]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/segment.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 struct inmem_pages *new;
173
174 f2fs_trace_pid(page);
175
176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 SetPagePrivate(page);
178
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181 /* add atomic page indices to the list */
182 new->page = page;
183 INIT_LIST_HEAD(&new->list);
184
185 /* increase reference count with clean state */
186 mutex_lock(&fi->inmem_lock);
187 get_page(page);
188 list_add_tail(&new->list, &fi->inmem_pages);
189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 mutex_unlock(&fi->inmem_lock);
191
192 trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196 struct list_head *head, bool drop, bool recover)
197 {
198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 struct inmem_pages *cur, *tmp;
200 int err = 0;
201
202 list_for_each_entry_safe(cur, tmp, head, list) {
203 struct page *page = cur->page;
204
205 if (drop)
206 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208 lock_page(page);
209
210 if (recover) {
211 struct dnode_of_data dn;
212 struct node_info ni;
213
214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216 set_new_dnode(&dn, inode, NULL, NULL, 0);
217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 err = -EAGAIN;
219 goto next;
220 }
221 get_node_info(sbi, dn.nid, &ni);
222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 cur->old_addr, ni.version, true, true);
224 f2fs_put_dnode(&dn);
225 }
226 next:
227 /* we don't need to invalidate this in the sccessful status */
228 if (drop || recover)
229 ClearPageUptodate(page);
230 set_page_private(page, 0);
231 ClearPagePrivate(page);
232 f2fs_put_page(page, 1);
233
234 list_del(&cur->list);
235 kmem_cache_free(inmem_entry_slab, cur);
236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 }
238 return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243 struct f2fs_inode_info *fi = F2FS_I(inode);
244
245 clear_inode_flag(inode, FI_ATOMIC_FILE);
246
247 mutex_lock(&fi->inmem_lock);
248 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
249 mutex_unlock(&fi->inmem_lock);
250 }
251
252 static int __commit_inmem_pages(struct inode *inode,
253 struct list_head *revoke_list)
254 {
255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256 struct f2fs_inode_info *fi = F2FS_I(inode);
257 struct inmem_pages *cur, *tmp;
258 struct f2fs_io_info fio = {
259 .sbi = sbi,
260 .type = DATA,
261 .op = REQ_OP_WRITE,
262 .op_flags = REQ_SYNC | REQ_PRIO,
263 .encrypted_page = NULL,
264 };
265 bool submit_bio = false;
266 int err = 0;
267
268 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
269 struct page *page = cur->page;
270
271 lock_page(page);
272 if (page->mapping == inode->i_mapping) {
273 trace_f2fs_commit_inmem_page(page, INMEM);
274
275 set_page_dirty(page);
276 f2fs_wait_on_page_writeback(page, DATA, true);
277 if (clear_page_dirty_for_io(page)) {
278 inode_dec_dirty_pages(inode);
279 remove_dirty_inode(inode);
280 }
281
282 fio.page = page;
283 err = do_write_data_page(&fio);
284 if (err) {
285 unlock_page(page);
286 break;
287 }
288
289 /* record old blkaddr for revoking */
290 cur->old_addr = fio.old_blkaddr;
291
292 submit_bio = true;
293 }
294 unlock_page(page);
295 list_move_tail(&cur->list, revoke_list);
296 }
297
298 if (submit_bio)
299 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
300
301 if (!err)
302 __revoke_inmem_pages(inode, revoke_list, false, false);
303
304 return err;
305 }
306
307 int commit_inmem_pages(struct inode *inode)
308 {
309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
310 struct f2fs_inode_info *fi = F2FS_I(inode);
311 struct list_head revoke_list;
312 int err;
313
314 INIT_LIST_HEAD(&revoke_list);
315 f2fs_balance_fs(sbi, true);
316 f2fs_lock_op(sbi);
317
318 mutex_lock(&fi->inmem_lock);
319 err = __commit_inmem_pages(inode, &revoke_list);
320 if (err) {
321 int ret;
322 /*
323 * try to revoke all committed pages, but still we could fail
324 * due to no memory or other reason, if that happened, EAGAIN
325 * will be returned, which means in such case, transaction is
326 * already not integrity, caller should use journal to do the
327 * recovery or rewrite & commit last transaction. For other
328 * error number, revoking was done by filesystem itself.
329 */
330 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
331 if (ret)
332 err = ret;
333
334 /* drop all uncommitted pages */
335 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
336 }
337 mutex_unlock(&fi->inmem_lock);
338
339 f2fs_unlock_op(sbi);
340 return err;
341 }
342
343 /*
344 * This function balances dirty node and dentry pages.
345 * In addition, it controls garbage collection.
346 */
347 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
348 {
349 #ifdef CONFIG_F2FS_FAULT_INJECTION
350 if (time_to_inject(sbi, FAULT_CHECKPOINT))
351 f2fs_stop_checkpoint(sbi, false);
352 #endif
353
354 if (!need)
355 return;
356
357 /* balance_fs_bg is able to be pending */
358 if (excess_cached_nats(sbi))
359 f2fs_balance_fs_bg(sbi);
360
361 /*
362 * We should do GC or end up with checkpoint, if there are so many dirty
363 * dir/node pages without enough free segments.
