]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/f2fs/segment.c
Merge branch 'locking-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-eoan-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42 shift = 56;
43 #endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49 }
50
51 /*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 int num = 0;
58
59 #if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64 #endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88 }
89
90 /*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101 {
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123 pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131 found:
132 return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137 {
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160 pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168 found:
169 return result - size + __reverse_ffz(tmp);
170 }
171
172 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 {
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_mode == GC_URGENT)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 {
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
214
215 trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover)
220 {
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct inmem_pages *cur, *tmp;
223 int err = 0;
224
225 list_for_each_entry_safe(cur, tmp, head, list) {
226 struct page *page = cur->page;
227
228 if (drop)
229 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231 lock_page(page);
232
233 f2fs_wait_on_page_writeback(page, DATA, true);
234
235 if (recover) {
236 struct dnode_of_data dn;
237 struct node_info ni;
238
239 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
240 retry:
241 set_new_dnode(&dn, inode, NULL, NULL, 0);
242 err = f2fs_get_dnode_of_data(&dn, page->index,
243 LOOKUP_NODE);
244 if (err) {
245 if (err == -ENOMEM) {
246 congestion_wait(BLK_RW_ASYNC, HZ/50);
247 cond_resched();
248 goto retry;
249 }
250 err = -EAGAIN;
251 goto next;
252 }
253
254 err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 if (err) {
256 f2fs_put_dnode(&dn);
257 return err;
258 }
259
260 if (cur->old_addr == NEW_ADDR) {
261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 } else
264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 cur->old_addr, ni.version, true, true);
266 f2fs_put_dnode(&dn);
267 }
268 next:
269 /* we don't need to invalidate this in the sccessful status */
270 if (drop || recover)
271 ClearPageUptodate(page);
272 set_page_private(page, 0);
273 ClearPagePrivate(page);
274 f2fs_put_page(page, 1);
275
276 list_del(&cur->list);
277 kmem_cache_free(inmem_entry_slab, cur);
278 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
279 }
280 return err;
281 }
282
283 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
284 {
285 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
286 struct inode *inode;
287 struct f2fs_inode_info *fi;
288 next:
289 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
290 if (list_empty(head)) {
291 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
292 return;
293 }
294 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
295 inode = igrab(&fi->vfs_inode);
296 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
297
298 if (inode) {
299 if (gc_failure) {
300 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
301 goto drop;
302 goto skip;
303 }
304 drop:
305 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
306 f2fs_drop_inmem_pages(inode);
307 iput(inode);
308 }
309 skip:
310 congestion_wait(BLK_RW_ASYNC, HZ/50);
311 cond_resched();
312 goto next;
313 }
314
315 void f2fs_drop_inmem_pages(struct inode *inode)
316 {
317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
318 struct f2fs_inode_info *fi = F2FS_I(inode);
319
320 mutex_lock(&fi->inmem_lock);
321 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
322 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
323 if (!list_empty(&fi->inmem_ilist))
324 list_del_init(&fi->inmem_ilist);
325 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
326 mutex_unlock(&fi->inmem_lock);
327
328 clear_inode_flag(inode, FI_ATOMIC_FILE);
329 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
330 stat_dec_atomic_write(inode);
331 }
332
333 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
334 {
335 struct f2fs_inode_info *fi = F2FS_I(inode);
336 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
337 struct list_head *head = &fi->inmem_pages;
338 struct inmem_pages *cur = NULL;
339
340 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
341
342 mutex_lock(&fi->inmem_lock);
343 list_for_each_entry(cur, head, list) {
344 if (cur->page == page)
345 break;
346 }
347
348 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
349 list_del(&cur->list);
350 mutex_unlock(&fi->inmem_lock);
351
352 dec_page_count(sbi, F2FS_INMEM_PAGES);
353 kmem_cache_free(inmem_entry_slab, cur);
354
355 ClearPageUptodate(page);
356 set_page_private(page, 0);
357 ClearPagePrivate(page);
358 f2fs_put_page(page, 0);
359
360 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
361 }
362
363 static int __f2fs_commit_inmem_pages(struct inode *inode)
364 {
365 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
366 struct f2fs_inode_info *fi = F2FS_I(inode);
367 struct inmem_pages *cur, *tmp;
368 struct f2fs_io_info fio = {
369 .sbi = sbi,
370 .ino = inode->i_ino,
371 .type = DATA,
372 .op = REQ_OP_WRITE,
373 .op_flags = REQ_SYNC | REQ_PRIO,
374 .io_type = FS_DATA_IO,
375 };
376 struct list_head revoke_list;
377 pgoff_t last_idx = ULONG_MAX;
378 int err = 0;
379
380 INIT_LIST_HEAD(&revoke_list);
381
382 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
383 struct page *page = cur->page;
384
385 lock_page(page);
386 if (page->mapping == inode->i_mapping) {
387 trace_f2fs_commit_inmem_page(page, INMEM);
388
389 set_page_dirty(page);
390 f2fs_wait_on_page_writeback(page, DATA, true);
391 if (clear_page_dirty_for_io(page)) {
392 inode_dec_dirty_pages(inode);
393 f2fs_remove_dirty_inode(inode);
394 }
395 retry:
396 fio.page = page;
397 fio.old_blkaddr = NULL_ADDR;
398 fio.encrypted_page = NULL;
399 fio.need_lock = LOCK_DONE;
400 err = f2fs_do_write_data_page(&fio);
401 if (err) {
402 if (err == -ENOMEM) {
403 congestion_wait(BLK_RW_ASYNC, HZ/50);
404 cond_resched();
405 goto retry;
406 }
407 unlock_page(page);
408 break;
409 }
410 /* record old blkaddr for revoking */
411 cur->old_addr = fio.old_blkaddr;
412 last_idx = page->index;
413 }
414 unlock_page(page);
415 list_move_tail(&cur->list, &revoke_list);
416 }
417
418 if (last_idx != ULONG_MAX)
419 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
420
421 if (err) {
422 /*
423 * try to revoke all committed pages, but still we could fail
424 * due to no memory or other reason, if that happened, EAGAIN
425 * will be returned, which means in such case, transaction is
426 * already not integrity, caller should use journal to do the
427 * recovery or rewrite & commit last transaction. For other
428 * error number, revoking was done by filesystem itself.
429 */
430 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
431
432 /* drop all uncommitted pages */
433 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
434 } else {
435 __revoke_inmem_pages(inode, &revoke_list, false, false);
436 }
437
438 return err;
439 }
440
441 int f2fs_commit_inmem_pages(struct inode *inode)
442 {
443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
444 struct f2fs_inode_info *fi = F2FS_I(inode);
445 int err;
446
447 f2fs_balance_fs(sbi, true);
448
449 down_write(&fi->i_gc_rwsem[WRITE]);
450
451 f2fs_lock_op(sbi);
452 set_inode_flag(inode, FI_ATOMIC_COMMIT);
453
454 mutex_lock(&fi->inmem_lock);
455 err = __f2fs_commit_inmem_pages(inode);
456
457 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
458 if (!list_empty(&fi->inmem_ilist))
459 list_del_init(&fi->inmem_ilist);
460 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
461 mutex_unlock(&fi->inmem_lock);
462
463 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
464
465 f2fs_unlock_op(sbi);
466 up_write(&fi->i_gc_rwsem[WRITE]);
467
468 return err;
469 }
470
471 /*
472 * This function balances dirty node and dentry pages.
473 * In addition, it controls garbage collection.
474 */
475 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
476 {
477 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
478 f2fs_show_injection_info(FAULT_CHECKPOINT);
479 f2fs_stop_checkpoint(sbi, false);
480 }
481
482 /* balance_fs_bg is able to be pending */
483 if (need && excess_cached_nats(sbi))
484 f2fs_balance_fs_bg(sbi);
485
486 /*
487 * We should do GC or end up with checkpoint, if there are so many dirty
488 * dir/node pages without enough free segments.
489 */
490 if (has_not_enough_free_secs(sbi, 0, 0)) {
491 mutex_lock(&sbi->gc_mutex);
492 f2fs_gc(sbi, false, false, NULL_SEGNO);
493 }
494 }
495
496 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
497 {
498 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
499 return;
500
501 /* try to shrink extent cache when there is no enough memory */
502 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
503 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
504
505 /* check the # of cached NAT entries */
506 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
507 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
508
509 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
510 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
511 else
512 f2fs_build_free_nids(sbi, false, false);
513
514 if (!is_idle(sbi) &&
515 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
516 return;
517
518 /* checkpoint is the only way to shrink partial cached entries */
519 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
520 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
521 excess_prefree_segs(sbi) ||
522 excess_dirty_nats(sbi) ||
523 excess_dirty_nodes(sbi) ||
524 f2fs_time_over(sbi, CP_TIME)) {
525 if (test_opt(sbi, DATA_FLUSH)) {
526 struct blk_plug plug;
527
528 blk_start_plug(&plug);
529 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
530 blk_finish_plug(&plug);
531 }
532 f2fs_sync_fs(sbi->sb, true);
533 stat_inc_bg_cp_count(sbi->stat_info);
534 }
535 }
536
537 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
538 struct block_device *bdev)
539 {
540 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
541 int ret;
542
543 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
544 bio_set_dev(bio, bdev);
545 ret = submit_bio_wait(bio);
546 bio_put(bio);
547
548 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
549 test_opt(sbi, FLUSH_MERGE), ret);
550 return ret;
551 }
552
553 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
554 {
555 int ret = 0;
556 int i;
557
558 if (!sbi->s_ndevs)
559 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
560
561 for (i = 0; i < sbi->s_ndevs; i++) {
562 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
563 continue;
564 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
565 if (ret)
566 break;
567 }
568 return ret;
569 }
570
571 static int issue_flush_thread(void *data)
572 {
573 struct f2fs_sb_info *sbi = data;
574 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
575 wait_queue_head_t *q = &fcc->flush_wait_queue;
576 repeat:
577 if (kthread_should_stop())
578 return 0;
579
580 sb_start_intwrite(sbi->sb);
581
582 if (!llist_empty(&fcc->issue_list)) {
583 struct flush_cmd *cmd, *next;
584 int ret;
585
586 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
587 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
588
589 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
590
591 ret = submit_flush_wait(sbi, cmd->ino);
592 atomic_inc(&fcc->issued_flush);
593
594 llist_for_each_entry_safe(cmd, next,
595 fcc->dispatch_list, llnode) {
596 cmd->ret = ret;
597 complete(&cmd->wait);
598 }
599 fcc->dispatch_list = NULL;
600 }
601
602 sb_end_intwrite(sbi->sb);
603
604 wait_event_interruptible(*q,
605 kthread_should_stop() || !llist_empty(&fcc->issue_list));
606 goto repeat;
607 }
608
609 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
610 {
611 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
612 struct flush_cmd cmd;
613 int ret;
614
615 if (test_opt(sbi, NOBARRIER))
616 return 0;
617
618 if (!test_opt(sbi, FLUSH_MERGE)) {
619 ret = submit_flush_wait(sbi, ino);
620 atomic_inc(&fcc->issued_flush);
621 return ret;
622 }
623
624 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
625 ret = submit_flush_wait(sbi, ino);
626 atomic_dec(&fcc->issing_flush);
627
628 atomic_inc(&fcc->issued_flush);
629 return ret;
630 }
631
632 cmd.ino = ino;
633 init_completion(&cmd.wait);
634
635 llist_add(&cmd.llnode, &fcc->issue_list);
636
637 /* update issue_list before we wake up issue_flush thread */
638 smp_mb();
639
640 if (waitqueue_active(&fcc->flush_wait_queue))
641 wake_up(&fcc->flush_wait_queue);
642
643 if (fcc->f2fs_issue_flush) {
644 wait_for_completion(&cmd.wait);
645 atomic_dec(&fcc->issing_flush);
646 } else {
647 struct llist_node *list;
648
649 list = llist_del_all(&fcc->issue_list);
650 if (!list) {
651 wait_for_completion(&cmd.wait);
652 atomic_dec(&fcc->issing_flush);
653 } else {
654 struct flush_cmd *tmp, *next;
655
656 ret = submit_flush_wait(sbi, ino);
657
658 llist_for_each_entry_safe(tmp, next, list, llnode) {
659 if (tmp == &cmd) {
660 cmd.ret = ret;
661 atomic_dec(&fcc->issing_flush);
662 continue;
663 }
664 tmp->ret = ret;
665 complete(&tmp->wait);
666 }
667 }
668 }
669
670 return cmd.ret;
671 }
672
673 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
674 {
675 dev_t dev = sbi->sb->s_bdev->bd_dev;
676 struct flush_cmd_control *fcc;
677 int err = 0;
678
679 if (SM_I(sbi)->fcc_info) {
680 fcc = SM_I(sbi)->fcc_info;
681 if (fcc->f2fs_issue_flush)
682 return err;
683 goto init_thread;
684 }
685
686 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
687 if (!fcc)
688 return -ENOMEM;
689 atomic_set(&fcc->issued_flush, 0);
690 atomic_set(&fcc->issing_flush, 0);
691 init_waitqueue_head(&fcc->flush_wait_queue);
692 init_llist_head(&fcc->issue_list);
693 SM_I(sbi)->fcc_info = fcc;
694 if (!test_opt(sbi, FLUSH_MERGE))
695 return err;
696
697 init_thread:
698 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
699 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
700 if (IS_ERR(fcc->f2fs_issue_flush)) {
701 err = PTR_ERR(fcc->f2fs_issue_flush);
702 kfree(fcc);
703 SM_I(sbi)->fcc_info = NULL;
704 return err;
705 }
706
707 return err;
708 }
709
710 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
711 {
712 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
713
714 if (fcc && fcc->f2fs_issue_flush) {
715 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
716
717 fcc->f2fs_issue_flush = NULL;
718 kthread_stop(flush_thread);
719 }
720 if (free) {
721 kfree(fcc);
722 SM_I(sbi)->fcc_info = NULL;
723 }
724 }
725
726 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
727 {
728 int ret = 0, i;
729
730 if (!sbi->s_ndevs)
731 return 0;
732
733 for (i = 1; i < sbi->s_ndevs; i++) {
734 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
735 continue;
736 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
737 if (ret)
738 break;
739
740 spin_lock(&sbi->dev_lock);
741 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
742 spin_unlock(&sbi->dev_lock);
743 }
744
745 return ret;
746 }
747
748 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
749 enum dirty_type dirty_type)
750 {
751 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
752
753 /* need not be added */
754 if (IS_CURSEG(sbi, segno))
755 return;
756
757 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
758 dirty_i->nr_dirty[dirty_type]++;
759
760 if (dirty_type == DIRTY) {
761 struct seg_entry *sentry = get_seg_entry(sbi, segno);
762 enum dirty_type t = sentry->type;
763
764 if (unlikely(t >= DIRTY)) {
765 f2fs_bug_on(sbi, 1);
766 return;
767 }
768 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
769 dirty_i->nr_dirty[t]++;
770 }
771 }
772
773 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
774 enum dirty_type dirty_type)
775 {
776 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
777
778 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
779 dirty_i->nr_dirty[dirty_type]--;
780
781 if (dirty_type == DIRTY) {
782 struct seg_entry *sentry = get_seg_entry(sbi, segno);
783 enum dirty_type t = sentry->type;
784
785 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
786 dirty_i->nr_dirty[t]--;
787
788 if (get_valid_blocks(sbi, segno, true) == 0)
789 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
790 dirty_i->victim_secmap);
791 }
792 }
793
794 /*
795 * Should not occur error such as -ENOMEM.
