]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/segment.c
Merge tag 'dw-hdmi-next-2016-09-19' of git://git.pengutronix.de/git/pza/linux into...
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 struct inmem_pages *new;
173
174 f2fs_trace_pid(page);
175
176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 SetPagePrivate(page);
178
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181 /* add atomic page indices to the list */
182 new->page = page;
183 INIT_LIST_HEAD(&new->list);
184
185 /* increase reference count with clean state */
186 mutex_lock(&fi->inmem_lock);
187 get_page(page);
188 list_add_tail(&new->list, &fi->inmem_pages);
189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 mutex_unlock(&fi->inmem_lock);
191
192 trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196 struct list_head *head, bool drop, bool recover)
197 {
198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 struct inmem_pages *cur, *tmp;
200 int err = 0;
201
202 list_for_each_entry_safe(cur, tmp, head, list) {
203 struct page *page = cur->page;
204
205 if (drop)
206 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208 lock_page(page);
209
210 if (recover) {
211 struct dnode_of_data dn;
212 struct node_info ni;
213
214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216 set_new_dnode(&dn, inode, NULL, NULL, 0);
217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 err = -EAGAIN;
219 goto next;
220 }
221 get_node_info(sbi, dn.nid, &ni);
222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 cur->old_addr, ni.version, true, true);
224 f2fs_put_dnode(&dn);
225 }
226 next:
227 /* we don't need to invalidate this in the sccessful status */
228 if (drop || recover)
229 ClearPageUptodate(page);
230 set_page_private(page, 0);
231 ClearPagePrivate(page);
232 f2fs_put_page(page, 1);
233
234 list_del(&cur->list);
235 kmem_cache_free(inmem_entry_slab, cur);
236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 }
238 return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243 struct f2fs_inode_info *fi = F2FS_I(inode);
244
245 clear_inode_flag(inode, FI_ATOMIC_FILE);
246
247 mutex_lock(&fi->inmem_lock);
248 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
249 mutex_unlock(&fi->inmem_lock);
250 }
251
252 static int __commit_inmem_pages(struct inode *inode,
253 struct list_head *revoke_list)
254 {
255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256 struct f2fs_inode_info *fi = F2FS_I(inode);
257 struct inmem_pages *cur, *tmp;
258 struct f2fs_io_info fio = {
259 .sbi = sbi,
260 .type = DATA,
261 .op = REQ_OP_WRITE,
262 .op_flags = WRITE_SYNC | REQ_PRIO,
263 .encrypted_page = NULL,
264 };
265 bool submit_bio = false;
266 int err = 0;
267
268 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
269 struct page *page = cur->page;
270
271 lock_page(page);
272 if (page->mapping == inode->i_mapping) {
273 trace_f2fs_commit_inmem_page(page, INMEM);
274
275 set_page_dirty(page);
276 f2fs_wait_on_page_writeback(page, DATA, true);
277 if (clear_page_dirty_for_io(page))
278 inode_dec_dirty_pages(inode);
279
280 fio.page = page;
281 err = do_write_data_page(&fio);
282 if (err) {
283 unlock_page(page);
284 break;
285 }
286
287 /* record old blkaddr for revoking */
288 cur->old_addr = fio.old_blkaddr;
289
290 clear_cold_data(page);
291 submit_bio = true;
292 }
293 unlock_page(page);
294 list_move_tail(&cur->list, revoke_list);
295 }
296
297 if (submit_bio)
298 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
299
300 if (!err)
301 __revoke_inmem_pages(inode, revoke_list, false, false);
302
303 return err;
304 }
305
306 int commit_inmem_pages(struct inode *inode)
307 {
308 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
309 struct f2fs_inode_info *fi = F2FS_I(inode);
310 struct list_head revoke_list;
311 int err;
312
313 INIT_LIST_HEAD(&revoke_list);
314 f2fs_balance_fs(sbi, true);
315 f2fs_lock_op(sbi);
316
317 mutex_lock(&fi->inmem_lock);
318 err = __commit_inmem_pages(inode, &revoke_list);
319 if (err) {
320 int ret;
321 /*
322 * try to revoke all committed pages, but still we could fail
323 * due to no memory or other reason, if that happened, EAGAIN
324 * will be returned, which means in such case, transaction is
325 * already not integrity, caller should use journal to do the
326 * recovery or rewrite & commit last transaction. For other
327 * error number, revoking was done by filesystem itself.
328 */
329 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
330 if (ret)
331 err = ret;
332
333 /* drop all uncommitted pages */
334 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
335 }
336 mutex_unlock(&fi->inmem_lock);
337
338 f2fs_unlock_op(sbi);
339 return err;
340 }
341
342 /*
343 * This function balances dirty node and dentry pages.
344 * In addition, it controls garbage collection.
345 */
346 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
347 {
348 #ifdef CONFIG_F2FS_FAULT_INJECTION
349 if (time_to_inject(sbi, FAULT_CHECKPOINT))
350 f2fs_stop_checkpoint(sbi, false);
351 #endif
352
353 if (!need)
354 return;
355
356 /* balance_fs_bg is able to be pending */
357 if (excess_cached_nats(sbi))
358 f2fs_balance_fs_bg(sbi);
359
360 /*
361 * We should do GC or end up with checkpoint, if there are so many dirty
362 * dir/node pages without enough free segments.
363 */
364 if (has_not_enough_free_secs(sbi, 0, 0)) {
365 mutex_lock(&sbi->gc_mutex);
366 f2fs_gc(sbi, false);
367 }
368 }
369
370 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
371 {
372 /* try to shrink extent cache when there is no enough memory */
373 if (!available_free_memory(sbi, EXTENT_CACHE))
374 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
375
376 /* check the # of cached NAT entries */
377 if (!available_free_memory(sbi, NAT_ENTRIES))
378 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
379
380 if (!available_free_memory(sbi, FREE_NIDS))
381 try_to_free_nids(sbi, MAX_FREE_NIDS);
382 else
383 build_free_nids(sbi);
384
385 /* checkpoint is the only way to shrink partial cached entries */
386 if (!available_free_memory(sbi, NAT_ENTRIES) ||
387 !available_free_memory(sbi, INO_ENTRIES) ||
388 excess_prefree_segs(sbi) ||
389 excess_dirty_nats(sbi) ||
390 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
391 if (test_opt(sbi, DATA_FLUSH)) {
392 struct blk_plug plug;
393
394 blk_start_plug(&plug);
395 sync_dirty_inodes(sbi, FILE_INODE);
396 blk_finish_plug(&plug);
397 }
398 f2fs_sync_fs(sbi->sb, true);
399 stat_inc_bg_cp_count(sbi->stat_info);
400 }
401 }
402
403 static int issue_flush_thread(void *data)
404 {
405 struct f2fs_sb_info *sbi = data;
406 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
407 wait_queue_head_t *q = &fcc->flush_wait_queue;
408 repeat:
409 if (kthread_should_stop())
410 return 0;
411
412 if (!llist_empty(&fcc->issue_list)) {
413 struct bio *bio;
414 struct flush_cmd *cmd, *next;
415 int ret;
416
417 bio = f2fs_bio_alloc(0);
418
419 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
420 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
421
422 bio->bi_bdev = sbi->sb->s_bdev;
423 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
424 ret = submit_bio_wait(bio);
425
426 llist_for_each_entry_safe(cmd, next,
427 fcc->dispatch_list, llnode) {
428 cmd->ret = ret;
429 complete(&cmd->wait);
430 }
431 bio_put(bio);
432 fcc->dispatch_list = NULL;
433 }
434
435 wait_event_interruptible(*q,
436 kthread_should_stop() || !llist_empty(&fcc->issue_list));
437 goto repeat;
438 }
439
440 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
441 {
442 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
443 struct flush_cmd cmd;
444
445 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
446 test_opt(sbi, FLUSH_MERGE));
447
448 if (test_opt(sbi, NOBARRIER))
449 return 0;
450
451 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
452 struct bio *bio = f2fs_bio_alloc(0);
453 int ret;
454
455 atomic_inc(&fcc->submit_flush);
456 bio->bi_bdev = sbi->sb->s_bdev;
457 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
458 ret = submit_bio_wait(bio);
459 atomic_dec(&fcc->submit_flush);
460 bio_put(bio);
461 return ret;
462 }
463
464 init_completion(&cmd.wait);
465
466 atomic_inc(&fcc->submit_flush);
467 llist_add(&cmd.llnode, &fcc->issue_list);
468
469 if (!fcc->dispatch_list)
470 wake_up(&fcc->flush_wait_queue);
471
472 wait_for_completion(&cmd.wait);
473 atomic_dec(&fcc->submit_flush);
474
475 return cmd.ret;
476 }
477
478 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
479 {
480 dev_t dev = sbi->sb->s_bdev->bd_dev;
481 struct flush_cmd_control *fcc;
482 int err = 0;
483
484 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
485 if (!fcc)
486 return -ENOMEM;
487 atomic_set(&fcc->submit_flush, 0);
488 init_waitqueue_head(&fcc->flush_wait_queue);
489 init_llist_head(&fcc->issue_list);
490 SM_I(sbi)->cmd_control_info = fcc;
491 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
492 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
493 if (IS_ERR(fcc->f2fs_issue_flush)) {
494 err = PTR_ERR(fcc->f2fs_issue_flush);
495 kfree(fcc);
496 SM_I(sbi)->cmd_control_info = NULL;
497 return err;
498 }
499
500 return err;
501 }
502
503 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
504 {
505 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
506
507 if (fcc && fcc->f2fs_issue_flush)
508 kthread_stop(fcc->f2fs_issue_flush);
509 kfree(fcc);
510 SM_I(sbi)->cmd_control_info = NULL;
511 }
512
513 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
514 enum dirty_type dirty_type)
515 {
516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
517
518 /* need not be added */
519 if (IS_CURSEG(sbi, segno))
520 return;
521
522 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
523 dirty_i->nr_dirty[dirty_type]++;
524
525 if (dirty_type == DIRTY) {
526 struct seg_entry *sentry = get_seg_entry(sbi, segno);
527 enum dirty_type t = sentry->type;
528
529 if (unlikely(t >= DIRTY)) {
530 f2fs_bug_on(sbi, 1);
531 return;
532 }
533 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
534 dirty_i->nr_dirty[t]++;
535 }
536 }
537
538 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
539 enum dirty_type dirty_type)
540 {
541 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
542
543 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
544 dirty_i->nr_dirty[dirty_type]--;
545
546 if (dirty_type == DIRTY) {
547 struct seg_entry *sentry = get_seg_entry(sbi, segno);
548 enum dirty_type t = sentry->type;
549
550 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
551 dirty_i->nr_dirty[t]--;
552
553 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
554 clear_bit(GET_SECNO(sbi, segno),
555 dirty_i->victim_secmap);
556 }
557 }
558
559 /*
560 * Should not occur error such as -ENOMEM.