364 */
365 if (has_not_enough_free_secs(sbi, 0, 0)) {
366 mutex_lock(&sbi->gc_mutex);
367 f2fs_gc(sbi, false, false);
368 }
369 }
370
371 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
372 {
373 /* try to shrink extent cache when there is no enough memory */
374 if (!available_free_memory(sbi, EXTENT_CACHE))
375 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
376
377 /* check the # of cached NAT entries */
378 if (!available_free_memory(sbi, NAT_ENTRIES))
379 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
380
381 if (!available_free_memory(sbi, FREE_NIDS))
382 try_to_free_nids(sbi, MAX_FREE_NIDS);
383 else
384 build_free_nids(sbi, false);
385
386 if (!is_idle(sbi))
387 return;
388
389 /* checkpoint is the only way to shrink partial cached entries */
390 if (!available_free_memory(sbi, NAT_ENTRIES) ||
391 !available_free_memory(sbi, INO_ENTRIES) ||
392 excess_prefree_segs(sbi) ||
393 excess_dirty_nats(sbi) ||
394 f2fs_time_over(sbi, CP_TIME)) {
395 if (test_opt(sbi, DATA_FLUSH)) {
396 struct blk_plug plug;
397
398 blk_start_plug(&plug);
399 sync_dirty_inodes(sbi, FILE_INODE);
400 blk_finish_plug(&plug);
401 }
402 f2fs_sync_fs(sbi->sb, true);
403 stat_inc_bg_cp_count(sbi->stat_info);
404 }
405 }
406
407 static int __submit_flush_wait(struct block_device *bdev)
408 {
409 struct bio *bio = f2fs_bio_alloc(0);
410 int ret;
411
412 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
413 bio->bi_bdev = bdev;
414 ret = submit_bio_wait(bio);
415 bio_put(bio);
416 return ret;
417 }
418
419 static int submit_flush_wait(struct f2fs_sb_info *sbi)
420 {
421 int ret = __submit_flush_wait(sbi->sb->s_bdev);
422 int i;
423
424 if (sbi->s_ndevs && !ret) {
425 for (i = 1; i < sbi->s_ndevs; i++) {
426 ret = __submit_flush_wait(FDEV(i).bdev);
427 if (ret)
428 break;
429 }
430 }
431 return ret;
432 }
433
434 static int issue_flush_thread(void *data)
435 {
436 struct f2fs_sb_info *sbi = data;
437 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
438 wait_queue_head_t *q = &fcc->flush_wait_queue;
439 repeat:
440 if (kthread_should_stop())
441 return 0;
442
443 if (!llist_empty(&fcc->issue_list)) {
444 struct flush_cmd *cmd, *next;
445 int ret;
446
447 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
448 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
449
450 ret = submit_flush_wait(sbi);
451 llist_for_each_entry_safe(cmd, next,
452 fcc->dispatch_list, llnode) {
453 cmd->ret = ret;
454 complete(&cmd->wait);
455 }
456 fcc->dispatch_list = NULL;
457 }
458
459 wait_event_interruptible(*q,
460 kthread_should_stop() || !llist_empty(&fcc->issue_list));
461 goto repeat;
462 }
463
464 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
465 {
466 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
467 struct flush_cmd cmd;
468
469 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
470 test_opt(sbi, FLUSH_MERGE));
471
472 if (test_opt(sbi, NOBARRIER))
473 return 0;
474
475 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
476 int ret;
477
478 atomic_inc(&fcc->submit_flush);
479 ret = submit_flush_wait(sbi);
480 atomic_dec(&fcc->submit_flush);
481 return ret;
482 }
483
484 init_completion(&cmd.wait);
485
486 atomic_inc(&fcc->submit_flush);
487 llist_add(&cmd.llnode, &fcc->issue_list);
488
489 if (!fcc->dispatch_list)
490 wake_up(&fcc->flush_wait_queue);
491
492 if (fcc->f2fs_issue_flush) {
493 wait_for_completion(&cmd.wait);
494 atomic_dec(&fcc->submit_flush);
495 } else {
496 llist_del_all(&fcc->issue_list);
497 atomic_set(&fcc->submit_flush, 0);
498 }
499
500 return cmd.ret;
501 }
502
503 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
504 {
505 dev_t dev = sbi->sb->s_bdev->bd_dev;
506 struct flush_cmd_control *fcc;
507 int err = 0;
508
509 if (SM_I(sbi)->cmd_control_info) {
510 fcc = SM_I(sbi)->cmd_control_info;
511 goto init_thread;
512 }
513
514 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
515 if (!fcc)
516 return -ENOMEM;
517 atomic_set(&fcc->submit_flush, 0);
518 init_waitqueue_head(&fcc->flush_wait_queue);
519 init_llist_head(&fcc->issue_list);
520 SM_I(sbi)->cmd_control_info = fcc;
521 init_thread:
522 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
523 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
524 if (IS_ERR(fcc->f2fs_issue_flush)) {
525 err = PTR_ERR(fcc->f2fs_issue_flush);
526 kfree(fcc);
527 SM_I(sbi)->cmd_control_info = NULL;
528 return err;
529 }
530
531 return err;
532 }
533
534 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
535 {
536 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
537
538 if (fcc && fcc->f2fs_issue_flush) {
539 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
540
541 fcc->f2fs_issue_flush = NULL;
542 kthread_stop(flush_thread);
543 }
544 if (free) {
545 kfree(fcc);
546 SM_I(sbi)->cmd_control_info = NULL;
547 }
548 }
549
550 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
551 enum dirty_type dirty_type)
552 {
553 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
554
555 /* need not be added */
556 if (IS_CURSEG(sbi, segno))
557 return;
558
559 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
560 dirty_i->nr_dirty[dirty_type]++;
561
562 if (dirty_type == DIRTY) {
563 struct seg_entry *sentry = get_seg_entry(sbi, segno);
564 enum dirty_type t = sentry->type;
565
566 if (unlikely(t >= DIRTY)) {
567 f2fs_bug_on(sbi, 1);
568 return;
569 }
570 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
571 dirty_i->nr_dirty[t]++;
572 }
573 }
574
575 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
576 enum dirty_type dirty_type)
577 {
578 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
579
580 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
581 dirty_i->nr_dirty[dirty_type]--;
582
583 if (dirty_type == DIRTY) {
584 struct seg_entry *sentry = get_seg_entry(sbi, segno);
585 enum dirty_type t = sentry->type;
586
587 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
588 dirty_i->nr_dirty[t]--;
589
590 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
591 clear_bit(GET_SECNO(sbi, segno),
592 dirty_i->victim_secmap);
593 }
594 }
595
596 /*
597 * Should not occur error such as -ENOMEM.
598 * Adding dirty entry into seglist is not critical operation.
599 * If a given segment is one of current working segments, it won't be added.
