]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/segment.c
Merge tag 'backlight-next-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/lee...
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / segment.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174
175 if (f2fs_lfs_mode(sbi))
176 return false;
177 if (sbi->gc_mode == GC_URGENT_HIGH)
178 return true;
179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 return true;
181
182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 struct inmem_pages *new;
189
190 f2fs_trace_pid(page);
191
192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193
194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195
196 /* add atomic page indices to the list */
197 new->page = page;
198 INIT_LIST_HEAD(&new->list);
199
200 /* increase reference count with clean state */
201 get_page(page);
202 mutex_lock(&F2FS_I(inode)->inmem_lock);
203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 mutex_unlock(&F2FS_I(inode)->inmem_lock);
206
207 trace_f2fs_register_inmem_page(page, INMEM);
208 }
209
210 static int __revoke_inmem_pages(struct inode *inode,
211 struct list_head *head, bool drop, bool recover,
212 bool trylock)
213 {
214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 struct inmem_pages *cur, *tmp;
216 int err = 0;
217
218 list_for_each_entry_safe(cur, tmp, head, list) {
219 struct page *page = cur->page;
220
221 if (drop)
222 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223
224 if (trylock) {
225 /*
226 * to avoid deadlock in between page lock and
227 * inmem_lock.
228 */
229 if (!trylock_page(page))
230 continue;
231 } else {
232 lock_page(page);
233 }
234
235 f2fs_wait_on_page_writeback(page, DATA, true, true);
236
237 if (recover) {
238 struct dnode_of_data dn;
239 struct node_info ni;
240
241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 set_new_dnode(&dn, inode, NULL, NULL, 0);
244 err = f2fs_get_dnode_of_data(&dn, page->index,
245 LOOKUP_NODE);
246 if (err) {
247 if (err == -ENOMEM) {
248 congestion_wait(BLK_RW_ASYNC,
249 DEFAULT_IO_TIMEOUT);
250 cond_resched();
251 goto retry;
252 }
253 err = -EAGAIN;
254 goto next;
255 }
256
257 err = f2fs_get_node_info(sbi, dn.nid, &ni);
258 if (err) {
259 f2fs_put_dnode(&dn);
260 return err;
261 }
262
263 if (cur->old_addr == NEW_ADDR) {
264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 } else
267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 cur->old_addr, ni.version, true, true);
269 f2fs_put_dnode(&dn);
270 }
271 next:
272 /* we don't need to invalidate this in the sccessful status */
273 if (drop || recover) {
274 ClearPageUptodate(page);
275 clear_cold_data(page);
276 }
277 f2fs_clear_page_private(page);
278 f2fs_put_page(page, 1);
279
280 list_del(&cur->list);
281 kmem_cache_free(inmem_entry_slab, cur);
282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 }
284 return err;
285 }
286
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 struct inode *inode;
291 struct f2fs_inode_info *fi;
292 unsigned int count = sbi->atomic_files;
293 unsigned int looped = 0;
294 next:
295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 if (list_empty(head)) {
297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 return;
299 }
300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 inode = igrab(&fi->vfs_inode);
302 if (inode)
303 list_move_tail(&fi->inmem_ilist, head);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305
306 if (inode) {
307 if (gc_failure) {
308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 goto skip;
310 }
311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 f2fs_drop_inmem_pages(inode);
313 skip:
314 iput(inode);
315 }
316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 cond_resched();
318 if (gc_failure) {
319 if (++looped >= count)
320 return;
321 }
322 goto next;
323 }
324
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 struct f2fs_inode_info *fi = F2FS_I(inode);
329
330 while (!list_empty(&fi->inmem_pages)) {
331 mutex_lock(&fi->inmem_lock);
332 __revoke_inmem_pages(inode, &fi->inmem_pages,
333 true, false, true);
334 mutex_unlock(&fi->inmem_lock);
335 }
336
337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338
339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 if (!list_empty(&fi->inmem_ilist))
341 list_del_init(&fi->inmem_ilist);
342 if (f2fs_is_atomic_file(inode)) {
343 clear_inode_flag(inode, FI_ATOMIC_FILE);
344 sbi->atomic_files--;
345 }
346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351 struct f2fs_inode_info *fi = F2FS_I(inode);
352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 struct list_head *head = &fi->inmem_pages;
354 struct inmem_pages *cur = NULL;
355
356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357
358 mutex_lock(&fi->inmem_lock);
359 list_for_each_entry(cur, head, list) {
360 if (cur->page == page)
361 break;
362 }
363
364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 list_del(&cur->list);
366 mutex_unlock(&fi->inmem_lock);
367
368 dec_page_count(sbi, F2FS_INMEM_PAGES);
369 kmem_cache_free(inmem_entry_slab, cur);
370
371 ClearPageUptodate(page);
372 f2fs_clear_page_private(page);
373 f2fs_put_page(page, 0);
374
375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 struct f2fs_inode_info *fi = F2FS_I(inode);
382 struct inmem_pages *cur, *tmp;
383 struct f2fs_io_info fio = {
384 .sbi = sbi,
385 .ino = inode->i_ino,
386 .type = DATA,
387 .op = REQ_OP_WRITE,
388 .op_flags = REQ_SYNC | REQ_PRIO,
389 .io_type = FS_DATA_IO,
390 };
391 struct list_head revoke_list;
392 bool submit_bio = false;
393 int err = 0;
394
395 INIT_LIST_HEAD(&revoke_list);
396
397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 struct page *page = cur->page;
399
400 lock_page(page);
401 if (page->mapping == inode->i_mapping) {
402 trace_f2fs_commit_inmem_page(page, INMEM);
403
404 f2fs_wait_on_page_writeback(page, DATA, true, true);
405
406 set_page_dirty(page);
407 if (clear_page_dirty_for_io(page)) {
408 inode_dec_dirty_pages(inode);
409 f2fs_remove_dirty_inode(inode);
410 }
411 retry:
412 fio.page = page;
413 fio.old_blkaddr = NULL_ADDR;
414 fio.encrypted_page = NULL;
415 fio.need_lock = LOCK_DONE;
416 err = f2fs_do_write_data_page(&fio);
417 if (err) {
418 if (err == -ENOMEM) {
419 congestion_wait(BLK_RW_ASYNC,
420 DEFAULT_IO_TIMEOUT);
421 cond_resched();
422 goto retry;
423 }
424 unlock_page(page);
425 break;
426 }
427 /* record old blkaddr for revoking */
428 cur->old_addr = fio.old_blkaddr;
429 submit_bio = true;
430 }
431 unlock_page(page);
432 list_move_tail(&cur->list, &revoke_list);
433 }
434
435 if (submit_bio)
436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437
438 if (err) {
439 /*
440 * try to revoke all committed pages, but still we could fail
441 * due to no memory or other reason, if that happened, EAGAIN
442 * will be returned, which means in such case, transaction is
443 * already not integrity, caller should use journal to do the
444 * recovery or rewrite & commit last transaction. For other
445 * error number, revoking was done by filesystem itself.
446 */
447 err = __revoke_inmem_pages(inode, &revoke_list,
448 false, true, false);
449
450 /* drop all uncommitted pages */
451 __revoke_inmem_pages(inode, &fi->inmem_pages,
452 true, false, false);
453 } else {
454 __revoke_inmem_pages(inode, &revoke_list,
455 false, false, false);
456 }
457
458 return err;
459 }
460
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 struct f2fs_inode_info *fi = F2FS_I(inode);
465 int err;
466
467 f2fs_balance_fs(sbi, true);
468
469 down_write(&fi->i_gc_rwsem[WRITE]);
470
471 f2fs_lock_op(sbi);
472 set_inode_flag(inode, FI_ATOMIC_COMMIT);
473
474 mutex_lock(&fi->inmem_lock);
475 err = __f2fs_commit_inmem_pages(inode);
476 mutex_unlock(&fi->inmem_lock);
477
478 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479
480 f2fs_unlock_op(sbi);
481 up_write(&fi->i_gc_rwsem[WRITE]);
482
483 return err;
484 }
485
486 /*
487 * This function balances dirty node and dentry pages.
488 * In addition, it controls garbage collection.
489 */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494 f2fs_stop_checkpoint(sbi, false);
495 }
496
497 /* balance_fs_bg is able to be pending */
498 if (need && excess_cached_nats(sbi))
499 f2fs_balance_fs_bg(sbi, false);
500
501 if (!f2fs_is_checkpoint_ready(sbi))
502 return;
503
504 /*
505 * We should do GC or end up with checkpoint, if there are so many dirty
506 * dir/node pages without enough free segments.
507 */
508 if (has_not_enough_free_secs(sbi, 0, 0)) {
509 down_write(&sbi->gc_lock);
510 f2fs_gc(sbi, false, false, NULL_SEGNO);
511 }
512 }
513
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517 return;
518
519 /* try to shrink extent cache when there is no enough memory */
520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522
523 /* check the # of cached NAT entries */
524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526
527 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529 else
530 f2fs_build_free_nids(sbi, false, false);
531
532 if (!is_idle(sbi, REQ_TIME) &&
533 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534 return;
535
536 /* checkpoint is the only way to shrink partial cached entries */
537 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539 excess_prefree_segs(sbi) ||
540 excess_dirty_nats(sbi) ||
541 excess_dirty_nodes(sbi) ||
542 f2fs_time_over(sbi, CP_TIME)) {
543 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544 struct blk_plug plug;
545
546 mutex_lock(&sbi->flush_lock);
547
548 blk_start_plug(&plug);
549 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550 blk_finish_plug(&plug);
551
552 mutex_unlock(&sbi->flush_lock);
553 }
554 f2fs_sync_fs(sbi->sb, true);
555 stat_inc_bg_cp_count(sbi->stat_info);
556 }
557 }
558
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560 struct block_device *bdev)
561 {
562 struct bio *bio;
563 int ret;
564
565 bio = f2fs_bio_alloc(sbi, 0, false);
566 if (!bio)
567 return -ENOMEM;
568
569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570 bio_set_dev(bio, bdev);
571 ret = submit_bio_wait(bio);
572 bio_put(bio);
573
574 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575 test_opt(sbi, FLUSH_MERGE), ret);
576 return ret;
577 }
578
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581 int ret = 0;
582 int i;
583
584 if (!f2fs_is_multi_device(sbi))
585 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586
587 for (i = 0; i < sbi->s_ndevs; i++) {
588 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589 continue;
590 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591 if (ret)
592 break;
593 }
594 return ret;
595 }
596
597 static int issue_flush_thread(void *data)
598 {
599 struct f2fs_sb_info *sbi = data;
600 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601 wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603 if (kthread_should_stop())
604 return 0;
605
606 sb_start_intwrite(sbi->sb);
607
608 if (!llist_empty(&fcc->issue_list)) {
609 struct flush_cmd *cmd, *next;
610 int ret;
611
612 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614
615 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616
617 ret = submit_flush_wait(sbi, cmd->ino);
618 atomic_inc(&fcc->issued_flush);
619
620 llist_for_each_entry_safe(cmd, next,
621 fcc->dispatch_list, llnode) {
622 cmd->ret = ret;
623 complete(&cmd->wait);
624 }
625 fcc->dispatch_list = NULL;
626 }
627
628 sb_end_intwrite(sbi->sb);
629
630 wait_event_interruptible(*q,
631 kthread_should_stop() || !llist_empty(&fcc->issue_list));
632 goto repeat;
633 }
634
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638 struct flush_cmd cmd;
639 int ret;
640
641 if (test_opt(sbi, NOBARRIER))
642 return 0;
643
644 if (!test_opt(sbi, FLUSH_MERGE)) {
645 atomic_inc(&fcc->queued_flush);
646 ret = submit_flush_wait(sbi, ino);
647 atomic_dec(&fcc->queued_flush);
648 atomic_inc(&fcc->issued_flush);
649 return ret;
650 }
651
652 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653 f2fs_is_multi_device(sbi)) {
654 ret = submit_flush_wait(sbi, ino);
655 atomic_dec(&fcc->queued_flush);
656
657 atomic_inc(&fcc->issued_flush);
658 return ret;
659 }
660
661 cmd.ino = ino;
662 init_completion(&cmd.wait);
663
664 llist_add(&cmd.llnode, &fcc->issue_list);
665
666 /* update issue_list before we wake up issue_flush thread */
667 smp_mb();
668
669 if (waitqueue_active(&fcc->flush_wait_queue))
670 wake_up(&fcc->flush_wait_queue);
671
672 if (fcc->f2fs_issue_flush) {
673 wait_for_completion(&cmd.wait);
674 atomic_dec(&fcc->queued_flush);
675 } else {
676 struct llist_node *list;
677
678 list = llist_del_all(&fcc->issue_list);
679 if (!list) {
680 wait_for_completion(&cmd.wait);
681 atomic_dec(&fcc->queued_flush);
682 } else {
683 struct flush_cmd *tmp, *next;
684
685 ret = submit_flush_wait(sbi, ino);
686
687 llist_for_each_entry_safe(tmp, next, list, llnode) {
688 if (tmp == &cmd) {
689 cmd.ret = ret;
690 atomic_dec(&fcc->queued_flush);
691 continue;
692 }
693 tmp->ret = ret;
694 complete(&tmp->wait);
695 }
696 }
697 }
698
699 return cmd.ret;
700 }
701
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704 dev_t dev = sbi->sb->s_bdev->bd_dev;
705 struct flush_cmd_control *fcc;
706 int err = 0;
707
708 if (SM_I(sbi)->fcc_info) {
709 fcc = SM_I(sbi)->fcc_info;
710 if (fcc->f2fs_issue_flush)
711 return err;
712 goto init_thread;
713 }
714
715 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716 if (!fcc)
717 return -ENOMEM;
718 atomic_set(&fcc->issued_flush, 0);
719 atomic_set(&fcc->queued_flush, 0);
720 init_waitqueue_head(&fcc->flush_wait_queue);
721 init_llist_head(&fcc->issue_list);
722 SM_I(sbi)->fcc_info = fcc;
723 if (!test_opt(sbi, FLUSH_MERGE))
724 return err;
725
726 init_thread:
727 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729 if (IS_ERR(fcc->f2fs_issue_flush)) {
730 err = PTR_ERR(fcc->f2fs_issue_flush);
731 kvfree(fcc);
732 SM_I(sbi)->fcc_info = NULL;
733 return err;
734 }
735
736 return err;
737 }
738
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742
743 if (fcc && fcc->f2fs_issue_flush) {
744 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745
746 fcc->f2fs_issue_flush = NULL;
747 kthread_stop(flush_thread);
748 }
749 if (free) {
750 kvfree(fcc);
751 SM_I(sbi)->fcc_info = NULL;
752 }
753 }
754
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757 int ret = 0, i;
758
759 if (!f2fs_is_multi_device(sbi))
760 return 0;
761
762 for (i = 1; i < sbi->s_ndevs; i++) {
763 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
764 continue;
765 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
766 if (ret)
767 break;
768
769 spin_lock(&sbi->dev_lock);
770 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771 spin_unlock(&sbi->dev_lock);
772 }
773
774 return ret;
775 }
776
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778 enum dirty_type dirty_type)
779 {
780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781
782 /* need not be added */
783 if (IS_CURSEG(sbi, segno))
784 return;
785
786 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787 dirty_i->nr_dirty[dirty_type]++;
788
789 if (dirty_type == DIRTY) {
790 struct seg_entry *sentry = get_seg_entry(sbi, segno);
791 enum dirty_type t = sentry->type;
792
793 if (unlikely(t >= DIRTY)) {
794 f2fs_bug_on(sbi, 1);
795 return;
796 }
797 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798 dirty_i->nr_dirty[t]++;
799
800 if (__is_large_section(sbi)) {
801 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
802 unsigned short valid_blocks =
803 get_valid_blocks(sbi, segno, true);
804
805 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
806 valid_blocks == BLKS_PER_SEC(sbi)));
807
808 if (!IS_CURSEC(sbi, secno))
809 set_bit(secno, dirty_i->dirty_secmap);
810 }
811 }
812 }
813
814 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
815 enum dirty_type dirty_type)
816 {
817 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
818 unsigned short valid_blocks;
819
820 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
821 dirty_i->nr_dirty[dirty_type]--;
822
823 if (dirty_type == DIRTY) {
824 struct seg_entry *sentry = get_seg_entry(sbi, segno);
825 enum dirty_type t = sentry->type;
826
827 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
828 dirty_i->nr_dirty[t]--;
829
830 valid_blocks = get_valid_blocks(sbi, segno, true);
831 if (valid_blocks == 0) {
832 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
833 dirty_i->victim_secmap);
834 #ifdef CONFIG_F2FS_CHECK_FS
835 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
836 #endif
837 }
838 if (__is_large_section(sbi)) {
839 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
840
841 if (!valid_blocks ||
842 valid_blocks == BLKS_PER_SEC(sbi)) {
843 clear_bit(secno, dirty_i->dirty_secmap);
844 return;
845 }
846
847 if (!IS_CURSEC(sbi, secno))
848 set_bit(secno, dirty_i->dirty_secmap);
849 }
850 }
851 }
852
853 /*
854 * Should not occur error such as -ENOMEM.