561 * Adding dirty entry into seglist is not critical operation.
562 * If a given segment is one of current working segments, it won't be added.
563 */
564 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
565 {
566 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
567 unsigned short valid_blocks;
568
569 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
570 return;
571
572 mutex_lock(&dirty_i->seglist_lock);
573
574 valid_blocks = get_valid_blocks(sbi, segno, 0);
575
576 if (valid_blocks == 0) {
577 __locate_dirty_segment(sbi, segno, PRE);
578 __remove_dirty_segment(sbi, segno, DIRTY);
579 } else if (valid_blocks < sbi->blocks_per_seg) {
580 __locate_dirty_segment(sbi, segno, DIRTY);
581 } else {
582 /* Recovery routine with SSR needs this */
583 __remove_dirty_segment(sbi, segno, DIRTY);
584 }
585
586 mutex_unlock(&dirty_i->seglist_lock);
587 }
588
589 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
590 struct bio *bio)
591 {
592 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
593 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
594
595 INIT_LIST_HEAD(&be->list);
596 be->bio = bio;
597 init_completion(&be->event);
598 list_add_tail(&be->list, wait_list);
599
600 return be;
601 }
602
603 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
604 {
605 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
606 struct bio_entry *be, *tmp;
607
608 list_for_each_entry_safe(be, tmp, wait_list, list) {
609 struct bio *bio = be->bio;
610 int err;
611
612 wait_for_completion_io(&be->event);
613 err = be->error;
614 if (err == -EOPNOTSUPP)
615 err = 0;
616
617 if (err)
618 f2fs_msg(sbi->sb, KERN_INFO,
619 "Issue discard failed, ret: %d", err);
620
621 bio_put(bio);
622 list_del(&be->list);
623 kmem_cache_free(bio_entry_slab, be);
624 }
625 }
626
627 static void f2fs_submit_bio_wait_endio(struct bio *bio)
628 {
629 struct bio_entry *be = (struct bio_entry *)bio->bi_private;
630
631 be->error = bio->bi_error;
632 complete(&be->event);
633 }
634
635 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
636 int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector,
637 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags)
638 {
639 struct block_device *bdev = sbi->sb->s_bdev;
640 struct bio *bio = NULL;
641 int err;
642
643 err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags,
644 &bio);
645 if (!err && bio) {
646 struct bio_entry *be = __add_bio_entry(sbi, bio);
647
648 bio->bi_private = be;
649 bio->bi_end_io = f2fs_submit_bio_wait_endio;
650 bio->bi_opf |= REQ_SYNC;
651 submit_bio(bio);
652 }
653
654 return err;
655 }
656
657 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
658 block_t blkstart, block_t blklen)
659 {
660 sector_t start = SECTOR_FROM_BLOCK(blkstart);
661 sector_t len = SECTOR_FROM_BLOCK(blklen);
662 struct seg_entry *se;
663 unsigned int offset;
664 block_t i;
665
666 for (i = blkstart; i < blkstart + blklen; i++) {
667 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
668 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
669
670 if (!f2fs_test_and_set_bit(offset, se->discard_map))
671 sbi->discard_blks--;
672 }
673 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
674 return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0);
675 }
676
677 static void __add_discard_entry(struct f2fs_sb_info *sbi,
678 struct cp_control *cpc, struct seg_entry *se,
679 unsigned int start, unsigned int end)
680 {
681 struct list_head *head = &SM_I(sbi)->discard_list;
682 struct discard_entry *new, *last;
683
684 if (!list_empty(head)) {
685 last = list_last_entry(head, struct discard_entry, list);
686 if (START_BLOCK(sbi, cpc->trim_start) + start ==
687 last->blkaddr + last->len) {
688 last->len += end - start;
689 goto done;
690 }
691 }
692
693 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
694 INIT_LIST_HEAD(&new->list);
695 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
696 new->len = end - start;
697 list_add_tail(&new->list, head);
698 done:
699 SM_I(sbi)->nr_discards += end - start;
700 }
701
702 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
703 {
704 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
705 int max_blocks = sbi->blocks_per_seg;
706 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
707 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
708 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
709 unsigned long *discard_map = (unsigned long *)se->discard_map;
710 unsigned long *dmap = SIT_I(sbi)->tmp_map;
711 unsigned int start = 0, end = -1;
712 bool force = (cpc->reason == CP_DISCARD);
713 int i;
714
715 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
716 return;
717
718 if (!force) {
719 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
720 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
721 return;
722 }
723
724 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
725 for (i = 0; i < entries; i++)
726 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
727 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
728
729 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
730 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
731 if (start >= max_blocks)
732 break;
733
734 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
735 if (force && start && end != max_blocks
736 && (end - start) < cpc->trim_minlen)
737 continue;
738
739 __add_discard_entry(sbi, cpc, se, start, end);
740 }
741 }
742
743 void release_discard_addrs(struct f2fs_sb_info *sbi)
744 {
745 struct list_head *head = &(SM_I(sbi)->discard_list);
746 struct discard_entry *entry, *this;
747
748 /* drop caches */
749 list_for_each_entry_safe(entry, this, head, list) {
750 list_del(&entry->list);
751 kmem_cache_free(discard_entry_slab, entry);
752 }
753 }
754
755 /*
756 * Should call clear_prefree_segments after checkpoint is done.