600 */
601 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
602 {
603 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
604 unsigned short valid_blocks;
605
606 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
607 return;
608
609 mutex_lock(&dirty_i->seglist_lock);
610
611 valid_blocks = get_valid_blocks(sbi, segno, 0);
612
613 if (valid_blocks == 0) {
614 __locate_dirty_segment(sbi, segno, PRE);
615 __remove_dirty_segment(sbi, segno, DIRTY);
616 } else if (valid_blocks < sbi->blocks_per_seg) {
617 __locate_dirty_segment(sbi, segno, DIRTY);
618 } else {
619 /* Recovery routine with SSR needs this */
620 __remove_dirty_segment(sbi, segno, DIRTY);
621 }
622
623 mutex_unlock(&dirty_i->seglist_lock);
624 }
625
626 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
627 struct bio *bio)
628 {
629 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
630 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
631
632 INIT_LIST_HEAD(&be->list);
633 be->bio = bio;
634 init_completion(&be->event);
635 list_add_tail(&be->list, wait_list);
636
637 return be;
638 }
639
640 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
641 {
642 struct list_head *wait_list = &(SM_I(sbi)->wait_list);
643 struct bio_entry *be, *tmp;
644
645 list_for_each_entry_safe(be, tmp, wait_list, list) {
646 struct bio *bio = be->bio;
647 int err;
648
649 wait_for_completion_io(&be->event);
650 err = be->error;
651 if (err == -EOPNOTSUPP)
652 err = 0;
653
654 if (err)
655 f2fs_msg(sbi->sb, KERN_INFO,
656 "Issue discard failed, ret: %d", err);
657
658 bio_put(bio);
659 list_del(&be->list);
660 kmem_cache_free(bio_entry_slab, be);
661 }
662 }
663
664 static void f2fs_submit_bio_wait_endio(struct bio *bio)
665 {
666 struct bio_entry *be = (struct bio_entry *)bio->bi_private;
667
668 be->error = bio->bi_error;
669 complete(&be->event);
670 }
671
672 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
673 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
674 struct block_device *bdev, block_t blkstart, block_t blklen)
675 {
676 struct bio *bio = NULL;
677 int err;
678
679 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
680
681 if (sbi->s_ndevs) {
682 int devi = f2fs_target_device_index(sbi, blkstart);
683
684 blkstart -= FDEV(devi).start_blk;
685 }
686 err = __blkdev_issue_discard(bdev,
687 SECTOR_FROM_BLOCK(blkstart),
688 SECTOR_FROM_BLOCK(blklen),
689 GFP_NOFS, 0, &bio);
690 if (!err && bio) {
691 struct bio_entry *be = __add_bio_entry(sbi, bio);
692
693 bio->bi_private = be;
694 bio->bi_end_io = f2fs_submit_bio_wait_endio;
695 bio->bi_opf |= REQ_SYNC;
696 submit_bio(bio);
697 }
698
699 return err;
700 }
701
702 #ifdef CONFIG_BLK_DEV_ZONED
703 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
704 struct block_device *bdev, block_t blkstart, block_t blklen)
705 {
706 sector_t nr_sects = SECTOR_FROM_BLOCK(blklen);
707 sector_t sector;
708 int devi = 0;
709
710 if (sbi->s_ndevs) {
711 devi = f2fs_target_device_index(sbi, blkstart);
712 blkstart -= FDEV(devi).start_blk;
713 }
714 sector = SECTOR_FROM_BLOCK(blkstart);
715
716 if (sector & (bdev_zone_size(bdev) - 1) ||
717 nr_sects != bdev_zone_size(bdev)) {
718 f2fs_msg(sbi->sb, KERN_INFO,
719 "(%d) %s: Unaligned discard attempted (block %x + %x)",
720 devi, sbi->s_ndevs ? FDEV(devi).path: "",
721 blkstart, blklen);
722 return -EIO;
723 }
724
725 /*
726 * We need to know the type of the zone: for conventional zones,
727 * use regular discard if the drive supports it. For sequential
728 * zones, reset the zone write pointer.
729 */
730 switch (get_blkz_type(sbi, bdev, blkstart)) {
731
732 case BLK_ZONE_TYPE_CONVENTIONAL:
733 if (!blk_queue_discard(bdev_get_queue(bdev)))
734 return 0;
735 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
736 case BLK_ZONE_TYPE_SEQWRITE_REQ:
737 case BLK_ZONE_TYPE_SEQWRITE_PREF:
738 trace_f2fs_issue_reset_zone(sbi->sb, blkstart);
739 return blkdev_reset_zones(bdev, sector,
740 nr_sects, GFP_NOFS);
741 default:
742 /* Unknown zone type: broken device ? */
743 return -EIO;
744 }
745 }
746 #endif
747
748 static int __issue_discard_async(struct f2fs_sb_info *sbi,
749 struct block_device *bdev, block_t blkstart, block_t blklen)
750 {
751 #ifdef CONFIG_BLK_DEV_ZONED
752 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
753 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
754 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
755 #endif
756 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
757 }
758
759 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
760 block_t blkstart, block_t blklen)
761 {
762 sector_t start = blkstart, len = 0;
763 struct block_device *bdev;
764 struct seg_entry *se;
765 unsigned int offset;
766 block_t i;
767 int err = 0;
768
769 bdev = f2fs_target_device(sbi, blkstart, NULL);
770
771 for (i = blkstart; i < blkstart + blklen; i++, len++) {
772 if (i != start) {
773 struct block_device *bdev2 =
774 f2fs_target_device(sbi, i, NULL);
775
776 if (bdev2 != bdev) {
777 err = __issue_discard_async(sbi, bdev,
778 start, len);
779 if (err)
780 return err;
781 bdev = bdev2;
782 start = i;
783 len = 0;
784 }
785 }
786
787 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
788 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
789
790 if (!f2fs_test_and_set_bit(offset, se->discard_map))
791 sbi->discard_blks--;
792 }
793
794 if (len)
795 err = __issue_discard_async(sbi, bdev, start, len);
796 return err;
797 }
798
799 static void __add_discard_entry(struct f2fs_sb_info *sbi,
800 struct cp_control *cpc, struct seg_entry *se,
801 unsigned int start, unsigned int end)
802 {
803 struct list_head *head = &SM_I(sbi)->discard_list;
804 struct discard_entry *new, *last;
805
806 if (!list_empty(head)) {
807 last = list_last_entry(head, struct discard_entry, list);
808 if (START_BLOCK(sbi, cpc->trim_start) + start ==
809 last->blkaddr + last->len) {
810 last->len += end - start;
811 goto done;
812 }
813 }
814
815 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
816 INIT_LIST_HEAD(&new->list);
817 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
818 new->len = end - start;
819 list_add_tail(&new->list, head);
820 done:
821 SM_I(sbi)->nr_discards += end - start;
822 }
823
824 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
825 {
826 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
827 int max_blocks = sbi->blocks_per_seg;
828 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
829 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
830 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
831 unsigned long *discard_map = (unsigned long *)se->discard_map;
832 unsigned long *dmap = SIT_I(sbi)->tmp_map;
833 unsigned int start = 0, end = -1;
834 bool force = (cpc->reason == CP_DISCARD);
835 int i;
836
837 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
838 return;
839
840 if (!force) {
841 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
842 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
843 return;
844 }
845
846 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
847 for (i = 0; i < entries; i++)
848 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
849 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
850
851 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
852 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
853 if (start >= max_blocks)
854 break;
855
856 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
857 if (force && start && end != max_blocks
858 && (end - start) < cpc->trim_minlen)
859 continue;
860
861 __add_discard_entry(sbi, cpc, se, start, end);
862 }
863 }
864
865 void release_discard_addrs(struct f2fs_sb_info *sbi)
866 {
867 struct list_head *head = &(SM_I(sbi)->discard_list);
868 struct discard_entry *entry, *this;
869
870 /* drop caches */
871 list_for_each_entry_safe(entry, this, head, list) {
872 list_del(&entry->list);
873 kmem_cache_free(discard_entry_slab, entry);
874 }
875 }
876
877 /*
878 * Should call clear_prefree_segments after checkpoint is done.