855 * Adding dirty entry into seglist is not critical operation.
856 * If a given segment is one of current working segments, it won't be added.
857 */
858 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
859 {
860 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
861 unsigned short valid_blocks, ckpt_valid_blocks;
862
863 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
864 return;
865
866 mutex_lock(&dirty_i->seglist_lock);
867
868 valid_blocks = get_valid_blocks(sbi, segno, false);
869 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
870
871 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
872 ckpt_valid_blocks == sbi->blocks_per_seg)) {
873 __locate_dirty_segment(sbi, segno, PRE);
874 __remove_dirty_segment(sbi, segno, DIRTY);
875 } else if (valid_blocks < sbi->blocks_per_seg) {
876 __locate_dirty_segment(sbi, segno, DIRTY);
877 } else {
878 /* Recovery routine with SSR needs this */
879 __remove_dirty_segment(sbi, segno, DIRTY);
880 }
881
882 mutex_unlock(&dirty_i->seglist_lock);
883 }
884
885 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
886 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
887 {
888 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
889 unsigned int segno;
890
891 mutex_lock(&dirty_i->seglist_lock);
892 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
893 if (get_valid_blocks(sbi, segno, false))
894 continue;
895 if (IS_CURSEG(sbi, segno))
896 continue;
897 __locate_dirty_segment(sbi, segno, PRE);
898 __remove_dirty_segment(sbi, segno, DIRTY);
899 }
900 mutex_unlock(&dirty_i->seglist_lock);
901 }
902
903 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
904 {
905 int ovp_hole_segs =
906 (overprovision_segments(sbi) - reserved_segments(sbi));
907 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
908 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
909 block_t holes[2] = {0, 0}; /* DATA and NODE */
910 block_t unusable;
911 struct seg_entry *se;
912 unsigned int segno;
913
914 mutex_lock(&dirty_i->seglist_lock);
915 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
916 se = get_seg_entry(sbi, segno);
917 if (IS_NODESEG(se->type))
918 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
919 else
920 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
921 }
922 mutex_unlock(&dirty_i->seglist_lock);
923
924 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
925 if (unusable > ovp_holes)
926 return unusable - ovp_holes;
927 return 0;
928 }
929
930 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
931 {
932 int ovp_hole_segs =
933 (overprovision_segments(sbi) - reserved_segments(sbi));
934 if (unusable > F2FS_OPTION(sbi).unusable_cap)
935 return -EAGAIN;
936 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
937 dirty_segments(sbi) > ovp_hole_segs)
938 return -EAGAIN;
939 return 0;
940 }
941
942 /* This is only used by SBI_CP_DISABLED */
943 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
944 {
945 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
946 unsigned int segno = 0;
947
948 mutex_lock(&dirty_i->seglist_lock);
949 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
950 if (get_valid_blocks(sbi, segno, false))
951 continue;
952 if (get_ckpt_valid_blocks(sbi, segno))
953 continue;
954 mutex_unlock(&dirty_i->seglist_lock);
955 return segno;
956 }
957 mutex_unlock(&dirty_i->seglist_lock);
958 return NULL_SEGNO;
959 }
960
961 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
962 struct block_device *bdev, block_t lstart,
963 block_t start, block_t len)
964 {
965 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
966 struct list_head *pend_list;
967 struct discard_cmd *dc;
968
969 f2fs_bug_on(sbi, !len);
970
971 pend_list = &dcc->pend_list[plist_idx(len)];
972
973 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
974 INIT_LIST_HEAD(&dc->list);
975 dc->bdev = bdev;
976 dc->lstart = lstart;
977 dc->start = start;
978 dc->len = len;
979 dc->ref = 0;
980 dc->state = D_PREP;
981 dc->queued = 0;
982 dc->error = 0;
983 init_completion(&dc->wait);
984 list_add_tail(&dc->list, pend_list);
985 spin_lock_init(&dc->lock);
986 dc->bio_ref = 0;
987 atomic_inc(&dcc->discard_cmd_cnt);
988 dcc->undiscard_blks += len;
989
990 return dc;
991 }
992
993 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
994 struct block_device *bdev, block_t lstart,
995 block_t start, block_t len,
996 struct rb_node *parent, struct rb_node **p,
997 bool leftmost)
998 {
999 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1000 struct discard_cmd *dc;
1001
1002 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1003
1004 rb_link_node(&dc->rb_node, parent, p);
1005 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1006
1007 return dc;
1008 }
1009
1010 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1011 struct discard_cmd *dc)
1012 {
1013 if (dc->state == D_DONE)
1014 atomic_sub(dc->queued, &dcc->queued_discard);
1015
1016 list_del(&dc->list);
1017 rb_erase_cached(&dc->rb_node, &dcc->root);
1018 dcc->undiscard_blks -= dc->len;
1019
1020 kmem_cache_free(discard_cmd_slab, dc);
1021
1022 atomic_dec(&dcc->discard_cmd_cnt);
1023 }
1024
1025 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1026 struct discard_cmd *dc)
1027 {
1028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029 unsigned long flags;
1030
1031 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1032
1033 spin_lock_irqsave(&dc->lock, flags);
1034 if (dc->bio_ref) {
1035 spin_unlock_irqrestore(&dc->lock, flags);
1036 return;
1037 }
1038 spin_unlock_irqrestore(&dc->lock, flags);
1039
1040 f2fs_bug_on(sbi, dc->ref);
1041
1042 if (dc->error == -EOPNOTSUPP)
1043 dc->error = 0;
1044
1045 if (dc->error)
1046 printk_ratelimited(
1047 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1048 KERN_INFO, sbi->sb->s_id,
1049 dc->lstart, dc->start, dc->len, dc->error);
1050 __detach_discard_cmd(dcc, dc);
1051 }
1052
1053 static void f2fs_submit_discard_endio(struct bio *bio)
1054 {
1055 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1056 unsigned long flags;
1057
1058 spin_lock_irqsave(&dc->lock, flags);
1059 if (!dc->error)
1060 dc->error = blk_status_to_errno(bio->bi_status);
1061 dc->bio_ref--;
1062 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1063 dc->state = D_DONE;
1064 complete_all(&dc->wait);
1065 }
1066 spin_unlock_irqrestore(&dc->lock, flags);
1067 bio_put(bio);
1068 }
1069
1070 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1071 block_t start, block_t end)
1072 {
1073 #ifdef CONFIG_F2FS_CHECK_FS
1074 struct seg_entry *sentry;
1075 unsigned int segno;
1076 block_t blk = start;
1077 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1078 unsigned long *map;
1079
1080 while (blk < end) {
1081 segno = GET_SEGNO(sbi, blk);
1082 sentry = get_seg_entry(sbi, segno);
1083 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1084
1085 if (end < START_BLOCK(sbi, segno + 1))
1086 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1087 else
1088 size = max_blocks;
1089 map = (unsigned long *)(sentry->cur_valid_map);
1090 offset = __find_rev_next_bit(map, size, offset);
1091 f2fs_bug_on(sbi, offset != size);
1092 blk = START_BLOCK(sbi, segno + 1);
1093 }
1094 #endif
1095 }
1096
1097 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1098 struct discard_policy *dpolicy,
1099 int discard_type, unsigned int granularity)
1100 {
1101 /* common policy */
1102 dpolicy->type = discard_type;
1103 dpolicy->sync = true;
1104 dpolicy->ordered = false;
1105 dpolicy->granularity = granularity;
1106
1107 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1108 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1109 dpolicy->timeout = false;
1110
1111 if (discard_type == DPOLICY_BG) {
1112 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1113 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1114 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1115 dpolicy->io_aware = true;
1116 dpolicy->sync = false;
1117 dpolicy->ordered = true;
1118 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1119 dpolicy->granularity = 1;
1120 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1121 }
1122 } else if (discard_type == DPOLICY_FORCE) {
1123 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1124 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1125 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1126 dpolicy->io_aware = false;
1127 } else if (discard_type == DPOLICY_FSTRIM) {
1128 dpolicy->io_aware = false;
1129 } else if (discard_type == DPOLICY_UMOUNT) {
1130 dpolicy->io_aware = false;
1131 /* we need to issue all to keep CP_TRIMMED_FLAG */
1132 dpolicy->granularity = 1;
1133 dpolicy->timeout = true;
1134 }
1135 }
1136
1137 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1138 struct block_device *bdev, block_t lstart,
1139 block_t start, block_t len);
1140 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1141 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1142 struct discard_policy *dpolicy,
1143 struct discard_cmd *dc,
1144 unsigned int *issued)
1145 {
1146 struct block_device *bdev = dc->bdev;
1147 struct request_queue *q = bdev_get_queue(bdev);
1148 unsigned int max_discard_blocks =
1149 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1150 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1151 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1152 &(dcc->fstrim_list) : &(dcc->wait_list);
1153 int flag = dpolicy->sync ? REQ_SYNC : 0;
1154 block_t lstart, start, len, total_len;
1155 int err = 0;
1156
1157 if (dc->state != D_PREP)
1158 return 0;
1159
1160 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1161 return 0;
1162
1163 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1164
1165 lstart = dc->lstart;
1166 start = dc->start;
1167 len = dc->len;
1168 total_len = len;
1169
1170 dc->len = 0;
1171
1172 while (total_len && *issued < dpolicy->max_requests && !err) {
1173 struct bio *bio = NULL;
1174 unsigned long flags;
1175 bool last = true;
1176
1177 if (len > max_discard_blocks) {
1178 len = max_discard_blocks;
1179 last = false;
1180 }
1181
1182 (*issued)++;
1183 if (*issued == dpolicy->max_requests)
1184 last = true;
1185
1186 dc->len += len;
1187
1188 if (time_to_inject(sbi, FAULT_DISCARD)) {
1189 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1190 err = -EIO;
1191 goto submit;
1192 }
1193 err = __blkdev_issue_discard(bdev,
1194 SECTOR_FROM_BLOCK(start),
1195 SECTOR_FROM_BLOCK(len),
1196 GFP_NOFS, 0, &bio);
1197 submit:
1198 if (err) {
1199 spin_lock_irqsave(&dc->lock, flags);
1200 if (dc->state == D_PARTIAL)
1201 dc->state = D_SUBMIT;
1202 spin_unlock_irqrestore(&dc->lock, flags);
1203
1204 break;
1205 }
1206
1207 f2fs_bug_on(sbi, !bio);
1208
1209 /*
1210 * should keep before submission to avoid D_DONE
1211 * right away
1212 */
1213 spin_lock_irqsave(&dc->lock, flags);
1214 if (last)
1215 dc->state = D_SUBMIT;
1216 else
1217 dc->state = D_PARTIAL;
1218 dc->bio_ref++;
1219 spin_unlock_irqrestore(&dc->lock, flags);
1220
1221 atomic_inc(&dcc->queued_discard);
1222 dc->queued++;
1223 list_move_tail(&dc->list, wait_list);
1224
1225 /* sanity check on discard range */
1226 __check_sit_bitmap(sbi, lstart, lstart + len);
1227
1228 bio->bi_private = dc;
1229 bio->bi_end_io = f2fs_submit_discard_endio;
1230 bio->bi_opf |= flag;
1231 submit_bio(bio);
1232
1233 atomic_inc(&dcc->issued_discard);
1234
1235 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1236
1237 lstart += len;
1238 start += len;
1239 total_len -= len;
1240 len = total_len;
1241 }
1242
1243 if (!err && len) {
1244 dcc->undiscard_blks -= len;
1245 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1246 }
1247 return err;
1248 }
1249
1250 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1251 struct block_device *bdev, block_t lstart,
1252 block_t start, block_t len,
1253 struct rb_node **insert_p,
1254 struct rb_node *insert_parent)
1255 {
1256 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1257 struct rb_node **p;
1258 struct rb_node *parent = NULL;
1259 bool leftmost = true;
1260
1261 if (insert_p && insert_parent) {
1262 parent = insert_parent;
1263 p = insert_p;
1264 goto do_insert;
1265 }
1266
1267 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1268 lstart, &leftmost);
1269 do_insert:
1270 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1271 p, leftmost);
1272 }
1273
1274 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1275 struct discard_cmd *dc)
1276 {
1277 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1278 }
1279
1280 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1281 struct discard_cmd *dc, block_t blkaddr)
1282 {
1283 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284 struct discard_info di = dc->di;
1285 bool modified = false;
1286
1287 if (dc->state == D_DONE || dc->len == 1) {
1288 __remove_discard_cmd(sbi, dc);
1289 return;
1290 }
1291
1292 dcc->undiscard_blks -= di.len;
1293
1294 if (blkaddr > di.lstart) {
1295 dc->len = blkaddr - dc->lstart;
1296 dcc->undiscard_blks += dc->len;
1297 __relocate_discard_cmd(dcc, dc);
1298 modified = true;
1299 }
1300
1301 if (blkaddr < di.lstart + di.len - 1) {
1302 if (modified) {
1303 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1304 di.start + blkaddr + 1 - di.lstart,
1305 di.lstart + di.len - 1 - blkaddr,
1306 NULL, NULL);
1307 } else {
1308 dc->lstart++;
1309 dc->len--;
1310 dc->start++;
1311 dcc->undiscard_blks += dc->len;
1312 __relocate_discard_cmd(dcc, dc);
1313 }
1314 }
1315 }
1316
1317 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1318 struct block_device *bdev, block_t lstart,
1319 block_t start, block_t len)
1320 {
1321 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1322 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1323 struct discard_cmd *dc;
1324 struct discard_info di = {0};
1325 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1326 struct request_queue *q = bdev_get_queue(bdev);
1327 unsigned int max_discard_blocks =
1328 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1329 block_t end = lstart + len;
1330
1331 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1332 NULL, lstart,
1333 (struct rb_entry **)&prev_dc,
1334 (struct rb_entry **)&next_dc,
1335 &insert_p, &insert_parent, true, NULL);
1336 if (dc)
1337 prev_dc = dc;
1338
1339 if (!prev_dc) {
1340 di.lstart = lstart;
1341 di.len = next_dc ? next_dc->lstart - lstart : len;
1342 di.len = min(di.len, len);
1343 di.start = start;
1344 }
1345
1346 while (1) {
1347 struct rb_node *node;
1348 bool merged = false;
1349 struct discard_cmd *tdc = NULL;
1350
1351 if (prev_dc) {
1352 di.lstart = prev_dc->lstart + prev_dc->len;
1353 if (di.lstart < lstart)
1354 di.lstart = lstart;
1355 if (di.lstart >= end)
1356 break;
1357
1358 if (!next_dc || next_dc->lstart > end)
1359 di.len = end - di.lstart;
1360 else
1361 di.len = next_dc->lstart - di.lstart;
1362 di.start = start + di.lstart - lstart;
1363 }
1364
1365 if (!di.len)
1366 goto next;
1367
1368 if (prev_dc && prev_dc->state == D_PREP &&
1369 prev_dc->bdev == bdev &&
1370 __is_discard_back_mergeable(&di, &prev_dc->di,
1371 max_discard_blocks)) {
1372 prev_dc->di.len += di.len;
1373 dcc->undiscard_blks += di.len;
1374 __relocate_discard_cmd(dcc, prev_dc);
1375 di = prev_dc->di;
1376 tdc = prev_dc;
1377 merged = true;
1378 }
1379
1380 if (next_dc && next_dc->state == D_PREP &&
1381 next_dc->bdev == bdev &&
1382 __is_discard_front_mergeable(&di, &next_dc->di,
1383 max_discard_blocks)) {
1384 next_dc->di.lstart = di.lstart;
1385 next_dc->di.len += di.len;
1386 next_dc->di.start = di.start;
1387 dcc->undiscard_blks += di.len;
1388 __relocate_discard_cmd(dcc, next_dc);
1389 if (tdc)
1390 __remove_discard_cmd(sbi, tdc);
1391 merged = true;
1392 }
1393
1394 if (!merged) {
1395 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1396 di.len, NULL, NULL);
1397 }
1398 next:
1399 prev_dc = next_dc;
1400 if (!prev_dc)
1401 break;
1402
1403 node = rb_next(&prev_dc->rb_node);
1404 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1405 }
1406 }
1407
1408 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1409 struct block_device *bdev, block_t blkstart, block_t blklen)
1410 {
1411 block_t lblkstart = blkstart;
1412
1413 if (!f2fs_bdev_support_discard(bdev))
1414 return 0;
1415
1416 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1417
1418 if (f2fs_is_multi_device(sbi)) {
1419 int devi = f2fs_target_device_index(sbi, blkstart);
1420
1421 blkstart -= FDEV(devi).start_blk;
1422 }
1423 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1424 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1425 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1426 return 0;
1427 }
1428
1429 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1430 struct discard_policy *dpolicy)
1431 {
1432 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1434 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1435 struct discard_cmd *dc;
1436 struct blk_plug plug;
1437 unsigned int pos = dcc->next_pos;
1438 unsigned int issued = 0;
1439 bool io_interrupted = false;
1440
1441 mutex_lock(&dcc->cmd_lock);
1442 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1443 NULL, pos,
1444 (struct rb_entry **)&prev_dc,
1445 (struct rb_entry **)&next_dc,
1446 &insert_p, &insert_parent, true, NULL);
1447 if (!dc)
1448 dc = next_dc;
1449
1450 blk_start_plug(&plug);
1451
1452 while (dc) {
1453 struct rb_node *node;
1454 int err = 0;
1455
1456 if (dc->state != D_PREP)
1457 goto next;
1458
1459 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1460 io_interrupted = true;
1461 break;
1462 }
1463
1464 dcc->next_pos = dc->lstart + dc->len;
1465 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1466
1467 if (issued >= dpolicy->max_requests)
1468 break;
1469 next:
1470 node = rb_next(&dc->rb_node);
1471 if (err)
1472 __remove_discard_cmd(sbi, dc);
1473 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1474 }
1475
1476 blk_finish_plug(&plug);
1477
1478 if (!dc)
1479 dcc->next_pos = 0;
1480
1481 mutex_unlock(&dcc->cmd_lock);
1482
1483 if (!issued && io_interrupted)
1484 issued = -1;
1485
1486 return issued;
1487 }
1488 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1489 struct discard_policy *dpolicy);