757 */
758 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
759 {
760 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
761 unsigned int segno;
762
763 mutex_lock(&dirty_i->seglist_lock);
764 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
765 __set_test_and_free(sbi, segno);
766 mutex_unlock(&dirty_i->seglist_lock);
767 }
768
769 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
770 {
771 struct list_head *head = &(SM_I(sbi)->discard_list);
772 struct discard_entry *entry, *this;
773 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774 struct blk_plug plug;
775 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
776 unsigned int start = 0, end = -1;
777 unsigned int secno, start_segno;
778 bool force = (cpc->reason == CP_DISCARD);
779
780 blk_start_plug(&plug);
781
782 mutex_lock(&dirty_i->seglist_lock);
783
784 while (1) {
785 int i;
786 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
787 if (start >= MAIN_SEGS(sbi))
788 break;
789 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
790 start + 1);
791
792 for (i = start; i < end; i++)
793 clear_bit(i, prefree_map);
794
795 dirty_i->nr_dirty[PRE] -= end - start;
796
797 if (force || !test_opt(sbi, DISCARD))
798 continue;
799
800 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
801 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
802 (end - start) << sbi->log_blocks_per_seg);
803 continue;
804 }
805 next:
806 secno = GET_SECNO(sbi, start);
807 start_segno = secno * sbi->segs_per_sec;
808 if (!IS_CURSEC(sbi, secno) &&
809 !get_valid_blocks(sbi, start, sbi->segs_per_sec))
810 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
811 sbi->segs_per_sec << sbi->log_blocks_per_seg);
812
813 start = start_segno + sbi->segs_per_sec;
814 if (start < end)
815 goto next;
816 }
817 mutex_unlock(&dirty_i->seglist_lock);
818
819 /* send small discards */
820 list_for_each_entry_safe(entry, this, head, list) {
821 if (force && entry->len < cpc->trim_minlen)
822 goto skip;
823 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
824 cpc->trimmed += entry->len;
825 skip:
826 list_del(&entry->list);
827 SM_I(sbi)->nr_discards -= entry->len;
828 kmem_cache_free(discard_entry_slab, entry);
829 }
830
831 blk_finish_plug(&plug);
832 }
833
834 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
835 {
836 struct sit_info *sit_i = SIT_I(sbi);
837
838 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
839 sit_i->dirty_sentries++;
840 return false;
841 }
842
843 return true;
844 }
845
846 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
847 unsigned int segno, int modified)
848 {
849 struct seg_entry *se = get_seg_entry(sbi, segno);
850 se->type = type;
851 if (modified)
852 __mark_sit_entry_dirty(sbi, segno);
853 }
854
855 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
856 {
857 struct seg_entry *se;
858 unsigned int segno, offset;
859 long int new_vblocks;
860
861 segno = GET_SEGNO(sbi, blkaddr);
862
863 se = get_seg_entry(sbi, segno);
864 new_vblocks = se->valid_blocks + del;
865 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
866
867 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
868 (new_vblocks > sbi->blocks_per_seg)));
869
870 se->valid_blocks = new_vblocks;
871 se->mtime = get_mtime(sbi);
872 SIT_I(sbi)->max_mtime = se->mtime;
873
874 /* Update valid block bitmap */
875 if (del > 0) {
876 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
877 f2fs_bug_on(sbi, 1);
878 if (f2fs_discard_en(sbi) &&
879 !f2fs_test_and_set_bit(offset, se->discard_map))
880 sbi->discard_blks--;
881 } else {
882 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
883 f2fs_bug_on(sbi, 1);
884 if (f2fs_discard_en(sbi) &&
885 f2fs_test_and_clear_bit(offset, se->discard_map))
886 sbi->discard_blks++;
887 }
888 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
889 se->ckpt_valid_blocks += del;
890
891 __mark_sit_entry_dirty(sbi, segno);
892
893 /* update total number of valid blocks to be written in ckpt area */
894 SIT_I(sbi)->written_valid_blocks += del;
895
896 if (sbi->segs_per_sec > 1)
897 get_sec_entry(sbi, segno)->valid_blocks += del;
898 }
899
900 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
901 {
902 update_sit_entry(sbi, new, 1);
903 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
904 update_sit_entry(sbi, old, -1);
905
906 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
907 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
908 }
909
910 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
911 {
912 unsigned int segno = GET_SEGNO(sbi, addr);
913 struct sit_info *sit_i = SIT_I(sbi);
914
915 f2fs_bug_on(sbi, addr == NULL_ADDR);
916 if (addr == NEW_ADDR)
917 return;
918
919 /* add it into sit main buffer */
920 mutex_lock(&sit_i->sentry_lock);
921
922 update_sit_entry(sbi, addr, -1);
923
924 /* add it into dirty seglist */
925 locate_dirty_segment(sbi, segno);
926
927 mutex_unlock(&sit_i->sentry_lock);
928 }
929
930 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
931 {
932 struct sit_info *sit_i = SIT_I(sbi);
933 unsigned int segno, offset;
934 struct seg_entry *se;
935 bool is_cp = false;
936
937 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
938 return true;
939
940 mutex_lock(&sit_i->sentry_lock);
941
942 segno = GET_SEGNO(sbi, blkaddr);
943 se = get_seg_entry(sbi, segno);
944 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
945
946 if (f2fs_test_bit(offset, se->ckpt_valid_map))
947 is_cp = true;
948
949 mutex_unlock(&sit_i->sentry_lock);
950
951 return is_cp;
952 }
953
954 /*
955 * This function should be resided under the curseg_mutex lock
956 */
957 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
958 struct f2fs_summary *sum)
959 {
960 struct curseg_info *curseg = CURSEG_I(sbi, type);
961 void *addr = curseg->sum_blk;
962 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
963 memcpy(addr, sum, sizeof(struct f2fs_summary));
964 }
965
966 /*
967 * Calculate the number of current summary pages for writing
968 */
969 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
970 {
971 int valid_sum_count = 0;
972 int i, sum_in_page;
973
974 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
975 if (sbi->ckpt->alloc_type[i] == SSR)
976 valid_sum_count += sbi->blocks_per_seg;
977 else {
978 if (for_ra)
979 valid_sum_count += le16_to_cpu(
980 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
981 else
982 valid_sum_count += curseg_blkoff(sbi, i);
983 }
984 }
985
986 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
987 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
988 if (valid_sum_count <= sum_in_page)
989 return 1;
990 else if ((valid_sum_count - sum_in_page) <=
991 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
992 return 2;
993 return 3;
994 }
995
996 /*
997 * Caller should put this summary page
998 */
999 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1000 {
1001 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1002 }
1003
1004 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1005 {
1006 struct page *page = grab_meta_page(sbi, blk_addr);
1007 void *dst = page_address(page);
1008
1009 if (src)
1010 memcpy(dst, src, PAGE_SIZE);
1011 else
1012 memset(dst, 0, PAGE_SIZE);
1013 set_page_dirty(page);
1014 f2fs_put_page(page, 1);
1015 }
1016
1017 static void write_sum_page(struct f2fs_sb_info *sbi,
1018 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1019 {
1020 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1021 }
1022
1023 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1024 int type, block_t blk_addr)
1025 {
1026 struct curseg_info *curseg = CURSEG_I(sbi, type);
1027 struct page *page = grab_meta_page(sbi, blk_addr);
1028 struct f2fs_summary_block *src = curseg->sum_blk;
1029 struct f2fs_summary_block *dst;
1030
1031 dst = (struct f2fs_summary_block *)page_address(page);
1032
1033 mutex_lock(&curseg->curseg_mutex);
1034
1035 down_read(&curseg->journal_rwsem);
1036 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1037 up_read(&curseg->journal_rwsem);
1038
1039 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1040 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1041
1042 mutex_unlock(&curseg->curseg_mutex);
1043
1044 set_page_dirty(page);
1045 f2fs_put_page(page, 1);
1046 }
1047
1048 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1049 {
1050 struct curseg_info *curseg = CURSEG_I(sbi, type);
1051 unsigned int segno = curseg->segno + 1;
1052 struct free_segmap_info *free_i = FREE_I(sbi);
1053
1054 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1055 return !test_bit(segno, free_i->free_segmap);
1056 return 0;
1057 }
1058
1059 /*
1060 * Find a new segment from the free segments bitmap to right order
1061 * This function should be returned with success, otherwise BUG
1062 */
1063 static void get_new_segment(struct f2fs_sb_info *sbi,
1064 unsigned int *newseg, bool new_sec, int dir)
1065 {
1066 struct free_segmap_info *free_i = FREE_I(sbi);
1067 unsigned int segno, secno, zoneno;
1068 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1069 unsigned int hint = *newseg / sbi->segs_per_sec;
1070 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1071 unsigned int left_start = hint;
1072 bool init = true;
1073 int go_left = 0;
1074 int i;
1075
1076 spin_lock(&free_i->segmap_lock);
1077
1078 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1079 segno = find_next_zero_bit(free_i->free_segmap,
1080 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1081 if (segno < (hint + 1) * sbi->segs_per_sec)
1082 goto got_it;
1083 }
1084 find_other_zone:
1085 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1086 if (secno >= MAIN_SECS(sbi)) {
1087 if (dir == ALLOC_RIGHT) {
1088 secno = find_next_zero_bit(free_i->free_secmap,
1089 MAIN_SECS(sbi), 0);
1090 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1091 } else {
1092 go_left = 1;
1093 left_start = hint - 1;
1094 }
1095 }
1096 if (go_left == 0)
1097 goto skip_left;
1098
1099 while (test_bit(left_start, free_i->free_secmap)) {
1100 if (left_start > 0) {
1101 left_start--;
1102 continue;
1103 }
1104 left_start = find_next_zero_bit(free_i->free_secmap,
1105 MAIN_SECS(sbi), 0);
1106 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1107 break;
1108 }
1109 secno = left_start;
1110 skip_left:
1111 hint = secno;
1112 segno = secno * sbi->segs_per_sec;
1113 zoneno = secno / sbi->secs_per_zone;
1114
1115 /* give up on finding another zone */
1116 if (!init)
1117 goto got_it;
1118 if (sbi->secs_per_zone == 1)
1119 goto got_it;
1120 if (zoneno == old_zoneno)
1121 goto got_it;
1122 if (dir == ALLOC_LEFT) {
1123 if (!go_left && zoneno + 1 >= total_zones)
1124 goto got_it;
1125 if (go_left && zoneno == 0)
1126 goto got_it;
1127 }
1128 for (i = 0; i < NR_CURSEG_TYPE; i++)
1129 if (CURSEG_I(sbi, i)->zone == zoneno)
1130 break;
1131
1132 if (i < NR_CURSEG_TYPE) {
1133 /* zone is in user, try another */
1134 if (go_left)
1135 hint = zoneno * sbi->secs_per_zone - 1;
1136 else if (zoneno + 1 >= total_zones)
1137 hint = 0;
1138 else
1139 hint = (zoneno + 1) * sbi->secs_per_zone;
1140 init = false;
1141 goto find_other_zone;
1142 }
1143 got_it:
1144 /* set it as dirty segment in free segmap */
1145 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1146 __set_inuse(sbi, segno);
1147 *newseg = segno;
1148 spin_unlock(&free_i->segmap_lock);
1149 }
1150
1151 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1152 {
1153 struct curseg_info *curseg = CURSEG_I(sbi, type);
1154 struct summary_footer *sum_footer;
1155
1156 curseg->segno = curseg->next_segno;
1157 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1158 curseg->next_blkoff = 0;
1159 curseg->next_segno = NULL_SEGNO;
1160
1161 sum_footer = &(curseg->sum_blk->footer);
1162 memset(sum_footer, 0, sizeof(struct summary_footer));
1163 if (IS_DATASEG(type))
1164 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1165 if (IS_NODESEG(type))
1166 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1167 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1168 }
1169
1170 /*
1171 * Allocate a current working segment.