879 */
880 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
881 {
882 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
883 unsigned int segno;
884
885 mutex_lock(&dirty_i->seglist_lock);
886 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
887 __set_test_and_free(sbi, segno);
888 mutex_unlock(&dirty_i->seglist_lock);
889 }
890
891 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
892 {
893 struct list_head *head = &(SM_I(sbi)->discard_list);
894 struct discard_entry *entry, *this;
895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
896 struct blk_plug plug;
897 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
898 unsigned int start = 0, end = -1;
899 unsigned int secno, start_segno;
900 bool force = (cpc->reason == CP_DISCARD);
901
902 blk_start_plug(&plug);
903
904 mutex_lock(&dirty_i->seglist_lock);
905
906 while (1) {
907 int i;
908 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
909 if (start >= MAIN_SEGS(sbi))
910 break;
911 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
912 start + 1);
913
914 for (i = start; i < end; i++)
915 clear_bit(i, prefree_map);
916
917 dirty_i->nr_dirty[PRE] -= end - start;
918
919 if (force || !test_opt(sbi, DISCARD))
920 continue;
921
922 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
923 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
924 (end - start) << sbi->log_blocks_per_seg);
925 continue;
926 }
927 next:
928 secno = GET_SECNO(sbi, start);
929 start_segno = secno * sbi->segs_per_sec;
930 if (!IS_CURSEC(sbi, secno) &&
931 !get_valid_blocks(sbi, start, sbi->segs_per_sec))
932 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
933 sbi->segs_per_sec << sbi->log_blocks_per_seg);
934
935 start = start_segno + sbi->segs_per_sec;
936 if (start < end)
937 goto next;
938 }
939 mutex_unlock(&dirty_i->seglist_lock);
940
941 /* send small discards */
942 list_for_each_entry_safe(entry, this, head, list) {
943 if (force && entry->len < cpc->trim_minlen)
944 goto skip;
945 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
946 cpc->trimmed += entry->len;
947 skip:
948 list_del(&entry->list);
949 SM_I(sbi)->nr_discards -= entry->len;
950 kmem_cache_free(discard_entry_slab, entry);
951 }
952
953 blk_finish_plug(&plug);
954 }
955
956 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
957 {
958 struct sit_info *sit_i = SIT_I(sbi);
959
960 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
961 sit_i->dirty_sentries++;
962 return false;
963 }
964
965 return true;
966 }
967
968 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
969 unsigned int segno, int modified)
970 {
971 struct seg_entry *se = get_seg_entry(sbi, segno);
972 se->type = type;
973 if (modified)
974 __mark_sit_entry_dirty(sbi, segno);
975 }
976
977 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
978 {
979 struct seg_entry *se;
980 unsigned int segno, offset;
981 long int new_vblocks;
982
983 segno = GET_SEGNO(sbi, blkaddr);
984
985 se = get_seg_entry(sbi, segno);
986 new_vblocks = se->valid_blocks + del;
987 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
988
989 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
990 (new_vblocks > sbi->blocks_per_seg)));
991
992 se->valid_blocks = new_vblocks;
993 se->mtime = get_mtime(sbi);
994 SIT_I(sbi)->max_mtime = se->mtime;
995
996 /* Update valid block bitmap */
997 if (del > 0) {
998 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
999 f2fs_bug_on(sbi, 1);
1000 if (f2fs_discard_en(sbi) &&
1001 !f2fs_test_and_set_bit(offset, se->discard_map))
1002 sbi->discard_blks--;
1003 } else {
1004 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
1005 f2fs_bug_on(sbi, 1);
1006 if (f2fs_discard_en(sbi) &&
1007 f2fs_test_and_clear_bit(offset, se->discard_map))
1008 sbi->discard_blks++;
1009 }
1010 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1011 se->ckpt_valid_blocks += del;
1012
1013 __mark_sit_entry_dirty(sbi, segno);
1014
1015 /* update total number of valid blocks to be written in ckpt area */
1016 SIT_I(sbi)->written_valid_blocks += del;
1017
1018 if (sbi->segs_per_sec > 1)
1019 get_sec_entry(sbi, segno)->valid_blocks += del;
1020 }
1021
1022 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1023 {
1024 update_sit_entry(sbi, new, 1);
1025 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1026 update_sit_entry(sbi, old, -1);
1027
1028 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1029 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1030 }
1031
1032 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1033 {
1034 unsigned int segno = GET_SEGNO(sbi, addr);
1035 struct sit_info *sit_i = SIT_I(sbi);
1036
1037 f2fs_bug_on(sbi, addr == NULL_ADDR);
1038 if (addr == NEW_ADDR)
1039 return;
1040
1041 /* add it into sit main buffer */
1042 mutex_lock(&sit_i->sentry_lock);
1043
1044 update_sit_entry(sbi, addr, -1);
1045
1046 /* add it into dirty seglist */
1047 locate_dirty_segment(sbi, segno);
1048
1049 mutex_unlock(&sit_i->sentry_lock);
1050 }
1051
1052 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1053 {
1054 struct sit_info *sit_i = SIT_I(sbi);
1055 unsigned int segno, offset;
1056 struct seg_entry *se;
1057 bool is_cp = false;
1058
1059 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1060 return true;
1061
1062 mutex_lock(&sit_i->sentry_lock);
1063
1064 segno = GET_SEGNO(sbi, blkaddr);
1065 se = get_seg_entry(sbi, segno);
1066 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1067
1068 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1069 is_cp = true;
1070
1071 mutex_unlock(&sit_i->sentry_lock);
1072
1073 return is_cp;
1074 }
1075
1076 /*
1077 * This function should be resided under the curseg_mutex lock
1078 */
1079 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1080 struct f2fs_summary *sum)
1081 {
1082 struct curseg_info *curseg = CURSEG_I(sbi, type);
1083 void *addr = curseg->sum_blk;
1084 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1085 memcpy(addr, sum, sizeof(struct f2fs_summary));
1086 }
1087
1088 /*
1089 * Calculate the number of current summary pages for writing
1090 */
