get_current_sit_page(sbi, start);
3083 sit_blk = (struct f2fs_sit_block *)page_address(page);
3084 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3085 f2fs_put_page(page, 1);
3086
3087 check_block_count(sbi, start, &sit);
3088 seg_info_from_raw_sit(se, &sit);
3089
3090 /* build discard map only one time */
3091 if (f2fs_discard_en(sbi)) {
3092 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3093 memset(se->discard_map, 0xff,
3094 SIT_VBLOCK_MAP_SIZE);
3095 } else {
3096 memcpy(se->discard_map,
3097 se->cur_valid_map,
3098 SIT_VBLOCK_MAP_SIZE);
3099 sbi->discard_blks +=
3100 sbi->blocks_per_seg -
3101 se->valid_blocks;
3102 }
3103 }
3104
3105 if (sbi->segs_per_sec > 1)
3106 get_sec_entry(sbi, start)->valid_blocks +=
3107 se->valid_blocks;
3108 }
3109 start_blk += readed;
3110 } while (start_blk < sit_blk_cnt);
3111
3112 down_read(&curseg->journal_rwsem);
3113 for (i = 0; i < sits_in_cursum(journal); i++) {
3114 unsigned int old_valid_blocks;
3115
3116 start = le32_to_cpu(segno_in_journal(journal, i));
3117 se = &sit_i->sentries[start];
3118 sit = sit_in_journal(journal, i);
3119
3120 old_valid_blocks = se->valid_blocks;
3121
3122 check_block_count(sbi, start, &sit);
3123 seg_info_from_raw_sit(se, &sit);
3124
3125 if (f2fs_discard_en(sbi)) {
3126 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3127 memset(se->discard_map, 0xff,
3128 SIT_VBLOCK_MAP_SIZE);
3129 } else {
3130 memcpy(se->discard_map, se->cur_valid_map,
3131 SIT_VBLOCK_MAP_SIZE);
3132 sbi->discard_blks += old_valid_blocks -
3133 se->valid_blocks;
3134 }
3135 }
3136
3137 if (sbi->segs_per_sec > 1)
3138 get_sec_entry(sbi, start)->valid_blocks +=
3139 se->valid_blocks - old_valid_blocks;
3140 }
3141 up_read(&curseg->journal_rwsem);
3142 }
3143
3144 static void init_free_segmap(struct f2fs_sb_info *sbi)
3145 {
3146 unsigned int start;
3147 int type;
3148
3149 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3150 struct seg_entry *sentry = get_seg_entry(sbi, start);
3151 if (!sentry->valid_blocks)
3152 __set_free(sbi, start);
3153 else
3154 SIT_I(sbi)->written_valid_blocks +=
3155 sentry->valid_blocks;
3156 }
3157
3158 /* set use the current segments */
3159 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3160 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3161 __set_test_and_inuse(sbi, curseg_t->segno);
3162 }
3163 }
3164
3165 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3166 {
3167 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3168 struct free_segmap_info *free_i = FREE_I(sbi);
3169 unsigned int segno = 0, offset = 0;
3170 unsigned short valid_blocks;
3171
3172 while (1) {
3173 /* find dirty segment based on free segmap */
3174 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3175 if (segno >= MAIN_SEGS(sbi))
3176 break;
3177 offset = segno + 1;
3178 valid_blocks = get_valid_blocks(sbi, segno, false);
3179 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3180 continue;
3181 if (valid_blocks > sbi->blocks_per_seg) {
3182 f2fs_bug_on(sbi, 1);
3183 continue;
3184 }
3185 mutex_lock(&dirty_i->seglist_lock);
3186 __locate_dirty_segment(sbi, segno, DIRTY);
3187 mutex_unlock(&dirty_i->seglist_lock);
3188 }
3189 }
3190
3191 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3192 {
3193 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3194 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3195
3196 dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3197 if (!dirty_i->victim_secmap)
3198 return -ENOMEM;
3199 return 0;
3200 }
3201
3202 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3203 {
3204 struct dirty_seglist_info *dirty_i;
3205 unsigned int bitmap_size, i;
3206