1172 * This function always allocates a free segment in LFS manner.
1173 */
1174 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1175 {
1176 struct curseg_info *curseg = CURSEG_I(sbi, type);
1177 unsigned int segno = curseg->segno;
1178 int dir = ALLOC_LEFT;
1179
1180 write_sum_page(sbi, curseg->sum_blk,
1181 GET_SUM_BLOCK(sbi, segno));
1182 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1183 dir = ALLOC_RIGHT;
1184
1185 if (test_opt(sbi, NOHEAP))
1186 dir = ALLOC_RIGHT;
1187
1188 get_new_segment(sbi, &segno, new_sec, dir);
1189 curseg->next_segno = segno;
1190 reset_curseg(sbi, type, 1);
1191 curseg->alloc_type = LFS;
1192 }
1193
1194 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1195 struct curseg_info *seg, block_t start)
1196 {
1197 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1198 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1199 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1200 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1201 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1202 int i, pos;
1203
1204 for (i = 0; i < entries; i++)
1205 target_map[i] = ckpt_map[i] | cur_map[i];
1206
1207 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1208
1209 seg->next_blkoff = pos;
1210 }
1211
1212 /*
1213 * If a segment is written by LFS manner, next block offset is just obtained
1214 * by increasing the current block offset. However, if a segment is written by
1215 * SSR manner, next block offset obtained by calling __next_free_blkoff
1216 */
1217 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1218 struct curseg_info *seg)
1219 {
1220 if (seg->alloc_type == SSR)
1221 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1222 else
1223 seg->next_blkoff++;
1224 }
1225
1226 /*
1227 * This function always allocates a used segment(from dirty seglist) by SSR
1228 * manner, so it should recover the existing segment information of valid blocks
1229 */
1230 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1231 {
1232 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1233 struct curseg_info *curseg = CURSEG_I(sbi, type);
1234 unsigned int new_segno = curseg->next_segno;
1235 struct f2fs_summary_block *sum_node;
1236 struct page *sum_page;
1237
1238 write_sum_page(sbi, curseg->sum_blk,
1239 GET_SUM_BLOCK(sbi, curseg->segno));
1240 __set_test_and_inuse(sbi, new_segno);
1241
1242 mutex_lock(&dirty_i->seglist_lock);
1243 __remove_dirty_segment(sbi, new_segno, PRE);
1244 __remove_dirty_segment(sbi, new_segno, DIRTY);
1245 mutex_unlock(&dirty_i->seglist_lock);
1246
1247 reset_curseg(sbi, type, 1);
1248 curseg->alloc_type = SSR;
1249 __next_free_blkoff(sbi, curseg, 0);
1250
1251 if (reuse) {
1252 sum_page = get_sum_page(sbi, new_segno);
1253 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1254 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1255 f2fs_put_page(sum_page, 1);
1256 }
1257 }
1258
1259 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1260 {
1261 struct curseg_info *curseg = CURSEG_I(sbi, type);
1262 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1263
1264 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1265 return v_ops->get_victim(sbi,
1266 &(curseg)->next_segno, BG_GC, type, SSR);
1267
1268 /* For data segments, let's do SSR more intensively */
1269 for (; type >= CURSEG_HOT_DATA; type--)
1270 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1271 BG_GC, type, SSR))
1272 return 1;
1273 return 0;
1274 }
1275
1276 /*
1277 * flush out current segment and replace it with new segment
1278 * This function should be returned with success, otherwise BUG
1279 */
1280 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1281 int type, bool force)
1282 {
1283 struct curseg_info *curseg = CURSEG_I(sbi, type);
1284
1285 if (force)
1286 new_curseg(sbi, type, true);
1287 else if (type == CURSEG_WARM_NODE)
1288 new_curseg(sbi, type, false);
1289 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1290 new_curseg(sbi, type, false);
1291 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1292 change_curseg(sbi, type, true);
1293 else
1294 new_curseg(sbi, type, false);
1295
1296 stat_inc_seg_type(sbi, curseg);
1297 }
1298
1299 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1300 {
1301 struct curseg_info *curseg = CURSEG_I(sbi, type);
1302 unsigned int old_segno;
1303
1304 old_segno = curseg->segno;
1305 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1306 locate_dirty_segment(sbi, old_segno);
1307 }
1308
1309 void allocate_new_segments(struct f2fs_sb_info *sbi)
1310 {
1311 int i;
1312
1313 if (test_opt(sbi, LFS))
1314 return;
1315
1316 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1317 __allocate_new_segments(sbi, i);
1318 }
1319
1320 static const struct segment_allocation default_salloc_ops = {
1321 .allocate_segment = allocate_segment_by_default,
1322 };
1323
1324 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1325 {
1326 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1327 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1328 unsigned int start_segno, end_segno;
1329 struct cp_control cpc;
1330 int err = 0;
1331
1332 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1333 return -EINVAL;
1334
1335 cpc.trimmed = 0;
1336 if (end <= MAIN_BLKADDR(sbi))
1337 goto out;
1338
1339 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1340 f2fs_msg(sbi->sb, KERN_WARNING,
1341 "Found FS corruption, run fsck to fix.");
1342 goto out;
1343 }
1344
1345 /* start/end segment number in main_area */
1346 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1347 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1348 GET_SEGNO(sbi, end);
1349 cpc.reason = CP_DISCARD;
1350 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1351
1352 /* do checkpoint to issue discard commands safely */
1353 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1354 cpc.trim_start = start_segno;
1355
1356 if (sbi->discard_blks == 0)
1357 break;
1358 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1359 cpc.trim_end = end_segno;
1360 else
1361 cpc.trim_end = min_t(unsigned int,
1362 rounddown(start_segno +
1363 BATCHED_TRIM_SEGMENTS(sbi),
1364 sbi->segs_per_sec) - 1, end_segno);
1365
1366 mutex_lock(&sbi->gc_mutex);
1367 err = write_checkpoint(sbi, &cpc);
1368 mutex_unlock(&sbi->gc_mutex);
1369 if (err)
1370 break;
1371
1372 schedule();
1373 }
1374 out:
1375 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1376 return err;
1377 }
1378
1379 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1380 {
1381 struct curseg_info *curseg = CURSEG_I(sbi, type);
1382 if (curseg->next_blkoff < sbi->blocks_per_seg)
1383 return true;
1384 return false;
1385 }
1386
1387 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1388 {
1389 if (p_type == DATA)
1390 return CURSEG_HOT_DATA;
1391 else
1392 return CURSEG_HOT_NODE;
1393 }
1394
1395 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1396 {
1397 if (p_type == DATA) {
1398 struct inode *inode = page->mapping->host;
1399
1400 if (S_ISDIR(inode->i_mode))
1401 return CURSEG_HOT_DATA;
1402 else
1403 return CURSEG_COLD_DATA;
1404 } else {
1405 if (IS_DNODE(page) && is_cold_node(page))
1406 return CURSEG_WARM_NODE;
1407 else
1408 return CURSEG_COLD_NODE;
1409 }
1410 }
1411
1412 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1413 {
1414 if (p_type == DATA) {
1415 struct inode *inode = page->mapping->host;
1416
1417 if (S_ISDIR(inode->i_mode))
1418 return CURSEG_HOT_DATA;
1419 else if (is_cold_data(page) || file_is_cold(inode))
1420 return CURSEG_COLD_DATA;
1421 else
1422 return CURSEG_WARM_DATA;
1423 } else {
1424 if (IS_DNODE(page))
1425 return is_cold_node(page) ? CURSEG_WARM_NODE :
1426 CURSEG_HOT_NODE;
1427 else
1428 return CURSEG_COLD_NODE;
1429 }
1430 }
1431
1432 static int __get_segment_type(struct page *page, enum page_type p_type)
1433 {
1434 switch (F2FS_P_SB(page)->active_logs) {
1435 case 2:
1436 return __get_segment_type_2(page, p_type);
1437 case 4:
1438 return __get_segment_type_4(page, p_type);
1439 }
1440 /* NR_CURSEG_TYPE(6) logs by default */
1441 f2fs_bug_on(F2FS_P_SB(page),
1442 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1443 return __get_segment_type_6(page, p_type);
1444 }
1445
1446 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1447 block_t old_blkaddr, block_t *new_blkaddr,
1448 struct f2fs_summary *sum, int type)
1449 {
1450 struct sit_info *sit_i = SIT_I(sbi);
1451 struct curseg_info *curseg;
1452 bool direct_io = (type == CURSEG_DIRECT_IO);
1453
1454 type = direct_io ? CURSEG_WARM_DATA : type;
1455
1456 curseg = CURSEG_I(sbi, type);
1457
1458 mutex_lock(&curseg->curseg_mutex);
1459 mutex_lock(&sit_i->sentry_lock);
1460
1461 /* direct_io'ed data is aligned to the segment for better performance */
1462 if (direct_io && curseg->next_blkoff &&
1463 !has_not_enough_free_secs(sbi, 0, 0))
1464 __allocate_new_segments(sbi, type);
1465
1466 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1467
1468 /*
1469 * __add_sum_entry should be resided under the curseg_mutex
1470 * because, this function updates a summary entry in the
1471 * current summary block.