796 * Adding dirty entry into seglist is not critical operation.
797 * If a given segment is one of current working segments, it won't be added.
798 */
799 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
800 {
801 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
802 unsigned short valid_blocks;
803
804 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
805 return;
806
807 mutex_lock(&dirty_i->seglist_lock);
808
809 valid_blocks = get_valid_blocks(sbi, segno, false);
810
811 if (valid_blocks == 0) {
812 __locate_dirty_segment(sbi, segno, PRE);
813 __remove_dirty_segment(sbi, segno, DIRTY);
814 } else if (valid_blocks < sbi->blocks_per_seg) {
815 __locate_dirty_segment(sbi, segno, DIRTY);
816 } else {
817 /* Recovery routine with SSR needs this */
818 __remove_dirty_segment(sbi, segno, DIRTY);
819 }
820
821 mutex_unlock(&dirty_i->seglist_lock);
822 }
823
824 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
825 struct block_device *bdev, block_t lstart,
826 block_t start, block_t len)
827 {
828 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
829 struct list_head *pend_list;
830 struct discard_cmd *dc;
831
832 f2fs_bug_on(sbi, !len);
833
834 pend_list = &dcc->pend_list[plist_idx(len)];
835
836 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
837 INIT_LIST_HEAD(&dc->list);
838 dc->bdev = bdev;
839 dc->lstart = lstart;
840 dc->start = start;
841 dc->len = len;
842 dc->ref = 0;
843 dc->state = D_PREP;
844 dc->issuing = 0;
845 dc->error = 0;
846 init_completion(&dc->wait);
847 list_add_tail(&dc->list, pend_list);
848 spin_lock_init(&dc->lock);
849 dc->bio_ref = 0;
850 atomic_inc(&dcc->discard_cmd_cnt);
851 dcc->undiscard_blks += len;
852
853 return dc;
854 }
855
856 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
857 struct block_device *bdev, block_t lstart,
858 block_t start, block_t len,
859 struct rb_node *parent, struct rb_node **p)
860 {
861 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
862 struct discard_cmd *dc;
863
864 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
865
866 rb_link_node(&dc->rb_node, parent, p);
867 rb_insert_color(&dc->rb_node, &dcc->root);
868
869 return dc;
870 }
871
872 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
873 struct discard_cmd *dc)
874 {
875 if (dc->state == D_DONE)
876 atomic_sub(dc->issuing, &dcc->issing_discard);
877
878 list_del(&dc->list);
879 rb_erase(&dc->rb_node, &dcc->root);
880 dcc->undiscard_blks -= dc->len;
881
882 kmem_cache_free(discard_cmd_slab, dc);
883
884 atomic_dec(&dcc->discard_cmd_cnt);
885 }
886
887 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
888 struct discard_cmd *dc)
889 {
890 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
891 unsigned long flags;
892
893 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
894
895 spin_lock_irqsave(&dc->lock, flags);
896 if (dc->bio_ref) {
897 spin_unlock_irqrestore(&dc->lock, flags);
898 return;
899 }
900 spin_unlock_irqrestore(&dc->lock, flags);
901
902 f2fs_bug_on(sbi, dc->ref);
903
904 if (dc->error == -EOPNOTSUPP)
905 dc->error = 0;
906
907 if (dc->error)
908 f2fs_msg(sbi->sb, KERN_INFO,
909 "Issue discard(%u, %u, %u) failed, ret: %d",
910 dc->lstart, dc->start, dc->len, dc->error);
911 __detach_discard_cmd(dcc, dc);
912 }
913
914 static void f2fs_submit_discard_endio(struct bio *bio)
915 {
916 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
917 unsigned long flags;
918
919 dc->error = blk_status_to_errno(bio->bi_status);
920
921 spin_lock_irqsave(&dc->lock, flags);
922 dc->bio_ref--;
923 if (!dc->bio_ref && dc->state == D_SUBMIT) {
924 dc->state = D_DONE;
925 complete_all(&dc->wait);
926 }
927 spin_unlock_irqrestore(&dc->lock, flags);
928 bio_put(bio);
929 }
930
931 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
932 block_t start, block_t end)
933 {
934 #ifdef CONFIG_F2FS_CHECK_FS
935 struct seg_entry *sentry;
936 unsigned int segno;
937 block_t blk = start;
938 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
939 unsigned long *map;
940
941 while (blk < end) {
942 segno = GET_SEGNO(sbi, blk);
943 sentry = get_seg_entry(sbi, segno);
944 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
945
946 if (end < START_BLOCK(sbi, segno + 1))
947 size = GET_BLKOFF_FROM_SEG0(sbi, end);
948 else
949 size = max_blocks;
950 map = (unsigned long *)(sentry->cur_valid_map);
951 offset = __find_rev_next_bit(map, size, offset);
952 f2fs_bug_on(sbi, offset != size);
953 blk = START_BLOCK(sbi, segno + 1);
954 }
955 #endif
956 }
957
958 static void __init_discard_policy(struct f2fs_sb_info *sbi,
959 struct discard_policy *dpolicy,
960 int discard_type, unsigned int granularity)
961 {
962 /* common policy */
963 dpolicy->type = discard_type;
964 dpolicy->sync = true;
965 dpolicy->ordered = false;
966 dpolicy->granularity = granularity;
967
968 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
969 dpolicy->io_aware_gran = MAX_PLIST_NUM;
970
971 if (discard_type == DPOLICY_BG) {
972 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
973 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
974 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
975 dpolicy->io_aware = true;
976 dpolicy->sync = false;
977 dpolicy->ordered = true;
978 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
979 dpolicy->granularity = 1;
980 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
981 }
982 } else if (discard_type == DPOLICY_FORCE) {
983 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
984 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
985 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
986 dpolicy->io_aware = false;
987 } else if (discard_type == DPOLICY_FSTRIM) {
988 dpolicy->io_aware = false;
989 } else if (discard_type == DPOLICY_UMOUNT) {
990 dpolicy->max_requests = UINT_MAX;
991 dpolicy->io_aware = false;
992 }
993 }
994
995 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
996 struct block_device *bdev, block_t lstart,
997 block_t start, block_t len);
998 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
999 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1000 struct discard_policy *dpolicy,
1001 struct discard_cmd *dc,
1002 unsigned int *issued)
1003 {
1004 struct block_device *bdev = dc->bdev;
1005 struct request_queue *q = bdev_get_queue(bdev);
1006 unsigned int max_discard_blocks =
1007 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1008 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1009 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1010 &(dcc->fstrim_list) : &(dcc->wait_list);
1011 int flag = dpolicy->sync ? REQ_SYNC : 0;
1012 block_t lstart, start, len, total_len;
1013 int err = 0;
1014
1015 if (dc->state != D_PREP)
1016 return 0;
1017
1018 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1019 return 0;
1020
1021 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1022
1023 lstart = dc->lstart;
1024 start = dc->start;
1025 len = dc->len;
1026 total_len = len;
1027
1028 dc->len = 0;
1029
1030 while (total_len && *issued < dpolicy->max_requests && !err) {
1031 struct bio *bio = NULL;
1032 unsigned long flags;
1033 bool last = true;
1034
1035 if (len > max_discard_blocks) {
1036 len = max_discard_blocks;
1037 last = false;
1038 }
1039
1040 (*issued)++;
1041 if (*issued == dpolicy->max_requests)
1042 last = true;
1043
1044 dc->len += len;
1045
1046 if (time_to_inject(sbi, FAULT_DISCARD)) {
1047 f2fs_show_injection_info(FAULT_DISCARD);
1048 err = -EIO;
1049 goto submit;
1050 }
1051 err = __blkdev_issue_discard(bdev,
1052 SECTOR_FROM_BLOCK(start),
1053 SECTOR_FROM_BLOCK(len),
1054 GFP_NOFS, 0, &bio);
1055 submit:
1056 if (err) {
1057 spin_lock_irqsave(&dc->lock, flags);
1058 if (dc->state == D_PARTIAL)
1059 dc->state = D_SUBMIT;
1060 spin_unlock_irqrestore(&dc->lock, flags);
1061
1062 break;
1063 }
1064
1065 f2fs_bug_on(sbi, !bio);
1066
1067 /*
1068 * should keep before submission to avoid D_DONE
1069 * right away
1070 */
1071 spin_lock_irqsave(&dc->lock, flags);
1072 if (last)
1073 dc->state = D_SUBMIT;
1074 else
1075 dc->state = D_PARTIAL;
1076 dc->bio_ref++;
1077 spin_unlock_irqrestore(&dc->lock, flags);
1078
1079 atomic_inc(&dcc->issing_discard);
1080 dc->issuing++;
1081 list_move_tail(&dc->list, wait_list);
1082
1083 /* sanity check on discard range */
1084 __check_sit_bitmap(sbi, start, start + len);
1085
1086 bio->bi_private = dc;
1087 bio->bi_end_io = f2fs_submit_discard_endio;
1088 bio->bi_opf |= flag;
1089 submit_bio(bio);
1090
1091 atomic_inc(&dcc->issued_discard);
1092
1093 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1094
1095 lstart += len;
1096 start += len;
1097 total_len -= len;
1098 len = total_len;
1099 }
1100
1101 if (!err && len)
1102 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1103 return err;
1104 }
1105
1106 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1107 struct block_device *bdev, block_t lstart,
1108 block_t start, block_t len,
1109 struct rb_node **insert_p,
1110 struct rb_node *insert_parent)
1111 {
1112 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1113 struct rb_node **p;
1114 struct rb_node *parent = NULL;
1115 struct discard_cmd *dc = NULL;
1116
1117 if (insert_p && insert_parent) {
1118 parent = insert_parent;
1119 p = insert_p;
1120 goto do_insert;
1121 }
1122
1123 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1124 do_insert:
1125 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1126 if (!dc)
1127 return NULL;
1128
1129 return dc;
1130 }
1131
1132 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1133 struct discard_cmd *dc)
1134 {
1135 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1136 }
1137
1138 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1139 struct discard_cmd *dc, block_t blkaddr)
1140 {
1141 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1142 struct discard_info di = dc->di;
1143 bool modified = false;
1144
1145 if (dc->state == D_DONE || dc->len == 1) {
1146 __remove_discard_cmd(sbi, dc);
1147 return;
1148 }
1149
1150 dcc->undiscard_blks -= di.len;
1151
1152 if (blkaddr > di.lstart) {
1153 dc->len = blkaddr - dc->lstart;
1154 dcc->undiscard_blks += dc->len;
1155 __relocate_discard_cmd(dcc, dc);
1156 modified = true;
1157 }
1158
1159 if (blkaddr < di.lstart + di.len - 1) {
1160 if (modified) {
1161 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1162 di.start + blkaddr + 1 - di.lstart,
1163 di.lstart + di.len - 1 - blkaddr,
1164 NULL, NULL);
1165 } else {
1166 dc->lstart++;
1167 dc->len--;
1168 dc->start++;
1169 dcc->undiscard_blks += dc->len;
1170 __relocate_discard_cmd(dcc, dc);
1171 }
1172 }
1173 }
1174
1175 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1176 struct block_device *bdev, block_t lstart,
1177 block_t start, block_t len)
1178 {
1179 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1180 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1181 struct discard_cmd *dc;
1182 struct discard_info di = {0};
1183 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1184 struct request_queue *q = bdev_get_queue(bdev);
1185 unsigned int max_discard_blocks =
1186 SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1187 block_t end = lstart + len;
1188
1189 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1190 NULL, lstart,
1191 (struct rb_entry **)&prev_dc,
1192 (struct rb_entry **)&next_dc,
1193 &insert_p, &insert_parent, true);
1194 if (dc)
1195 prev_dc = dc;
1196
1197 if (!prev_dc) {
1198 di.lstart = lstart;
1199 di.len = next_dc ? next_dc->lstart - lstart : len;
1200 di.len = min(di.len, len);
1201 di.start = start;
1202 }
1203
1204 while (1) {
1205 struct rb_node *node;
1206 bool merged = false;
1207 struct discard_cmd *tdc = NULL;
1208
1209 if (prev_dc) {
1210 di.lstart = prev_dc->lstart + prev_dc->len;
1211 if (di.lstart < lstart)
1212 di.lstart = lstart;
1213 if (di.lstart >= end)
1214 break;
1215
1216 if (!next_dc || next_dc->lstart > end)
1217 di.len = end - di.lstart;
1218 else
1219 di.len = next_dc->lstart - di.lstart;
1220 di.start = start + di.lstart - lstart;
1221 }
1222
1223 if (!di.len)
1224 goto next;
1225
1226 if (prev_dc && prev_dc->state == D_PREP &&
1227 prev_dc->bdev == bdev &&
1228 __is_discard_back_mergeable(&di, &prev_dc->di,
1229 max_discard_blocks)) {
1230 prev_dc->di.len += di.len;
1231 dcc->undiscard_blks += di.len;
1232 __relocate_discard_cmd(dcc, prev_dc);
1233 di = prev_dc->di;
1234 tdc = prev_dc;
1235 merged = true;
1236 }
1237
1238 if (next_dc && next_dc->state == D_PREP &&
1239 next_dc->bdev == bdev &&
1240 __is_discard_front_mergeable(&di, &next_dc->di,
1241 max_discard_blocks)) {
1242 next_dc->di.lstart = di.lstart;
1243 next_dc->di.len += di.len;
1244 next_dc->di.start = di.start;
1245 dcc->undiscard_blks += di.len;
1246 __relocate_discard_cmd(dcc, next_dc);
1247 if (tdc)
1248 __remove_discard_cmd(sbi, tdc);
1249 merged = true;
1250 }
1251
1252 if (!merged) {
1253 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1254 di.len, NULL, NULL);
1255 }
1256 next:
1257 prev_dc = next_dc;
1258 if (!prev_dc)
1259 break;
1260
1261 node = rb_next(&prev_dc->rb_node);
1262 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1263 }
1264 }
1265
1266 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1267 struct block_device *bdev, block_t blkstart, block_t blklen)
1268 {
1269 block_t lblkstart = blkstart;
1270
1271 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1272
1273 if (sbi->s_ndevs) {
1274 int devi = f2fs_target_device_index(sbi, blkstart);
1275
1276 blkstart -= FDEV(devi).start_blk;
1277 }
1278 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1279 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1280 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1281 return 0;
1282 }
1283
1284 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1285 struct discard_policy *dpolicy)
1286 {
1287 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1288 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1289 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1290 struct discard_cmd *dc;
1291 struct blk_plug plug;
1292 unsigned int pos = dcc->next_pos;
1293 unsigned int issued = 0;
1294 bool io_interrupted = false;
1295
1296 mutex_lock(&dcc->cmd_lock);
1297 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1298 NULL, pos,
1299 (struct rb_entry **)&prev_dc,
1300 (struct rb_entry **)&next_dc,
1301 &insert_p, &insert_parent, true);
1302 if (!dc)
1303 dc = next_dc;
1304
1305 blk_start_plug(&plug);
1306
1307 while (dc) {
1308 struct rb_node *node;
1309 int err = 0;
1310
1311 if (dc->state != D_PREP)
1312 goto next;
1313
1314 if (dpolicy->io_aware && !is_idle(sbi)) {
1315 io_interrupted = true;
1316 break;
1317 }
1318
1319 dcc->next_pos = dc->lstart + dc->len;
1320 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1321
1322 if (issued >= dpolicy->max_requests)
1323 break;
1324 next:
1325 node = rb_next(&dc->rb_node);
1326 if (err)
1327 __remove_discard_cmd(sbi, dc);
1328 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1329 }
1330
1331 blk_finish_plug(&plug);
1332
1333 if (!dc)
1334 dcc->next_pos = 0;
1335
1336 mutex_unlock(&dcc->cmd_lock);
1337
1338 if (!issued && io_interrupted)
1339 issued = -1;
1340
1341 return issued;
1342 }
1343
1344 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1345 struct discard_policy *dpolicy)
1346 {
1347 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1348 struct list_head *pend_list;
1349 struct discard_cmd *dc, *tmp;
1350 struct blk_plug plug;
1351 int i, issued = 0;
1352 bool io_interrupted = false;
1353
1354 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1355 if (i + 1 < dpolicy->granularity)
1356 break;
1357
1358 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1359 return __issue_discard_cmd_orderly(sbi, dpolicy);
1360
1361 pend_list = &dcc->pend_list[i];
1362
1363 mutex_lock(&dcc->cmd_lock);
1364 if (list_empty(pend_list))
1365 goto next;
1366 if (unlikely(dcc->rbtree_check))
1367 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1368 &dcc->root));
1369 blk_start_plug(&plug);
1370 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1371 f2fs_bug_on(sbi, dc->state != D_PREP);
1372
1373 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1374 !is_idle(sbi)) {
1375 io_interrupted = true;
1376 break;
1377 }
1378
1379 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1380
1381 if (issued >= dpolicy->max_requests)
1382 break;
1383 }
1384 blk_finish_plug(&plug);
1385 next:
1386 mutex_unlock(&dcc->cmd_lock);
1387
1388 if (issued >= dpolicy->max_requests || io_interrupted)
1389 break;
1390 }
1391
1392 if (!issued && io_interrupted)
1393 issued = -1;
1394
1395 return issued;
1396 }
1397
1398 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1399 {
1400 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1401 struct list_head *pend_list;
1402 struct discard_cmd *dc, *tmp;
1403 int i;
1404 bool dropped = false;
1405
1406 mutex_lock(&dcc->cmd_lock);
1407 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1408 pend_list = &dcc->pend_list[i];
1409 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1410 f2fs_bug_on(sbi, dc->state != D_PREP);
1411 __remove_discard_cmd(sbi, dc);
1412 dropped = true;
1413 }
1414 }
1415 mutex_unlock(&dcc->cmd_lock);
1416
1417 return dropped;
1418 }
1419
1420 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1421 {
1422 __drop_discard_cmd(sbi);
1423 }
1424
1425 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1426 struct discard_cmd *dc)
1427 {
1428 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1429 unsigned int len = 0;
1430
1431 wait_for_completion_io(&dc->wait);
1432 mutex_lock(&dcc->cmd_lock);
1433 f2fs_bug_on(sbi, dc->state != D_DONE);
1434 dc->ref--;
1435 if (!dc->ref) {
1436 if (!dc->error)
1437 len = dc->len;
1438 __remove_discard_cmd(sbi, dc);
1439 }
1440 mutex_unlock(&dcc->cmd_lock);
1441
1442 return len;
1443 }
1444
1445 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1446 struct discard_policy *dpolicy,
1447 block_t start, block_t end)
1448 {
1449 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1450 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1451 &(dcc->fstrim_list) : &(dcc->wait_list);
1452 struct discard_cmd *dc, *tmp;
1453 bool need_wait;
1454 unsigned int trimmed = 0;
1455
1456 next:
1457 need_wait = false;
1458
1459 mutex_lock(&dcc->cmd_lock);
1460 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1461 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1462 continue;
1463 if (dc->len < dpolicy->granularity)
1464 continue;
1465 if (dc->state == D_DONE && !dc->ref) {
1466 wait_for_completion_io(&dc->wait);
1467 if (!dc->error)
1468 trimmed += dc->len;
1469 __remove_discard_cmd(sbi, dc);
1470 } else {
1471 dc->ref++;
1472 need_wait = true;
1473 break;
1474 }
1475 }
1476 mutex_unlock(&dcc->cmd_lock);
1477
1478 if (need_wait) {
1479 trimmed += __wait_one_discard_bio(sbi, dc);
1480 goto next;
1481 }
1482
1483 return trimmed;
1484 }
1485
1486 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1487 struct discard_policy *dpolicy)
1488 {
1489 struct discard_policy dp;
1490 unsigned int discard_blks;
1491
1492 if (dpolicy)
1493 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1494
1495 /* wait all */
1496 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1497 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1498 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1499 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1500
1501 return discard_blks;
1502 }
1503
1504 /* This should be covered by global mutex, &sit_i->sentry_lock */
1505 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1506 {
1507 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1508 struct discard_cmd *dc;
1509 bool need_wait = false;
1510
1511 mutex_lock(&dcc->cmd_lock);
1512 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1513 NULL, blkaddr);
1514 if (dc) {
1515 if (dc->state == D_PREP) {
1516 __punch_discard_cmd(sbi, dc, blkaddr);
1517 } else {
1518 dc->ref++;
1519 need_wait = true;
1520 }
1521 }
1522 mutex_unlock(&dcc->cmd_lock);
1523
1524 if (need_wait)
1525 __wait_one_discard_bio(sbi, dc);
1526 }
1527
1528 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1529 {
1530 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1531
1532 if (dcc && dcc->f2fs_issue_discard) {
1533 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1534
1535 dcc->f2fs_issue_discard = NULL;
1536 kthread_stop(discard_thread);
1537 }
1538 }
1539
1540 /* This comes from f2fs_put_super */
1541 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1542 {
1543 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1544 struct discard_policy dpolicy;
1545 bool dropped;
1546
1547 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1548 dcc->discard_granularity);
1549 __issue_discard_cmd(sbi, &dpolicy);
1550 dropped = __drop_discard_cmd(sbi);
1551
1552 /* just to make sure there is no pending discard commands */
1553 __wait_all_discard_cmd(sbi, NULL);
1554
1555 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1556 return dropped;
1557 }
1558
1559 static int issue_discard_thread(void *data)
1560 {
1561 struct f2fs_sb_info *sbi = data;
1562 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563 wait_queue_head_t *q = &dcc->discard_wait_queue;
1564 struct discard_policy dpolicy;
1565 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1566 int issued;
1567
1568 set_freezable();
1569
1570 do {
1571 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1572 dcc->discard_granularity);
1573
1574 wait_event_interruptible_timeout(*q,
1575 kthread_should_stop() || freezing(current) ||
1576 dcc->discard_wake,
1577 msecs_to_jiffies(wait_ms));
1578
1579 if (dcc->discard_wake)
1580 dcc->discard_wake = 0;
1581
1582 if (try_to_freeze())
1583 continue;
1584 if (f2fs_readonly(sbi->sb))
1585 continue;
1586 if (kthread_should_stop())
1587 return 0;
1588 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1589 wait_ms = dpolicy.max_interval;
1590 continue;
1591 }
1592
1593 if (sbi->gc_mode == GC_URGENT)
1594 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1595
1596 sb_start_intwrite(sbi->sb);
1597
1598 issued = __issue_discard_cmd(sbi, &dpolicy);
1599 if (issued > 0) {
1600 __wait_all_discard_cmd(sbi, &dpolicy);
1601 wait_ms = dpolicy.min_interval;
1602 } else if (issued == -1){
1603 wait_ms = dpolicy.mid_interval;
1604 } else {
1605 wait_ms = dpolicy.max_interval;
1606 }
1607
1608 sb_end_intwrite(sbi->sb);
1609
1610 } while (!kthread_should_stop());
1611 return 0;
1612 }
1613
1614 #ifdef CONFIG_BLK_DEV_ZONED
1615 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1616 struct block_device *bdev, block_t blkstart, block_t blklen)
1617 {
1618 sector_t sector, nr_sects;
1619 block_t lblkstart = blkstart;
1620 int devi = 0;
1621
1622 if (sbi->s_ndevs) {
1623 devi = f2fs_target_device_index(sbi, blkstart);
1624 blkstart -= FDEV(devi).start_blk;
1625 }
1626
1627 /*
1628 * We need to know the type of the zone: for conventional zones,
1629 * use regular discard if the drive supports it. For sequential
1630 * zones, reset the zone write pointer.
1631 */
1632 switch (get_blkz_type(sbi, bdev, blkstart)) {
1633
1634 case BLK_ZONE_TYPE_CONVENTIONAL:
1635 if (!blk_queue_discard(bdev_get_queue(bdev)))
1636 return 0;
1637 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1638 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1639 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1640 sector = SECTOR_FROM_BLOCK(blkstart);
1641 nr_sects = SECTOR_FROM_BLOCK(blklen);
1642
1643 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1644 nr_sects != bdev_zone_sectors(bdev)) {
1645 f2fs_msg(sbi->sb, KERN_INFO,
1646 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1647 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1648 blkstart, blklen);
1649 return -EIO;
1650 }
1651 trace_f2fs_issue_reset_zone(bdev, blkstart);
1652 return blkdev_reset_zones(bdev, sector,
1653 nr_sects, GFP_NOFS);
1654 default:
1655 /* Unknown zone type: broken device ? */
1656 return -EIO;
1657 }
1658 }
1659 #endif
1660
1661 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1662 struct block_device *bdev, block_t blkstart, block_t blklen)
1663 {
1664 #ifdef CONFIG_BLK_DEV_ZONED
1665 if (f2fs_sb_has_blkzoned(sbi->sb) &&
1666 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1667 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1668 #endif
1669 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1670 }
1671
1672 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1673 block_t blkstart, block_t blklen)
1674 {
1675 sector_t start = blkstart, len = 0;
1676 struct block_device *bdev;
1677 struct seg_entry *se;
1678 unsigned int offset;
1679 block_t i;
1680 int err = 0;
1681
1682 bdev = f2fs_target_device(sbi, blkstart, NULL);
1683
1684 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1685 if (i != start) {
1686 struct block_device *bdev2 =
1687 f2fs_target_device(sbi, i, NULL);
1688
1689 if (bdev2 != bdev) {
1690 err = __issue_discard_async(sbi, bdev,
1691 start, len);
1692 if (err)
1693 return err;
1694 bdev = bdev2;
1695 start = i;
1696 len = 0;
1697 }
1698 }
1699
1700 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1701 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1702
1703 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1704 sbi->discard_blks--;
1705 }
1706
1707 if (len)
1708 err = __issue_discard_async(sbi, bdev, start, len);
1709 return err;
1710 }
1711
1712 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1713 bool check_only)
1714 {
1715 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1716 int max_blocks = sbi->blocks_per_seg;
1717 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1718 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1719 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1720 unsigned long *discard_map = (unsigned long *)se->discard_map;
1721 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1722 unsigned int start = 0, end = -1;
1723 bool force = (cpc->reason & CP_DISCARD);
1724 struct discard_entry *de = NULL;
1725 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1726 int i;
1727
1728 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1729 return false;
1730
1731 if (!force) {
1732 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1733 SM_I(sbi)->dcc_info->nr_discards >=
1734 SM_I(sbi)->dcc_info->max_discards)
1735 return false;
1736 }
1737
1738 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1739 for (i = 0; i < entries; i++)
1740 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1741 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1742
1743 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1744 SM_I(sbi)->dcc_info->max_discards) {
1745 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1746 if (start >= max_blocks)
1747 break;
1748
1749 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1750 if (force && start && end != max_blocks
1751 && (end - start) < cpc->trim_minlen)
1752 continue;
1753
1754 if (check_only)
1755 return true;
1756
1757 if (!de) {
1758 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1759 GFP_F2FS_ZERO);
1760 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1761 list_add_tail(&de->list, head);
1762 }
1763
1764 for (i = start; i < end; i++)
1765 __set_bit_le(i, (void *)de->discard_map);
1766
1767 SM_I(sbi)->dcc_info->nr_discards += end - start;
1768 }
1769 return false;
1770 }
1771
1772 static void release_discard_addr(struct discard_entry *entry)
1773 {
1774 list_del(&entry->list);
1775 kmem_cache_free(discard_entry_slab, entry);
1776 }
1777
1778 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1779 {
1780 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1781 struct discard_entry *entry, *this;
1782
1783 /* drop caches */
1784 list_for_each_entry_safe(entry, this, head, list)
1785 release_discard_addr(entry);
1786 }
1787
1788 /*
1789 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1790 */
1791 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1792 {
1793 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1794 unsigned int segno;
1795
1796 mutex_lock(&dirty_i->seglist_lock);
1797 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1798 __set_test_and_free(sbi, segno);
1799 mutex_unlock(&dirty_i->seglist_lock);
1800 }
1801
1802 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1803 struct cp_control *cpc)
1804 {
1805 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1806 struct list_head *head = &dcc->entry_list;
1807 struct discard_entry *entry, *this;
1808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1809 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1810 unsigned int start = 0, end = -1;
1811 unsigned int secno, start_segno;
1812 bool force = (cpc->reason & CP_DISCARD);
1813 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
1814
1815 mutex_lock(&dirty_i->seglist_lock);
1816
1817 while (1) {
1818 int i;
1819
1820 if (need_align && end != -1)
1821 end--;
1822 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1823 if (start >= MAIN_SEGS(sbi))
1824 break;
1825 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1826 start + 1);
1827
1828 if (need_align) {
1829 start = rounddown(start, sbi->segs_per_sec);
1830 end = roundup(end, sbi->segs_per_sec);
1831 }
1832
1833 for (i = start; i < end; i++) {
1834 if (test_and_clear_bit(i, prefree_map))
1835 dirty_i->nr_dirty[PRE]--;
1836 }
1837
1838 if (!test_opt(sbi, DISCARD))
1839 continue;
1840
1841 if (force && start >= cpc->trim_start &&
1842 (end - 1) <= cpc->trim_end)
1843 continue;
1844
1845 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1846 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1847 (end - start) << sbi->log_blocks_per_seg);