1490
1491 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1492 struct discard_policy *dpolicy)
1493 {
1494 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1495 struct list_head *pend_list;
1496 struct discard_cmd *dc, *tmp;
1497 struct blk_plug plug;
1498 int i, issued;
1499 bool io_interrupted = false;
1500
1501 if (dpolicy->timeout)
1502 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1503
1504 retry:
1505 issued = 0;
1506 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1507 if (dpolicy->timeout &&
1508 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1509 break;
1510
1511 if (i + 1 < dpolicy->granularity)
1512 break;
1513
1514 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1515 return __issue_discard_cmd_orderly(sbi, dpolicy);
1516
1517 pend_list = &dcc->pend_list[i];
1518
1519 mutex_lock(&dcc->cmd_lock);
1520 if (list_empty(pend_list))
1521 goto next;
1522 if (unlikely(dcc->rbtree_check))
1523 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1524 &dcc->root));
1525 blk_start_plug(&plug);
1526 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527 f2fs_bug_on(sbi, dc->state != D_PREP);
1528
1529 if (dpolicy->timeout &&
1530 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1531 break;
1532
1533 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1534 !is_idle(sbi, DISCARD_TIME)) {
1535 io_interrupted = true;
1536 break;
1537 }
1538
1539 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1540
1541 if (issued >= dpolicy->max_requests)
1542 break;
1543 }
1544 blk_finish_plug(&plug);
1545 next:
1546 mutex_unlock(&dcc->cmd_lock);
1547
1548 if (issued >= dpolicy->max_requests || io_interrupted)
1549 break;
1550 }
1551
1552 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1553 __wait_all_discard_cmd(sbi, dpolicy);
1554 goto retry;
1555 }
1556
1557 if (!issued && io_interrupted)
1558 issued = -1;
1559
1560 return issued;
1561 }
1562
1563 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1564 {
1565 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1566 struct list_head *pend_list;
1567 struct discard_cmd *dc, *tmp;
1568 int i;
1569 bool dropped = false;
1570
1571 mutex_lock(&dcc->cmd_lock);
1572 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1573 pend_list = &dcc->pend_list[i];
1574 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1575 f2fs_bug_on(sbi, dc->state != D_PREP);
1576 __remove_discard_cmd(sbi, dc);
1577 dropped = true;
1578 }
1579 }
1580 mutex_unlock(&dcc->cmd_lock);
1581
1582 return dropped;
1583 }
1584
1585 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1586 {
1587 __drop_discard_cmd(sbi);
1588 }
1589
1590 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1591 struct discard_cmd *dc)
1592 {
1593 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1594 unsigned int len = 0;
1595
1596 wait_for_completion_io(&dc->wait);
1597 mutex_lock(&dcc->cmd_lock);
1598 f2fs_bug_on(sbi, dc->state != D_DONE);
1599 dc->ref--;
1600 if (!dc->ref) {
1601 if (!dc->error)
1602 len = dc->len;
1603 __remove_discard_cmd(sbi, dc);
1604 }
1605 mutex_unlock(&dcc->cmd_lock);
1606
1607 return len;
1608 }
1609
1610 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1611 struct discard_policy *dpolicy,
1612 block_t start, block_t end)
1613 {
1614 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1615 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1616 &(dcc->fstrim_list) : &(dcc->wait_list);
1617 struct discard_cmd *dc, *tmp;
1618 bool need_wait;
1619 unsigned int trimmed = 0;
1620
1621 next:
1622 need_wait = false;
1623
1624 mutex_lock(&dcc->cmd_lock);
1625 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1626 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1627 continue;
1628 if (dc->len < dpolicy->granularity)
1629 continue;
1630 if (dc->state == D_DONE && !dc->ref) {
1631 wait_for_completion_io(&dc->wait);
1632 if (!dc->error)
1633 trimmed += dc->len;
1634 __remove_discard_cmd(sbi, dc);
1635 } else {
1636 dc->ref++;
1637 need_wait = true;
1638 break;
1639 }
1640 }
1641 mutex_unlock(&dcc->cmd_lock);
1642
1643 if (need_wait) {
1644 trimmed += __wait_one_discard_bio(sbi, dc);
1645 goto next;
1646 }
1647
1648 return trimmed;
1649 }
1650
1651 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1652 struct discard_policy *dpolicy)
1653 {
1654 struct discard_policy dp;
1655 unsigned int discard_blks;
1656
1657 if (dpolicy)
1658 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1659
1660 /* wait all */
1661 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1662 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1663 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1664 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1665
1666 return discard_blks;
1667 }
1668
1669 /* This should be covered by global mutex, &sit_i->sentry_lock */
1670 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1671 {
1672 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1673 struct discard_cmd *dc;
1674 bool need_wait = false;
1675
1676 mutex_lock(&dcc->cmd_lock);
1677 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1678 NULL, blkaddr);
1679 if (dc) {
1680 if (dc->state == D_PREP) {
1681 __punch_discard_cmd(sbi, dc, blkaddr);
1682 } else {
1683 dc->ref++;
1684 need_wait = true;
1685 }
1686 }
1687 mutex_unlock(&dcc->cmd_lock);
1688
1689 if (need_wait)
1690 __wait_one_discard_bio(sbi, dc);
1691 }
1692
1693 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1694 {
1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696
1697 if (dcc && dcc->f2fs_issue_discard) {
1698 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1699
1700 dcc->f2fs_issue_discard = NULL;
1701 kthread_stop(discard_thread);
1702 }
1703 }
1704
1705 /* This comes from f2fs_put_super */
1706 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1707 {
1708 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1709 struct discard_policy dpolicy;
1710 bool dropped;
1711
1712 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1713 dcc->discard_granularity);
1714 __issue_discard_cmd(sbi, &dpolicy);
1715 dropped = __drop_discard_cmd(sbi);
1716
1717 /* just to make sure there is no pending discard commands */
1718 __wait_all_discard_cmd(sbi, NULL);
1719
1720 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1721 return dropped;
1722 }
1723
1724 static int issue_discard_thread(void *data)
1725 {
1726 struct f2fs_sb_info *sbi = data;
1727 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1728 wait_queue_head_t *q = &dcc->discard_wait_queue;
1729 struct discard_policy dpolicy;
1730 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1731 int issued;
1732
1733 set_freezable();
1734
1735 do {
1736 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1737 dcc->discard_granularity);
1738
1739 wait_event_interruptible_timeout(*q,
1740 kthread_should_stop() || freezing(current) ||
1741 dcc->discard_wake,
1742 msecs_to_jiffies(wait_ms));
1743
1744 if (dcc->discard_wake)
1745 dcc->discard_wake = 0;
1746
1747 /* clean up pending candidates before going to sleep */
1748 if (atomic_read(&dcc->queued_discard))
1749 __wait_all_discard_cmd(sbi, NULL);
1750
1751 if (try_to_freeze())
1752 continue;
1753 if (f2fs_readonly(sbi->sb))
1754 continue;
1755 if (kthread_should_stop())
1756 return 0;
1757 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1758 wait_ms = dpolicy.max_interval;
1759 continue;
1760 }
1761
1762 if (sbi->gc_mode == GC_URGENT_HIGH)
1763 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1764
1765 sb_start_intwrite(sbi->sb);
1766
1767 issued = __issue_discard_cmd(sbi, &dpolicy);
1768 if (issued > 0) {
1769 __wait_all_discard_cmd(sbi, &dpolicy);
1770 wait_ms = dpolicy.min_interval;
1771 } else if (issued == -1){
1772 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1773 if (!wait_ms)
1774 wait_ms = dpolicy.mid_interval;
1775 } else {
1776 wait_ms = dpolicy.max_interval;
1777 }
1778
1779 sb_end_intwrite(sbi->sb);
1780
1781 } while (!kthread_should_stop());
1782 return 0;
1783 }
1784
1785 #ifdef CONFIG_BLK_DEV_ZONED
1786 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1787 struct block_device *bdev, block_t blkstart, block_t blklen)
1788 {
1789 sector_t sector, nr_sects;
1790 block_t lblkstart = blkstart;
1791 int devi = 0;
1792
1793 if (f2fs_is_multi_device(sbi)) {
1794 devi = f2fs_target_device_index(sbi, blkstart);
1795 if (blkstart < FDEV(devi).start_blk ||
1796 blkstart > FDEV(devi).end_blk) {
1797 f2fs_err(sbi, "Invalid block %x", blkstart);
1798 return -EIO;
1799 }
1800 blkstart -= FDEV(devi).start_blk;
1801 }
1802
1803 /* For sequential zones, reset the zone write pointer */
1804 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1805 sector = SECTOR_FROM_BLOCK(blkstart);
1806 nr_sects = SECTOR_FROM_BLOCK(blklen);
1807
1808 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1809 nr_sects != bdev_zone_sectors(bdev)) {
1810 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1811 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1812 blkstart, blklen);
1813 return -EIO;
1814 }
1815 trace_f2fs_issue_reset_zone(bdev, blkstart);
1816 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1817 sector, nr_sects, GFP_NOFS);
1818 }
1819
1820 /* For conventional zones, use regular discard if supported */
1821 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1822 }
1823 #endif
1824
1825 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1826 struct block_device *bdev, block_t blkstart, block_t blklen)
1827 {
1828 #ifdef CONFIG_BLK_DEV_ZONED
1829 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1830 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1831 #endif
1832 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1833 }
1834
1835 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1836 block_t blkstart, block_t blklen)
1837 {
1838 sector_t start = blkstart, len = 0;
1839 struct block_device *bdev;
1840 struct seg_entry *se;
1841 unsigned int offset;
1842 block_t i;
1843 int err = 0;
1844
1845 bdev = f2fs_target_device(sbi, blkstart, NULL);
1846
1847 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1848 if (i != start) {
1849 struct block_device *bdev2 =
1850 f2fs_target_device(sbi, i, NULL);
1851
1852 if (bdev2 != bdev) {
1853 err = __issue_discard_async(sbi, bdev,
1854 start, len);
1855 if (err)
1856 return err;
1857 bdev = bdev2;
1858 start = i;
1859 len = 0;
1860 }
1861 }
1862
1863 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1864 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1865
1866 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1867 sbi->discard_blks--;
1868 }
1869
1870 if (len)
1871 err = __issue_discard_async(sbi, bdev, start, len);
1872 return err;
1873 }
1874
1875 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1876 bool check_only)
1877 {
1878 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1879 int max_blocks = sbi->blocks_per_seg;
1880 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1881 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1882 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1883 unsigned long *discard_map = (unsigned long *)se->discard_map;
1884 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1885 unsigned int start = 0, end = -1;
1886 bool force = (cpc->reason & CP_DISCARD);
1887 struct discard_entry *de = NULL;
1888 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1889 int i;
1890
1891 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1892 return false;
1893
1894 if (!force) {
1895 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1896 SM_I(sbi)->dcc_info->nr_discards >=
1897 SM_I(sbi)->dcc_info->max_discards)
1898 return false;
1899 }
1900
1901 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1902 for (i = 0; i < entries; i++)
1903 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1904 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1905
1906 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1907 SM_I(sbi)->dcc_info->max_discards) {
1908 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1909 if (start >= max_blocks)
1910 break;
1911
1912 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1913 if (force && start && end != max_blocks
1914 && (end - start) < cpc->trim_minlen)
1915 continue;
1916
1917 if (check_only)
1918 return true;
1919
1920 if (!de) {
1921 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1922 GFP_F2FS_ZERO);
1923 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1924 list_add_tail(&de->list, head);
1925 }
1926
1927 for (i = start; i < end; i++)
1928 __set_bit_le(i, (void *)de->discard_map);
1929
1930 SM_I(sbi)->dcc_info->nr_discards += end - start;
1931 }
1932 return false;
1933 }
1934
1935 static void release_discard_addr(struct discard_entry *entry)
1936 {
1937 list_del(&entry->list);
1938 kmem_cache_free(discard_entry_slab, entry);
1939 }
1940
1941 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1942 {
1943 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1944 struct discard_entry *entry, *this;
1945
1946 /* drop caches */
1947 list_for_each_entry_safe(entry, this, head, list)
1948 release_discard_addr(entry);
1949 }
1950
1951 /*
1952 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1953 */
1954 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1955 {
1956 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1957 unsigned int segno;
1958
1959 mutex_lock(&dirty_i->seglist_lock);
1960 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1961 __set_test_and_free(sbi, segno);
1962 mutex_unlock(&dirty_i->seglist_lock);
1963 }
1964
1965 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1966 struct cp_control *cpc)
1967 {
1968 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1969 struct list_head *head = &dcc->entry_list;
1970 struct discard_entry *entry, *this;
1971 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1972 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1973 unsigned int start = 0, end = -1;
1974 unsigned int secno, start_segno;
1975 bool force = (cpc->reason & CP_DISCARD);
1976 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1977
1978 mutex_lock(&dirty_i->seglist_lock);
1979
1980 while (1) {
1981 int i;
1982
1983 if (need_align && end != -1)
1984 end--;
1985 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1986 if (start >= MAIN_SEGS(sbi))
1987 break;
1988 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1989 start + 1);
1990
1991 if (need_align) {
1992 start = rounddown(start, sbi->segs_per_sec);
1993 end = roundup(end, sbi->segs_per_sec);
1994 }
1995
1996 for (i = start; i < end; i++) {
1997 if (test_and_clear_bit(i, prefree_map))
1998 dirty_i->nr_dirty[PRE]--;
1999 }
2000
2001 if (!f2fs_realtime_discard_enable(sbi))
2002 continue;
2003
2004 if (force && start >= cpc->trim_start &&
2005 (end - 1) <= cpc->trim_end)
2006 continue;
2007
2008 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2009 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2010 (end - start) << sbi->log_blocks_per_seg);
2011 continue;
2012 }
2013 next:
2014 secno = GET_SEC_FROM_SEG(sbi, start);
2015 start_segno = GET_SEG_FROM_SEC(sbi, secno);
2016 if (!IS_CURSEC(sbi, secno) &&
2017 !get_valid_blocks(sbi, start, true))
2018 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2019 sbi->segs_per_sec << sbi->log_blocks_per_seg);
2020
2021 start = start_segno + sbi->segs_per_sec;
2022 if (start < end)
2023 goto next;
2024 else
2025 end = start - 1;
2026 }
2027 mutex_unlock(&dirty_i->seglist_lock);
2028
2029 /* send small discards */
2030 list_for_each_entry_safe(entry, this, head, list) {
2031 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2032 bool is_valid = test_bit_le(0, entry->discard_map);
2033
2034 find_next:
2035 if (is_valid) {
2036 next_pos = find_next_zero_bit_le(entry->discard_map,
2037 sbi->blocks_per_seg, cur_pos);
2038 len = next_pos - cur_pos;
2039
2040 if (f2fs_sb_has_blkzoned(sbi) ||
2041 (force && len < cpc->trim_minlen))
2042 goto skip;
2043
2044 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2045 len);
2046 total_len += len;
2047 } else {
2048 next_pos = find_next_bit_le(entry->discard_map,
2049 sbi->blocks_per_seg, cur_pos);
2050 }
2051 skip:
2052 cur_pos = next_pos;
2053 is_valid = !is_valid;
2054
2055 if (cur_pos < sbi->blocks_per_seg)
2056 goto find_next;
2057
2058 release_discard_addr(entry);
2059 dcc->nr_discards -= total_len;
2060 }
2061
2062 wake_up_discard_thread(sbi, false);
2063 }
2064
2065 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2066 {
2067 dev_t dev = sbi->sb->s_bdev->bd_dev;
2068 struct discard_cmd_control *dcc;
2069 int err = 0, i;
2070
2071 if (SM_I(sbi)->dcc_info) {
2072 dcc = SM_I(sbi)->dcc_info;
2073 goto init_thread;
2074 }
2075
2076 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2077 if (!dcc)
2078 return -ENOMEM;
2079
2080 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2081 INIT_LIST_HEAD(&dcc->entry_list);
2082 for (i = 0; i < MAX_PLIST_NUM; i++)
2083 INIT_LIST_HEAD(&dcc->pend_list[i]);
2084 INIT_LIST_HEAD(&dcc->wait_list);
2085 INIT_LIST_HEAD(&dcc->fstrim_list);
2086 mutex_init(&dcc->cmd_lock);
2087 atomic_set(&dcc->issued_discard, 0);
2088 atomic_set(&dcc->queued_discard, 0);
2089 atomic_set(&dcc->discard_cmd_cnt, 0);
2090 dcc->nr_discards = 0;
2091 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2092 dcc->undiscard_blks = 0;
2093 dcc->next_pos = 0;
2094 dcc->root = RB_ROOT_CACHED;
2095 dcc->rbtree_check = false;
2096
2097 init_waitqueue_head(&dcc->discard_wait_queue);
2098 SM_I(sbi)->dcc_info = dcc;
2099 init_thread:
2100 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2101 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2102 if (IS_ERR(dcc->f2fs_issue_discard)) {
2103 err = PTR_ERR(dcc->f2fs_issue_discard);
2104 kvfree(dcc);
2105 SM_I(sbi)->dcc_info = NULL;
2106 return err;
2107 }
2108
2109 return err;
2110 }
2111
2112 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2113 {
2114 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2115
2116 if (!dcc)
2117 return;
2118
2119 f2fs_stop_discard_thread(sbi);
2120
2121 /*
2122 * Recovery can cache discard commands, so in error path of
2123 * fill_super(), it needs to give a chance to handle them.