1091 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1092 {
1093 int valid_sum_count = 0;
1094 int i, sum_in_page;
1095
1096 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1097 if (sbi->ckpt->alloc_type[i] == SSR)
1098 valid_sum_count += sbi->blocks_per_seg;
1099 else {
1100 if (for_ra)
1101 valid_sum_count += le16_to_cpu(
1102 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1103 else
1104 valid_sum_count += curseg_blkoff(sbi, i);
1105 }
1106 }
1107
1108 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1109 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1110 if (valid_sum_count <= sum_in_page)
1111 return 1;
1112 else if ((valid_sum_count - sum_in_page) <=
1113 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1114 return 2;
1115 return 3;
1116 }
1117
1118 /*
1119 * Caller should put this summary page
1120 */
1121 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1122 {
1123 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1124 }
1125
1126 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1127 {
1128 struct page *page = grab_meta_page(sbi, blk_addr);
1129 void *dst = page_address(page);
1130
1131 if (src)
1132 memcpy(dst, src, PAGE_SIZE);
1133 else
1134 memset(dst, 0, PAGE_SIZE);
1135 set_page_dirty(page);
1136 f2fs_put_page(page, 1);
1137 }
1138
1139 static void write_sum_page(struct f2fs_sb_info *sbi,
1140 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1141 {
1142 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1143 }
1144
1145 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1146 int type, block_t blk_addr)
1147 {
1148 struct curseg_info *curseg = CURSEG_I(sbi, type);
1149 struct page *page = grab_meta_page(sbi, blk_addr);
1150 struct f2fs_summary_block *src = curseg->sum_blk;
1151 struct f2fs_summary_block *dst;
1152
1153 dst = (struct f2fs_summary_block *)page_address(page);
1154
1155 mutex_lock(&curseg->curseg_mutex);
1156
1157 down_read(&curseg->journal_rwsem);
1158 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1159 up_read(&curseg->journal_rwsem);
1160
1161 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1162 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1163
1164 mutex_unlock(&curseg->curseg_mutex);
1165
1166 set_page_dirty(page);
1167 f2fs_put_page(page, 1);
1168 }
1169
1170 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1171 {
1172 struct curseg_info *curseg = CURSEG_I(sbi, type);
1173 unsigned int segno = curseg->segno + 1;
1174 struct free_segmap_info *free_i = FREE_I(sbi);
1175
1176 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1177 return !test_bit(segno, free_i->free_segmap);
1178 return 0;
1179 }
1180
1181 /*
1182 * Find a new segment from the free segments bitmap to right order
1183 * This function should be returned with success, otherwise BUG
1184 */
1185 static void get_new_segment(struct f2fs_sb_info *sbi,
1186 unsigned int *newseg, bool new_sec, int dir)
1187 {
1188 struct free_segmap_info *free_i = FREE_I(sbi);
1189 unsigned int segno, secno, zoneno;
1190 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1191 unsigned int hint = *newseg / sbi->segs_per_sec;
1192 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1193 unsigned int left_start = hint;
1194 bool init = true;
1195 int go_left = 0;
1196 int i;
1197
1198 spin_lock(&free_i->segmap_lock);
1199
1200 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1201 segno = find_next_zero_bit(free_i->free_segmap,
1202 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1203 if (segno < (hint + 1) * sbi->segs_per_sec)
1204 goto got_it;
1205 }
1206 find_other_zone:
1207 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1208 if (secno >= MAIN_SECS(sbi)) {
1209 if (dir == ALLOC_RIGHT) {
1210 secno = find_next_zero_bit(free_i->free_secmap,
1211 MAIN_SECS(sbi), 0);
1212 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1213 } else {
1214 go_left = 1;
1215 left_start = hint - 1;
1216 }
1217 }
1218 if (go_left == 0)
1219 goto skip_left;
1220
1221 while (test_bit(left_start, free_i->free_secmap)) {
1222 if (left_start > 0) {
1223 left_start--;
1224 continue;
1225 }
1226 left_start = find_next_zero_bit(free_i->free_secmap,
1227 MAIN_SECS(sbi), 0);
1228 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1229 break;
1230 }
1231 secno = left_start;
1232 skip_left:
1233 hint = secno;
1234 segno = secno * sbi->segs_per_sec;
1235 zoneno = secno / sbi->secs_per_zone;
1236
1237 /* give up on finding another zone */
1238 if (!init)
1239 goto got_it;
1240 if (sbi->secs_per_zone == 1)
1241 goto got_it;
1242 if (zoneno == old_zoneno)
1243 goto got_it;
1244 if (dir == ALLOC_LEFT) {
1245 if (!go_left && zoneno + 1 >= total_zones)
1246 goto got_it;
1247 if (go_left && zoneno == 0)
1248 goto got_it;
1249 }
1250 for (i = 0; i < NR_CURSEG_TYPE; i++)
1251 if (CURSEG_I(sbi, i)->zone == zoneno)
1252 break;
1253
1254 if (i < NR_CURSEG_TYPE) {
1255 /* zone is in user, try another */
1256 if (go_left)
1257 hint = zoneno * sbi->secs_per_zone - 1;
1258 else if (zoneno + 1 >= total_zones)
1259 hint = 0;
1260 else
1261 hint = (zoneno + 1) * sbi->secs_per_zone;
1262 init = false;
1263 goto find_other_zone;
1264 }
1265 got_it:
1266 /* set it as dirty segment in free segmap */
1267 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1268 __set_inuse(sbi, segno);
1269 *newseg = segno;
1270 spin_unlock(&free_i->segmap_lock);
1271 }
1272
1273 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1274 {
1275 struct curseg_info *curseg = CURSEG_I(sbi, type);
1276 struct summary_footer *sum_footer;
1277
1278 curseg->segno = curseg->next_segno;
1279 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1280 curseg->next_blkoff = 0;
1281 curseg->next_segno = NULL_SEGNO;
1282
1283 sum_footer = &(curseg->sum_blk->footer);
1284 memset(sum_footer, 0, sizeof(struct summary_footer));
1285 if (IS_DATASEG(type))
1286 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1287 if (IS_NODESEG(type))
1288 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1289 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1290 }
1291
1292 /*
1293 * Allocate a current working segment.