1848 continue;
1849 }
1850 next:
1851 secno = GET_SEC_FROM_SEG(sbi, start);
1852 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1853 if (!IS_CURSEC(sbi, secno) &&
1854 !get_valid_blocks(sbi, start, true))
1855 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1856 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1857
1858 start = start_segno + sbi->segs_per_sec;
1859 if (start < end)
1860 goto next;
1861 else
1862 end = start - 1;
1863 }
1864 mutex_unlock(&dirty_i->seglist_lock);
1865
1866 /* send small discards */
1867 list_for_each_entry_safe(entry, this, head, list) {
1868 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1869 bool is_valid = test_bit_le(0, entry->discard_map);
1870
1871 find_next:
1872 if (is_valid) {
1873 next_pos = find_next_zero_bit_le(entry->discard_map,
1874 sbi->blocks_per_seg, cur_pos);
1875 len = next_pos - cur_pos;
1876
1877 if (f2fs_sb_has_blkzoned(sbi->sb) ||
1878 (force && len < cpc->trim_minlen))
1879 goto skip;
1880
1881 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1882 len);
1883 total_len += len;
1884 } else {
1885 next_pos = find_next_bit_le(entry->discard_map,
1886 sbi->blocks_per_seg, cur_pos);
1887 }
1888 skip:
1889 cur_pos = next_pos;
1890 is_valid = !is_valid;
1891
1892 if (cur_pos < sbi->blocks_per_seg)
1893 goto find_next;
1894
1895 release_discard_addr(entry);
1896 dcc->nr_discards -= total_len;
1897 }
1898
1899 wake_up_discard_thread(sbi, false);
1900 }
1901
1902 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1903 {
1904 dev_t dev = sbi->sb->s_bdev->bd_dev;
1905 struct discard_cmd_control *dcc;
1906 int err = 0, i;
1907
1908 if (SM_I(sbi)->dcc_info) {
1909 dcc = SM_I(sbi)->dcc_info;
1910 goto init_thread;
1911 }
1912
1913 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1914 if (!dcc)
1915 return -ENOMEM;
1916
1917 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1918 INIT_LIST_HEAD(&dcc->entry_list);
1919 for (i = 0; i < MAX_PLIST_NUM; i++)
1920 INIT_LIST_HEAD(&dcc->pend_list[i]);
1921 INIT_LIST_HEAD(&dcc->wait_list);
1922 INIT_LIST_HEAD(&dcc->fstrim_list);
1923 mutex_init(&dcc->cmd_lock);
1924 atomic_set(&dcc->issued_discard, 0);
1925 atomic_set(&dcc->issing_discard, 0);
1926 atomic_set(&dcc->discard_cmd_cnt, 0);
1927 dcc->nr_discards = 0;
1928 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1929 dcc->undiscard_blks = 0;
1930 dcc->next_pos = 0;
1931 dcc->root = RB_ROOT;
1932 dcc->rbtree_check = false;
1933
1934 init_waitqueue_head(&dcc->discard_wait_queue);
1935 SM_I(sbi)->dcc_info = dcc;
1936 init_thread:
1937 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1938 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1939 if (IS_ERR(dcc->f2fs_issue_discard)) {
1940 err = PTR_ERR(dcc->f2fs_issue_discard);
1941 kfree(dcc);
1942 SM_I(sbi)->dcc_info = NULL;
1943 return err;
1944 }
1945
1946 return err;
1947 }
1948
1949 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1950 {
1951 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1952
1953 if (!dcc)
1954 return;
1955
1956 f2fs_stop_discard_thread(sbi);
1957
1958 kfree(dcc);
1959 SM_I(sbi)->dcc_info = NULL;
1960 }
1961
1962 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1963 {
1964 struct sit_info *sit_i = SIT_I(sbi);
1965
1966 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1967 sit_i->dirty_sentries++;
1968 return false;
1969 }
1970
1971 return true;
1972 }
1973
1974 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1975 unsigned int segno, int modified)
1976 {
1977 struct seg_entry *se = get_seg_entry(sbi, segno);
1978 se->type = type;
1979 if (modified)
1980 __mark_sit_entry_dirty(sbi, segno);
1981 }
1982
1983 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1984 {
1985 struct seg_entry *se;
1986 unsigned int segno, offset;
1987 long int new_vblocks;
1988 bool exist;
1989 #ifdef CONFIG_F2FS_CHECK_FS
1990 bool mir_exist;
1991 #endif
1992
1993 segno = GET_SEGNO(sbi, blkaddr);
1994
1995 se = get_seg_entry(sbi, segno);
1996 new_vblocks = se->valid_blocks + del;
1997 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1998
1999 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2000 (new_vblocks > sbi->blocks_per_seg)));
2001
2002 se->valid_blocks = new_vblocks;
2003 se->mtime = get_mtime(sbi, false);
2004 if (se->mtime > SIT_I(sbi)->max_mtime)
2005 SIT_I(sbi)->max_mtime = se->mtime;
2006
2007 /* Update valid block bitmap */
2008 if (del > 0) {
2009 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2010 #ifdef CONFIG_F2FS_CHECK_FS
2011 mir_exist = f2fs_test_and_set_bit(offset,
2012 se->cur_valid_map_mir);
2013 if (unlikely(exist != mir_exist)) {
2014 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2015 "when setting bitmap, blk:%u, old bit:%d",
2016 blkaddr, exist);
2017 f2fs_bug_on(sbi, 1);
2018 }
2019 #endif
2020 if (unlikely(exist)) {
2021 f2fs_msg(sbi->sb, KERN_ERR,
2022 "Bitmap was wrongly set, blk:%u", blkaddr);
2023 f2fs_bug_on(sbi, 1);
2024 se->valid_blocks--;
2025 del = 0;
2026 }
2027
2028 if (f2fs_discard_en(sbi) &&
2029 !f2fs_test_and_set_bit(offset, se->discard_map))
2030 sbi->discard_blks--;
2031
2032 /* don't overwrite by SSR to keep node chain */
2033 if (IS_NODESEG(se->type)) {
2034 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2035 se->ckpt_valid_blocks++;
2036 }
2037 } else {
2038 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2039 #ifdef CONFIG_F2FS_CHECK_FS
2040 mir_exist = f2fs_test_and_clear_bit(offset,
2041 se->cur_valid_map_mir);
2042 if (unlikely(exist != mir_exist)) {
2043 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2044 "when clearing bitmap, blk:%u, old bit:%d",
2045 blkaddr, exist);
2046 f2fs_bug_on(sbi, 1);
2047 }
2048 #endif
2049 if (unlikely(!exist)) {
2050 f2fs_msg(sbi->sb, KERN_ERR,
2051 "Bitmap was wrongly cleared, blk:%u", blkaddr);
2052 f2fs_bug_on(sbi, 1);
2053 se->valid_blocks++;
2054 del = 0;
2055 }
2056
2057 if (f2fs_discard_en(sbi) &&
2058 f2fs_test_and_clear_bit(offset, se->discard_map))
2059 sbi->discard_blks++;
2060 }
2061 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2062 se->ckpt_valid_blocks += del;
2063
2064 __mark_sit_entry_dirty(sbi, segno);
2065
2066 /* update total number of valid blocks to be written in ckpt area */
2067 SIT_I(sbi)->written_valid_blocks += del;
2068
2069 if (sbi->segs_per_sec > 1)
2070 get_sec_entry(sbi, segno)->valid_blocks += del;
2071 }
2072
2073 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2074 {
2075 unsigned int segno = GET_SEGNO(sbi, addr);
2076 struct sit_info *sit_i = SIT_I(sbi);
2077
2078 f2fs_bug_on(sbi, addr == NULL_ADDR);
2079 if (addr == NEW_ADDR)
2080 return;
2081
2082 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2083
2084 /* add it into sit main buffer */
2085 down_write(&sit_i->sentry_lock);
2086
2087 update_sit_entry(sbi, addr, -1);
2088
2089 /* add it into dirty seglist */
2090 locate_dirty_segment(sbi, segno);
2091
2092 up_write(&sit_i->sentry_lock);
2093 }
2094
2095 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2096 {
2097 struct sit_info *sit_i = SIT_I(sbi);
2098 unsigned int segno, offset;
2099 struct seg_entry *se;
2100 bool is_cp = false;
2101
2102 if (!is_valid_data_blkaddr(sbi, blkaddr))
2103 return true;
2104
2105 down_read(&sit_i->sentry_lock);
2106
2107 segno = GET_SEGNO(sbi, blkaddr);
2108 se = get_seg_entry(sbi, segno);
2109 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2110
2111 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2112 is_cp = true;
2113
2114 up_read(&sit_i->sentry_lock);
2115
2116 return is_cp;
2117 }
2118
2119 /*
2120 * This function should be resided under the curseg_mutex lock
2121 */
2122 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2123 struct f2fs_summary *sum)
2124 {
2125 struct curseg_info *curseg = CURSEG_I(sbi, type);
2126 void *addr = curseg->sum_blk;
2127 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2128 memcpy(addr, sum, sizeof(struct f2fs_summary));
2129 }
2130
2131 /*
2132 * Calculate the number of current summary pages for writing
2133 */
2134 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2135 {
2136 int valid_sum_count = 0;
2137 int i, sum_in_page;
2138
2139 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2140 if (sbi->ckpt->alloc_type[i] == SSR)
2141 valid_sum_count += sbi->blocks_per_seg;
2142 else {
2143 if (for_ra)
2144 valid_sum_count += le16_to_cpu(
2145 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2146 else
2147 valid_sum_count += curseg_blkoff(sbi, i);
2148 }
2149 }
2150
2151 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2152 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2153 if (valid_sum_count <= sum_in_page)
2154 return 1;
2155 else if ((valid_sum_count - sum_in_page) <=
2156 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2157 return 2;
2158 return 3;
2159 }
2160
2161 /*
2162 * Caller should put this summary page
2163 */
2164 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2165 {
2166 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2167 }
2168
2169 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2170 void *src, block_t blk_addr)
2171 {
2172 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2173
2174 memcpy(page_address(page), src, PAGE_SIZE);
2175 set_page_dirty(page);
2176 f2fs_put_page(page, 1);
2177 }
2178
2179 static void write_sum_page(struct f2fs_sb_info *sbi,
2180 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2181 {
2182 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2183 }
2184
2185 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2186 int type, block_t blk_addr)
2187 {
2188 struct curseg_info *curseg = CURSEG_I(sbi, type);
2189 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2190 struct f2fs_summary_block *src = curseg->sum_blk;
2191 struct f2fs_summary_block *dst;
2192
2193 dst = (struct f2fs_summary_block *)page_address(page);
2194 memset(dst, 0, PAGE_SIZE);
2195
2196 mutex_lock(&curseg->curseg_mutex);
2197
2198 down_read(&curseg->journal_rwsem);
2199 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2200 up_read(&curseg->journal_rwsem);
2201
2202 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2203 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2204
2205 mutex_unlock(&curseg->curseg_mutex);
2206
2207 set_page_dirty(page);
2208 f2fs_put_page(page, 1);
2209 }
2210
2211 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2212 {
2213 struct curseg_info *curseg = CURSEG_I(sbi, type);
2214 unsigned int segno = curseg->segno + 1;
2215 struct free_segmap_info *free_i = FREE_I(sbi);
2216
2217 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2218 return !test_bit(segno, free_i->free_segmap);
2219 return 0;
2220 }
2221
2222 /*
2223 * Find a new segment from the free segments bitmap to right order
2224 * This function should be returned with success, otherwise BUG
2225 */
2226 static void get_new_segment(struct f2fs_sb_info *sbi,
2227 unsigned int *newseg, bool new_sec, int dir)
2228 {
2229 struct free_segmap_info *free_i = FREE_I(sbi);
2230 unsigned int segno, secno, zoneno;
2231 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2232 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2233 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2234 unsigned int left_start = hint;
2235 bool init = true;
2236 int go_left = 0;
2237 int i;
2238
2239 spin_lock(&free_i->segmap_lock);
2240
2241 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2242 segno = find_next_zero_bit(free_i->free_segmap,
2243 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2244 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2245 goto got_it;
2246 }
2247 find_other_zone:
2248 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2249 if (secno >= MAIN_SECS(sbi)) {
2250 if (dir == ALLOC_RIGHT) {
2251 secno = find_next_zero_bit(free_i->free_secmap,
2252 MAIN_SECS(sbi), 0);
2253 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2254 } else {
2255 go_left = 1;
2256 left_start = hint - 1;
2257 }
2258 }
2259 if (go_left == 0)
2260 goto skip_left;
2261
2262 while (test_bit(left_start, free_i->free_secmap)) {
2263 if (left_start > 0) {
2264 left_start--;
2265 continue;
2266 }
2267 left_start = find_next_zero_bit(free_i->free_secmap,
2268 MAIN_SECS(sbi), 0);
2269 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2270 break;
2271 }
2272 secno = left_start;
2273 skip_left:
2274 segno = GET_SEG_FROM_SEC(sbi, secno);
2275 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2276
2277 /* give up on finding another zone */
2278 if (!init)
2279 goto got_it;
2280 if (sbi->secs_per_zone == 1)
2281 goto got_it;
2282 if (zoneno == old_zoneno)
2283 goto got_it;
2284 if (dir == ALLOC_LEFT) {
2285 if (!go_left && zoneno + 1 >= total_zones)
2286 goto got_it;
2287 if (go_left && zoneno == 0)
2288 goto got_it;
2289 }
2290 for (i = 0; i < NR_CURSEG_TYPE; i++)
2291 if (CURSEG_I(sbi, i)->zone == zoneno)
2292 break;
2293
2294 if (i < NR_CURSEG_TYPE) {
2295 /* zone is in user, try another */
2296 if (go_left)
2297 hint = zoneno * sbi->secs_per_zone - 1;
2298 else if (zoneno + 1 >= total_zones)
2299 hint = 0;
2300 else
2301 hint = (zoneno + 1) * sbi->secs_per_zone;
2302 init = false;
2303 goto find_other_zone;
2304 }
2305 got_it:
2306 /* set it as dirty segment in free segmap */
2307 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2308 __set_inuse(sbi, segno);
2309 *newseg = segno;
2310 spin_unlock(&free_i->segmap_lock);
2311 }
2312
2313 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2314 {
2315 struct curseg_info *curseg = CURSEG_I(sbi, type);
2316 struct summary_footer *sum_footer;
2317
2318 curseg->segno = curseg->next_segno;
2319 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2320 curseg->next_blkoff = 0;
2321 curseg->next_segno = NULL_SEGNO;
2322
2323 sum_footer = &(curseg->sum_blk->footer);
2324 memset(sum_footer, 0, sizeof(struct summary_footer));
2325 if (IS_DATASEG(type))
2326 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2327 if (IS_NODESEG(type))
2328 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2329 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2330 }
2331
2332 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2333 {
2334 /* if segs_per_sec is large than 1, we need to keep original policy. */
2335 if (sbi->segs_per_sec != 1)
2336 return CURSEG_I(sbi, type)->segno;
2337
2338 if (test_opt(sbi, NOHEAP) &&
2339 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2340 return 0;
2341
2342 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2343 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2344
2345 /* find segments from 0 to reuse freed segments */
2346 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2347 return 0;
2348
2349 return CURSEG_I(sbi, type)->segno;
2350 }
2351
2352 /*
2353 * Allocate a current working segment.