2124 */
2125 if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2126 f2fs_issue_discard_timeout(sbi);
2127
2128 kvfree(dcc);
2129 SM_I(sbi)->dcc_info = NULL;
2130 }
2131
2132 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2133 {
2134 struct sit_info *sit_i = SIT_I(sbi);
2135
2136 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2137 sit_i->dirty_sentries++;
2138 return false;
2139 }
2140
2141 return true;
2142 }
2143
2144 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2145 unsigned int segno, int modified)
2146 {
2147 struct seg_entry *se = get_seg_entry(sbi, segno);
2148 se->type = type;
2149 if (modified)
2150 __mark_sit_entry_dirty(sbi, segno);
2151 }
2152
2153 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2154 {
2155 struct seg_entry *se;
2156 unsigned int segno, offset;
2157 long int new_vblocks;
2158 bool exist;
2159 #ifdef CONFIG_F2FS_CHECK_FS
2160 bool mir_exist;
2161 #endif
2162
2163 segno = GET_SEGNO(sbi, blkaddr);
2164
2165 se = get_seg_entry(sbi, segno);
2166 new_vblocks = se->valid_blocks + del;
2167 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2168
2169 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2170 (new_vblocks > sbi->blocks_per_seg)));
2171
2172 se->valid_blocks = new_vblocks;
2173 se->mtime = get_mtime(sbi, false);
2174 if (se->mtime > SIT_I(sbi)->max_mtime)
2175 SIT_I(sbi)->max_mtime = se->mtime;
2176
2177 /* Update valid block bitmap */
2178 if (del > 0) {
2179 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2180 #ifdef CONFIG_F2FS_CHECK_FS
2181 mir_exist = f2fs_test_and_set_bit(offset,
2182 se->cur_valid_map_mir);
2183 if (unlikely(exist != mir_exist)) {
2184 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2185 blkaddr, exist);
2186 f2fs_bug_on(sbi, 1);
2187 }
2188 #endif
2189 if (unlikely(exist)) {
2190 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2191 blkaddr);
2192 f2fs_bug_on(sbi, 1);
2193 se->valid_blocks--;
2194 del = 0;
2195 }
2196
2197 if (!f2fs_test_and_set_bit(offset, se->discard_map))
2198 sbi->discard_blks--;
2199
2200 /*
2201 * SSR should never reuse block which is checkpointed
2202 * or newly invalidated.
2203 */
2204 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2205 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2206 se->ckpt_valid_blocks++;
2207 }
2208 } else {
2209 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2210 #ifdef CONFIG_F2FS_CHECK_FS
2211 mir_exist = f2fs_test_and_clear_bit(offset,
2212 se->cur_valid_map_mir);
2213 if (unlikely(exist != mir_exist)) {
2214 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2215 blkaddr, exist);
2216 f2fs_bug_on(sbi, 1);
2217 }
2218 #endif
2219 if (unlikely(!exist)) {
2220 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2221 blkaddr);
2222 f2fs_bug_on(sbi, 1);
2223 se->valid_blocks++;
2224 del = 0;
2225 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2226 /*
2227 * If checkpoints are off, we must not reuse data that
2228 * was used in the previous checkpoint. If it was used
2229 * before, we must track that to know how much space we
2230 * really have.
2231 */
2232 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2233 spin_lock(&sbi->stat_lock);
2234 sbi->unusable_block_count++;
2235 spin_unlock(&sbi->stat_lock);
2236 }
2237 }
2238
2239 if (f2fs_test_and_clear_bit(offset, se->discard_map))
2240 sbi->discard_blks++;
2241 }
2242 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2243 se->ckpt_valid_blocks += del;
2244
2245 __mark_sit_entry_dirty(sbi, segno);
2246
2247 /* update total number of valid blocks to be written in ckpt area */
2248 SIT_I(sbi)->written_valid_blocks += del;
2249
2250 if (__is_large_section(sbi))
2251 get_sec_entry(sbi, segno)->valid_blocks += del;
2252 }
2253
2254 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2255 {
2256 unsigned int segno = GET_SEGNO(sbi, addr);
2257 struct sit_info *sit_i = SIT_I(sbi);
2258
2259 f2fs_bug_on(sbi, addr == NULL_ADDR);
2260 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2261 return;
2262
2263 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2264
2265 /* add it into sit main buffer */
2266 down_write(&sit_i->sentry_lock);
2267
2268 update_sit_entry(sbi, addr, -1);
2269
2270 /* add it into dirty seglist */
2271 locate_dirty_segment(sbi, segno);
2272
2273 up_write(&sit_i->sentry_lock);
2274 }
2275
2276 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2277 {
2278 struct sit_info *sit_i = SIT_I(sbi);
2279 unsigned int segno, offset;
2280 struct seg_entry *se;
2281 bool is_cp = false;
2282
2283 if (!__is_valid_data_blkaddr(blkaddr))
2284 return true;
2285
2286 down_read(&sit_i->sentry_lock);
2287
2288 segno = GET_SEGNO(sbi, blkaddr);
2289 se = get_seg_entry(sbi, segno);
2290 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2291
2292 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2293 is_cp = true;
2294
2295 up_read(&sit_i->sentry_lock);
2296
2297 return is_cp;
2298 }
2299
2300 /*
2301 * This function should be resided under the curseg_mutex lock
2302 */
2303 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2304 struct f2fs_summary *sum)
2305 {
2306 struct curseg_info *curseg = CURSEG_I(sbi, type);
2307 void *addr = curseg->sum_blk;
2308 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2309 memcpy(addr, sum, sizeof(struct f2fs_summary));
2310 }
2311
2312 /*
2313 * Calculate the number of current summary pages for writing
2314 */
2315 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2316 {
2317 int valid_sum_count = 0;
2318 int i, sum_in_page;
2319
2320 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2321 if (sbi->ckpt->alloc_type[i] == SSR)
2322 valid_sum_count += sbi->blocks_per_seg;
2323 else {
2324 if (for_ra)
2325 valid_sum_count += le16_to_cpu(
2326 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2327 else
2328 valid_sum_count += curseg_blkoff(sbi, i);
2329 }
2330 }
2331
2332 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2333 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2334 if (valid_sum_count <= sum_in_page)
2335 return 1;
2336 else if ((valid_sum_count - sum_in_page) <=
2337 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2338 return 2;
2339 return 3;
2340 }
2341
2342 /*
2343 * Caller should put this summary page
2344 */
2345 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2346 {
2347 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2348 }
2349
2350 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2351 void *src, block_t blk_addr)
2352 {
2353 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2354
2355 memcpy(page_address(page), src, PAGE_SIZE);
2356 set_page_dirty(page);
2357 f2fs_put_page(page, 1);
2358 }
2359
2360 static void write_sum_page(struct f2fs_sb_info *sbi,
2361 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2362 {
2363 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2364 }
2365
2366 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2367 int type, block_t blk_addr)
2368 {
2369 struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2371 struct f2fs_summary_block *src = curseg->sum_blk;
2372 struct f2fs_summary_block *dst;
2373
2374 dst = (struct f2fs_summary_block *)page_address(page);
2375 memset(dst, 0, PAGE_SIZE);
2376
2377 mutex_lock(&curseg->curseg_mutex);
2378
2379 down_read(&curseg->journal_rwsem);
2380 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2381 up_read(&curseg->journal_rwsem);
2382
2383 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2384 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2385
2386 mutex_unlock(&curseg->curseg_mutex);
2387
2388 set_page_dirty(page);
2389 f2fs_put_page(page, 1);
2390 }
2391
2392 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2393 {
2394 struct curseg_info *curseg = CURSEG_I(sbi, type);
2395 unsigned int segno = curseg->segno + 1;
2396 struct free_segmap_info *free_i = FREE_I(sbi);
2397
2398 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2399 return !test_bit(segno, free_i->free_segmap);
2400 return 0;
2401 }
2402
2403 /*
2404 * Find a new segment from the free segments bitmap to right order
2405 * This function should be returned with success, otherwise BUG
2406 */
2407 static void get_new_segment(struct f2fs_sb_info *sbi,
2408 unsigned int *newseg, bool new_sec, int dir)
2409 {
2410 struct free_segmap_info *free_i = FREE_I(sbi);
2411 unsigned int segno, secno, zoneno;
2412 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2413 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2414 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2415 unsigned int left_start = hint;
2416 bool init = true;
2417 int go_left = 0;
2418 int i;
2419
2420 spin_lock(&free_i->segmap_lock);
2421
2422 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2423 segno = find_next_zero_bit(free_i->free_segmap,
2424 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2425 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2426 goto got_it;
2427 }
2428 find_other_zone:
2429 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2430 if (secno >= MAIN_SECS(sbi)) {
2431 if (dir == ALLOC_RIGHT) {
2432 secno = find_next_zero_bit(free_i->free_secmap,
2433 MAIN_SECS(sbi), 0);
2434 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2435 } else {
2436 go_left = 1;
2437 left_start = hint - 1;
2438 }
2439 }
2440 if (go_left == 0)
2441 goto skip_left;
2442
2443 while (test_bit(left_start, free_i->free_secmap)) {
2444 if (left_start > 0) {
2445 left_start--;
2446 continue;
2447 }
2448 left_start = find_next_zero_bit(free_i->free_secmap,
2449 MAIN_SECS(sbi), 0);
2450 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2451 break;
2452 }
2453 secno = left_start;
2454 skip_left:
2455 segno = GET_SEG_FROM_SEC(sbi, secno);
2456 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2457
2458 /* give up on finding another zone */
2459 if (!init)
2460 goto got_it;
2461 if (sbi->secs_per_zone == 1)
2462 goto got_it;
2463 if (zoneno == old_zoneno)
2464 goto got_it;
2465 if (dir == ALLOC_LEFT) {
2466 if (!go_left && zoneno + 1 >= total_zones)
2467 goto got_it;
2468 if (go_left && zoneno == 0)
2469 goto got_it;
2470 }
2471 for (i = 0; i < NR_CURSEG_TYPE; i++)
2472 if (CURSEG_I(sbi, i)->zone == zoneno)
2473 break;
2474
2475 if (i < NR_CURSEG_TYPE) {
2476 /* zone is in user, try another */
2477 if (go_left)
2478 hint = zoneno * sbi->secs_per_zone - 1;
2479 else if (zoneno + 1 >= total_zones)
2480 hint = 0;
2481 else
2482 hint = (zoneno + 1) * sbi->secs_per_zone;
2483 init = false;
2484 goto find_other_zone;
2485 }
2486 got_it:
2487 /* set it as dirty segment in free segmap */
2488 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2489 __set_inuse(sbi, segno);
2490 *newseg = segno;
2491 spin_unlock(&free_i->segmap_lock);
2492 }
2493
2494 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2495 {
2496 struct curseg_info *curseg = CURSEG_I(sbi, type);
2497 struct summary_footer *sum_footer;
2498
2499 curseg->segno = curseg->next_segno;
2500 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2501 curseg->next_blkoff = 0;
2502 curseg->next_segno = NULL_SEGNO;
2503
2504 sum_footer = &(curseg->sum_blk->footer);
2505 memset(sum_footer, 0, sizeof(struct summary_footer));
2506 if (IS_DATASEG(type))
2507 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2508 if (IS_NODESEG(type))
2509 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2510 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2511 }
2512
2513 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2514 {
2515 /* if segs_per_sec is large than 1, we need to keep original policy. */
2516 if (__is_large_section(sbi))
2517 return CURSEG_I(sbi, type)->segno;
2518
2519 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2520 return 0;
2521
2522 if (test_opt(sbi, NOHEAP) &&
2523 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2524 return 0;
2525
2526 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2527 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2528
2529 /* find segments from 0 to reuse freed segments */
2530 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2531 return 0;
2532
2533 return CURSEG_I(sbi, type)->segno;
2534 }
2535
2536 /*
2537 * Allocate a current working segment.
2538 * This function always allocates a free segment in LFS manner.