3207 /* allocate memory for dirty segments list information */
3208 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3209 if (!dirty_i)
3210 return -ENOMEM;
3211
3212 SM_I(sbi)->dirty_info = dirty_i;
3213 mutex_init(&dirty_i->seglist_lock);
3214
3215 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3216
3217 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3218 dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3219 if (!dirty_i->dirty_segmap[i])
3220 return -ENOMEM;
3221 }
3222
3223 init_dirty_segmap(sbi);
3224 return init_victim_secmap(sbi);
3225 }
3226
3227 /*
3228 * Update min, max modified time for cost-benefit GC algorithm
3229 */
3230 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3231 {
3232 struct sit_info *sit_i = SIT_I(sbi);
3233 unsigned int segno;
3234
3235 mutex_lock(&sit_i->sentry_lock);
3236
3237 sit_i->min_mtime = LLONG_MAX;
3238
3239 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3240 unsigned int i;
3241 unsigned long long mtime = 0;
3242
3243 for (i = 0; i < sbi->segs_per_sec; i++)
3244 mtime += get_seg_entry(sbi, segno + i)->mtime;
3245
3246 mtime = div_u64(mtime, sbi->segs_per_sec);
3247
3248 if (sit_i->min_mtime > mtime)
3249 sit_i->min_mtime = mtime;
3250 }
3251 sit_i->max_mtime = get_mtime(sbi);
3252 mutex_unlock(&sit_i->sentry_lock);
3253 }
3254
3255 int build_segment_manager(struct f2fs_sb_info *sbi)
3256 {
3257 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3258 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3259 struct f2fs_sm_info *sm_info;
3260 int err;
3261
3262 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3263 if (!sm_info)
3264 return -ENOMEM;
3265
3266 /* init sm info */
3267 sbi->sm_info = sm_info;
3268 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3269 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3270 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3271 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3272 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3273 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3274 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3275 sm_info->rec_prefree_segments = sm_info->main_segments *
3276 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3277 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3278 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3279
3280 if (!test_opt(sbi, LFS))
3281 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3282 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3283 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3284 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3285
3286 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3287
3288 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3289
3290 if (!f2fs_readonly(sbi->sb)) {
3291 err = create_flush_cmd_control(sbi);
3292 if (err)
3293 return err;
3294 }
3295
3296 err = create_discard_cmd_control(sbi);
3297 if (err)
3298 return err;
3299
3300 err = build_sit_info(sbi);
3301 if (err)
3302 return err;
3303 err = build_free_segmap(sbi);
3304 if (err)
3305 return err;
3306 err = build_curseg(sbi);
3307 if (err)
3308 return err;
3309
3310 /* reinit free segmap based on SIT */
3311 build_sit_entries(sbi);
3312
3313 init_free_segmap(sbi);
3314 err = build_dirty_segmap(sbi);
3315 if (err)
3316 return err;
3317
3318 init_min_max_mtime(sbi);
3319 return 0;
3320 }
3321
3322 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3323 enum dirty_type dirty_type)
3324 {
3325 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3326
3327 mutex_lock(&dirty_i->seglist_lock);
3328 kvfree(dirty_i->dirty_segmap[dirty_type]);
3329 dirty_i->nr_dirty[dirty_type] = 0;
3330 mutex_unlock(&dirty_i->seglist_lock);