2354 * This function always allocates a free segment in LFS manner.
2355 */
2356 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2357 {
2358 struct curseg_info *curseg = CURSEG_I(sbi, type);
2359 unsigned int segno = curseg->segno;
2360 int dir = ALLOC_LEFT;
2361
2362 write_sum_page(sbi, curseg->sum_blk,
2363 GET_SUM_BLOCK(sbi, segno));
2364 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2365 dir = ALLOC_RIGHT;
2366
2367 if (test_opt(sbi, NOHEAP))
2368 dir = ALLOC_RIGHT;
2369
2370 segno = __get_next_segno(sbi, type);
2371 get_new_segment(sbi, &segno, new_sec, dir);
2372 curseg->next_segno = segno;
2373 reset_curseg(sbi, type, 1);
2374 curseg->alloc_type = LFS;
2375 }
2376
2377 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2378 struct curseg_info *seg, block_t start)
2379 {
2380 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2381 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2382 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2383 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2384 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2385 int i, pos;
2386
2387 for (i = 0; i < entries; i++)
2388 target_map[i] = ckpt_map[i] | cur_map[i];
2389
2390 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2391
2392 seg->next_blkoff = pos;
2393 }
2394
2395 /*
2396 * If a segment is written by LFS manner, next block offset is just obtained
2397 * by increasing the current block offset. However, if a segment is written by
2398 * SSR manner, next block offset obtained by calling __next_free_blkoff
2399 */
2400 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2401 struct curseg_info *seg)
2402 {
2403 if (seg->alloc_type == SSR)
2404 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2405 else
2406 seg->next_blkoff++;
2407 }
2408
2409 /*
2410 * This function always allocates a used segment(from dirty seglist) by SSR
2411 * manner, so it should recover the existing segment information of valid blocks
2412 */
2413 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2414 {
2415 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416 struct curseg_info *curseg = CURSEG_I(sbi, type);
2417 unsigned int new_segno = curseg->next_segno;
2418 struct f2fs_summary_block *sum_node;
2419 struct page *sum_page;
2420
2421 write_sum_page(sbi, curseg->sum_blk,
2422 GET_SUM_BLOCK(sbi, curseg->segno));
2423 __set_test_and_inuse(sbi, new_segno);
2424
2425 mutex_lock(&dirty_i->seglist_lock);
2426 __remove_dirty_segment(sbi, new_segno, PRE);
2427 __remove_dirty_segment(sbi, new_segno, DIRTY);
2428 mutex_unlock(&dirty_i->seglist_lock);
2429
2430 reset_curseg(sbi, type, 1);
2431 curseg->alloc_type = SSR;
2432 __next_free_blkoff(sbi, curseg, 0);
2433
2434 sum_page = f2fs_get_sum_page(sbi, new_segno);
2435 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2436 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2437 f2fs_put_page(sum_page, 1);
2438 }
2439
2440 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2441 {
2442 struct curseg_info *curseg = CURSEG_I(sbi, type);
2443 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2444 unsigned segno = NULL_SEGNO;
2445 int i, cnt;
2446 bool reversed = false;
2447
2448 /* f2fs_need_SSR() already forces to do this */
2449 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2450 curseg->next_segno = segno;
2451 return 1;
2452 }
2453
2454 /* For node segments, let's do SSR more intensively */
2455 if (IS_NODESEG(type)) {
2456 if (type >= CURSEG_WARM_NODE) {
2457 reversed = true;
2458 i = CURSEG_COLD_NODE;
2459 } else {
2460 i = CURSEG_HOT_NODE;
2461 }
2462 cnt = NR_CURSEG_NODE_TYPE;
2463 } else {
2464 if (type >= CURSEG_WARM_DATA) {
2465 reversed = true;
2466 i = CURSEG_COLD_DATA;
2467 } else {
2468 i = CURSEG_HOT_DATA;
2469 }
2470 cnt = NR_CURSEG_DATA_TYPE;
2471 }
2472
2473 for (; cnt-- > 0; reversed ? i-- : i++) {
2474 if (i == type)
2475 continue;
2476 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2477 curseg->next_segno = segno;
2478 return 1;
2479 }
2480 }
2481 return 0;
2482 }
2483
2484 /*
2485 * flush out current segment and replace it with new segment
2486 * This function should be returned with success, otherwise BUG
2487 */
2488 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2489 int type, bool force)
2490 {
2491 struct curseg_info *curseg = CURSEG_I(sbi, type);
2492
2493 if (force)
2494 new_curseg(sbi, type, true);
2495 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2496 type == CURSEG_WARM_NODE)
2497 new_curseg(sbi, type, false);
2498 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2499 new_curseg(sbi, type, false);
2500 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2501 change_curseg(sbi, type);
2502 else
2503 new_curseg(sbi, type, false);
2504
2505 stat_inc_seg_type(sbi, curseg);
2506 }
2507
2508 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2509 {
2510 struct curseg_info *curseg;
2511 unsigned int old_segno;
2512 int i;
2513
2514 down_write(&SIT_I(sbi)->sentry_lock);
2515
2516 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2517 curseg = CURSEG_I(sbi, i);
2518 old_segno = curseg->segno;
2519 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2520 locate_dirty_segment(sbi, old_segno);
2521 }
2522
2523 up_write(&SIT_I(sbi)->sentry_lock);
2524 }
2525
2526 static const struct segment_allocation default_salloc_ops = {
2527 .allocate_segment = allocate_segment_by_default,
2528 };
2529
2530 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2531 struct cp_control *cpc)
2532 {
2533 __u64 trim_start = cpc->trim_start;
2534 bool has_candidate = false;
2535
2536 down_write(&SIT_I(sbi)->sentry_lock);
2537 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2538 if (add_discard_addrs(sbi, cpc, true)) {
2539 has_candidate = true;
2540 break;
2541 }
2542 }
2543 up_write(&SIT_I(sbi)->sentry_lock);
2544
2545 cpc->trim_start = trim_start;
2546 return has_candidate;
2547 }
2548
2549 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2550 struct discard_policy *dpolicy,
2551 unsigned int start, unsigned int end)
2552 {
2553 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2554 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2555 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2556 struct discard_cmd *dc;
2557 struct blk_plug plug;
2558 int issued;
2559 unsigned int trimmed = 0;
2560
2561 next:
2562 issued = 0;
2563
2564 mutex_lock(&dcc->cmd_lock);
2565 if (unlikely(dcc->rbtree_check))
2566 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2567 &dcc->root));
2568
2569 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2570 NULL, start,
2571 (struct rb_entry **)&prev_dc,
2572 (struct rb_entry **)&next_dc,
2573 &insert_p, &insert_parent, true);
2574 if (!dc)
2575 dc = next_dc;
2576
2577 blk_start_plug(&plug);
2578
2579 while (dc && dc->lstart <= end) {
2580 struct rb_node *node;
2581 int err = 0;
2582
2583 if (dc->len < dpolicy->granularity)
2584 goto skip;
2585
2586 if (dc->state != D_PREP) {
2587 list_move_tail(&dc->list, &dcc->fstrim_list);
2588 goto skip;
2589 }
2590
2591 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2592
2593 if (issued >= dpolicy->max_requests) {
2594 start = dc->lstart + dc->len;
2595
2596 if (err)
2597 __remove_discard_cmd(sbi, dc);
2598
2599 blk_finish_plug(&plug);
2600 mutex_unlock(&dcc->cmd_lock);
2601 trimmed += __wait_all_discard_cmd(sbi, NULL);
2602 congestion_wait(BLK_RW_ASYNC, HZ/50);
2603 goto next;
2604 }
2605 skip:
2606 node = rb_next(&dc->rb_node);
2607 if (err)
2608 __remove_discard_cmd(sbi, dc);
2609 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2610
2611 if (fatal_signal_pending(current))
2612 break;
2613 }
2614
2615 blk_finish_plug(&plug);
2616 mutex_unlock(&dcc->cmd_lock);
2617
2618 return trimmed;
2619 }
2620
2621 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2622 {
2623 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2624 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2625 unsigned int start_segno, end_segno;
2626 block_t start_block, end_block;
2627 struct cp_control cpc;
2628 struct discard_policy dpolicy;
2629 unsigned long long trimmed = 0;
2630 int err = 0;
2631 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1;
2632
2633 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2634 return -EINVAL;
2635
2636 if (end < MAIN_BLKADDR(sbi))
2637 goto out;
2638
2639 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2640 f2fs_msg(sbi->sb, KERN_WARNING,
2641 "Found FS corruption, run fsck to fix.");
2642 return -EIO;
2643 }
2644
2645 /* start/end segment number in main_area */
2646 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2647 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2648 GET_SEGNO(sbi, end);
2649 if (need_align) {
2650 start_segno = rounddown(start_segno, sbi->segs_per_sec);
2651 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2652 }
2653
2654 cpc.reason = CP_DISCARD;
2655 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2656 cpc.trim_start = start_segno;
2657 cpc.trim_end = end_segno;
2658
2659 if (sbi->discard_blks == 0)
2660 goto out;
2661
2662 mutex_lock(&sbi->gc_mutex);
2663 err = f2fs_write_checkpoint(sbi, &cpc);
2664 mutex_unlock(&sbi->gc_mutex);
2665 if (err)
2666 goto out;
2667
2668 /*
2669 * We filed discard candidates, but actually we don't need to wait for
2670 * all of them, since they'll be issued in idle time along with runtime
2671 * discard option. User configuration looks like using runtime discard
2672 * or periodic fstrim instead of it.
2673 */
2674 if (test_opt(sbi, DISCARD))
2675 goto out;
2676
2677 start_block = START_BLOCK(sbi, start_segno);
2678 end_block = START_BLOCK(sbi, end_segno + 1);
2679
2680 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2681 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2682 start_block, end_block);
2683
2684 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2685 start_block, end_block);
2686 out:
2687 if (!err)
2688 range->len = F2FS_BLK_TO_BYTES(trimmed);
2689 return err;
2690 }
2691
2692 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2693 {
2694 struct curseg_info *curseg = CURSEG_I(sbi, type);
2695 if (curseg->next_blkoff < sbi->blocks_per_seg)
2696 return true;
2697 return false;
2698 }
2699
2700 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2701 {
2702 switch (hint) {
2703 case WRITE_LIFE_SHORT:
2704 return CURSEG_HOT_DATA;
2705 case WRITE_LIFE_EXTREME:
2706 return CURSEG_COLD_DATA;
2707 default:
2708 return CURSEG_WARM_DATA;
2709 }
2710 }
2711
2712 /* This returns write hints for each segment type. This hints will be
2713 * passed down to block layer. There are mapping tables which depend on
2714 * the mount option 'whint_mode'.
2715 *
2716 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2717 *
2718 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2719 *
2720 * User F2FS Block
2721 * ---- ---- -----
2722 * META WRITE_LIFE_NOT_SET
2723 * HOT_NODE "
2724 * WARM_NODE "
2725 * COLD_NODE "
2726 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2727 * extension list " "
2728 *
2729 * -- buffered io
2730 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2731 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2732 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2733 * WRITE_LIFE_NONE " "
2734 * WRITE_LIFE_MEDIUM " "
2735 * WRITE_LIFE_LONG " "
2736 *
2737 * -- direct io
2738 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2739 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2740 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2741 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2742 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2743 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2744 *
2745 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2746 *
2747 * User F2FS Block
2748 * ---- ---- -----
2749 * META WRITE_LIFE_MEDIUM;
2750 * HOT_NODE WRITE_LIFE_NOT_SET
2751 * WARM_NODE "
2752 * COLD_NODE WRITE_LIFE_NONE
2753 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2754 * extension list " "
2755 *
2756 * -- buffered io
2757 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2758 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2759 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2760 * WRITE_LIFE_NONE " "
2761 * WRITE_LIFE_MEDIUM " "
2762 * WRITE_LIFE_LONG " "
2763 *
2764 * -- direct io
2765 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2766 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2767 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2768 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2769 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2770 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2771 */
2772
2773 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2774 enum page_type type, enum temp_type temp)
2775 {
2776 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2777 if (type == DATA) {
2778 if (temp == WARM)
2779 return WRITE_LIFE_NOT_SET;
2780 else if (temp == HOT)
2781 return WRITE_LIFE_SHORT;
2782 else if (temp == COLD)
2783 return WRITE_LIFE_EXTREME;
2784 } else {
2785 return WRITE_LIFE_NOT_SET;
2786 }
2787 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2788 if (type == DATA) {
2789 if (temp == WARM)
2790 return WRITE_LIFE_LONG;
2791 else if (temp == HOT)
2792 return WRITE_LIFE_SHORT;
2793 else if (temp == COLD)
2794 return WRITE_LIFE_EXTREME;
2795 } else if (type == NODE) {
2796 if (temp == WARM || temp == HOT)
2797 return WRITE_LIFE_NOT_SET;
2798 else if (temp == COLD)
2799 return WRITE_LIFE_NONE;
2800 } else if (type == META) {
2801 return WRITE_LIFE_MEDIUM;
2802 }
2803 }
2804 return WRITE_LIFE_NOT_SET;
2805 }
2806
2807 static int __get_segment_type_2(struct f2fs_io_info *fio)
2808 {
2809 if (fio->type == DATA)
2810 return CURSEG_HOT_DATA;
2811 else
2812 return CURSEG_HOT_NODE;
2813 }
2814
2815 static int __get_segment_type_4(struct f2fs_io_info *fio)
2816 {
2817 if (fio->type == DATA) {
2818 struct inode *inode = fio->page->mapping->host;
2819
2820 if (S_ISDIR(inode->i_mode))
2821 return CURSEG_HOT_DATA;
2822 else
2823 return CURSEG_COLD_DATA;
2824 } else {
2825 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2826 return CURSEG_WARM_NODE;
2827 else
2828 return CURSEG_COLD_NODE;
2829 }
2830 }
2831
2832 static int __get_segment_type_6(struct f2fs_io_info *fio)
2833 {
2834 if (fio->type == DATA) {
2835 struct inode *inode = fio->page->mapping->host;
2836
2837 if (is_cold_data(fio->page) || file_is_cold(inode))
2838 return CURSEG_COLD_DATA;
2839 if (file_is_hot(inode) ||
2840 is_inode_flag_set(inode, FI_HOT_DATA) ||
2841 f2fs_is_atomic_file(inode) ||
2842 f2fs_is_volatile_file(inode))
2843 return CURSEG_HOT_DATA;
2844 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2845 } else {
2846 if (IS_DNODE(fio->page))
2847 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2848 CURSEG_HOT_NODE;
2849 return CURSEG_COLD_NODE;
2850 }
2851 }
2852
2853 static int __get_segment_type(struct f2fs_io_info *fio)
2854 {
2855 int type = 0;
2856
2857 switch (F2FS_OPTION(fio->sbi).active_logs) {
2858 case 2:
2859 type = __get_segment_type_2(fio);
2860 break;
2861 case 4:
2862 type = __get_segment_type_4(fio);
2863 break;
2864 case 6:
2865 type = __get_segment_type_6(fio);
2866 break;
2867 default:
2868 f2fs_bug_on(fio->sbi, true);
2869 }
2870
2871 if (IS_HOT(type))
2872 fio->temp = HOT;
2873 else if (IS_WARM(type))
2874 fio->temp = WARM;
2875 else
2876 fio->temp = COLD;
2877 return type;
2878 }
2879
2880 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2881 block_t old_blkaddr, block_t *new_blkaddr,
2882 struct f2fs_summary *sum, int type,
2883 struct f2fs_io_info *fio, bool add_list)
2884 {
2885 struct sit_info *sit_i = SIT_I(sbi);
2886 struct curseg_info *curseg = CURSEG_I(sbi, type);
2887
2888 down_read(&SM_I(sbi)->curseg_lock);
2889
2890 mutex_lock(&curseg->curseg_mutex);
2891 down_write(&sit_i->sentry_lock);
2892
2893 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2894
2895 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2896
2897 /*
2898 * __add_sum_entry should be resided under the curseg_mutex
2899 * because, this function updates a summary entry in the
2900 * current summary block.