2539 */
2540 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2541 {
2542 struct curseg_info *curseg = CURSEG_I(sbi, type);
2543 unsigned int segno = curseg->segno;
2544 int dir = ALLOC_LEFT;
2545
2546 write_sum_page(sbi, curseg->sum_blk,
2547 GET_SUM_BLOCK(sbi, segno));
2548 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2549 dir = ALLOC_RIGHT;
2550
2551 if (test_opt(sbi, NOHEAP))
2552 dir = ALLOC_RIGHT;
2553
2554 segno = __get_next_segno(sbi, type);
2555 get_new_segment(sbi, &segno, new_sec, dir);
2556 curseg->next_segno = segno;
2557 reset_curseg(sbi, type, 1);
2558 curseg->alloc_type = LFS;
2559 }
2560
2561 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2562 struct curseg_info *seg, block_t start)
2563 {
2564 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2565 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2566 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2567 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2568 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2569 int i, pos;
2570
2571 for (i = 0; i < entries; i++)
2572 target_map[i] = ckpt_map[i] | cur_map[i];
2573
2574 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2575
2576 seg->next_blkoff = pos;
2577 }
2578
2579 /*
2580 * If a segment is written by LFS manner, next block offset is just obtained
2581 * by increasing the current block offset. However, if a segment is written by
2582 * SSR manner, next block offset obtained by calling __next_free_blkoff
2583 */
2584 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2585 struct curseg_info *seg)
2586 {
2587 if (seg->alloc_type == SSR)
2588 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2589 else
2590 seg->next_blkoff++;
2591 }
2592
2593 /*
2594 * This function always allocates a used segment(from dirty seglist) by SSR
2595 * manner, so it should recover the existing segment information of valid blocks
2596 */
2597 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2598 {
2599 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2600 struct curseg_info *curseg = CURSEG_I(sbi, type);
2601 unsigned int new_segno = curseg->next_segno;
2602 struct f2fs_summary_block *sum_node;
2603 struct page *sum_page;
2604
2605 write_sum_page(sbi, curseg->sum_blk,
2606 GET_SUM_BLOCK(sbi, curseg->segno));
2607 __set_test_and_inuse(sbi, new_segno);
2608
2609 mutex_lock(&dirty_i->seglist_lock);
2610 __remove_dirty_segment(sbi, new_segno, PRE);
2611 __remove_dirty_segment(sbi, new_segno, DIRTY);
2612 mutex_unlock(&dirty_i->seglist_lock);
2613
2614 reset_curseg(sbi, type, 1);
2615 curseg->alloc_type = SSR;
2616 __next_free_blkoff(sbi, curseg, 0);
2617
2618 sum_page = f2fs_get_sum_page(sbi, new_segno);
2619 f2fs_bug_on(sbi, IS_ERR(sum_page));
2620 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2621 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2622 f2fs_put_page(sum_page, 1);
2623 }
2624
2625 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2626 {
2627 struct curseg_info *curseg = CURSEG_I(sbi, type);
2628 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2629 unsigned segno = NULL_SEGNO;
2630 int i, cnt;
2631 bool reversed = false;
2632
2633 /* f2fs_need_SSR() already forces to do this */
2634 if (!v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2635 curseg->next_segno = segno;
2636 return 1;
2637 }
2638
2639 /* For node segments, let's do SSR more intensively */
2640 if (IS_NODESEG(type)) {
2641 if (type >= CURSEG_WARM_NODE) {
2642 reversed = true;
2643 i = CURSEG_COLD_NODE;
2644 } else {
2645 i = CURSEG_HOT_NODE;
2646 }
2647 cnt = NR_CURSEG_NODE_TYPE;
2648 } else {
2649 if (type >= CURSEG_WARM_DATA) {
2650 reversed = true;
2651 i = CURSEG_COLD_DATA;
2652 } else {
2653 i = CURSEG_HOT_DATA;
2654 }
2655 cnt = NR_CURSEG_DATA_TYPE;
2656 }
2657
2658 for (; cnt-- > 0; reversed ? i-- : i++) {
2659 if (i == type)
2660 continue;
2661 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2662 curseg->next_segno = segno;
2663 return 1;
2664 }
2665 }
2666
2667 /* find valid_blocks=0 in dirty list */
2668 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2669 segno = get_free_segment(sbi);
2670 if (segno != NULL_SEGNO) {
2671 curseg->next_segno = segno;
2672 return 1;
2673 }
2674 }
2675 return 0;
2676 }
2677
2678 /*
2679 * flush out current segment and replace it with new segment
2680 * This function should be returned with success, otherwise BUG
2681 */
2682 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2683 int type, bool force)
2684 {
2685 struct curseg_info *curseg = CURSEG_I(sbi, type);
2686
2687 if (force)
2688 new_curseg(sbi, type, true);
2689 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2690 type == CURSEG_WARM_NODE)
2691 new_curseg(sbi, type, false);
2692 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2693 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2694 new_curseg(sbi, type, false);
2695 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2696 change_curseg(sbi, type);
2697 else
2698 new_curseg(sbi, type, false);
2699
2700 stat_inc_seg_type(sbi, curseg);
2701 }
2702
2703 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2704 unsigned int start, unsigned int end)
2705 {
2706 struct curseg_info *curseg = CURSEG_I(sbi, type);
2707 unsigned int segno;
2708
2709 down_read(&SM_I(sbi)->curseg_lock);
2710 mutex_lock(&curseg->curseg_mutex);
2711 down_write(&SIT_I(sbi)->sentry_lock);
2712
2713 segno = CURSEG_I(sbi, type)->segno;
2714 if (segno < start || segno > end)
2715 goto unlock;
2716
2717 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2718 change_curseg(sbi, type);
2719 else
2720 new_curseg(sbi, type, true);
2721
2722 stat_inc_seg_type(sbi, curseg);
2723
2724 locate_dirty_segment(sbi, segno);
2725 unlock:
2726 up_write(&SIT_I(sbi)->sentry_lock);
2727
2728 if (segno != curseg->segno)
2729 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2730 type, segno, curseg->segno);
2731
2732 mutex_unlock(&curseg->curseg_mutex);
2733 up_read(&SM_I(sbi)->curseg_lock);
2734 }
2735
2736 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2737 {
2738 struct curseg_info *curseg = CURSEG_I(sbi, type);
2739 unsigned int old_segno;
2740
2741 if (!curseg->next_blkoff &&
2742 !get_valid_blocks(sbi, curseg->segno, false) &&
2743 !get_ckpt_valid_blocks(sbi, curseg->segno))
2744 return;
2745
2746 old_segno = curseg->segno;
2747 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2748 locate_dirty_segment(sbi, old_segno);
2749 }
2750
2751 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2752 {
2753 down_write(&SIT_I(sbi)->sentry_lock);
2754 __allocate_new_segment(sbi, type);
2755 up_write(&SIT_I(sbi)->sentry_lock);
2756 }
2757
2758 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2759 {
2760 int i;
2761
2762 down_write(&SIT_I(sbi)->sentry_lock);
2763 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2764 __allocate_new_segment(sbi, i);
2765 up_write(&SIT_I(sbi)->sentry_lock);
2766 }
2767
2768 static const struct segment_allocation default_salloc_ops = {
2769 .allocate_segment = allocate_segment_by_default,
2770 };
2771
2772 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2773 struct cp_control *cpc)
2774 {
2775 __u64 trim_start = cpc->trim_start;
2776 bool has_candidate = false;
2777
2778 down_write(&SIT_I(sbi)->sentry_lock);
2779 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2780 if (add_discard_addrs(sbi, cpc, true)) {
2781 has_candidate = true;
2782 break;
2783 }
2784 }
2785 up_write(&SIT_I(sbi)->sentry_lock);
2786
2787 cpc->trim_start = trim_start;
2788 return has_candidate;
2789 }
2790
2791 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2792 struct discard_policy *dpolicy,
2793 unsigned int start, unsigned int end)
2794 {
2795 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2796 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2797 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2798 struct discard_cmd *dc;
2799 struct blk_plug plug;
2800 int issued;
2801 unsigned int trimmed = 0;
2802
2803 next:
2804 issued = 0;
2805
2806 mutex_lock(&dcc->cmd_lock);
2807 if (unlikely(dcc->rbtree_check))
2808 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2809 &dcc->root));
2810
2811 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2812 NULL, start,
2813 (struct rb_entry **)&prev_dc,
2814 (struct rb_entry **)&next_dc,
2815 &insert_p, &insert_parent, true, NULL);
2816 if (!dc)
2817 dc = next_dc;
2818
2819 blk_start_plug(&plug);
2820
2821 while (dc && dc->lstart <= end) {
2822 struct rb_node *node;
2823 int err = 0;
2824
2825 if (dc->len < dpolicy->granularity)
2826 goto skip;
2827
2828 if (dc->state != D_PREP) {
2829 list_move_tail(&dc->list, &dcc->fstrim_list);
2830 goto skip;
2831 }
2832
2833 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2834
2835 if (issued >= dpolicy->max_requests) {
2836 start = dc->lstart + dc->len;
2837
2838 if (err)
2839 __remove_discard_cmd(sbi, dc);
2840
2841 blk_finish_plug(&plug);
2842 mutex_unlock(&dcc->cmd_lock);
2843 trimmed += __wait_all_discard_cmd(sbi, NULL);
2844 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2845 goto next;
2846 }
2847 skip:
2848 node = rb_next(&dc->rb_node);
2849 if (err)
2850 __remove_discard_cmd(sbi, dc);
2851 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2852
2853 if (fatal_signal_pending(current))
2854 break;
2855 }
2856
2857 blk_finish_plug(&plug);
2858 mutex_unlock(&dcc->cmd_lock);
2859
2860 return trimmed;
2861 }
2862
2863 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2864 {
2865 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2866 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2867 unsigned int start_segno, end_segno;
2868 block_t start_block, end_block;
2869 struct cp_control cpc;
2870 struct discard_policy dpolicy;
2871 unsigned long long trimmed = 0;
2872 int err = 0;
2873 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2874
2875 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2876 return -EINVAL;
2877
2878 if (end < MAIN_BLKADDR(sbi))
2879 goto out;
2880
2881 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2882 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2883 return -EFSCORRUPTED;
2884 }
2885
2886 /* start/end segment number in main_area */
2887 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2888 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2889 GET_SEGNO(sbi, end);
2890 if (need_align) {
2891 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2892 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2893 }
2894
2895 cpc.reason = CP_DISCARD;
2896 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2897 cpc.trim_start = start_segno;
2898 cpc.trim_end = end_segno;
2899
2900 if (sbi->discard_blks == 0)
2901 goto out;
2902
2903 down_write(&sbi->gc_lock);
2904 err = f2fs_write_checkpoint(sbi, &cpc);
2905 up_write(&sbi->gc_lock);
2906 if (err)
2907 goto out;
2908
2909 /*
2910 * We filed discard candidates, but actually we don't need to wait for
2911 * all of them, since they'll be issued in idle time along with runtime
2912 * discard option. User configuration looks like using runtime discard
2913 * or periodic fstrim instead of it.
2914 */
2915 if (f2fs_realtime_discard_enable(sbi))
2916 goto out;
2917
2918 start_block = START_BLOCK(sbi, start_segno);
2919 end_block = START_BLOCK(sbi, end_segno + 1);
2920
2921 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2922 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2923 start_block, end_block);
2924
2925 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2926 start_block, end_block);
2927 out:
2928 if (!err)
2929 range->len = F2FS_BLK_TO_BYTES(trimmed);
2930 return err;
2931 }
2932
2933 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2934 {
2935 struct curseg_info *curseg = CURSEG_I(sbi, type);
2936 if (curseg->next_blkoff < sbi->blocks_per_seg)
2937 return true;
2938 return false;
2939 }
2940
2941 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2942 {
2943 switch (hint) {
2944 case WRITE_LIFE_SHORT:
2945 return CURSEG_HOT_DATA;
2946 case WRITE_LIFE_EXTREME:
2947 return CURSEG_COLD_DATA;
2948 default:
2949 return CURSEG_WARM_DATA;
2950 }
2951 }
2952
2953 /* This returns write hints for each segment type. This hints will be
2954 * passed down to block layer. There are mapping tables which depend on
2955 * the mount option 'whint_mode'.
2956 *
2957 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2958 *
2959 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2960 *
2961 * User F2FS Block
2962 * ---- ---- -----
2963 * META WRITE_LIFE_NOT_SET
2964 * HOT_NODE "
2965 * WARM_NODE "
2966 * COLD_NODE "
2967 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2968 * extension list " "
2969 *
2970 * -- buffered io
2971 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2972 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2973 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2974 * WRITE_LIFE_NONE " "
2975 * WRITE_LIFE_MEDIUM " "
2976 * WRITE_LIFE_LONG " "
2977 *
2978 * -- direct io
2979 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2980 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2981 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2982 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2983 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2984 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2985 *
2986 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2987 *
2988 * User F2FS Block
2989 * ---- ---- -----
2990 * META WRITE_LIFE_MEDIUM;
2991 * HOT_NODE WRITE_LIFE_NOT_SET
2992 * WARM_NODE "
2993 * COLD_NODE WRITE_LIFE_NONE
2994 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2995 * extension list " "
2996 *
2997 * -- buffered io
2998 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2999 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3000 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
3001 * WRITE_LIFE_NONE " "
3002 * WRITE_LIFE_MEDIUM " "
3003 * WRITE_LIFE_LONG " "
3004 *
3005 * -- direct io
3006 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
3007 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
3008 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
3009 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
3010 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
3011 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
3012 */
3013
3014 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3015 enum page_type type, enum temp_type temp)
3016 {
3017 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3018 if (type == DATA) {
3019 if (temp == WARM)
3020 return WRITE_LIFE_NOT_SET;
3021 else if (temp == HOT)
3022 return WRITE_LIFE_SHORT;
3023 else if (temp == COLD)
3024 return WRITE_LIFE_EXTREME;
3025 } else {
3026 return WRITE_LIFE_NOT_SET;
3027 }
3028 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3029 if (type == DATA) {
3030 if (temp == WARM)
3031 return WRITE_LIFE_LONG;
3032 else if (temp == HOT)
3033 return WRITE_LIFE_SHORT;
3034 else if (temp == COLD)
3035 return WRITE_LIFE_EXTREME;
3036 } else if (type == NODE) {
3037 if (temp == WARM || temp == HOT)
3038 return WRITE_LIFE_NOT_SET;
3039 else if (temp == COLD)
3040 return WRITE_LIFE_NONE;
3041 } else if (type == META) {
3042 return WRITE_LIFE_MEDIUM;
3043 }
3044 }
3045 return WRITE_LIFE_NOT_SET;
3046 }
3047
3048 static int __get_segment_type_2(struct f2fs_io_info *fio)
3049 {
3050 if (fio->type == DATA)
3051 return CURSEG_HOT_DATA;
3052 else
3053 return CURSEG_HOT_NODE;
3054 }
3055
3056 static int __get_segment_type_4(struct f2fs_io_info *fio)
3057 {
3058 if (fio->type == DATA) {
3059 struct inode *inode = fio->page->mapping->host;
3060
3061 if (S_ISDIR(inode->i_mode))
3062 return CURSEG_HOT_DATA;
3063 else
3064 return CURSEG_COLD_DATA;
3065 } else {
3066 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3067 return CURSEG_WARM_NODE;
3068 else
3069 return CURSEG_COLD_NODE;
3070 }
3071 }
3072
3073 static int __get_segment_type_6(struct f2fs_io_info *fio)
3074 {
3075 if (fio->type == DATA) {
3076 struct inode *inode = fio->page->mapping->host;
3077
3078 if (is_cold_data(fio->page) || file_is_cold(inode) ||
3079 f2fs_compressed_file(inode))
3080 return CURSEG_COLD_DATA;
3081 if (file_is_hot(inode) ||
3082 is_inode_flag_set(inode, FI_HOT_DATA) ||
3083 f2fs_is_atomic_file(inode) ||
3084 f2fs_is_volatile_file(inode))
3085 return CURSEG_HOT_DATA;
3086 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3087 } else {
3088 if (IS_DNODE(fio->page))
3089 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3090 CURSEG_HOT_NODE;
3091 return CURSEG_COLD_NODE;
3092 }
3093 }
3094
3095 static int __get_segment_type(struct f2fs_io_info *fio)
3096 {
3097 int type = 0;
3098
3099 switch (F2FS_OPTION(fio->sbi).active_logs) {
3100 case 2:
3101 type = __get_segment_type_2(fio);
3102 break;
3103 case 4:
3104 type = __get_segment_type_4(fio);
3105 break;
3106 case 6:
3107 type = __get_segment_type_6(fio);
3108 break;
3109 default:
3110 f2fs_bug_on(fio->sbi, true);
3111 }
3112
3113 if (IS_HOT(type))
3114 fio->temp = HOT;
3115 else if (IS_WARM(type))
3116 fio->temp = WARM;
3117 else
3118 fio->temp = COLD;
3119 return type;
3120 }
3121
3122 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3123 block_t old_blkaddr, block_t *new_blkaddr,
3124 struct f2fs_summary *sum, int type,
3125 struct f2fs_io_info *fio)
3126 {
3127 struct sit_info *sit_i = SIT_I(sbi);
3128 struct curseg_info *curseg = CURSEG_I(sbi, type);
3129 bool put_pin_sem = false;
3130
3131 if (type == CURSEG_COLD_DATA) {
3132 /* GC during CURSEG_COLD_DATA_PINNED allocation */
3133 if (down_read_trylock(&sbi->pin_sem)) {
3134 put_pin_sem = true;
3135 } else {
3136 type = CURSEG_WARM_DATA;
3137 curseg = CURSEG_I(sbi, type);
3138 }
3139 } else if (type == CURSEG_COLD_DATA_PINNED) {
3140 type = CURSEG_COLD_DATA;
3141 }
3142
3143 down_read(&SM_I(sbi)->curseg_lock);
3144
3145 mutex_lock(&curseg->curseg_mutex);
3146 down_write(&sit_i->sentry_lock);
3147
3148 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3149
3150 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3151
3152 /*
3153 * __add_sum_entry should be resided under the curseg_mutex
3154 * because, this function updates a summary entry in the
3155 * current summary block.
3156 */
3157 __add_sum_entry(sbi, type, sum);
3158
3159 __refresh_next_blkoff(sbi, curseg);
3160
3161 stat_inc_block_count(sbi, curseg);
3162
3163 /*
3164 * SIT information should be updated before segment allocation,
3165 * since SSR needs latest valid block information.
3166 */
3167 update_sit_entry(sbi, *new_blkaddr, 1);
3168 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3169 update_sit_entry(sbi, old_blkaddr, -1);
3170
3171 if (!__has_curseg_space(sbi, type))
3172 sit_i->s_ops->allocate_segment(sbi, type, false);
3173
3174 /*
3175 * segment dirty status should be updated after segment allocation,
3176 * so we just need to update status only one time after previous
3177 * segment being closed.