1294 * This function always allocates a free segment in LFS manner.
1295 */
1296 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1297 {
1298 struct curseg_info *curseg = CURSEG_I(sbi, type);
1299 unsigned int segno = curseg->segno;
1300 int dir = ALLOC_LEFT;
1301
1302 write_sum_page(sbi, curseg->sum_blk,
1303 GET_SUM_BLOCK(sbi, segno));
1304 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1305 dir = ALLOC_RIGHT;
1306
1307 if (test_opt(sbi, NOHEAP))
1308 dir = ALLOC_RIGHT;
1309
1310 get_new_segment(sbi, &segno, new_sec, dir);
1311 curseg->next_segno = segno;
1312 reset_curseg(sbi, type, 1);
1313 curseg->alloc_type = LFS;
1314 }
1315
1316 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1317 struct curseg_info *seg, block_t start)
1318 {
1319 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1320 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1321 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1322 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1323 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1324 int i, pos;
1325
1326 for (i = 0; i < entries; i++)
1327 target_map[i] = ckpt_map[i] | cur_map[i];
1328
1329 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1330
1331 seg->next_blkoff = pos;
1332 }
1333
1334 /*
1335 * If a segment is written by LFS manner, next block offset is just obtained
1336 * by increasing the current block offset. However, if a segment is written by
1337 * SSR manner, next block offset obtained by calling __next_free_blkoff
1338 */
1339 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1340 struct curseg_info *seg)
1341 {
1342 if (seg->alloc_type == SSR)
1343 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1344 else
1345 seg->next_blkoff++;
1346 }
1347
1348 /*
1349 * This function always allocates a used segment(from dirty seglist) by SSR
1350 * manner, so it should recover the existing segment information of valid blocks
1351 */
1352 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1353 {
1354 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1355 struct curseg_info *curseg = CURSEG_I(sbi, type);
1356 unsigned int new_segno = curseg->next_segno;
1357 struct f2fs_summary_block *sum_node;
1358 struct page *sum_page;
1359
1360 write_sum_page(sbi, curseg->sum_blk,
1361 GET_SUM_BLOCK(sbi, curseg->segno));
1362 __set_test_and_inuse(sbi, new_segno);
1363
1364 mutex_lock(&dirty_i->seglist_lock);
1365 __remove_dirty_segment(sbi, new_segno, PRE);
1366 __remove_dirty_segment(sbi, new_segno, DIRTY);
1367 mutex_unlock(&dirty_i->seglist_lock);
1368
1369 reset_curseg(sbi, type, 1);
1370 curseg->alloc_type = SSR;
1371 __next_free_blkoff(sbi, curseg, 0);
1372
1373 if (reuse) {
1374 sum_page = get_sum_page(sbi, new_segno);
1375 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1376 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1377 f2fs_put_page(sum_page, 1);
1378 }
1379 }
1380
1381 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1382 {
1383 struct curseg_info *curseg = CURSEG_I(sbi, type);
1384 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1385
1386 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1387 return v_ops->get_victim(sbi,
1388 &(curseg)->next_segno, BG_GC, type, SSR);
1389
1390 /* For data segments, let's do SSR more intensively */
1391 for (; type >= CURSEG_HOT_DATA; type--)
1392 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1393 BG_GC, type, SSR))
1394 return 1;
1395 return 0;
1396 }
1397
1398 /*
1399 * flush out current segment and replace it with new segment
1400 * This function should be returned with success, otherwise BUG
1401 */
1402 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1403 int type, bool force)
1404 {
1405 struct curseg_info *curseg = CURSEG_I(sbi, type);
1406
1407 if (force)
1408 new_curseg(sbi, type, true);
1409 else if (type == CURSEG_WARM_NODE)
1410 new_curseg(sbi, type, false);
1411 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1412 new_curseg(sbi, type, false);
1413 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1414 change_curseg(sbi, type, true);
1415 else
1416 new_curseg(sbi, type, false);
1417
1418 stat_inc_seg_type(sbi, curseg);
1419 }
1420
1421 void allocate_new_segments(struct f2fs_sb_info *sbi)
1422 {
1423 struct curseg_info *curseg;
1424 unsigned int old_segno;
1425 int i;
1426
1427 if (test_opt(sbi, LFS))
1428 return;
1429
1430 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1431 curseg = CURSEG_I(sbi, i);
1432 old_segno = curseg->segno;
1433 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1434 locate_dirty_segment(sbi, old_segno);
1435 }
1436 }
1437
1438 static const struct segment_allocation default_salloc_ops = {
1439 .allocate_segment = allocate_segment_by_default,
1440 };
1441
1442 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1443 {
1444 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1445 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1446 unsigned int start_segno, end_segno;
1447 struct cp_control cpc;
1448 int err = 0;
1449
1450 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1451 return -EINVAL;
1452
1453 cpc.trimmed = 0;
1454 if (end <= MAIN_BLKADDR(sbi))
1455 goto out;
1456
1457 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1458 f2fs_msg(sbi->sb, KERN_WARNING,
1459 "Found FS corruption, run fsck to fix.");
1460 goto out;
1461 }
1462
1463 /* start/end segment number in main_area */
1464 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1465 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1466 GET_SEGNO(sbi, end);
1467 cpc.reason = CP_DISCARD;
1468 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1469
1470 /* do checkpoint to issue discard commands safely */
1471 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1472 cpc.trim_start = start_segno;
1473
1474 if (sbi->discard_blks == 0)
1475 break;
1476 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1477 cpc.trim_end = end_segno;
1478 else
1479 cpc.trim_end = min_t(unsigned int,
1480 rounddown(start_segno +
1481 BATCHED_TRIM_SEGMENTS(sbi),
1482 sbi->segs_per_sec) - 1, end_segno);