2901 */
2902 __add_sum_entry(sbi, type, sum);
2903
2904 __refresh_next_blkoff(sbi, curseg);
2905
2906 stat_inc_block_count(sbi, curseg);
2907
2908 /*
2909 * SIT information should be updated before segment allocation,
2910 * since SSR needs latest valid block information.
2911 */
2912 update_sit_entry(sbi, *new_blkaddr, 1);
2913 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2914 update_sit_entry(sbi, old_blkaddr, -1);
2915
2916 if (!__has_curseg_space(sbi, type))
2917 sit_i->s_ops->allocate_segment(sbi, type, false);
2918
2919 /*
2920 * segment dirty status should be updated after segment allocation,
2921 * so we just need to update status only one time after previous
2922 * segment being closed.
2923 */
2924 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2925 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2926
2927 up_write(&sit_i->sentry_lock);
2928
2929 if (page && IS_NODESEG(type)) {
2930 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2931
2932 f2fs_inode_chksum_set(sbi, page);
2933 }
2934
2935 if (add_list) {
2936 struct f2fs_bio_info *io;
2937
2938 INIT_LIST_HEAD(&fio->list);
2939 fio->in_list = true;
2940 fio->retry = false;
2941 io = sbi->write_io[fio->type] + fio->temp;
2942 spin_lock(&io->io_lock);
2943 list_add_tail(&fio->list, &io->io_list);
2944 spin_unlock(&io->io_lock);
2945 }
2946
2947 mutex_unlock(&curseg->curseg_mutex);
2948
2949 up_read(&SM_I(sbi)->curseg_lock);
2950 }
2951
2952 static void update_device_state(struct f2fs_io_info *fio)
2953 {
2954 struct f2fs_sb_info *sbi = fio->sbi;
2955 unsigned int devidx;
2956
2957 if (!sbi->s_ndevs)
2958 return;
2959
2960 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2961
2962 /* update device state for fsync */
2963 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2964
2965 /* update device state for checkpoint */
2966 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2967 spin_lock(&sbi->dev_lock);
2968 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2969 spin_unlock(&sbi->dev_lock);
2970 }
2971 }
2972
2973 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2974 {
2975 int type = __get_segment_type(fio);
2976 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
2977
2978 if (keep_order)
2979 down_read(&fio->sbi->io_order_lock);
2980 reallocate:
2981 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2982 &fio->new_blkaddr, sum, type, fio, true);
2983 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
2984 invalidate_mapping_pages(META_MAPPING(fio->sbi),
2985 fio->old_blkaddr, fio->old_blkaddr);
2986
2987 /* writeout dirty page into bdev */
2988 f2fs_submit_page_write(fio);
2989 if (fio->retry) {
2990 fio->old_blkaddr = fio->new_blkaddr;
2991 goto reallocate;
2992 }
2993
2994 update_device_state(fio);
2995
2996 if (keep_order)
2997 up_read(&fio->sbi->io_order_lock);
2998 }
2999
3000 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3001 enum iostat_type io_type)
3002 {
3003 struct f2fs_io_info fio = {
3004 .sbi = sbi,
3005 .type = META,
3006 .temp = HOT,
3007 .op = REQ_OP_WRITE,
3008 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3009 .old_blkaddr = page->index,
3010 .new_blkaddr = page->index,
3011 .page = page,
3012 .encrypted_page = NULL,
3013 .in_list = false,
3014 };
3015
3016 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3017 fio.op_flags &= ~REQ_META;
3018
3019 set_page_writeback(page);
3020 ClearPageError(page);
3021 f2fs_submit_page_write(&fio);
3022
3023 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3024 }
3025
3026 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3027 {
3028 struct f2fs_summary sum;
3029
3030 set_summary(&sum, nid, 0, 0);
3031 do_write_page(&sum, fio);
3032
3033 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3034 }
3035
3036 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3037 struct f2fs_io_info *fio)
3038 {
3039 struct f2fs_sb_info *sbi = fio->sbi;
3040 struct f2fs_summary sum;
3041
3042 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3043 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3044 do_write_page(&sum, fio);
3045 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3046
3047 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3048 }
3049
3050 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3051 {
3052 int err;
3053 struct f2fs_sb_info *sbi = fio->sbi;
3054
3055 fio->new_blkaddr = fio->old_blkaddr;
3056 /* i/o temperature is needed for passing down write hints */
3057 __get_segment_type(fio);
3058
3059 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3060 GET_SEGNO(sbi, fio->new_blkaddr))->type));
3061
3062 stat_inc_inplace_blocks(fio->sbi);
3063
3064 err = f2fs_submit_page_bio(fio);
3065 if (!err)
3066 update_device_state(fio);
3067
3068 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3069
3070 return err;
3071 }
3072
3073 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3074 unsigned int segno)
3075 {
3076 int i;
3077
3078 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3079 if (CURSEG_I(sbi, i)->segno == segno)
3080 break;
3081 }
3082 return i;
3083 }
3084
3085 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3086 block_t old_blkaddr, block_t new_blkaddr,
3087 bool recover_curseg, bool recover_newaddr)
3088 {
3089 struct sit_info *sit_i = SIT_I(sbi);
3090 struct curseg_info *curseg;
3091 unsigned int segno, old_cursegno;
3092 struct seg_entry *se;
3093 int type;
3094 unsigned short old_blkoff;
3095
3096 segno = GET_SEGNO(sbi, new_blkaddr);
3097 se = get_seg_entry(sbi, segno);
3098 type = se->type;
3099
3100 down_write(&SM_I(sbi)->curseg_lock);
3101
3102 if (!recover_curseg) {
3103 /* for recovery flow */
3104 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3105 if (old_blkaddr == NULL_ADDR)
3106 type = CURSEG_COLD_DATA;
3107 else
3108 type = CURSEG_WARM_DATA;
3109 }
3110 } else {
3111 if (IS_CURSEG(sbi, segno)) {
3112 /* se->type is volatile as SSR allocation */
3113 type = __f2fs_get_curseg(sbi, segno);
3114 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3115 } else {
3116 type = CURSEG_WARM_DATA;
3117 }
3118 }
3119
3120 f2fs_bug_on(sbi, !IS_DATASEG(type));
3121 curseg = CURSEG_I(sbi, type);
3122
3123 mutex_lock(&curseg->curseg_mutex);
3124 down_write(&sit_i->sentry_lock);
3125
3126 old_cursegno = curseg->segno;
3127 old_blkoff = curseg->next_blkoff;
3128
3129 /* change the current segment */
3130 if (segno != curseg->segno) {
3131 curseg->next_segno = segno;
3132 change_curseg(sbi, type);
3133 }
3134
3135 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3136 __add_sum_entry(sbi, type, sum);
3137
3138 if (!recover_curseg || recover_newaddr)
3139 update_sit_entry(sbi, new_blkaddr, 1);
3140 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3141 invalidate_mapping_pages(META_MAPPING(sbi),
3142 old_blkaddr, old_blkaddr);
3143 update_sit_entry(sbi, old_blkaddr, -1);
3144 }
3145
3146 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3147 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3148
3149 locate_dirty_segment(sbi, old_cursegno);
3150
3151 if (recover_curseg) {
3152 if (old_cursegno != curseg->segno) {
3153 curseg->next_segno = old_cursegno;
3154 change_curseg(sbi, type);
3155 }
3156 curseg->next_blkoff = old_blkoff;
3157 }
3158
3159 up_write(&sit_i->sentry_lock);
3160 mutex_unlock(&curseg->curseg_mutex);
3161 up_write(&SM_I(sbi)->curseg_lock);
3162 }
3163
3164 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3165 block_t old_addr, block_t new_addr,
3166 unsigned char version, bool recover_curseg,
3167 bool recover_newaddr)
3168 {
3169 struct f2fs_summary sum;
3170
3171 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3172
3173 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3174 recover_curseg, recover_newaddr);
3175
3176 f2fs_update_data_blkaddr(dn, new_addr);
3177 }
3178
3179 void f2fs_wait_on_page_writeback(struct page *page,
3180 enum page_type type, bool ordered)
3181 {
3182 if (PageWriteback(page)) {
3183 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3184
3185 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
3186 0, page->index, type);
3187 if (ordered)
3188 wait_on_page_writeback(page);
3189 else
3190 wait_for_stable_page(page);
3191 }
3192 }
3193
3194 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
3195 {
3196 struct page *cpage;
3197
3198 if (!is_valid_data_blkaddr(sbi, blkaddr))
3199 return;
3200
3201 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3202 if (cpage) {
3203 f2fs_wait_on_page_writeback(cpage, DATA, true);
3204 f2fs_put_page(cpage, 1);
3205 }
3206 }
3207
3208 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3209 {
3210 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3211 struct curseg_info *seg_i;
3212 unsigned char *kaddr;
3213 struct page *page;
3214 block_t start;
3215 int i, j, offset;
3216
3217 start = start_sum_block(sbi);
3218
3219 page = f2fs_get_meta_page(sbi, start++);
3220 if (IS_ERR(page))
3221 return PTR_ERR(page);
3222 kaddr = (unsigned char *)page_address(page);
3223
3224 /* Step 1: restore nat cache */
3225 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3226 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3227
3228 /* Step 2: restore sit cache */
3229 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3230 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3231 offset = 2 * SUM_JOURNAL_SIZE;
3232
3233 /* Step 3: restore summary entries */
3234 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3235 unsigned short blk_off;
3236 unsigned int segno;
3237
3238 seg_i = CURSEG_I(sbi, i);
3239 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3240 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3241 seg_i->next_segno = segno;
3242 reset_curseg(sbi, i, 0);
3243 seg_i->alloc_type = ckpt->alloc_type[i];
3244 seg_i->next_blkoff = blk_off;
3245
3246 if (seg_i->alloc_type == SSR)
3247 blk_off = sbi->blocks_per_seg;
3248
3249 for (j = 0; j < blk_off; j++) {
3250 struct f2fs_summary *s;
3251 s = (struct f2fs_summary *)(kaddr + offset);
3252 seg_i->sum_blk->entries[j] = *s;
3253 offset += SUMMARY_SIZE;
3254 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3255 SUM_FOOTER_SIZE)
3256 continue;
3257
3258 f2fs_put_page(page, 1);
3259 page = NULL;
3260
3261 page = f2fs_get_meta_page(sbi, start++);
3262 if (IS_ERR(page))
3263 return PTR_ERR(page);
3264 kaddr = (unsigned char *)page_address(page);
3265 offset = 0;
3266 }
3267 }
3268 f2fs_put_page(page, 1);
3269 return 0;
3270 }
3271
3272 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3273 {
3274 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3275 struct f2fs_summary_block *sum;
3276 struct curseg_info *curseg;
3277 struct page *new;
3278 unsigned short blk_off;
3279 unsigned int segno = 0;
3280 block_t blk_addr = 0;
3281 int err = 0;
3282
3283 /* get segment number and block addr */
3284 if (IS_DATASEG(type)) {
3285 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3286 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3287 CURSEG_HOT_DATA]);
3288 if (__exist_node_summaries(sbi))
3289 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3290 else
3291 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3292 } else {
3293 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3294 CURSEG_HOT_NODE]);
3295 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3296 CURSEG_HOT_NODE]);
3297 if (__exist_node_summaries(sbi))
3298 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3299 type - CURSEG_HOT_NODE);
3300 else
3301 blk_addr = GET_SUM_BLOCK(sbi, segno);
3302 }
3303
3304 new = f2fs_get_meta_page(sbi, blk_addr);
3305 if (IS_ERR(new))
3306 return PTR_ERR(new);
3307 sum = (struct f2fs_summary_block *)page_address(new);
3308
3309 if (IS_NODESEG(type)) {
3310 if (__exist_node_summaries(sbi)) {
3311 struct f2fs_summary *ns = &sum->entries[0];
3312 int i;
3313 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3314 ns->version = 0;
3315 ns->ofs_in_node = 0;
3316 }
3317 } else {
3318 err = f2fs_restore_node_summary(sbi, segno, sum);
3319 if (err)
3320 goto out;
3321 }
3322 }
3323
3324 /* set uncompleted segment to curseg */
3325 curseg = CURSEG_I(sbi, type);
3326 mutex_lock(&curseg->curseg_mutex);
3327
3328 /* update journal info */
3329 down_write(&curseg->journal_rwsem);
3330 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3331 up_write(&curseg->journal_rwsem);
3332
3333 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3334 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3335 curseg->next_segno = segno;
3336 reset_curseg(sbi, type, 0);
3337 curseg->alloc_type = ckpt->alloc_type[type];
3338 curseg->next_blkoff = blk_off;
3339 mutex_unlock(&curseg->curseg_mutex);
3340 out:
3341 f2fs_put_page(new, 1);
3342 return err;
3343 }
3344
3345 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3346 {
3347 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3348 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3349 int type = CURSEG_HOT_DATA;
3350 int err;
3351
3352 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3353 int npages = f2fs_npages_for_summary_flush(sbi, true);
3354
3355 if (npages >= 2)
3356 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3357 META_CP, true);
3358
3359 /* restore for compacted data summary */
3360 err = read_compacted_summaries(sbi);
3361 if (err)
3362 return err;
3363 type = CURSEG_HOT_NODE;
3364 }
3365
3366 if (__exist_node_summaries(sbi))
3367 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3368 NR_CURSEG_TYPE - type, META_CP, true);
3369
3370 for (; type <= CURSEG_COLD_NODE; type++) {
3371 err = read_normal_summaries(sbi, type);
3372 if (err)
3373 return err;
3374 }
3375
3376 /* sanity check for summary blocks */
3377 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3378 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3379 return -EINVAL;
3380
3381 return 0;
3382 }