3178 */
3179 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3180 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3181
3182 up_write(&sit_i->sentry_lock);
3183
3184 if (page && IS_NODESEG(type)) {
3185 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3186
3187 f2fs_inode_chksum_set(sbi, page);
3188 }
3189
3190 if (F2FS_IO_ALIGNED(sbi))
3191 fio->retry = false;
3192
3193 if (fio) {
3194 struct f2fs_bio_info *io;
3195
3196 INIT_LIST_HEAD(&fio->list);
3197 fio->in_list = true;
3198 io = sbi->write_io[fio->type] + fio->temp;
3199 spin_lock(&io->io_lock);
3200 list_add_tail(&fio->list, &io->io_list);
3201 spin_unlock(&io->io_lock);
3202 }
3203
3204 mutex_unlock(&curseg->curseg_mutex);
3205
3206 up_read(&SM_I(sbi)->curseg_lock);
3207
3208 if (put_pin_sem)
3209 up_read(&sbi->pin_sem);
3210 }
3211
3212 static void update_device_state(struct f2fs_io_info *fio)
3213 {
3214 struct f2fs_sb_info *sbi = fio->sbi;
3215 unsigned int devidx;
3216
3217 if (!f2fs_is_multi_device(sbi))
3218 return;
3219
3220 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3221
3222 /* update device state for fsync */
3223 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3224
3225 /* update device state for checkpoint */
3226 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3227 spin_lock(&sbi->dev_lock);
3228 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3229 spin_unlock(&sbi->dev_lock);
3230 }
3231 }
3232
3233 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3234 {
3235 int type = __get_segment_type(fio);
3236 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3237
3238 if (keep_order)
3239 down_read(&fio->sbi->io_order_lock);
3240 reallocate:
3241 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3242 &fio->new_blkaddr, sum, type, fio);
3243 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3244 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3245 fio->old_blkaddr, fio->old_blkaddr);
3246
3247 /* writeout dirty page into bdev */
3248 f2fs_submit_page_write(fio);
3249 if (fio->retry) {
3250 fio->old_blkaddr = fio->new_blkaddr;
3251 goto reallocate;
3252 }
3253
3254 update_device_state(fio);
3255
3256 if (keep_order)
3257 up_read(&fio->sbi->io_order_lock);
3258 }
3259
3260 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3261 enum iostat_type io_type)
3262 {
3263 struct f2fs_io_info fio = {
3264 .sbi = sbi,
3265 .type = META,
3266 .temp = HOT,
3267 .op = REQ_OP_WRITE,
3268 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3269 .old_blkaddr = page->index,
3270 .new_blkaddr = page->index,
3271 .page = page,
3272 .encrypted_page = NULL,
3273 .in_list = false,
3274 };
3275
3276 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3277 fio.op_flags &= ~REQ_META;
3278
3279 set_page_writeback(page);
3280 ClearPageError(page);
3281 f2fs_submit_page_write(&fio);
3282
3283 stat_inc_meta_count(sbi, page->index);
3284 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3285 }
3286
3287 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3288 {
3289 struct f2fs_summary sum;
3290
3291 set_summary(&sum, nid, 0, 0);
3292 do_write_page(&sum, fio);
3293
3294 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3295 }
3296
3297 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3298 struct f2fs_io_info *fio)
3299 {
3300 struct f2fs_sb_info *sbi = fio->sbi;
3301 struct f2fs_summary sum;
3302
3303 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3304 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3305 do_write_page(&sum, fio);
3306 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3307
3308 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3309 }
3310
3311 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3312 {
3313 int err;
3314 struct f2fs_sb_info *sbi = fio->sbi;
3315 unsigned int segno;
3316
3317 fio->new_blkaddr = fio->old_blkaddr;
3318 /* i/o temperature is needed for passing down write hints */
3319 __get_segment_type(fio);
3320
3321 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3322
3323 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3324 set_sbi_flag(sbi, SBI_NEED_FSCK);
3325 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3326 __func__, segno);
3327 return -EFSCORRUPTED;
3328 }
3329
3330 stat_inc_inplace_blocks(fio->sbi);
3331
3332 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3333 err = f2fs_merge_page_bio(fio);
3334 else
3335 err = f2fs_submit_page_bio(fio);
3336 if (!err) {
3337 update_device_state(fio);
3338 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3339 }
3340
3341 return err;
3342 }
3343
3344 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3345 unsigned int segno)
3346 {
3347 int i;
3348
3349 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3350 if (CURSEG_I(sbi, i)->segno == segno)
3351 break;
3352 }
3353 return i;
3354 }
3355
3356 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3357 block_t old_blkaddr, block_t new_blkaddr,
3358 bool recover_curseg, bool recover_newaddr)
3359 {
3360 struct sit_info *sit_i = SIT_I(sbi);
3361 struct curseg_info *curseg;
3362 unsigned int segno, old_cursegno;
3363 struct seg_entry *se;
3364 int type;
3365 unsigned short old_blkoff;
3366
3367 segno = GET_SEGNO(sbi, new_blkaddr);
3368 se = get_seg_entry(sbi, segno);
3369 type = se->type;
3370
3371 down_write(&SM_I(sbi)->curseg_lock);
3372
3373 if (!recover_curseg) {
3374 /* for recovery flow */
3375 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3376 if (old_blkaddr == NULL_ADDR)
3377 type = CURSEG_COLD_DATA;
3378 else
3379 type = CURSEG_WARM_DATA;
3380 }
3381 } else {
3382 if (IS_CURSEG(sbi, segno)) {
3383 /* se->type is volatile as SSR allocation */
3384 type = __f2fs_get_curseg(sbi, segno);
3385 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3386 } else {
3387 type = CURSEG_WARM_DATA;
3388 }
3389 }
3390
3391 f2fs_bug_on(sbi, !IS_DATASEG(type));
3392 curseg = CURSEG_I(sbi, type);
3393
3394 mutex_lock(&curseg->curseg_mutex);
3395 down_write(&sit_i->sentry_lock);
3396
3397 old_cursegno = curseg->segno;
3398 old_blkoff = curseg->next_blkoff;
3399
3400 /* change the current segment */
3401 if (segno != curseg->segno) {
3402 curseg->next_segno = segno;
3403 change_curseg(sbi, type);
3404 }
3405
3406 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3407 __add_sum_entry(sbi, type, sum);
3408
3409 if (!recover_curseg || recover_newaddr)
3410 update_sit_entry(sbi, new_blkaddr, 1);
3411 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3412 invalidate_mapping_pages(META_MAPPING(sbi),
3413 old_blkaddr, old_blkaddr);
3414 update_sit_entry(sbi, old_blkaddr, -1);
3415 }
3416
3417 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3418 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3419
3420 locate_dirty_segment(sbi, old_cursegno);
3421
3422 if (recover_curseg) {
3423 if (old_cursegno != curseg->segno) {
3424 curseg->next_segno = old_cursegno;
3425 change_curseg(sbi, type);
3426 }
3427 curseg->next_blkoff = old_blkoff;
3428 }
3429
3430 up_write(&sit_i->sentry_lock);
3431 mutex_unlock(&curseg->curseg_mutex);
3432 up_write(&SM_I(sbi)->curseg_lock);
3433 }
3434
3435 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3436 block_t old_addr, block_t new_addr,
3437 unsigned char version, bool recover_curseg,
3438 bool recover_newaddr)
3439 {
3440 struct f2fs_summary sum;
3441
3442 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3443
3444 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3445 recover_curseg, recover_newaddr);
3446
3447 f2fs_update_data_blkaddr(dn, new_addr);
3448 }
3449
3450 void f2fs_wait_on_page_writeback(struct page *page,
3451 enum page_type type, bool ordered, bool locked)
3452 {
3453 if (PageWriteback(page)) {
3454 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3455
3456 /* submit cached LFS IO */
3457 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3458 /* sbumit cached IPU IO */
3459 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3460 if (ordered) {
3461 wait_on_page_writeback(page);
3462 f2fs_bug_on(sbi, locked && PageWriteback(page));
3463 } else {
3464 wait_for_stable_page(page);
3465 }
3466 }
3467 }
3468
3469 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3470 {
3471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3472 struct page *cpage;
3473
3474 if (!f2fs_post_read_required(inode))
3475 return;
3476
3477 if (!__is_valid_data_blkaddr(blkaddr))
3478 return;
3479
3480 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3481 if (cpage) {
3482 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3483 f2fs_put_page(cpage, 1);
3484 }
3485 }
3486
3487 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3488 block_t len)
3489 {
3490 block_t i;
3491
3492 for (i = 0; i < len; i++)
3493 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3494 }
3495
3496 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3497 {
3498 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3499 struct curseg_info *seg_i;
3500 unsigned char *kaddr;
3501 struct page *page;
3502 block_t start;
3503 int i, j, offset;
3504
3505 start = start_sum_block(sbi);
3506
3507 page = f2fs_get_meta_page(sbi, start++);
3508 if (IS_ERR(page))
3509 return PTR_ERR(page);
3510 kaddr = (unsigned char *)page_address(page);
3511
3512 /* Step 1: restore nat cache */
3513 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3514 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3515
3516 /* Step 2: restore sit cache */
3517 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3518 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3519 offset = 2 * SUM_JOURNAL_SIZE;
3520
3521 /* Step 3: restore summary entries */
3522 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3523 unsigned short blk_off;
3524 unsigned int segno;
3525
3526 seg_i = CURSEG_I(sbi, i);
3527 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3528 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3529 seg_i->next_segno = segno;
3530 reset_curseg(sbi, i, 0);
3531 seg_i->alloc_type = ckpt->alloc_type[i];
3532 seg_i->next_blkoff = blk_off;
3533
3534 if (seg_i->alloc_type == SSR)
3535 blk_off = sbi->blocks_per_seg;
3536
3537 for (j = 0; j < blk_off; j++) {
3538 struct f2fs_summary *s;
3539 s = (struct f2fs_summary *)(kaddr + offset);
3540 seg_i->sum_blk->entries[j] = *s;
3541 offset += SUMMARY_SIZE;
3542 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3543 SUM_FOOTER_SIZE)
3544 continue;
3545
3546 f2fs_put_page(page, 1);
3547 page = NULL;
3548
3549 page = f2fs_get_meta_page(sbi, start++);
3550 if (IS_ERR(page))
3551 return PTR_ERR(page);
3552 kaddr = (unsigned char *)page_address(page);
3553 offset = 0;
3554 }
3555 }
3556 f2fs_put_page(page, 1);
3557 return 0;
3558 }
3559
3560 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3561 {
3562 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3563 struct f2fs_summary_block *sum;
3564 struct curseg_info *curseg;
3565 struct page *new;
3566 unsigned short blk_off;
3567 unsigned int segno = 0;
3568 block_t blk_addr = 0;
3569 int err = 0;
3570
3571 /* get segment number and block addr */
3572 if (IS_DATASEG(type)) {
3573 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3574 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3575 CURSEG_HOT_DATA]);
3576 if (__exist_node_summaries(sbi))
3577 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3578 else
3579 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3580 } else {
3581 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3582 CURSEG_HOT_NODE]);
3583 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3584 CURSEG_HOT_NODE]);
3585 if (__exist_node_summaries(sbi))
3586 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3587 type - CURSEG_HOT_NODE);
3588 else
3589 blk_addr = GET_SUM_BLOCK(sbi, segno);
3590 }
3591
3592 new = f2fs_get_meta_page(sbi, blk_addr);
3593 if (IS_ERR(new))
3594 return PTR_ERR(new);
3595 sum = (struct f2fs_summary_block *)page_address(new);
3596
3597 if (IS_NODESEG(type)) {
3598 if (__exist_node_summaries(sbi)) {
3599 struct f2fs_summary *ns = &sum->entries[0];
3600 int i;
3601 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3602 ns->version = 0;
3603 ns->ofs_in_node = 0;
3604 }
3605 } else {
3606 err = f2fs_restore_node_summary(sbi, segno, sum);
3607 if (err)
3608 goto out;
3609 }
3610 }
3611
3612 /* set uncompleted segment to curseg */
3613 curseg = CURSEG_I(sbi, type);
3614 mutex_lock(&curseg->curseg_mutex);
3615
3616 /* update journal info */
3617 down_write(&curseg->journal_rwsem);
3618 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3619 up_write(&curseg->journal_rwsem);
3620
3621 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3622 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3623 curseg->next_segno = segno;
3624 reset_curseg(sbi, type, 0);
3625 curseg->alloc_type = ckpt->alloc_type[type];
3626 curseg->next_blkoff = blk_off;
3627 mutex_unlock(&curseg->curseg_mutex);
3628 out:
3629 f2fs_put_page(new, 1);
3630 return err;
3631 }
3632
3633 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3634 {
3635 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3636 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3637 int type = CURSEG_HOT_DATA;
3638 int err;
3639
3640 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3641 int npages = f2fs_npages_for_summary_flush(sbi, true);
3642
3643 if (npages >= 2)
3644 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3645 META_CP, true);
3646
3647 /* restore for compacted data summary */
3648 err = read_compacted_summaries(sbi);
3649 if (err)
3650 return err;
3651 type = CURSEG_HOT_NODE;
3652 }
3653
3654 if (__exist_node_summaries(sbi))
3655 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3656 NR_CURSEG_TYPE - type, META_CP, true);
3657
3658 for (; type <= CURSEG_COLD_NODE; type++) {
3659 err = read_normal_summaries(sbi, type);
3660 if (err)
3661 return err;
3662 }
3663
3664 /* sanity check for summary blocks */
3665 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3666 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3667 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3668 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3669 return -EINVAL;
3670 }
3671
3672 return 0;
3673 }
3674
3675 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3676 {
3677 struct page *page;
3678 unsigned char *kaddr;
3679 struct f2fs_summary *summary;
3680 struct curseg_info *seg_i;
3681 int written_size = 0;
3682 int i, j;
3683
3684 page = f2fs_grab_meta_page(sbi, blkaddr++);
3685 kaddr = (unsigned char *)page_address(page);
3686 memset(kaddr, 0, PAGE_SIZE);
3687
3688 /* Step 1: write nat cache */
3689 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3690 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3691 written_size += SUM_JOURNAL_SIZE;
3692
3693 /* Step 2: write sit cache */
3694 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3695 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3696 written_size += SUM_JOURNAL_SIZE;
3697
3698 /* Step 3: write summary entries */
3699 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3700 unsigned short blkoff;
3701 seg_i = CURSEG_I(sbi, i);
3702 if (sbi->ckpt->alloc_type[i] == SSR)
3703 blkoff = sbi->blocks_per_seg;
3704 else
3705 blkoff = curseg_blkoff(sbi, i);
3706
3707 for (j = 0; j < blkoff; j++) {
3708 if (!page) {
3709 page = f2fs_grab_meta_page(sbi, blkaddr++);
3710 kaddr = (unsigned char *)page_address(page);
3711 memset(kaddr, 0, PAGE_SIZE);
3712 written_size = 0;
3713 }
3714 summary = (struct f2fs_summary *)(kaddr + written_size);
3715 *summary = seg_i->sum_blk->entries[j];
3716 written_size += SUMMARY_SIZE;
3717
3718 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3719 SUM_FOOTER_SIZE)
3720 continue;
3721
3722 set_page_dirty(page);
3723 f2fs_put_page(page, 1);
3724 page = NULL;
3725 }
3726 }
3727 if (page) {
3728 set_page_dirty(page);
3729 f2fs_put_page(page, 1);
3730 }
3731 }
3732
3733 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3734 block_t blkaddr, int type)
3735 {
3736 int i, end;
3737 if (IS_DATASEG(type))
3738 end = type + NR_CURSEG_DATA_TYPE;
3739 else
3740 end = type + NR_CURSEG_NODE_TYPE;
3741
3742 for (i = type; i < end; i++)
3743 write_current_sum_page(sbi, i, blkaddr + (i - type));
3744 }
3745
3746 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3747 {
3748 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3749 write_compacted_summaries(sbi, start_blk);
3750 else
3751 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3752 }
3753
3754 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3755 {
3756 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3757 }
3758
3759 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3760 unsigned int val, int alloc)
3761 {
3762 int i;
3763
3764 if (type == NAT_JOURNAL) {
3765 for (i = 0; i < nats_in_cursum(journal); i++) {
3766 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3767 return i;
3768 }
3769 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3770 return update_nats_in_cursum(journal, 1);
3771 } else if (type == SIT_JOURNAL) {
3772 for (i = 0; i < sits_in_cursum(journal); i++)
3773 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3774 return i;
3775 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3776 return update_sits_in_cursum(journal, 1);
3777 }
3778 return -1;
3779 }
3780
3781 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3782 unsigned int segno)
3783 {
3784 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3785 }
3786
3787 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3788 unsigned int start)
3789 {
3790 struct sit_info *sit_i = SIT_I(sbi);
3791 struct page *page;
3792 pgoff_t src_off, dst_off;
3793
3794 src_off = current_sit_addr(sbi, start);
3795 dst_off = next_sit_addr(sbi, src_off);
3796
3797 page = f2fs_grab_meta_page(sbi, dst_off);
3798 seg_info_to_sit_page(sbi, page, start);
3799
3800 set_page_dirty(page);
3801 set_to_next_sit(sit_i, start);
3802
3803 return page;
3804 }
3805
3806 static struct sit_entry_set *grab_sit_entry_set(void)
3807 {
3808 struct sit_entry_set *ses =
3809 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3810
3811 ses->entry_cnt = 0;
3812 INIT_LIST_HEAD(&ses->set_list);
3813 return ses;
3814 }
3815
3816 static void release_sit_entry_set(struct sit_entry_set *ses)
3817 {
3818 list_del(&ses->set_list);
3819 kmem_cache_free(sit_entry_set_slab, ses);
3820 }
3821
3822 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3823 struct list_head *head)
3824 {
3825 struct sit_entry_set *next = ses;
3826
3827 if (list_is_last(&ses->set_list, head))
3828 return;
3829
3830 list_for_each_entry_continue(next, head, set_list)
3831 if (ses->entry_cnt <= next->entry_cnt)
3832 break;
3833
3834 list_move_tail(&ses->set_list, &next->set_list);
3835 }
3836
3837 static void add_sit_entry(unsigned int segno, struct list_head *head)
3838 {
3839 struct sit_entry_set *ses;
3840 unsigned int start_segno = START_SEGNO(segno);
3841
3842 list_for_each_entry(ses, head, set_list) {
3843 if (ses->start_segno == start_segno) {
3844 ses->entry_cnt++;
3845 adjust_sit_entry_set(ses, head);
3846 return;
3847 }
3848 }
3849
3850 ses = grab_sit_entry_set();
3851
3852 ses->start_segno = start_segno;
3853 ses->entry_cnt++;
3854 list_add(&ses->set_list, head);
3855 }
3856
3857 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3858 {
3859 struct f2fs_sm_info *sm_info = SM_I(sbi);
3860 struct list_head *set_list = &sm_info->sit_entry_set;
3861 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3862 unsigned int segno;
3863
3864 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3865 add_sit_entry(segno, set_list);
3866 }
3867
3868 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3869 {
3870 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3871 struct f2fs_journal *journal = curseg->journal;
3872 int i;
3873
3874 down_write(&curseg->journal_rwsem);
3875 for (i = 0; i < sits_in_cursum(journal); i++) {
3876 unsigned int segno;
3877 bool dirtied;
3878
3879 segno = le32_to_cpu(segno_in_journal(journal, i));
3880 dirtied = __mark_sit_entry_dirty(sbi, segno);
3881
3882 if (!dirtied)
3883 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3884 }
3885 update_sits_in_cursum(journal, -i);
3886 up_write(&curseg->journal_rwsem);
3887 }
3888
3889 /*
3890 * CP calls this function, which flushes SIT entries including sit_journal,
3891 * and moves prefree segs to free segs.