1483
1484 mutex_lock(&sbi->gc_mutex);
1485 err = write_checkpoint(sbi, &cpc);
1486 mutex_unlock(&sbi->gc_mutex);
1487 if (err)
1488 break;
1489
1490 schedule();
1491 }
1492 out:
1493 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1494 return err;
1495 }
1496
1497 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1498 {
1499 struct curseg_info *curseg = CURSEG_I(sbi, type);
1500 if (curseg->next_blkoff < sbi->blocks_per_seg)
1501 return true;
1502 return false;
1503 }
1504
1505 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1506 {
1507 if (p_type == DATA)
1508 return CURSEG_HOT_DATA;
1509 else
1510 return CURSEG_HOT_NODE;
1511 }
1512
1513 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1514 {
1515 if (p_type == DATA) {
1516 struct inode *inode = page->mapping->host;
1517
1518 if (S_ISDIR(inode->i_mode))
1519 return CURSEG_HOT_DATA;
1520 else
1521 return CURSEG_COLD_DATA;
1522 } else {
1523 if (IS_DNODE(page) && is_cold_node(page))
1524 return CURSEG_WARM_NODE;
1525 else
1526 return CURSEG_COLD_NODE;
1527 }
1528 }
1529
1530 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1531 {
1532 if (p_type == DATA) {
1533 struct inode *inode = page->mapping->host;
1534
1535 if (S_ISDIR(inode->i_mode))
1536 return CURSEG_HOT_DATA;
1537 else if (is_cold_data(page) || file_is_cold(inode))
1538 return CURSEG_COLD_DATA;
1539 else
1540 return CURSEG_WARM_DATA;
1541 } else {
1542 if (IS_DNODE(page))
1543 return is_cold_node(page) ? CURSEG_WARM_NODE :
1544 CURSEG_HOT_NODE;
1545 else
1546 return CURSEG_COLD_NODE;
1547 }
1548 }
1549
1550 static int __get_segment_type(struct page *page, enum page_type p_type)
1551 {
1552 switch (F2FS_P_SB(page)->active_logs) {
1553 case 2:
1554 return __get_segment_type_2(page, p_type);
1555 case 4:
1556 return __get_segment_type_4(page, p_type);
1557 }
1558 /* NR_CURSEG_TYPE(6) logs by default */
1559 f2fs_bug_on(F2FS_P_SB(page),
1560 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1561 return __get_segment_type_6(page, p_type);
1562 }
1563
1564 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1565 block_t old_blkaddr, block_t *new_blkaddr,
1566 struct f2fs_summary *sum, int type)
1567 {
1568 struct sit_info *sit_i = SIT_I(sbi);
1569 struct curseg_info *curseg = CURSEG_I(sbi, type);
1570
1571 mutex_lock(&curseg->curseg_mutex);
1572 mutex_lock(&sit_i->sentry_lock);
1573
1574 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1575
1576 /*
1577 * __add_sum_entry should be resided under the curseg_mutex
1578 * because, this function updates a summary entry in the
1579 * current summary block.
1580 */
1581 __add_sum_entry(sbi, type, sum);
1582
1583 __refresh_next_blkoff(sbi, curseg);
1584
1585 stat_inc_block_count(sbi, curseg);
1586
1587 if (!__has_curseg_space(sbi, type))
1588 sit_i->s_ops->allocate_segment(sbi, type, false);
1589 /*
1590 * SIT information should be updated before segment allocation,
1591 * since SSR needs latest valid block information.
1592 */
1593 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1594
1595 mutex_unlock(&sit_i->sentry_lock);
1596
1597 if (page && IS_NODESEG(type))
1598 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1599
1600 mutex_unlock(&curseg->curseg_mutex);
1601 }
1602
1603 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1604 {
1605 int type = __get_segment_type(fio->page, fio->type);
1606
1607 if (fio->type == NODE || fio->type == DATA)
1608 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1609
1610 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1611 &fio->new_blkaddr, sum, type);
1612
1613 /* writeout dirty page into bdev */
1614 f2fs_submit_page_mbio(fio);
1615
1616 if (fio->type == NODE || fio->type == DATA)
1617 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1618 }
1619
1620 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1621 {
1622 struct f2fs_io_info fio = {
1623 .sbi = sbi,
1624 .type = META,
1625 .op = REQ_OP_WRITE,
1626 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
1627 .old_blkaddr = page->index,
1628 .new_blkaddr = page->index,
1629 .page = page,
1630 .encrypted_page = NULL,
1631 };
1632
1633 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1634 fio.op_flags &= ~REQ_META;
1635
1636 set_page_writeback(page);
1637 f2fs_submit_page_mbio(&fio);
1638 }
1639
1640 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1641 {
1642 struct f2fs_summary sum;
1643
1644 set_summary(&sum, nid, 0, 0);
1645 do_write_page(&sum, fio);
1646 }
1647
1648 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1649 {
1650 struct f2fs_sb_info *sbi = fio->sbi;
1651 struct f2fs_summary sum;
1652 struct node_info ni;
1653
1654 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1655 get_node_info(sbi, dn->nid, &ni);
1656 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1657 do_write_page(&sum, fio);
1658 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1659 }
1660
1661 void rewrite_data_page(struct f2fs_io_info *fio)
1662 {
1663 fio->new_blkaddr = fio->old_blkaddr;
1664 stat_inc_inplace_blocks(fio->sbi);
1665 f2fs_submit_page_mbio(fio);
1666 }
1667
1668 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1669 block_t old_blkaddr, block_t new_blkaddr,
1670 bool recover_curseg, bool recover_newaddr)
1671 {
1672 struct sit_info *sit_i = SIT_I(sbi);
1673 struct curseg_info *curseg;
1674 unsigned int segno, old_cursegno;
1675 struct seg_entry *se;
1676 int type;
1677 unsigned short old_blkoff;
1678
1679 segno = GET_SEGNO(sbi, new_blkaddr);
1680 se = get_seg_entry(sbi, segno);
1681 type = se->type;
1682
1683 if (!recover_curseg) {
1684 /* for recovery flow */
1685 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1686 if (old_blkaddr == NULL_ADDR)
1687 type = CURSEG_COLD_DATA;
1688 else
1689 type = CURSEG_WARM_DATA;
1690 }
1691 } else {
1692 if (!IS_CURSEG(sbi, segno))
1693 type = CURSEG_WARM_DATA;
1694 }
1695
1696 curseg = CURSEG_I(sbi, type);
1697
1698 mutex_lock(&curseg->curseg_mutex);
1699 mutex_lock(&sit_i->sentry_lock);
1700
1701 old_cursegno = curseg->segno;
1702 old_blkoff = curseg->next_blkoff;
1703
1704 /* change the current segment */