3383
3384 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3385 {
3386 struct page *page;
3387 unsigned char *kaddr;
3388 struct f2fs_summary *summary;
3389 struct curseg_info *seg_i;
3390 int written_size = 0;
3391 int i, j;
3392
3393 page = f2fs_grab_meta_page(sbi, blkaddr++);
3394 kaddr = (unsigned char *)page_address(page);
3395 memset(kaddr, 0, PAGE_SIZE);
3396
3397 /* Step 1: write nat cache */
3398 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3399 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3400 written_size += SUM_JOURNAL_SIZE;
3401
3402 /* Step 2: write sit cache */
3403 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3404 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3405 written_size += SUM_JOURNAL_SIZE;
3406
3407 /* Step 3: write summary entries */
3408 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3409 unsigned short blkoff;
3410 seg_i = CURSEG_I(sbi, i);
3411 if (sbi->ckpt->alloc_type[i] == SSR)
3412 blkoff = sbi->blocks_per_seg;
3413 else
3414 blkoff = curseg_blkoff(sbi, i);
3415
3416 for (j = 0; j < blkoff; j++) {
3417 if (!page) {
3418 page = f2fs_grab_meta_page(sbi, blkaddr++);
3419 kaddr = (unsigned char *)page_address(page);
3420 memset(kaddr, 0, PAGE_SIZE);
3421 written_size = 0;
3422 }
3423 summary = (struct f2fs_summary *)(kaddr + written_size);
3424 *summary = seg_i->sum_blk->entries[j];
3425 written_size += SUMMARY_SIZE;
3426
3427 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3428 SUM_FOOTER_SIZE)
3429 continue;
3430
3431 set_page_dirty(page);
3432 f2fs_put_page(page, 1);
3433 page = NULL;
3434 }
3435 }
3436 if (page) {
3437 set_page_dirty(page);
3438 f2fs_put_page(page, 1);
3439 }
3440 }
3441
3442 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3443 block_t blkaddr, int type)
3444 {
3445 int i, end;
3446 if (IS_DATASEG(type))
3447 end = type + NR_CURSEG_DATA_TYPE;
3448 else
3449 end = type + NR_CURSEG_NODE_TYPE;
3450
3451 for (i = type; i < end; i++)
3452 write_current_sum_page(sbi, i, blkaddr + (i - type));
3453 }
3454
3455 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3456 {
3457 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3458 write_compacted_summaries(sbi, start_blk);
3459 else
3460 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3461 }
3462
3463 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3464 {
3465 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3466 }
3467
3468 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3469 unsigned int val, int alloc)
3470 {
3471 int i;
3472
3473 if (type == NAT_JOURNAL) {
3474 for (i = 0; i < nats_in_cursum(journal); i++) {
3475 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3476 return i;
3477 }
3478 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3479 return update_nats_in_cursum(journal, 1);
3480 } else if (type == SIT_JOURNAL) {
3481 for (i = 0; i < sits_in_cursum(journal); i++)
3482 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3483 return i;
3484 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3485 return update_sits_in_cursum(journal, 1);
3486 }
3487 return -1;
3488 }
3489
3490 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3491 unsigned int segno)
3492 {
3493 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3494 }
3495
3496 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3497 unsigned int start)
3498 {
3499 struct sit_info *sit_i = SIT_I(sbi);
3500 struct page *page;
3501 pgoff_t src_off, dst_off;
3502
3503 src_off = current_sit_addr(sbi, start);
3504 dst_off = next_sit_addr(sbi, src_off);
3505
3506 page = f2fs_grab_meta_page(sbi, dst_off);
3507 seg_info_to_sit_page(sbi, page, start);
3508
3509 set_page_dirty(page);
3510 set_to_next_sit(sit_i, start);
3511
3512 return page;
3513 }
3514
3515 static struct sit_entry_set *grab_sit_entry_set(void)
3516 {
3517 struct sit_entry_set *ses =
3518 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3519
3520 ses->entry_cnt = 0;
3521 INIT_LIST_HEAD(&ses->set_list);
3522 return ses;
3523 }
3524
3525 static void release_sit_entry_set(struct sit_entry_set *ses)
3526 {
3527 list_del(&ses->set_list);
3528 kmem_cache_free(sit_entry_set_slab, ses);
3529 }
3530
3531 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3532 struct list_head *head)
3533 {
3534 struct sit_entry_set *next = ses;
3535
3536 if (list_is_last(&ses->set_list, head))
3537 return;
3538
3539 list_for_each_entry_continue(next, head, set_list)
3540 if (ses->entry_cnt <= next->entry_cnt)
3541 break;
3542
3543 list_move_tail(&ses->set_list, &next->set_list);
3544 }
3545
3546 static void add_sit_entry(unsigned int segno, struct list_head *head)
3547 {
3548 struct sit_entry_set *ses;
3549 unsigned int start_segno = START_SEGNO(segno);
3550
3551 list_for_each_entry(ses, head, set_list) {
3552 if (ses->start_segno == start_segno) {
3553 ses->entry_cnt++;
3554 adjust_sit_entry_set(ses, head);
3555 return;
3556 }
3557 }
3558
3559 ses = grab_sit_entry_set();
3560
3561 ses->start_segno = start_segno;
3562 ses->entry_cnt++;
3563 list_add(&ses->set_list, head);
3564 }
3565
3566 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3567 {
3568 struct f2fs_sm_info *sm_info = SM_I(sbi);
3569 struct list_head *set_list = &sm_info->sit_entry_set;
3570 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3571 unsigned int segno;
3572
3573 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3574 add_sit_entry(segno, set_list);
3575 }
3576
3577 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3578 {
3579 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3580 struct f2fs_journal *journal = curseg->journal;
3581 int i;
3582
3583 down_write(&curseg->journal_rwsem);
3584 for (i = 0; i < sits_in_cursum(journal); i++) {
3585 unsigned int segno;
3586 bool dirtied;
3587
3588 segno = le32_to_cpu(segno_in_journal(journal, i));
3589 dirtied = __mark_sit_entry_dirty(sbi, segno);
3590
3591 if (!dirtied)
3592 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3593 }
3594 update_sits_in_cursum(journal, -i);
3595 up_write(&curseg->journal_rwsem);
3596 }
3597
3598 /*
3599 * CP calls this function, which flushes SIT entries including sit_journal,
3600 * and moves prefree segs to free segs.
3601 */
3602 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3603 {
3604 struct sit_info *sit_i = SIT_I(sbi);
3605 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3606 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3607 struct f2fs_journal *journal = curseg->journal;
3608 struct sit_entry_set *ses, *tmp;
3609 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3610 bool to_journal = true;
3611 struct seg_entry *se;
3612
3613 down_write(&sit_i->sentry_lock);
3614
3615 if (!sit_i->dirty_sentries)
3616 goto out;
3617
3618 /*
3619 * add and account sit entries of dirty bitmap in sit entry
3620 * set temporarily
3621 */
3622 add_sits_in_set(sbi);
3623
3624 /*
3625 * if there are no enough space in journal to store dirty sit
3626 * entries, remove all entries from journal and add and account
3627 * them in sit entry set.
3628 */
3629 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3630 remove_sits_in_journal(sbi);
3631
3632 /*
3633 * there are two steps to flush sit entries:
3634 * #1, flush sit entries to journal in current cold data summary block.
3635 * #2, flush sit entries to sit page.
3636 */
3637 list_for_each_entry_safe(ses, tmp, head, set_list) {
3638 struct page *page = NULL;
3639 struct f2fs_sit_block *raw_sit = NULL;
3640 unsigned int start_segno = ses->start_segno;
3641 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3642 (unsigned long)MAIN_SEGS(sbi));
3643 unsigned int segno = start_segno;
3644
3645 if (to_journal &&
3646 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3647 to_journal = false;
3648
3649 if (to_journal) {
3650 down_write(&curseg->journal_rwsem);
3651 } else {
3652 page = get_next_sit_page(sbi, start_segno);
3653 raw_sit = page_address(page);
3654 }
3655
3656 /* flush dirty sit entries in region of current sit set */
3657 for_each_set_bit_from(segno, bitmap, end) {
3658 int offset, sit_offset;
3659
3660 se = get_seg_entry(sbi, segno);
3661 #ifdef CONFIG_F2FS_CHECK_FS
3662 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3663 SIT_VBLOCK_MAP_SIZE))
3664 f2fs_bug_on(sbi, 1);
3665 #endif
3666
3667 /* add discard candidates */
3668 if (!(cpc->reason & CP_DISCARD)) {
3669 cpc->trim_start = segno;
3670 add_discard_addrs(sbi, cpc, false);
3671 }
3672
3673 if (to_journal) {
3674 offset = f2fs_lookup_journal_in_cursum(journal,
3675 SIT_JOURNAL, segno, 1);
3676 f2fs_bug_on(sbi, offset < 0);
3677 segno_in_journal(journal, offset) =
3678 cpu_to_le32(segno);
3679 seg_info_to_raw_sit(se,
3680 &sit_in_journal(journal, offset));
3681 check_block_count(sbi, segno,
3682 &sit_in_journal(journal, offset));
3683 } else {
3684 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3685 seg_info_to_raw_sit(se,
3686 &raw_sit->entries[sit_offset]);
3687 check_block_count(sbi, segno,
3688 &raw_sit->entries[sit_offset]);
3689 }
3690
3691 __clear_bit(segno, bitmap);
3692 sit_i->dirty_sentries--;
3693 ses->entry_cnt--;
3694 }
3695
3696 if (to_journal)
3697 up_write(&curseg->journal_rwsem);
3698 else
3699 f2fs_put_page(page, 1);
3700
3701 f2fs_bug_on(sbi, ses->entry_cnt);
3702 release_sit_entry_set(ses);
3703 }
3704
3705 f2fs_bug_on(sbi, !list_empty(head));
3706 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3707 out:
3708 if (cpc->reason & CP_DISCARD) {
3709 __u64 trim_start = cpc->trim_start;
3710
3711 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3712 add_discard_addrs(sbi, cpc, false);
3713
3714 cpc->trim_start = trim_start;
3715 }
3716 up_write(&sit_i->sentry_lock);
3717
3718 set_prefree_as_free_segments(sbi);
3719 }
3720
3721 static int build_sit_info(struct f2fs_sb_info *sbi)
3722 {
3723 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3724 struct sit_info *sit_i;
3725 unsigned int sit_segs, start;
3726 char *src_bitmap;
3727 unsigned int bitmap_size;
3728
3729 /* allocate memory for SIT information */
3730 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3731 if (!sit_i)
3732 return -ENOMEM;
3733
3734 SM_I(sbi)->sit_info = sit_i;
3735
3736 sit_i->sentries =
3737 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3738 MAIN_SEGS(sbi)),
3739 GFP_KERNEL);
3740 if (!sit_i->sentries)
3741 return -ENOMEM;
3742
3743 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3744 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3745 GFP_KERNEL);
3746 if (!sit_i->dirty_sentries_bitmap)
3747 return -ENOMEM;
3748
3749 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3750 sit_i->sentries[start].cur_valid_map
3751 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3752 sit_i->sentries[start].ckpt_valid_map
3753 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3754 if (!sit_i->sentries[start].cur_valid_map ||
3755 !sit_i->sentries[start].ckpt_valid_map)
3756 return -ENOMEM;
3757
3758 #ifdef CONFIG_F2FS_CHECK_FS
3759 sit_i->sentries[start].cur_valid_map_mir
3760 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3761 if (!sit_i->sentries[start].cur_valid_map_mir)
3762 return -ENOMEM;
3763 #endif
3764
3765 if (f2fs_discard_en(sbi)) {
3766 sit_i->sentries[start].discard_map
3767 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3768 GFP_KERNEL);
3769 if (!sit_i->sentries[start].discard_map)
3770 return -ENOMEM;
3771 }
3772 }
3773
3774 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3775 if (!sit_i->tmp_map)
3776 return -ENOMEM;
3777
3778 if (sbi->segs_per_sec > 1) {
3779 sit_i->sec_entries =
3780 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3781 MAIN_SECS(sbi)),
3782 GFP_KERNEL);
3783 if (!sit_i->sec_entries)
3784 return -ENOMEM;
3785 }
3786
3787 /* get information related with SIT */
3788 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3789
3790 /* setup SIT bitmap from ckeckpoint pack */
3791 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3792 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3793
3794 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3795 if (!sit_i->sit_bitmap)
3796 return -ENOMEM;
3797
3798 #ifdef CONFIG_F2FS_CHECK_FS
3799 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3800 if (!sit_i->sit_bitmap_mir)
3801 return -ENOMEM;
3802 #endif
3803
3804 /* init SIT information */
3805 sit_i->s_ops = &default_salloc_ops;
3806
3807 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3808 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3809 sit_i->written_valid_blocks = 0;
3810 sit_i->bitmap_size = bitmap_size;
3811 sit_i->dirty_sentries = 0;
3812 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3813 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3814 sit_i->mounted_time = ktime_get_real_seconds();
3815 init_rwsem(&sit_i->sentry_lock);
3816 return 0;
3817 }
3818
3819 static int build_free_segmap(struct f2fs_sb_info *sbi)
3820 {
3821 struct free_segmap_info *free_i;
3822 unsigned int bitmap_size, sec_bitmap_size;
3823
3824 /* allocate memory for free segmap information */
3825 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3826 if (!free_i)
3827 return -ENOMEM;
3828
3829 SM_I(sbi)->free_info = free_i;
3830
3831 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3832 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3833 if (!free_i->free_segmap)
3834 return -ENOMEM;
3835
3836 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3837 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3838 if (!free_i->free_secmap)
3839 return -ENOMEM;
3840
3841 /* set all segments as dirty temporarily */
3842 memset(free_i->free_segmap, 0xff, bitmap_size);
3843 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3844
3845 /* init free segmap information */
3846 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3847 free_i->free_segments = 0;
3848 free_i->free_sections = 0;