1472 */
1473 __add_sum_entry(sbi, type, sum);
1474
1475 __refresh_next_blkoff(sbi, curseg);
1476
1477 stat_inc_block_count(sbi, curseg);
1478
1479 if (!__has_curseg_space(sbi, type))
1480 sit_i->s_ops->allocate_segment(sbi, type, false);
1481 /*
1482 * SIT information should be updated before segment allocation,
1483 * since SSR needs latest valid block information.
1484 */
1485 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1486
1487 mutex_unlock(&sit_i->sentry_lock);
1488
1489 if (page && IS_NODESEG(type))
1490 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1491
1492 mutex_unlock(&curseg->curseg_mutex);
1493 }
1494
1495 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1496 {
1497 int type = __get_segment_type(fio->page, fio->type);
1498
1499 if (fio->type == NODE || fio->type == DATA)
1500 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1501
1502 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1503 &fio->new_blkaddr, sum, type);
1504
1505 /* writeout dirty page into bdev */
1506 f2fs_submit_page_mbio(fio);
1507
1508 if (fio->type == NODE || fio->type == DATA)
1509 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1510 }
1511
1512 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1513 {
1514 struct f2fs_io_info fio = {
1515 .sbi = sbi,
1516 .type = META,
1517 .op = REQ_OP_WRITE,
1518 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1519 .old_blkaddr = page->index,
1520 .new_blkaddr = page->index,
1521 .page = page,
1522 .encrypted_page = NULL,
1523 };
1524
1525 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1526 fio.op_flags &= ~REQ_META;
1527
1528 set_page_writeback(page);
1529 f2fs_submit_page_mbio(&fio);
1530 }
1531
1532 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1533 {
1534 struct f2fs_summary sum;
1535
1536 set_summary(&sum, nid, 0, 0);
1537 do_write_page(&sum, fio);
1538 }
1539
1540 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1541 {
1542 struct f2fs_sb_info *sbi = fio->sbi;
1543 struct f2fs_summary sum;
1544 struct node_info ni;
1545
1546 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1547 get_node_info(sbi, dn->nid, &ni);
1548 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1549 do_write_page(&sum, fio);
1550 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1551 }
1552
1553 void rewrite_data_page(struct f2fs_io_info *fio)
1554 {
1555 fio->new_blkaddr = fio->old_blkaddr;
1556 stat_inc_inplace_blocks(fio->sbi);
1557 f2fs_submit_page_mbio(fio);
1558 }
1559
1560 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1561 block_t old_blkaddr, block_t new_blkaddr,
1562 bool recover_curseg, bool recover_newaddr)
1563 {
1564 struct sit_info *sit_i = SIT_I(sbi);
1565 struct curseg_info *curseg;
1566 unsigned int segno, old_cursegno;
1567 struct seg_entry *se;
1568 int type;
1569 unsigned short old_blkoff;
1570
1571 segno = GET_SEGNO(sbi, new_blkaddr);
1572 se = get_seg_entry(sbi, segno);
1573 type = se->type;
1574
1575 if (!recover_curseg) {
1576 /* for recovery flow */
1577 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1578 if (old_blkaddr == NULL_ADDR)
1579 type = CURSEG_COLD_DATA;
1580 else
1581 type = CURSEG_WARM_DATA;
1582 }
1583 } else {
1584 if (!IS_CURSEG(sbi, segno))
1585 type = CURSEG_WARM_DATA;
1586 }
1587
1588 curseg = CURSEG_I(sbi, type);
1589
1590 mutex_lock(&curseg->curseg_mutex);
1591 mutex_lock(&sit_i->sentry_lock);
1592
1593 old_cursegno = curseg->segno;
1594 old_blkoff = curseg->next_blkoff;
1595
1596 /* change the current segment */
1597 if (segno != curseg->segno) {
1598 curseg->next_segno = segno;
1599 change_curseg(sbi, type, true);
1600 }
1601
1602 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1603 __add_sum_entry(sbi, type, sum);
1604
1605 if (!recover_curseg || recover_newaddr)
1606 update_sit_entry(sbi, new_blkaddr, 1);
1607 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1608 update_sit_entry(sbi, old_blkaddr, -1);
1609
1610 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1611 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1612
1613 locate_dirty_segment(sbi, old_cursegno);
1614
1615 if (recover_curseg) {
1616 if (old_cursegno != curseg->segno) {
1617 curseg->next_segno = old_cursegno;
1618 change_curseg(sbi, type, true);
1619 }
1620 curseg->next_blkoff = old_blkoff;
1621 }
1622
1623 mutex_unlock(&sit_i->sentry_lock);
1624 mutex_unlock(&curseg->curseg_mutex);
1625 }
1626
1627 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1628 block_t old_addr, block_t new_addr,
1629 unsigned char version, bool recover_curseg,
1630 bool recover_newaddr)
1631 {
1632 struct f2fs_summary sum;
1633
1634 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1635
1636 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1637 recover_curseg, recover_newaddr);
1638
1639 f2fs_update_data_blkaddr(dn, new_addr);
1640 }
1641
1642 void f2fs_wait_on_page_writeback(struct page *page,
1643 enum page_type type, bool ordered)
1644 {
1645 if (PageWriteback(page)) {
1646 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1647
1648 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1649 if (ordered)
1650 wait_on_page_writeback(page);
1651 else
1652 wait_for_stable_page(page);
1653 }
1654 }
1655
1656 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1657 block_t blkaddr)
1658 {
1659 struct page *cpage;
1660
1661 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1662 return;
1663
1664 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1665 if (cpage) {
1666 f2fs_wait_on_page_writeback(cpage, DATA, true);
1667 f2fs_put_page(cpage, 1);
1668 }
1669 }
1670
1671 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1672 {
1673 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1674 struct curseg_info *seg_i;
1675 unsigned char *kaddr;
1676 struct page *page;
1677 block_t start;
1678 int i, j, offset;
1679
1680 start = start_sum_block(sbi);
1681
1682 page = get_meta_page(sbi, start++);
1683 kaddr = (unsigned char *)page_address(page);
1684
1685 /* Step 1: restore nat cache */
1686 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1687 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1688
1689 /* Step 2: restore sit cache */
1690 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1691 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1692 offset = 2 * SUM_JOURNAL_SIZE;
1693
1694 /* Step 3: restore summary entries */
1695 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1696 unsigned short blk_off;
1697 unsigned int segno;
1698
1699 seg_i = CURSEG_I(sbi, i);
1700 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1701 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1702 seg_i->next_segno = segno;
1703 reset_curseg(sbi, i, 0);
1704 seg_i->alloc_type = ckpt->alloc_type[i];
1705 seg_i->next_blkoff = blk_off;
1706
1707 if (seg_i->alloc_type == SSR)
1708 blk_off = sbi->blocks_per_seg;
1709
1710 for (j = 0; j < blk_off; j++) {
1711 struct f2fs_summary *s;
1712 s = (struct f2fs_summary *)(kaddr + offset);
1713 seg_i->sum_blk->entries[j] = *s;
1714 offset += SUMMARY_SIZE;
1715 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1716 SUM_FOOTER_SIZE)
1717 continue;
1718
1719 f2fs_put_page(page, 1);
1720 page = NULL;
1721
1722 page = get_meta_page(sbi, start++);
1723 kaddr = (unsigned char *)page_address(page);
1724 offset = 0;
1725 }
1726 }
1727 f2fs_put_page(page, 1);
1728 return 0;
1729 }
1730
1731 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1732 {
1733 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1734 struct f2fs_summary_block *sum;
1735 struct curseg_info *curseg;
1736 struct page *new;
1737 unsigned short blk_off;
1738 unsigned int segno = 0;
1739 block_t blk_addr = 0;
1740
1741 /* get segment number and block addr */
1742 if (IS_DATASEG(type)) {
1743 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1744 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1745 CURSEG_HOT_DATA]);
1746 if (__exist_node_summaries(sbi))
1747 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1748 else
1749 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1750 } else {
1751 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1752 CURSEG_HOT_NODE]);
1753 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1754 CURSEG_HOT_NODE]);
1755 if (__exist_node_summaries(sbi))
1756 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1757 type - CURSEG_HOT_NODE);
1758 else
1759 blk_addr = GET_SUM_BLOCK(sbi, segno);
1760 }
1761
1762 new = get_meta_page(sbi, blk_addr);
1763 sum = (struct f2fs_summary_block *)page_address(new);
1764
1765 if (IS_NODESEG(type)) {
1766 if (__exist_node_summaries(sbi)) {
1767 struct f2fs_summary *ns = &sum->entries[0];
1768 int i;
1769 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1770 ns->version = 0;
1771 ns->ofs_in_node = 0;
1772 }
1773 } else {
1774 int err;
1775
1776 err = restore_node_summary(sbi, segno, sum);