3892 */
3893 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3894 {
3895 struct sit_info *sit_i = SIT_I(sbi);
3896 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3897 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3898 struct f2fs_journal *journal = curseg->journal;
3899 struct sit_entry_set *ses, *tmp;
3900 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3901 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3902 struct seg_entry *se;
3903
3904 down_write(&sit_i->sentry_lock);
3905
3906 if (!sit_i->dirty_sentries)
3907 goto out;
3908
3909 /*
3910 * add and account sit entries of dirty bitmap in sit entry
3911 * set temporarily
3912 */
3913 add_sits_in_set(sbi);
3914
3915 /*
3916 * if there are no enough space in journal to store dirty sit
3917 * entries, remove all entries from journal and add and account
3918 * them in sit entry set.
3919 */
3920 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3921 !to_journal)
3922 remove_sits_in_journal(sbi);
3923
3924 /*
3925 * there are two steps to flush sit entries:
3926 * #1, flush sit entries to journal in current cold data summary block.
3927 * #2, flush sit entries to sit page.
3928 */
3929 list_for_each_entry_safe(ses, tmp, head, set_list) {
3930 struct page *page = NULL;
3931 struct f2fs_sit_block *raw_sit = NULL;
3932 unsigned int start_segno = ses->start_segno;
3933 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3934 (unsigned long)MAIN_SEGS(sbi));
3935 unsigned int segno = start_segno;
3936
3937 if (to_journal &&
3938 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3939 to_journal = false;
3940
3941 if (to_journal) {
3942 down_write(&curseg->journal_rwsem);
3943 } else {
3944 page = get_next_sit_page(sbi, start_segno);
3945 raw_sit = page_address(page);
3946 }
3947
3948 /* flush dirty sit entries in region of current sit set */
3949 for_each_set_bit_from(segno, bitmap, end) {
3950 int offset, sit_offset;
3951
3952 se = get_seg_entry(sbi, segno);
3953 #ifdef CONFIG_F2FS_CHECK_FS
3954 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3955 SIT_VBLOCK_MAP_SIZE))
3956 f2fs_bug_on(sbi, 1);
3957 #endif
3958
3959 /* add discard candidates */
3960 if (!(cpc->reason & CP_DISCARD)) {
3961 cpc->trim_start = segno;
3962 add_discard_addrs(sbi, cpc, false);
3963 }
3964
3965 if (to_journal) {
3966 offset = f2fs_lookup_journal_in_cursum(journal,
3967 SIT_JOURNAL, segno, 1);
3968 f2fs_bug_on(sbi, offset < 0);
3969 segno_in_journal(journal, offset) =
3970 cpu_to_le32(segno);
3971 seg_info_to_raw_sit(se,
3972 &sit_in_journal(journal, offset));
3973 check_block_count(sbi, segno,
3974 &sit_in_journal(journal, offset));
3975 } else {
3976 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3977 seg_info_to_raw_sit(se,
3978 &raw_sit->entries[sit_offset]);
3979 check_block_count(sbi, segno,
3980 &raw_sit->entries[sit_offset]);
3981 }
3982
3983 __clear_bit(segno, bitmap);
3984 sit_i->dirty_sentries--;
3985 ses->entry_cnt--;
3986 }
3987
3988 if (to_journal)
3989 up_write(&curseg->journal_rwsem);
3990 else
3991 f2fs_put_page(page, 1);
3992
3993 f2fs_bug_on(sbi, ses->entry_cnt);
3994 release_sit_entry_set(ses);
3995 }
3996
3997 f2fs_bug_on(sbi, !list_empty(head));
3998 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3999 out:
4000 if (cpc->reason & CP_DISCARD) {
4001 __u64 trim_start = cpc->trim_start;
4002
4003 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4004 add_discard_addrs(sbi, cpc, false);
4005
4006 cpc->trim_start = trim_start;
4007 }
4008 up_write(&sit_i->sentry_lock);
4009
4010 set_prefree_as_free_segments(sbi);
4011 }
4012
4013 static int build_sit_info(struct f2fs_sb_info *sbi)
4014 {
4015 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4016 struct sit_info *sit_i;
4017 unsigned int sit_segs, start;
4018 char *src_bitmap, *bitmap;
4019 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4020
4021 /* allocate memory for SIT information */
4022 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4023 if (!sit_i)
4024 return -ENOMEM;
4025
4026 SM_I(sbi)->sit_info = sit_i;
4027
4028 sit_i->sentries =
4029 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4030 MAIN_SEGS(sbi)),
4031 GFP_KERNEL);
4032 if (!sit_i->sentries)
4033 return -ENOMEM;
4034
4035 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4036 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4037 GFP_KERNEL);
4038 if (!sit_i->dirty_sentries_bitmap)
4039 return -ENOMEM;
4040
4041 #ifdef CONFIG_F2FS_CHECK_FS
4042 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4043 #else
4044 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4045 #endif
4046 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4047 if (!sit_i->bitmap)
4048 return -ENOMEM;
4049
4050 bitmap = sit_i->bitmap;
4051
4052 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4053 sit_i->sentries[start].cur_valid_map = bitmap;
4054 bitmap += SIT_VBLOCK_MAP_SIZE;
4055
4056 sit_i->sentries[start].ckpt_valid_map = bitmap;
4057 bitmap += SIT_VBLOCK_MAP_SIZE;
4058
4059 #ifdef CONFIG_F2FS_CHECK_FS
4060 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4061 bitmap += SIT_VBLOCK_MAP_SIZE;
4062 #endif
4063
4064 sit_i->sentries[start].discard_map = bitmap;
4065 bitmap += SIT_VBLOCK_MAP_SIZE;
4066 }
4067
4068 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4069 if (!sit_i->tmp_map)
4070 return -ENOMEM;
4071
4072 if (__is_large_section(sbi)) {
4073 sit_i->sec_entries =
4074 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4075 MAIN_SECS(sbi)),
4076 GFP_KERNEL);
4077 if (!sit_i->sec_entries)
4078 return -ENOMEM;
4079 }
4080
4081 /* get information related with SIT */
4082 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4083
4084 /* setup SIT bitmap from ckeckpoint pack */
4085 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4086 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4087
4088 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4089 if (!sit_i->sit_bitmap)
4090 return -ENOMEM;
4091
4092 #ifdef CONFIG_F2FS_CHECK_FS
4093 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4094 sit_bitmap_size, GFP_KERNEL);
4095 if (!sit_i->sit_bitmap_mir)
4096 return -ENOMEM;
4097
4098 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4099 main_bitmap_size, GFP_KERNEL);
4100 if (!sit_i->invalid_segmap)
4101 return -ENOMEM;
4102 #endif
4103
4104 /* init SIT information */
4105 sit_i->s_ops = &default_salloc_ops;
4106
4107 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4108 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4109 sit_i->written_valid_blocks = 0;
4110 sit_i->bitmap_size = sit_bitmap_size;
4111 sit_i->dirty_sentries = 0;
4112 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4113 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4114 sit_i->mounted_time = ktime_get_boottime_seconds();
4115 init_rwsem(&sit_i->sentry_lock);
4116 return 0;
4117 }
4118
4119 static int build_free_segmap(struct f2fs_sb_info *sbi)
4120 {
4121 struct free_segmap_info *free_i;
4122 unsigned int bitmap_size, sec_bitmap_size;
4123
4124 /* allocate memory for free segmap information */
4125 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4126 if (!free_i)
4127 return -ENOMEM;
4128
4129 SM_I(sbi)->free_info = free_i;
4130
4131 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4132 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4133 if (!free_i->free_segmap)
4134 return -ENOMEM;
4135
4136 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4137 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4138 if (!free_i->free_secmap)
4139 return -ENOMEM;
4140
4141 /* set all segments as dirty temporarily */
4142 memset(free_i->free_segmap, 0xff, bitmap_size);
4143 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4144
4145 /* init free segmap information */
4146 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4147 free_i->free_segments = 0;
4148 free_i->free_sections = 0;
4149 spin_lock_init(&free_i->segmap_lock);
4150 return 0;
4151 }
4152
4153 static int build_curseg(struct f2fs_sb_info *sbi)
4154 {
4155 struct curseg_info *array;
4156 int i;
4157
4158 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4159 GFP_KERNEL);
4160 if (!array)
4161 return -ENOMEM;
4162
4163 SM_I(sbi)->curseg_array = array;
4164
4165 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4166 mutex_init(&array[i].curseg_mutex);
4167 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4168 if (!array[i].sum_blk)
4169 return -ENOMEM;
4170 init_rwsem(&array[i].journal_rwsem);
4171 array[i].journal = f2fs_kzalloc(sbi,
4172 sizeof(struct f2fs_journal), GFP_KERNEL);
4173 if (!array[i].journal)
4174 return -ENOMEM;
4175 array[i].segno = NULL_SEGNO;
4176 array[i].next_blkoff = 0;
4177 }
4178 return restore_curseg_summaries(sbi);
4179 }
4180
4181 static int build_sit_entries(struct f2fs_sb_info *sbi)
4182 {
4183 struct sit_info *sit_i = SIT_I(sbi);
4184 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4185 struct f2fs_journal *journal = curseg->journal;
4186 struct seg_entry *se;
4187 struct f2fs_sit_entry sit;
4188 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4189 unsigned int i, start, end;
4190 unsigned int readed, start_blk = 0;
4191 int err = 0;
4192 block_t total_node_blocks = 0;
4193
4194 do {
4195 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4196 META_SIT, true);
4197
4198 start = start_blk * sit_i->sents_per_block;
4199 end = (start_blk + readed) * sit_i->sents_per_block;
4200
4201 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4202 struct f2fs_sit_block *sit_blk;
4203 struct page *page;
4204
4205 se = &sit_i->sentries[start];
4206 page = get_current_sit_page(sbi, start);
4207 if (IS_ERR(page))
4208 return PTR_ERR(page);
4209 sit_blk = (struct f2fs_sit_block *)page_address(page);
4210 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4211 f2fs_put_page(page, 1);
4212
4213 err = check_block_count(sbi, start, &sit);
4214 if (err)
4215 return err;
4216 seg_info_from_raw_sit(se, &sit);
4217 if (IS_NODESEG(se->type))
4218 total_node_blocks += se->valid_blocks;
4219
4220 /* build discard map only one time */
4221 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4222 memset(se->discard_map, 0xff,
4223 SIT_VBLOCK_MAP_SIZE);
4224 } else {
4225 memcpy(se->discard_map,
4226 se->cur_valid_map,
4227 SIT_VBLOCK_MAP_SIZE);
4228 sbi->discard_blks +=
4229 sbi->blocks_per_seg -
4230 se->valid_blocks;
4231 }
4232
4233 if (__is_large_section(sbi))
4234 get_sec_entry(sbi, start)->valid_blocks +=
4235 se->valid_blocks;
4236 }
4237 start_blk += readed;
4238 } while (start_blk < sit_blk_cnt);
4239
4240 down_read(&curseg->journal_rwsem);
4241 for (i = 0; i < sits_in_cursum(journal); i++) {
4242 unsigned int old_valid_blocks;
4243
4244 start = le32_to_cpu(segno_in_journal(journal, i));
4245 if (start >= MAIN_SEGS(sbi)) {
4246 f2fs_err(sbi, "Wrong journal entry on segno %u",
4247 start);
4248 err = -EFSCORRUPTED;
4249 break;
4250 }
4251
4252 se = &sit_i->sentries[start];
4253 sit = sit_in_journal(journal, i);
4254
4255 old_valid_blocks = se->valid_blocks;
4256 if (IS_NODESEG(se->type))
4257 total_node_blocks -= old_valid_blocks;
4258
4259 err = check_block_count(sbi, start, &sit);
4260 if (err)
4261 break;
4262 seg_info_from_raw_sit(se, &sit);
4263 if (IS_NODESEG(se->type))
4264 total_node_blocks += se->valid_blocks;
4265
4266 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4267 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4268 } else {
4269 memcpy(se->discard_map, se->cur_valid_map,
4270 SIT_VBLOCK_MAP_SIZE);
4271 sbi->discard_blks += old_valid_blocks;
4272 sbi->discard_blks -= se->valid_blocks;
4273 }
4274
4275 if (__is_large_section(sbi)) {
4276 get_sec_entry(sbi, start)->valid_blocks +=
4277 se->valid_blocks;
4278 get_sec_entry(sbi, start)->valid_blocks -=
4279 old_valid_blocks;
4280 }
4281 }
4282 up_read(&curseg->journal_rwsem);
4283
4284 if (!err && total_node_blocks != valid_node_count(sbi)) {
4285 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4286 total_node_blocks, valid_node_count(sbi));
4287 err = -EFSCORRUPTED;
4288 }
4289
4290 return err;
4291 }
4292
4293 static void init_free_segmap(struct f2fs_sb_info *sbi)
4294 {
4295 unsigned int start;
4296 int type;
4297
4298 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4299 struct seg_entry *sentry = get_seg_entry(sbi, start);
4300 if (!sentry->valid_blocks)
4301 __set_free(sbi, start);
4302 else
4303 SIT_I(sbi)->written_valid_blocks +=
4304 sentry->valid_blocks;
4305 }
4306
4307 /* set use the current segments */
4308 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4309 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4310 __set_test_and_inuse(sbi, curseg_t->segno);
4311 }
4312 }
4313
4314 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4315 {
4316 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4317 struct free_segmap_info *free_i = FREE_I(sbi);
4318 unsigned int segno = 0, offset = 0, secno;
4319 unsigned short valid_blocks;
4320 unsigned short blks_per_sec = BLKS_PER_SEC(sbi);
4321
4322 while (1) {
4323 /* find dirty segment based on free segmap */
4324 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4325 if (segno >= MAIN_SEGS(sbi))
4326 break;
4327 offset = segno + 1;
4328 valid_blocks = get_valid_blocks(sbi, segno, false);
4329 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4330 continue;
4331 if (valid_blocks > sbi->blocks_per_seg) {
4332 f2fs_bug_on(sbi, 1);
4333 continue;
4334 }
4335 mutex_lock(&dirty_i->seglist_lock);
4336 __locate_dirty_segment(sbi, segno, DIRTY);
4337 mutex_unlock(&dirty_i->seglist_lock);
4338 }
4339
4340 if (!__is_large_section(sbi))
4341 return;
4342
4343 mutex_lock(&dirty_i->seglist_lock);
4344 for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) {
4345 valid_blocks = get_valid_blocks(sbi, segno, true);
4346 secno = GET_SEC_FROM_SEG(sbi, segno);
4347
4348 if (!valid_blocks || valid_blocks == blks_per_sec)
4349 continue;
4350 if (IS_CURSEC(sbi, secno))
4351 continue;
4352 set_bit(secno, dirty_i->dirty_secmap);
4353 }
4354 mutex_unlock(&dirty_i->seglist_lock);
4355 }
4356
4357 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4358 {
4359 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4360 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4361
4362 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4363 if (!dirty_i->victim_secmap)
4364 return -ENOMEM;
4365 return 0;
4366 }
4367
4368 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4369 {
4370 struct dirty_seglist_info *dirty_i;
4371 unsigned int bitmap_size, i;
4372
4373 /* allocate memory for dirty segments list information */
4374 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4375 GFP_KERNEL);
4376 if (!dirty_i)
4377 return -ENOMEM;
4378
4379 SM_I(sbi)->dirty_info = dirty_i;
4380 mutex_init(&dirty_i->seglist_lock);
4381
4382 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4383
4384 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4385 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4386 GFP_KERNEL);
4387 if (!dirty_i->dirty_segmap[i])
4388 return -ENOMEM;
4389 }
4390
4391 if (__is_large_section(sbi)) {
4392 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4393 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4394 bitmap_size, GFP_KERNEL);
4395 if (!dirty_i->dirty_secmap)
4396 return -ENOMEM;
4397 }
4398
4399 init_dirty_segmap(sbi);
4400 return init_victim_secmap(sbi);
4401 }
4402
4403 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4404 {
4405 int i;
4406
4407 /*
4408 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4409 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4410 */
4411 for (i = 0; i < NO_CHECK_TYPE; i++) {
4412 struct curseg_info *curseg = CURSEG_I(sbi, i);
4413 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4414 unsigned int blkofs = curseg->next_blkoff;
4415
4416 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4417 goto out;
4418
4419 if (curseg->alloc_type == SSR)
4420 continue;
4421
4422 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4423 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4424 continue;
4425 out:
4426 f2fs_err(sbi,
4427 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4428 i, curseg->segno, curseg->alloc_type,
4429 curseg->next_blkoff, blkofs);
4430 return -EFSCORRUPTED;
4431 }
4432 }
4433 return 0;
4434 }
4435
4436 #ifdef CONFIG_BLK_DEV_ZONED
4437
4438 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4439 struct f2fs_dev_info *fdev,
4440 struct blk_zone *zone)
4441 {
4442 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4443 block_t zone_block, wp_block, last_valid_block;
4444 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4445 int i, s, b, ret;
4446 struct seg_entry *se;
4447
4448 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4449 return 0;
4450
4451 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4452 wp_segno = GET_SEGNO(sbi, wp_block);
4453 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4454 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4455 zone_segno = GET_SEGNO(sbi, zone_block);
4456 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4457
4458 if (zone_segno >= MAIN_SEGS(sbi))
4459 return 0;
4460
4461 /*
4462 * Skip check of zones cursegs point to, since
4463 * fix_curseg_write_pointer() checks them.