3849 spin_lock_init(&free_i->segmap_lock);
3850 return 0;
3851 }
3852
3853 static int build_curseg(struct f2fs_sb_info *sbi)
3854 {
3855 struct curseg_info *array;
3856 int i;
3857
3858 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3859 GFP_KERNEL);
3860 if (!array)
3861 return -ENOMEM;
3862
3863 SM_I(sbi)->curseg_array = array;
3864
3865 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3866 mutex_init(&array[i].curseg_mutex);
3867 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3868 if (!array[i].sum_blk)
3869 return -ENOMEM;
3870 init_rwsem(&array[i].journal_rwsem);
3871 array[i].journal = f2fs_kzalloc(sbi,
3872 sizeof(struct f2fs_journal), GFP_KERNEL);
3873 if (!array[i].journal)
3874 return -ENOMEM;
3875 array[i].segno = NULL_SEGNO;
3876 array[i].next_blkoff = 0;
3877 }
3878 return restore_curseg_summaries(sbi);
3879 }
3880
3881 static int build_sit_entries(struct f2fs_sb_info *sbi)
3882 {
3883 struct sit_info *sit_i = SIT_I(sbi);
3884 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3885 struct f2fs_journal *journal = curseg->journal;
3886 struct seg_entry *se;
3887 struct f2fs_sit_entry sit;
3888 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3889 unsigned int i, start, end;
3890 unsigned int readed, start_blk = 0;
3891 int err = 0;
3892 block_t total_node_blocks = 0;
3893
3894 do {
3895 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3896 META_SIT, true);
3897
3898 start = start_blk * sit_i->sents_per_block;
3899 end = (start_blk + readed) * sit_i->sents_per_block;
3900
3901 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3902 struct f2fs_sit_block *sit_blk;
3903 struct page *page;
3904
3905 se = &sit_i->sentries[start];
3906 page = get_current_sit_page(sbi, start);
3907 sit_blk = (struct f2fs_sit_block *)page_address(page);
3908 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3909 f2fs_put_page(page, 1);
3910
3911 err = check_block_count(sbi, start, &sit);
3912 if (err)
3913 return err;
3914 seg_info_from_raw_sit(se, &sit);
3915 if (IS_NODESEG(se->type))
3916 total_node_blocks += se->valid_blocks;
3917
3918 /* build discard map only one time */
3919 if (f2fs_discard_en(sbi)) {
3920 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3921 memset(se->discard_map, 0xff,
3922 SIT_VBLOCK_MAP_SIZE);
3923 } else {
3924 memcpy(se->discard_map,
3925 se->cur_valid_map,
3926 SIT_VBLOCK_MAP_SIZE);
3927 sbi->discard_blks +=
3928 sbi->blocks_per_seg -
3929 se->valid_blocks;
3930 }
3931 }
3932
3933 if (sbi->segs_per_sec > 1)
3934 get_sec_entry(sbi, start)->valid_blocks +=
3935 se->valid_blocks;
3936 }
3937 start_blk += readed;
3938 } while (start_blk < sit_blk_cnt);
3939
3940 down_read(&curseg->journal_rwsem);
3941 for (i = 0; i < sits_in_cursum(journal); i++) {
3942 unsigned int old_valid_blocks;
3943
3944 start = le32_to_cpu(segno_in_journal(journal, i));
3945 if (start >= MAIN_SEGS(sbi)) {
3946 f2fs_msg(sbi->sb, KERN_ERR,
3947 "Wrong journal entry on segno %u",
3948 start);
3949 set_sbi_flag(sbi, SBI_NEED_FSCK);
3950 err = -EINVAL;
3951 break;
3952 }
3953
3954 se = &sit_i->sentries[start];
3955 sit = sit_in_journal(journal, i);
3956
3957 old_valid_blocks = se->valid_blocks;
3958 if (IS_NODESEG(se->type))
3959 total_node_blocks -= old_valid_blocks;
3960
3961 err = check_block_count(sbi, start, &sit);
3962 if (err)
3963 break;
3964 seg_info_from_raw_sit(se, &sit);
3965 if (IS_NODESEG(se->type))
3966 total_node_blocks += se->valid_blocks;
3967
3968 if (f2fs_discard_en(sbi)) {
3969 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3970 memset(se->discard_map, 0xff,
3971 SIT_VBLOCK_MAP_SIZE);
3972 } else {
3973 memcpy(se->discard_map, se->cur_valid_map,
3974 SIT_VBLOCK_MAP_SIZE);
3975 sbi->discard_blks += old_valid_blocks;
3976 sbi->discard_blks -= se->valid_blocks;
3977 }
3978 }
3979
3980 if (sbi->segs_per_sec > 1) {
3981 get_sec_entry(sbi, start)->valid_blocks +=
3982 se->valid_blocks;
3983 get_sec_entry(sbi, start)->valid_blocks -=
3984 old_valid_blocks;
3985 }
3986 }
3987 up_read(&curseg->journal_rwsem);
3988
3989 if (!err && total_node_blocks != valid_node_count(sbi)) {
3990 f2fs_msg(sbi->sb, KERN_ERR,
3991 "SIT is corrupted node# %u vs %u",
3992 total_node_blocks, valid_node_count(sbi));
3993 set_sbi_flag(sbi, SBI_NEED_FSCK);
3994 err = -EINVAL;
3995 }
3996
3997 return err;
3998 }
3999
4000 static void init_free_segmap(struct f2fs_sb_info *sbi)
4001 {
4002 unsigned int start;
4003 int type;
4004
4005 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4006 struct seg_entry *sentry = get_seg_entry(sbi, start);
4007 if (!sentry->valid_blocks)
4008 __set_free(sbi, start);
4009 else
4010 SIT_I(sbi)->written_valid_blocks +=
4011 sentry->valid_blocks;
4012 }
4013
4014 /* set use the current segments */
4015 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4016 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4017 __set_test_and_inuse(sbi, curseg_t->segno);
4018 }
4019 }
4020
4021 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4022 {
4023 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4024 struct free_segmap_info *free_i = FREE_I(sbi);
4025 unsigned int segno = 0, offset = 0;
4026 unsigned short valid_blocks;
4027
4028 while (1) {
4029 /* find dirty segment based on free segmap */
4030 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4031 if (segno >= MAIN_SEGS(sbi))
4032 break;
4033 offset = segno + 1;
4034 valid_blocks = get_valid_blocks(sbi, segno, false);
4035 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4036 continue;
4037 if (valid_blocks > sbi->blocks_per_seg) {
4038 f2fs_bug_on(sbi, 1);
4039 continue;
4040 }
4041 mutex_lock(&dirty_i->seglist_lock);
4042 __locate_dirty_segment(sbi, segno, DIRTY);
4043 mutex_unlock(&dirty_i->seglist_lock);
4044 }
4045 }
4046
4047 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4048 {
4049 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4050 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4051
4052 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4053 if (!dirty_i->victim_secmap)
4054 return -ENOMEM;
4055 return 0;
4056 }
4057
4058 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4059 {
4060 struct dirty_seglist_info *dirty_i;
4061 unsigned int bitmap_size, i;
4062
4063 /* allocate memory for dirty segments list information */
4064 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4065 GFP_KERNEL);
4066 if (!dirty_i)
4067 return -ENOMEM;
4068
4069 SM_I(sbi)->dirty_info = dirty_i;
4070 mutex_init(&dirty_i->seglist_lock);
4071
4072 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4073
4074 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4075 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4076 GFP_KERNEL);
4077 if (!dirty_i->dirty_segmap[i])
4078 return -ENOMEM;
4079 }
4080
4081 init_dirty_segmap(sbi);
4082 return init_victim_secmap(sbi);
4083 }
4084
4085 /*
4086 * Update min, max modified time for cost-benefit GC algorithm
4087 */
4088 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4089 {
4090 struct sit_info *sit_i = SIT_I(sbi);
4091 unsigned int segno;
4092
4093 down_write(&sit_i->sentry_lock);
4094
4095 sit_i->min_mtime = ULLONG_MAX;
4096
4097 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4098 unsigned int i;
4099 unsigned long long mtime = 0;
4100
4101 for (i = 0; i < sbi->segs_per_sec; i++)
4102 mtime += get_seg_entry(sbi, segno + i)->mtime;
4103
4104 mtime = div_u64(mtime, sbi->segs_per_sec);
4105
4106 if (sit_i->min_mtime > mtime)
4107 sit_i->min_mtime = mtime;
4108 }
4109 sit_i->max_mtime = get_mtime(sbi, false);
4110 up_write(&sit_i->sentry_lock);
4111 }
4112
4113 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4114 {
4115 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4116 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4117 struct f2fs_sm_info *sm_info;
4118 int err;
4119
4120 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4121 if (!sm_info)
4122 return -ENOMEM;
4123
4124 /* init sm info */
4125 sbi->sm_info = sm_info;
4126 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4127 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4128 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4129 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4130 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4131 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4132 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4133 sm_info->rec_prefree_segments = sm_info->main_segments *
4134 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4135 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4136 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4137
4138 if (!test_opt(sbi, LFS))
4139 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4140 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4141 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4142 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4143 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4144 sm_info->min_ssr_sections = reserved_sections(sbi);
4145
4146 INIT_LIST_HEAD(&sm_info->sit_entry_set);
4147
4148 init_rwsem(&sm_info->curseg_lock);
4149
4150 if (!f2fs_readonly(sbi->sb)) {
4151 err = f2fs_create_flush_cmd_control(sbi);
4152 if (err)
4153 return err;
4154 }
4155
4156 err = create_discard_cmd_control(sbi);
4157 if (err)
4158 return err;
4159
4160 err = build_sit_info(sbi);
4161 if (err)
4162 return err;
4163 err = build_free_segmap(sbi);
4164 if (err)
4165 return err;
4166 err = build_curseg(sbi);
4167 if (err)
4168 return err;
4169
4170 /* reinit free segmap based on SIT */
4171 err = build_sit_entries(sbi);
4172 if (err)
4173 return err;
4174
4175 init_free_segmap(sbi);
4176 err = build_dirty_segmap(sbi);
4177 if (err)
4178 return err;
4179
4180 init_min_max_mtime(sbi);
4181 return 0;
4182 }
4183
4184 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4185 enum dirty_type dirty_type)
4186 {
4187 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4188
4189 mutex_lock(&dirty_i->seglist_lock);
4190 kvfree(dirty_i->dirty_segmap[dirty_type]);
4191 dirty_i->nr_dirty[dirty_type] = 0;
4192 mutex_unlock(&dirty_i->seglist_lock);
4193 }
4194
4195 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4196 {
4197 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4198 kvfree(dirty_i->victim_secmap);
4199 }
4200
4201 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4202 {
4203 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4204 int i;
4205
4206 if (!dirty_i)
4207 return;
4208
4209 /* discard pre-free/dirty segments list */
4210 for (i = 0; i < NR_DIRTY_TYPE; i++)
4211 discard_dirty_segmap(sbi, i);
4212
4213 destroy_victim_secmap(sbi);
4214 SM_I(sbi)->dirty_info = NULL;
4215 kfree(dirty_i);
4216 }
4217
4218 static void destroy_curseg(struct f2fs_sb_info *sbi)
4219 {
4220 struct curseg_info *array = SM_I(sbi)->curseg_array;
4221 int i;
4222
4223 if (!array)
4224 return;
4225 SM_I(sbi)->curseg_array = NULL;
4226 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4227 kfree(array[i].sum_blk);
4228 kfree(array[i].journal);
4229 }
4230 kfree(array);
4231 }
4232
4233 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4234 {
4235 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4236 if (!free_i)
4237 return;
4238 SM_I(sbi)->free_info = NULL;
4239 kvfree(free_i->free_segmap);
4240 kvfree(free_i->free_secmap);
4241 kfree(free_i);
4242 }
4243
4244 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4245 {
4246 struct sit_info *sit_i = SIT_I(sbi);
4247 unsigned int start;
4248
4249 if (!sit_i)
4250 return;
4251
4252 if (sit_i->sentries) {
4253 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4254 kfree(sit_i->sentries[start].cur_valid_map);
4255 #ifdef CONFIG_F2FS_CHECK_FS
4256 kfree(sit_i->sentries[start].cur_valid_map_mir);
4257 #endif
4258 kfree(sit_i->sentries[start].ckpt_valid_map);
4259 kfree(sit_i->sentries[start].discard_map);
4260 }
4261 }
4262 kfree(sit_i->tmp_map);
4263
4264 kvfree(sit_i->sentries);
4265 kvfree(sit_i->sec_entries);
4266 kvfree(sit_i->dirty_sentries_bitmap);
4267
4268 SM_I(sbi)->sit_info = NULL;
4269 kfree(sit_i->sit_bitmap);
4270 #ifdef CONFIG_F2FS_CHECK_FS
4271 kfree(sit_i->sit_bitmap_mir);
4272 #endif
4273 kfree(sit_i);
4274 }
4275
4276 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4277 {
4278 struct f2fs_sm_info *sm_info = SM_I(sbi);
4279
4280 if (!sm_info)
4281 return;
4282 f2fs_destroy_flush_cmd_control(sbi, true);
4283 destroy_discard_cmd_control(sbi);
4284 destroy_dirty_segmap(sbi);
4285 destroy_curseg(sbi);
4286 destroy_free_segmap(sbi);
4287 destroy_sit_info(sbi);
4288 sbi->sm_info = NULL;
4289 kfree(sm_info);
4290 }
4291
4292 int __init f2fs_create_segment_manager_caches(void)
4293 {
4294 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4295 sizeof(struct discard_entry));
4296 if (!discard_entry_slab)
4297 goto fail;
4298
4299 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4300 sizeof(struct discard_cmd));
4301 if (!discard_cmd_slab)
4302 goto destroy_discard_entry;
4303
4304 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4305 sizeof(struct sit_entry_set));
4306 if (!sit_entry_set_slab)
4307 goto destroy_discard_cmd;
4308
4309 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4310 sizeof(struct inmem_pages));
4311 if (!inmem_entry_slab)
4312 goto destroy_sit_entry_set;
4313 return 0;
4314
4315 destroy_sit_entry_set:
4316 kmem_cache_destroy(sit_entry_set_slab);
4317 destroy_discard_cmd:
4318 kmem_cache_destroy(discard_cmd_slab);
4319 destroy_discard_entry:
4320 kmem_cache_destroy(discard_entry_slab);
4321 fail:
4322 return -ENOMEM;
4323 }
4324
4325 void f2fs_destroy_segment_manager_caches(void)
4326 {
4327 kmem_cache_destroy(sit_entry_set_slab);
4328 kmem_cache_destroy(discard_cmd_slab);
4329 kmem_cache_destroy(discard_entry_slab);
4330 kmem_cache_destroy(inmem_entry_slab);
4331 }