1777 if (err) {
1778 f2fs_put_page(new, 1);
1779 return err;
1780 }
1781 }
1782 }
1783
1784 /* set uncompleted segment to curseg */
1785 curseg = CURSEG_I(sbi, type);
1786 mutex_lock(&curseg->curseg_mutex);
1787
1788 /* update journal info */
1789 down_write(&curseg->journal_rwsem);
1790 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1791 up_write(&curseg->journal_rwsem);
1792
1793 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1794 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1795 curseg->next_segno = segno;
1796 reset_curseg(sbi, type, 0);
1797 curseg->alloc_type = ckpt->alloc_type[type];
1798 curseg->next_blkoff = blk_off;
1799 mutex_unlock(&curseg->curseg_mutex);
1800 f2fs_put_page(new, 1);
1801 return 0;
1802 }
1803
1804 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1805 {
1806 int type = CURSEG_HOT_DATA;
1807 int err;
1808
1809 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1810 int npages = npages_for_summary_flush(sbi, true);
1811
1812 if (npages >= 2)
1813 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1814 META_CP, true);
1815
1816 /* restore for compacted data summary */
1817 if (read_compacted_summaries(sbi))
1818 return -EINVAL;
1819 type = CURSEG_HOT_NODE;
1820 }
1821
1822 if (__exist_node_summaries(sbi))
1823 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1824 NR_CURSEG_TYPE - type, META_CP, true);
1825
1826 for (; type <= CURSEG_COLD_NODE; type++) {
1827 err = read_normal_summaries(sbi, type);
1828 if (err)
1829 return err;
1830 }
1831
1832 return 0;
1833 }
1834
1835 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1836 {
1837 struct page *page;
1838 unsigned char *kaddr;
1839 struct f2fs_summary *summary;
1840 struct curseg_info *seg_i;
1841 int written_size = 0;
1842 int i, j;
1843
1844 page = grab_meta_page(sbi, blkaddr++);
1845 kaddr = (unsigned char *)page_address(page);
1846
1847 /* Step 1: write nat cache */
1848 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1849 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1850 written_size += SUM_JOURNAL_SIZE;
1851
1852 /* Step 2: write sit cache */
1853 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1854 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1855 written_size += SUM_JOURNAL_SIZE;
1856
1857 /* Step 3: write summary entries */
1858 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1859 unsigned short blkoff;
1860 seg_i = CURSEG_I(sbi, i);
1861 if (sbi->ckpt->alloc_type[i] == SSR)
1862 blkoff = sbi->blocks_per_seg;
1863 else
1864 blkoff = curseg_blkoff(sbi, i);
1865
1866 for (j = 0; j < blkoff; j++) {
1867 if (!page) {
1868 page = grab_meta_page(sbi, blkaddr++);
1869 kaddr = (unsigned char *)page_address(page);
1870 written_size = 0;
1871 }
1872 summary = (struct f2fs_summary *)(kaddr + written_size);
1873 *summary = seg_i->sum_blk->entries[j];
1874 written_size += SUMMARY_SIZE;
1875
1876 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1877 SUM_FOOTER_SIZE)
1878 continue;
1879
1880 set_page_dirty(page);
1881 f2fs_put_page(page, 1);
1882 page = NULL;
1883 }
1884 }
1885 if (page) {
1886 set_page_dirty(page);
1887 f2fs_put_page(page, 1);
1888 }
1889 }
1890
1891 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1892 block_t blkaddr, int type)
1893 {
1894 int i, end;
1895 if (IS_DATASEG(type))
1896 end = type + NR_CURSEG_DATA_TYPE;
1897 else
1898 end = type + NR_CURSEG_NODE_TYPE;
1899
1900 for (i = type; i < end; i++)
1901 write_current_sum_page(sbi, i, blkaddr + (i - type));
1902 }
1903
1904 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1905 {
1906 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
1907 write_compacted_summaries(sbi, start_blk);
1908 else
1909 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1910 }
1911
1912 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1913 {
1914 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1915 }
1916
1917 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1918 unsigned int val, int alloc)
1919 {
1920 int i;
1921
1922 if (type == NAT_JOURNAL) {
1923 for (i = 0; i < nats_in_cursum(journal); i++) {
1924 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1925 return i;
1926 }
1927 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1928 return update_nats_in_cursum(journal, 1);
1929 } else if (type == SIT_JOURNAL) {
1930 for (i = 0; i < sits_in_cursum(journal); i++)
1931 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1932 return i;
1933 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1934 return update_sits_in_cursum(journal, 1);
1935 }
1936 return -1;
1937 }
1938
1939 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1940 unsigned int segno)
1941 {
1942 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1943 }
1944
1945 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1946 unsigned int start)
1947 {
1948 struct sit_info *sit_i = SIT_I(sbi);
1949 struct page *src_page, *dst_page;
1950 pgoff_t src_off, dst_off;
1951 void *src_addr, *dst_addr;
1952
1953 src_off = current_sit_addr(sbi, start);
1954 dst_off = next_sit_addr(sbi, src_off);
1955
1956 /* get current sit block page without lock */
1957 src_page = get_meta_page(sbi, src_off);
1958 dst_page = grab_meta_page(sbi, dst_off);
1959 f2fs_bug_on(sbi, PageDirty(src_page));
1960
1961 src_addr = page_address(src_page);
1962 dst_addr = page_address(dst_page);
1963 memcpy(dst_addr, src_addr, PAGE_SIZE);
1964
1965 set_page_dirty(dst_page);
1966 f2fs_put_page(src_page, 1);
1967
1968 set_to_next_sit(sit_i, start);
1969
1970 return dst_page;
1971 }
1972
1973 static struct sit_entry_set *grab_sit_entry_set(void)
1974 {
1975 struct sit_entry_set *ses =
1976 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1977
1978 ses->entry_cnt = 0;
1979 INIT_LIST_HEAD(&ses->set_list);
1980 return ses;
1981 }
1982
1983 static void release_sit_entry_set(struct sit_entry_set *ses)
1984 {
1985 list_del(&ses->set_list);
1986 kmem_cache_free(sit_entry_set_slab, ses);
1987 }
1988
1989 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1990 struct list_head *head)
1991 {
1992 struct sit_entry_set *next = ses;
1993
1994 if (list_is_last(&ses->set_list, head))
1995 return;
1996
1997 list_for_each_entry_continue(next, head, set_list)
1998 if (ses->entry_cnt <= next->entry_cnt)
1999 break;
2000
2001 list_move_tail(&ses->set_list, &next->set_list);
2002 }
2003
2004 static void add_sit_entry(unsigned int segno, struct list_head *head)
2005 {
2006 struct sit_entry_set *ses;
2007 unsigned int start_segno = START_SEGNO(segno);
2008
2009 list_for_each_entry(ses, head, set_list) {
2010 if (ses->start_segno == start_segno) {
2011 ses->entry_cnt++;
2012 adjust_sit_entry_set(ses, head);
2013 return;
2014 }
2015 }
2016
2017 ses = grab_sit_entry_set();
2018
2019 ses->start_segno = start_segno;
2020 ses->entry_cnt++;
2021 list_add(&ses->set_list, head);
2022 }
2023
2024 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2025 {
2026 struct f2fs_sm_info *sm_info = SM_I(sbi);
2027 struct list_head *set_list = &sm_info->sit_entry_set;
2028 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2029 unsigned int segno;
2030
2031 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2032 add_sit_entry(segno, set_list);
2033 }
2034
2035 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2036 {
2037 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2038 struct f2fs_journal *journal = curseg->journal;
2039 int i;
2040
2041 down_write(&curseg->journal_rwsem);
2042 for (i = 0; i < sits_in_cursum(journal); i++) {
2043 unsigned int segno;
2044 bool dirtied;
2045
2046 segno = le32_to_cpu(segno_in_journal(journal, i));
2047 dirtied = __mark_sit_entry_dirty(sbi, segno);
2048
2049 if (!dirtied)
2050 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2051 }
2052 update_sits_in_cursum(journal, -i);
2053 up_write(&curseg->journal_rwsem);
2054 }
2055
2056 /*
2057 * CP calls this function, which flushes SIT entries including sit_journal,
2058 * and moves prefree segs to free segs.
2059 */
2060 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2061 {
2062 struct sit_info *sit_i = SIT_I(sbi);
2063 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2064 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2065 struct f2fs_journal *journal = curseg->journal;
2066 struct sit_entry_set *ses, *tmp;
2067 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2068 bool to_journal = true;
2069 struct seg_entry *se;
2070
2071 mutex_lock(&sit_i->sentry_lock);
2072
2073 if (!sit_i->dirty_sentries)
2074 goto out;
2075
2076 /*
2077 * add and account sit entries of dirty bitmap in sit entry
2078 * set temporarily
2079 */
2080 add_sits_in_set(sbi);
2081
2082 /*
2083 * if there are no enough space in journal to store dirty sit
2084 * entries, remove all entries from journal and add and account
2085 * them in sit entry set.