3331 }
3332
3333 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3334 {
3335 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3336 kvfree(dirty_i->victim_secmap);
3337 }
3338
3339 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3340 {
3341 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3342 int i;
3343
3344 if (!dirty_i)
3345 return;
3346
3347 /* discard pre-free/dirty segments list */
3348 for (i = 0; i < NR_DIRTY_TYPE; i++)
3349 discard_dirty_segmap(sbi, i);
3350
3351 destroy_victim_secmap(sbi);
3352 SM_I(sbi)->dirty_info = NULL;
3353 kfree(dirty_i);
3354 }
3355
3356 static void destroy_curseg(struct f2fs_sb_info *sbi)
3357 {
3358 struct curseg_info *array = SM_I(sbi)->curseg_array;
3359 int i;
3360
3361 if (!array)
3362 return;
3363 SM_I(sbi)->curseg_array = NULL;
3364 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3365 kfree(array[i].sum_blk);
3366 kfree(array[i].journal);
3367 }
3368 kfree(array);
3369 }
3370
3371 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3372 {
3373 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3374 if (!free_i)
3375 return;
3376 SM_I(sbi)->free_info = NULL;
3377 kvfree(free_i->free_segmap);
3378 kvfree(free_i->free_secmap);
3379 kfree(free_i);
3380 }
3381
3382 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3383 {
3384 struct sit_info *sit_i = SIT_I(sbi);
3385 unsigned int start;
3386
3387 if (!sit_i)
3388 return;
3389
3390 if (sit_i->sentries) {
3391 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3392 kfree(sit_i->sentries[start].cur_valid_map);
3393 #ifdef CONFIG_F2FS_CHECK_FS
3394 kfree(sit_i->sentries[start].cur_valid_map_mir);
3395 #endif
3396 kfree(sit_i->sentries[start].ckpt_valid_map);
3397 kfree(sit_i->sentries[start].discard_map);
3398 }
3399 }
3400 kfree(sit_i->tmp_map);
3401
3402 kvfree(sit_i->sentries);
3403 kvfree(sit_i->sec_entries);
3404 kvfree(sit_i->dirty_sentries_bitmap);
3405
3406 SM_I(sbi)->sit_info = NULL;
3407 kfree(sit_i->sit_bitmap);
3408 #ifdef CONFIG_F2FS_CHECK_FS
3409 kfree(sit_i->sit_bitmap_mir);
3410 #endif
3411 kfree(sit_i);
3412 }
3413
3414 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3415 {
3416 struct f2fs_sm_info *sm_info = SM_I(sbi);
3417
3418 if (!sm_info)
3419 return;
3420 destroy_flush_cmd_control(sbi, true);
3421 destroy_discard_cmd_control(sbi);
3422 destroy_dirty_segmap(sbi);
3423 destroy_curseg(sbi);
3424 destroy_free_segmap(sbi);
3425 destroy_sit_info(sbi);
3426 sbi->sm_info = NULL;
3427 kfree(sm_info);
3428 }
3429
3430 int __init create_segment_manager_caches(void)
3431 {
3432 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3433 sizeof(struct discard_entry));
3434 if (!discard_entry_slab)
3435 goto fail;
3436
3437 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3438 sizeof(struct discard_cmd));
3439 if (!discard_cmd_slab)
3440 goto destroy_discard_entry;
3441
3442 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3443 sizeof(struct sit_entry_set));
3444 if (!sit_entry_set_slab)
3445 goto destroy_discard_cmd;
3446
3447 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3448 sizeof(struct inmem_pages));
3449 if (!inmem_entry_slab)
3450 goto destroy_sit_entry_set;
3451 return 0;
3452
3453 destroy_sit_entry_set:
3454 kmem_cache_destroy(sit_entry_set_slab);
3455 destroy_discard_cmd:
3456 kmem_cache_destroy(discard_cmd_slab);
3457 destroy_discard_entry:
3458 kmem_cache_destroy(discard_entry_slab);
3459 fail:
3460 return -ENOMEM;
3461 }
3462
3463 void destroy_segment_manager_caches(void)
3464 {
3465 kmem_cache_destroy(sit_entry_set_slab);
3466 kmem_cache_destroy(discard_cmd_slab);
3467 kmem_cache_destroy(discard_entry_slab);
3468 kmem_cache_destroy(inmem_entry_slab);
3469 }