4464 */
4465 for (i = 0; i < NO_CHECK_TYPE; i++)
4466 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4467 CURSEG_I(sbi, i)->segno))
4468 return 0;
4469
4470 /*
4471 * Get last valid block of the zone.
4472 */
4473 last_valid_block = zone_block - 1;
4474 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4475 segno = zone_segno + s;
4476 se = get_seg_entry(sbi, segno);
4477 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4478 if (f2fs_test_bit(b, se->cur_valid_map)) {
4479 last_valid_block = START_BLOCK(sbi, segno) + b;
4480 break;
4481 }
4482 if (last_valid_block >= zone_block)
4483 break;
4484 }
4485
4486 /*
4487 * If last valid block is beyond the write pointer, report the
4488 * inconsistency. This inconsistency does not cause write error
4489 * because the zone will not be selected for write operation until
4490 * it get discarded. Just report it.
4491 */
4492 if (last_valid_block >= wp_block) {
4493 f2fs_notice(sbi, "Valid block beyond write pointer: "
4494 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4495 GET_SEGNO(sbi, last_valid_block),
4496 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4497 wp_segno, wp_blkoff);
4498 return 0;
4499 }
4500
4501 /*
4502 * If there is no valid block in the zone and if write pointer is
4503 * not at zone start, reset the write pointer.
4504 */
4505 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4506 f2fs_notice(sbi,
4507 "Zone without valid block has non-zero write "
4508 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4509 wp_segno, wp_blkoff);
4510 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4511 zone->len >> log_sectors_per_block);
4512 if (ret) {
4513 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4514 fdev->path, ret);
4515 return ret;
4516 }
4517 }
4518
4519 return 0;
4520 }
4521
4522 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4523 block_t zone_blkaddr)
4524 {
4525 int i;
4526
4527 for (i = 0; i < sbi->s_ndevs; i++) {
4528 if (!bdev_is_zoned(FDEV(i).bdev))
4529 continue;
4530 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4531 zone_blkaddr <= FDEV(i).end_blk))
4532 return &FDEV(i);
4533 }
4534
4535 return NULL;
4536 }
4537
4538 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4539 void *data) {
4540 memcpy(data, zone, sizeof(struct blk_zone));
4541 return 0;
4542 }
4543
4544 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4545 {
4546 struct curseg_info *cs = CURSEG_I(sbi, type);
4547 struct f2fs_dev_info *zbd;
4548 struct blk_zone zone;
4549 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4550 block_t cs_zone_block, wp_block;
4551 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4552 sector_t zone_sector;
4553 int err;
4554
4555 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4556 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4557
4558 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4559 if (!zbd)
4560 return 0;
4561
4562 /* report zone for the sector the curseg points to */
4563 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4564 << log_sectors_per_block;
4565 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4566 report_one_zone_cb, &zone);
4567 if (err != 1) {
4568 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4569 zbd->path, err);
4570 return err;
4571 }
4572
4573 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4574 return 0;
4575
4576 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4577 wp_segno = GET_SEGNO(sbi, wp_block);
4578 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4579 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4580
4581 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4582 wp_sector_off == 0)
4583 return 0;
4584
4585 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4586 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4587 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4588
4589 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4590 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4591 allocate_segment_by_default(sbi, type, true);
4592
4593 /* check consistency of the zone curseg pointed to */
4594 if (check_zone_write_pointer(sbi, zbd, &zone))
4595 return -EIO;
4596
4597 /* check newly assigned zone */
4598 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4599 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4600
4601 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4602 if (!zbd)
4603 return 0;
4604
4605 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4606 << log_sectors_per_block;
4607 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4608 report_one_zone_cb, &zone);
4609 if (err != 1) {
4610 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4611 zbd->path, err);
4612 return err;
4613 }
4614
4615 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4616 return 0;
4617
4618 if (zone.wp != zone.start) {
4619 f2fs_notice(sbi,
4620 "New zone for curseg[%d] is not yet discarded. "
4621 "Reset the zone: curseg[0x%x,0x%x]",
4622 type, cs->segno, cs->next_blkoff);
4623 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4624 zone_sector >> log_sectors_per_block,
4625 zone.len >> log_sectors_per_block);
4626 if (err) {
4627 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4628 zbd->path, err);
4629 return err;
4630 }
4631 }
4632
4633 return 0;
4634 }
4635
4636 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4637 {
4638 int i, ret;
4639
4640 for (i = 0; i < NO_CHECK_TYPE; i++) {
4641 ret = fix_curseg_write_pointer(sbi, i);
4642 if (ret)
4643 return ret;
4644 }
4645
4646 return 0;
4647 }
4648
4649 struct check_zone_write_pointer_args {
4650 struct f2fs_sb_info *sbi;
4651 struct f2fs_dev_info *fdev;
4652 };
4653
4654 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4655 void *data) {
4656 struct check_zone_write_pointer_args *args;
4657 args = (struct check_zone_write_pointer_args *)data;
4658
4659 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4660 }
4661
4662 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4663 {
4664 int i, ret;
4665 struct check_zone_write_pointer_args args;
4666
4667 for (i = 0; i < sbi->s_ndevs; i++) {
4668 if (!bdev_is_zoned(FDEV(i).bdev))
4669 continue;
4670
4671 args.sbi = sbi;
4672 args.fdev = &FDEV(i);
4673 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4674 check_zone_write_pointer_cb, &args);
4675 if (ret < 0)
4676 return ret;
4677 }
4678
4679 return 0;
4680 }
4681 #else
4682 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4683 {
4684 return 0;
4685 }
4686
4687 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4688 {
4689 return 0;
4690 }
4691 #endif
4692
4693 /*
4694 * Update min, max modified time for cost-benefit GC algorithm
4695 */
4696 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4697 {
4698 struct sit_info *sit_i = SIT_I(sbi);
4699 unsigned int segno;
4700
4701 down_write(&sit_i->sentry_lock);
4702
4703 sit_i->min_mtime = ULLONG_MAX;
4704
4705 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4706 unsigned int i;
4707 unsigned long long mtime = 0;
4708
4709 for (i = 0; i < sbi->segs_per_sec; i++)
4710 mtime += get_seg_entry(sbi, segno + i)->mtime;
4711
4712 mtime = div_u64(mtime, sbi->segs_per_sec);
4713
4714 if (sit_i->min_mtime > mtime)
4715 sit_i->min_mtime = mtime;
4716 }
4717 sit_i->max_mtime = get_mtime(sbi, false);
4718 up_write(&sit_i->sentry_lock);
4719 }
4720
4721 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4722 {
4723 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4724 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4725 struct f2fs_sm_info *sm_info;
4726 int err;
4727
4728 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4729 if (!sm_info)
4730 return -ENOMEM;
4731
4732 /* init sm info */
4733 sbi->sm_info = sm_info;
4734 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4735 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4736 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4737 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4738 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4739 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4740 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4741 sm_info->rec_prefree_segments = sm_info->main_segments *
4742 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4743 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4744 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4745
4746 if (!f2fs_lfs_mode(sbi))
4747 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4748 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4749 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4750 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4751 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4752 sm_info->min_ssr_sections = reserved_sections(sbi);
4753
4754 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4755
4756 init_rwsem(&sm_info->curseg_lock);
4757
4758 if (!f2fs_readonly(sbi->sb)) {
4759 err = f2fs_create_flush_cmd_control(sbi);
4760 if (err)
4761 return err;
4762 }
4763
4764 err = create_discard_cmd_control(sbi);
4765 if (err)
4766 return err;
4767
4768 err = build_sit_info(sbi);
4769 if (err)
4770 return err;
4771 err = build_free_segmap(sbi);
4772 if (err)
4773 return err;
4774 err = build_curseg(sbi);
4775 if (err)
4776 return err;
4777
4778 /* reinit free segmap based on SIT */
4779 err = build_sit_entries(sbi);
4780 if (err)
4781 return err;
4782
4783 init_free_segmap(sbi);
4784 err = build_dirty_segmap(sbi);
4785 if (err)
4786 return err;
4787
4788 err = sanity_check_curseg(sbi);
4789 if (err)
4790 return err;
4791
4792 init_min_max_mtime(sbi);
4793 return 0;
4794 }
4795
4796 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4797 enum dirty_type dirty_type)
4798 {
4799 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4800
4801 mutex_lock(&dirty_i->seglist_lock);
4802 kvfree(dirty_i->dirty_segmap[dirty_type]);
4803 dirty_i->nr_dirty[dirty_type] = 0;
4804 mutex_unlock(&dirty_i->seglist_lock);
4805 }
4806
4807 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4808 {
4809 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4810 kvfree(dirty_i->victim_secmap);
4811 }
4812
4813 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4814 {
4815 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4816 int i;
4817
4818 if (!dirty_i)
4819 return;
4820
4821 /* discard pre-free/dirty segments list */
4822 for (i = 0; i < NR_DIRTY_TYPE; i++)
4823 discard_dirty_segmap(sbi, i);
4824
4825 if (__is_large_section(sbi)) {
4826 mutex_lock(&dirty_i->seglist_lock);
4827 kvfree(dirty_i->dirty_secmap);
4828 mutex_unlock(&dirty_i->seglist_lock);
4829 }
4830
4831 destroy_victim_secmap(sbi);
4832 SM_I(sbi)->dirty_info = NULL;
4833 kvfree(dirty_i);
4834 }
4835
4836 static void destroy_curseg(struct f2fs_sb_info *sbi)
4837 {
4838 struct curseg_info *array = SM_I(sbi)->curseg_array;
4839 int i;
4840
4841 if (!array)
4842 return;
4843 SM_I(sbi)->curseg_array = NULL;
4844 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4845 kvfree(array[i].sum_blk);
4846 kvfree(array[i].journal);
4847 }
4848 kvfree(array);
4849 }
4850
4851 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4852 {
4853 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4854 if (!free_i)
4855 return;
4856 SM_I(sbi)->free_info = NULL;
4857 kvfree(free_i->free_segmap);
4858 kvfree(free_i->free_secmap);
4859 kvfree(free_i);
4860 }
4861
4862 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4863 {
4864 struct sit_info *sit_i = SIT_I(sbi);
4865
4866 if (!sit_i)
4867 return;
4868
4869 if (sit_i->sentries)
4870 kvfree(sit_i->bitmap);
4871 kvfree(sit_i->tmp_map);
4872
4873 kvfree(sit_i->sentries);
4874 kvfree(sit_i->sec_entries);
4875 kvfree(sit_i->dirty_sentries_bitmap);
4876
4877 SM_I(sbi)->sit_info = NULL;
4878 kvfree(sit_i->sit_bitmap);
4879 #ifdef CONFIG_F2FS_CHECK_FS
4880 kvfree(sit_i->sit_bitmap_mir);
4881 kvfree(sit_i->invalid_segmap);
4882 #endif
4883 kvfree(sit_i);
4884 }
4885
4886 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4887 {
4888 struct f2fs_sm_info *sm_info = SM_I(sbi);
4889
4890 if (!sm_info)
4891 return;
4892 f2fs_destroy_flush_cmd_control(sbi, true);
4893 destroy_discard_cmd_control(sbi);
4894 destroy_dirty_segmap(sbi);
4895 destroy_curseg(sbi);
4896 destroy_free_segmap(sbi);
4897 destroy_sit_info(sbi);
4898 sbi->sm_info = NULL;
4899 kvfree(sm_info);
4900 }
4901
4902 int __init f2fs_create_segment_manager_caches(void)
4903 {
4904 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4905 sizeof(struct discard_entry));
4906 if (!discard_entry_slab)
4907 goto fail;
4908
4909 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4910 sizeof(struct discard_cmd));
4911 if (!discard_cmd_slab)
4912 goto destroy_discard_entry;
4913
4914 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4915 sizeof(struct sit_entry_set));
4916 if (!sit_entry_set_slab)
4917 goto destroy_discard_cmd;
4918
4919 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4920 sizeof(struct inmem_pages));
4921 if (!inmem_entry_slab)
4922 goto destroy_sit_entry_set;
4923 return 0;
4924
4925 destroy_sit_entry_set:
4926 kmem_cache_destroy(sit_entry_set_slab);
4927 destroy_discard_cmd:
4928 kmem_cache_destroy(discard_cmd_slab);
4929 destroy_discard_entry:
4930 kmem_cache_destroy(discard_entry_slab);
4931 fail:
4932 return -ENOMEM;
4933 }
4934
4935 void f2fs_destroy_segment_manager_caches(void)
4936 {
4937 kmem_cache_destroy(sit_entry_set_slab);
4938 kmem_cache_destroy(discard_cmd_slab);
4939 kmem_cache_destroy(discard_entry_slab);
4940 kmem_cache_destroy(inmem_entry_slab);
4941 }