2086 */
2087 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2088 remove_sits_in_journal(sbi);
2089
2090 /*
2091 * there are two steps to flush sit entries:
2092 * #1, flush sit entries to journal in current cold data summary block.
2093 * #2, flush sit entries to sit page.
2094 */
2095 list_for_each_entry_safe(ses, tmp, head, set_list) {
2096 struct page *page = NULL;
2097 struct f2fs_sit_block *raw_sit = NULL;
2098 unsigned int start_segno = ses->start_segno;
2099 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2100 (unsigned long)MAIN_SEGS(sbi));
2101 unsigned int segno = start_segno;
2102
2103 if (to_journal &&
2104 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2105 to_journal = false;
2106
2107 if (to_journal) {
2108 down_write(&curseg->journal_rwsem);
2109 } else {
2110 page = get_next_sit_page(sbi, start_segno);
2111 raw_sit = page_address(page);
2112 }
2113
2114 /* flush dirty sit entries in region of current sit set */
2115 for_each_set_bit_from(segno, bitmap, end) {
2116 int offset, sit_offset;
2117
2118 se = get_seg_entry(sbi, segno);
2119
2120 /* add discard candidates */
2121 if (cpc->reason != CP_DISCARD) {
2122 cpc->trim_start = segno;
2123 add_discard_addrs(sbi, cpc);
2124 }
2125
2126 if (to_journal) {
2127 offset = lookup_journal_in_cursum(journal,
2128 SIT_JOURNAL, segno, 1);
2129 f2fs_bug_on(sbi, offset < 0);
2130 segno_in_journal(journal, offset) =
2131 cpu_to_le32(segno);
2132 seg_info_to_raw_sit(se,
2133 &sit_in_journal(journal, offset));
2134 } else {
2135 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2136 seg_info_to_raw_sit(se,
2137 &raw_sit->entries[sit_offset]);
2138 }
2139
2140 __clear_bit(segno, bitmap);
2141 sit_i->dirty_sentries--;
2142 ses->entry_cnt--;
2143 }
2144
2145 if (to_journal)
2146 up_write(&curseg->journal_rwsem);
2147 else
2148 f2fs_put_page(page, 1);
2149
2150 f2fs_bug_on(sbi, ses->entry_cnt);
2151 release_sit_entry_set(ses);
2152 }
2153
2154 f2fs_bug_on(sbi, !list_empty(head));
2155 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2156 out:
2157 if (cpc->reason == CP_DISCARD) {
2158 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2159 add_discard_addrs(sbi, cpc);
2160 }
2161 mutex_unlock(&sit_i->sentry_lock);
2162
2163 set_prefree_as_free_segments(sbi);
2164 }
2165
2166 static int build_sit_info(struct f2fs_sb_info *sbi)
2167 {
2168 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2169 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2170 struct sit_info *sit_i;
2171 unsigned int sit_segs, start;
2172 char *src_bitmap, *dst_bitmap;
2173 unsigned int bitmap_size;
2174
2175 /* allocate memory for SIT information */
2176 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2177 if (!sit_i)
2178 return -ENOMEM;
2179
2180 SM_I(sbi)->sit_info = sit_i;
2181
2182 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2183 sizeof(struct seg_entry), GFP_KERNEL);
2184 if (!sit_i->sentries)
2185 return -ENOMEM;
2186
2187 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2188 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2189 if (!sit_i->dirty_sentries_bitmap)
2190 return -ENOMEM;
2191
2192 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2193 sit_i->sentries[start].cur_valid_map
2194 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2195 sit_i->sentries[start].ckpt_valid_map
2196 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2197 if (!sit_i->sentries[start].cur_valid_map ||
2198 !sit_i->sentries[start].ckpt_valid_map)
2199 return -ENOMEM;
2200
2201 if (f2fs_discard_en(sbi)) {
2202 sit_i->sentries[start].discard_map
2203 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2204 if (!sit_i->sentries[start].discard_map)
2205 return -ENOMEM;
2206 }
2207 }
2208
2209 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2210 if (!sit_i->tmp_map)
2211 return -ENOMEM;
2212
2213 if (sbi->segs_per_sec > 1) {
2214 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2215 sizeof(struct sec_entry), GFP_KERNEL);
2216 if (!sit_i->sec_entries)
2217 return -ENOMEM;
2218 }
2219
2220 /* get information related with SIT */
2221 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2222
2223 /* setup SIT bitmap from ckeckpoint pack */
2224 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2225 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2226
2227 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2228 if (!dst_bitmap)
2229 return -ENOMEM;
2230
2231 /* init SIT information */
2232 sit_i->s_ops = &default_salloc_ops;
2233
2234 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2235 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2236 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2237 sit_i->sit_bitmap = dst_bitmap;
2238 sit_i->bitmap_size = bitmap_size;
2239 sit_i->dirty_sentries = 0;
2240 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2241 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2242 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2243 mutex_init(&sit_i->sentry_lock);
2244 return 0;
2245 }
2246
2247 static int build_free_segmap(struct f2fs_sb_info *sbi)
2248 {
2249 struct free_segmap_info *free_i;
2250 unsigned int bitmap_size, sec_bitmap_size;
2251
2252 /* allocate memory for free segmap information */
2253 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2254 if (!free_i)
2255 return -ENOMEM;
2256
2257 SM_I(sbi)->free_info = free_i;
2258
2259 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2260 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2261 if (!free_i->free_segmap)
2262 return -ENOMEM;
2263
2264 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2265 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2266 if (!free_i->free_secmap)
2267 return -ENOMEM;
2268
2269 /* set all segments as dirty temporarily */
2270 memset(free_i->free_segmap, 0xff, bitmap_size);
2271 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2272
2273 /* init free segmap information */
2274 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2275 free_i->free_segments = 0;
2276 free_i->free_sections = 0;
2277 spin_lock_init(&free_i->segmap_lock);
2278 return 0;
2279 }
2280
2281 static int build_curseg(struct f2fs_sb_info *sbi)
2282 {
2283 struct curseg_info *array;
2284 int i;
2285
2286 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2287 if (!array)
2288 return -ENOMEM;
2289
2290 SM_I(sbi)->curseg_array = array;
2291
2292 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2293 mutex_init(&array[i].curseg_mutex);
2294 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2295 if (!array[i].sum_blk)
2296 return -ENOMEM;
2297 init_rwsem(&array[i].journal_rwsem);
2298 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2299 GFP_KERNEL);
2300 if (!array[i].journal)
2301 return -ENOMEM;
2302 array[i].segno = NULL_SEGNO;
2303 array[i].next_blkoff = 0;
2304 }
2305 return restore_curseg_summaries(sbi);
2306 }
2307
2308 static void build_sit_entries(struct f2fs_sb_info *sbi)
2309 {
2310 struct sit_info *sit_i = SIT_I(sbi);
2311 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2312 struct f2fs_journal *journal = curseg->journal;
2313 struct seg_entry *se;
2314 struct f2fs_sit_entry sit;
2315 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2316 unsigned int i, start, end;
2317 unsigned int readed, start_blk = 0;
2318 int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2319
2320 do {
2321 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2322
2323 start = start_blk * sit_i->sents_per_block;
2324 end = (start_blk + readed) * sit_i->sents_per_block;
2325
2326 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2327 struct f2fs_sit_block *sit_blk;
2328 struct page *page;
2329
2330 se = &sit_i->sentries[start];
2331 page = get_current_sit_page(sbi, start);
2332 sit_blk = (struct f2fs_sit_block *)page_address(page);
2333 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2334 f2fs_put_page(page, 1);
2335
2336 check_block_count(sbi, start, &sit);
2337 seg_info_from_raw_sit(se, &sit);
2338
2339 /* build discard map only one time */
2340 if (f2fs_discard_en(sbi)) {
2341 memcpy(se->discard_map, se->cur_valid_map,
2342 SIT_VBLOCK_MAP_SIZE);
2343 sbi->discard_blks += sbi->blocks_per_seg -
2344 se->valid_blocks;
2345 }
2346
2347 if (sbi->segs_per_sec > 1)
2348 get_sec_entry(sbi, start)->valid_blocks +=
2349 se->valid_blocks;
2350 }
2351 start_blk += readed;
2352 } while (start_blk < sit_blk_cnt);
2353
2354 down_read(&curseg->journal_rwsem);
2355 for (i = 0; i < sits_in_cursum(journal); i++) {
2356 unsigned int old_valid_blocks;
2357
2358 start = le32_to_cpu(segno_in_journal(journal, i));
2359 se = &sit_i->sentries[start];
2360 sit = sit_in_journal(journal, i);
2361
2362 old_valid_blocks = se->valid_blocks;
2363
2364 check_block_count(sbi, start, &sit);
2365 seg_info_from_raw_sit(se, &sit);
2366
2367 if (f2fs_discard_en(sbi)) {
2368 memcpy(se->discard_map, se->cur_valid_map,
2369 SIT_VBLOCK_MAP_SIZE);
2370 sbi->discard_blks += old_valid_blocks -
2371 se->valid_blocks;
2372 }
2373
2374 if (sbi->segs_per_sec > 1)
2375 get_sec_entry(sbi, start)->valid_blocks +=
2376 se->valid_blocks - old_valid_blocks;
2377 }
2378 up_read(&curseg->journal_rwsem);
2379 }
2380
2381 static void init_free_segmap(struct f2fs_sb_info *sbi)
2382 {
2383 unsigned int start;
2384 int type;
2385
2386 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2387 struct seg_entry *sentry = get_seg_entry(sbi, start);
2388 if (!sentry->valid_blocks)
2389 __set_free(sbi, start);
2390 }
2391
2392 /* set use the current segments */
2393 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2394 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2395 __set_test_and_inuse(sbi, curseg_t->segno);
2396 }
2397 }
2398
2399 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2400 {
2401 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2402 struct free_segmap_info *free_i = FREE_I(sbi);
2403 unsigned int segno = 0, offset = 0;
2404 unsigned short valid_blocks;
2405
2406 while (1) {
2407 /* find dirty segment based on free segmap */
2408 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2409 if (segno >= MAIN_SEGS(sbi))
2410 break;
2411 offset = segno + 1;
2412 valid_blocks = get_valid_blocks(sbi, segno, 0);
2413 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2414 continue;
2415 if (valid_blocks > sbi->blocks_per_seg) {
2416 f2fs_bug_on(sbi, 1);
2417 continue;
2418 }
2419 mutex_lock(&dirty_i->seglist_lock);
2420 __locate_dirty_segment(sbi, segno, DIRTY);
2421 mutex_unlock(&dirty_i->seglist_lock);
2422 }
2423 }
2424
2425 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2426 {
2427 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2428 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2429
2430 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2431 if (!dirty_i->victim_secmap)
2432 return -ENOMEM;
2433 return 0;
2434 }
2435
2436 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2437 {
2438 struct dirty_seglist_info *dirty_i;
2439 unsigned int bitmap_size, i;
2440
2441 /* allocate memory for dirty segments list information */
2442 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2443 if (!dirty_i)
2444 return -ENOMEM;
2445
2446 SM_I(sbi)->dirty_info = dirty_i;
2447 mutex_init(&dirty_i->seglist_lock);
2448
2449 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2450
2451 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2452 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2453 if (!dirty_i->dirty_segmap[i])
2454 return -ENOMEM;
2455 }
2456
2457 init_dirty_segmap(sbi);
2458 return init_victim_secmap(sbi);
2459 }
2460
2461 /*
2462 * Update min, max modified time for cost-benefit GC algorithm
2463 */
2464 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2465 {
2466 struct sit_info *sit_i = SIT_I(sbi);
2467 unsigned int segno;
2468
2469 mutex_lock(&sit_i->sentry_lock);
2470
2471 sit_i->min_mtime = LLONG_MAX;
2472
2473 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2474 unsigned int i;
2475 unsigned long long mtime = 0;
2476
2477 for (i = 0; i < sbi->segs_per_sec; i++)
2478 mtime += get_seg_entry(sbi, segno + i)->mtime;
2479
2480 mtime = div_u64(mtime, sbi->segs_per_sec);
2481
2482 if (sit_i->min_mtime > mtime)
2483 sit_i->min_mtime = mtime;
2484 }
2485 sit_i->max_mtime = get_mtime(sbi);
2486 mutex_unlock(&sit_i->sentry_lock);
2487 }
2488
2489 int build_segment_manager(struct f2fs_sb_info *sbi)
2490 {
2491 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2492 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2493 struct f2fs_sm_info *sm_info;
2494 int err;
2495
2496 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2497 if (!sm_info)
2498 return -ENOMEM;
2499
2500 /* init sm info */
2501 sbi->sm_info = sm_info;
2502 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2503 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2504 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2505 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2506 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2507 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2508 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2509 sm_info->rec_prefree_segments = sm_info->main_segments *
2510 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2511 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2512 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2513
2514 if (!test_opt(sbi, LFS))
2515 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2516 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2517 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2518
2519 INIT_LIST_HEAD(&sm_info->discard_list);
2520 INIT_LIST_HEAD(&sm_info->wait_list);
2521 sm_info->nr_discards = 0;
2522 sm_info->max_discards = 0;
2523
2524 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2525
2526 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2527
2528 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2529 err = create_flush_cmd_control(sbi);
2530 if (err)
2531 return err;
2532 }
2533
2534 err = build_sit_info(sbi);
2535 if (err)
2536 return err;
2537 err = build_free_segmap(sbi);
2538 if (err)
2539 return err;
2540 err = build_curseg(sbi);
2541 if (err)
2542 return err;
2543
2544 /* reinit free segmap based on SIT */
2545 build_sit_entries(sbi);
2546
2547 init_free_segmap(sbi);
2548 err = build_dirty_segmap(sbi);
2549 if (err)
2550 return err;
2551
2552 init_min_max_mtime(sbi);
2553 return 0;
2554 }
2555
2556 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2557 enum dirty_type dirty_type)
2558 {
2559 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2560
2561 mutex_lock(&dirty_i->seglist_lock);
2562 kvfree(dirty_i->dirty_segmap[dirty_type]);
2563 dirty_i->nr_dirty[dirty_type] = 0;
2564 mutex_unlock(&dirty_i->seglist_lock);
2565 }
2566
2567 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2568 {
2569 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2570 kvfree(dirty_i->victim_secmap);
2571 }
2572
2573 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2574 {
2575 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2576 int i;
2577
2578 if (!dirty_i)
2579 return;
2580
2581 /* discard pre-free/dirty segments list */
2582 for (i = 0; i < NR_DIRTY_TYPE; i++)
2583 discard_dirty_segmap(sbi, i);
2584
2585 destroy_victim_secmap(sbi);
2586 SM_I(sbi)->dirty_info = NULL;
2587 kfree(dirty_i);
2588 }
2589
2590 static void destroy_curseg(struct f2fs_sb_info *sbi)
2591 {
2592 struct curseg_info *array = SM_I(sbi)->curseg_array;
2593 int i;
2594
2595 if (!array)
2596 return;
2597 SM_I(sbi)->curseg_array = NULL;
2598 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2599 kfree(array[i].sum_blk);
2600 kfree(array[i].journal);
2601 }
2602 kfree(array);
2603 }
2604
2605 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2606 {
2607 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2608 if (!free_i)
2609 return;
2610 SM_I(sbi)->free_info = NULL;
2611 kvfree(free_i->free_segmap);
2612 kvfree(free_i->free_secmap);
2613 kfree(free_i);
2614 }
2615
2616 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2617 {
2618 struct sit_info *sit_i = SIT_I(sbi);
2619 unsigned int start;
2620
2621 if (!sit_i)
2622 return;
2623
2624 if (sit_i->sentries) {
2625 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2626 kfree(sit_i->sentries[start].cur_valid_map);
2627 kfree(sit_i->sentries[start].ckpt_valid_map);
2628 kfree(sit_i->sentries[start].discard_map);
2629 }
2630 }
2631 kfree(sit_i->tmp_map);
2632
2633 kvfree(sit_i->sentries);
2634 kvfree(sit_i->sec_entries);
2635 kvfree(sit_i->dirty_sentries_bitmap);
2636
2637 SM_I(sbi)->sit_info = NULL;
2638 kfree(sit_i->sit_bitmap);
2639 kfree(sit_i);
2640 }
2641
2642 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2643 {
2644 struct f2fs_sm_info *sm_info = SM_I(sbi);
2645
2646 if (!sm_info)
2647 return;
2648 destroy_flush_cmd_control(sbi);
2649 destroy_dirty_segmap(sbi);
2650 destroy_curseg(sbi);
2651 destroy_free_segmap(sbi);
2652 destroy_sit_info(sbi);
2653 sbi->sm_info = NULL;
2654 kfree(sm_info);
2655 }
2656
2657 int __init create_segment_manager_caches(void)
2658 {
2659 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2660 sizeof(struct discard_entry));
2661 if (!discard_entry_slab)
2662 goto fail;
2663
2664 bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2665 sizeof(struct bio_entry));
2666 if (!bio_entry_slab)
2667 goto destroy_discard_entry;
2668
2669 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2670 sizeof(struct sit_entry_set));
2671 if (!sit_entry_set_slab)
2672 goto destroy_bio_entry;
2673
2674 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2675 sizeof(struct inmem_pages));
2676 if (!inmem_entry_slab)
2677 goto destroy_sit_entry_set;
2678 return 0;
2679
2680 destroy_sit_entry_set:
2681 kmem_cache_destroy(sit_entry_set_slab);
2682 destroy_bio_entry:
2683 kmem_cache_destroy(bio_entry_slab);
2684 destroy_discard_entry:
2685 kmem_cache_destroy(discard_entry_slab);
2686 fail:
2687 return -ENOMEM;
2688 }
2689
2690 void destroy_segment_manager_caches(void)
2691 {
2692 kmem_cache_destroy(sit_entry_set_slab);
2693 kmem_cache_destroy(bio_entry_slab);
2694 kmem_cache_destroy(discard_entry_slab);
2695 kmem_cache_destroy(inmem_entry_slab);
2696 }