1705 if (segno != curseg->segno) {
1706 curseg->next_segno = segno;
1707 change_curseg(sbi, type, true);
1708 }
1709
1710 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1711 __add_sum_entry(sbi, type, sum);
1712
1713 if (!recover_curseg || recover_newaddr)
1714 update_sit_entry(sbi, new_blkaddr, 1);
1715 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1716 update_sit_entry(sbi, old_blkaddr, -1);
1717
1718 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1719 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1720
1721 locate_dirty_segment(sbi, old_cursegno);
1722
1723 if (recover_curseg) {
1724 if (old_cursegno != curseg->segno) {
1725 curseg->next_segno = old_cursegno;
1726 change_curseg(sbi, type, true);
1727 }
1728 curseg->next_blkoff = old_blkoff;
1729 }
1730
1731 mutex_unlock(&sit_i->sentry_lock);
1732 mutex_unlock(&curseg->curseg_mutex);
1733 }
1734
1735 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1736 block_t old_addr, block_t new_addr,
1737 unsigned char version, bool recover_curseg,
1738 bool recover_newaddr)
1739 {
1740 struct f2fs_summary sum;
1741
1742 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1743
1744 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1745 recover_curseg, recover_newaddr);
1746
1747 f2fs_update_data_blkaddr(dn, new_addr);
1748 }
1749
1750 void f2fs_wait_on_page_writeback(struct page *page,
1751 enum page_type type, bool ordered)
1752 {
1753 if (PageWriteback(page)) {
1754 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1755
1756 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1757 if (ordered)
1758 wait_on_page_writeback(page);
1759 else
1760 wait_for_stable_page(page);
1761 }
1762 }
1763
1764 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1765 block_t blkaddr)
1766 {
1767 struct page *cpage;
1768
1769 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1770 return;
1771
1772 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1773 if (cpage) {
1774 f2fs_wait_on_page_writeback(cpage, DATA, true);
1775 f2fs_put_page(cpage, 1);
1776 }
1777 }
1778
1779 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1780 {
1781 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1782 struct curseg_info *seg_i;
1783 unsigned char *kaddr;
1784 struct page *page;
1785 block_t start;
1786 int i, j, offset;
1787
1788 start = start_sum_block(sbi);
1789
1790 page = get_meta_page(sbi, start++);
1791 kaddr = (unsigned char *)page_address(page);
1792
1793 /* Step 1: restore nat cache */
1794 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1795 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1796
1797 /* Step 2: restore sit cache */
1798 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1799 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1800 offset = 2 * SUM_JOURNAL_SIZE;
1801
1802 /* Step 3: restore summary entries */
1803 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1804 unsigned short blk_off;
1805 unsigned int segno;
1806
1807 seg_i = CURSEG_I(sbi, i);
1808 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1809 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1810 seg_i->next_segno = segno;
1811 reset_curseg(sbi, i, 0);
1812 seg_i->alloc_type = ckpt->alloc_type[i];
1813 seg_i->next_blkoff = blk_off;
1814
1815 if (seg_i->alloc_type == SSR)
1816 blk_off = sbi->blocks_per_seg;
1817
1818 for (j = 0; j < blk_off; j++) {
1819 struct f2fs_summary *s;
1820 s = (struct f2fs_summary *)(kaddr + offset);
1821 seg_i->sum_blk->entries[j] = *s;
1822 offset += SUMMARY_SIZE;
1823 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1824 SUM_FOOTER_SIZE)
1825 continue;
1826
1827 f2fs_put_page(page, 1);
1828 page = NULL;
1829
1830 page = get_meta_page(sbi, start++);
1831 kaddr = (unsigned char *)page_address(page);
1832 offset = 0;
1833 }
1834 }
1835 f2fs_put_page(page, 1);
1836 return 0;
1837 }
1838
1839 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1840 {
1841 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1842 struct f2fs_summary_block *sum;
1843 struct curseg_info *curseg;
1844 struct page *new;
1845 unsigned short blk_off;
1846 unsigned int segno = 0;
1847 block_t blk_addr = 0;
1848
1849 /* get segment number and block addr */
1850 if (IS_DATASEG(type)) {
1851 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1852 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1853 CURSEG_HOT_DATA]);
1854 if (__exist_node_summaries(sbi))
1855 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1856 else
1857 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1858 } else {
1859 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1860 CURSEG_HOT_NODE]);
1861 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1862 CURSEG_HOT_NODE]);
1863 if (__exist_node_summaries(sbi))
1864 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1865 type - CURSEG_HOT_NODE);
1866 else
1867 blk_addr = GET_SUM_BLOCK(sbi, segno);
1868 }
1869
1870 new = get_meta_page(sbi, blk_addr);
1871 sum = (struct f2fs_summary_block *)page_address(new);
1872
1873 if (IS_NODESEG(type)) {
1874 if (__exist_node_summaries(sbi)) {
1875 struct f2fs_summary *ns = &sum->entries[0];
1876 int i;
1877 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1878 ns->version = 0;
1879 ns->ofs_in_node = 0;
1880 }
1881 } else {
1882 int err;
1883
1884 err = restore_node_summary(sbi, segno, sum);
1885 if (err) {
1886 f2fs_put_page(new, 1);
1887 return err;
1888 }
1889 }
1890 }
1891
1892 /* set uncompleted segment to curseg */
1893 curseg = CURSEG_I(sbi, type);
1894 mutex_lock(&curseg->curseg_mutex);
1895
1896 /* update journal info */
1897 down_write(&curseg->journal_rwsem);
1898 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1899 up_write(&curseg->journal_rwsem);
1900
1901 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1902 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1903 curseg->next_segno = segno;
1904 reset_curseg(sbi, type, 0);
1905 curseg->alloc_type = ckpt->alloc_type[type];
1906 curseg->next_blkoff = blk_off;
1907 mutex_unlock(&curseg->curseg_mutex);
1908 f2fs_put_page(new, 1);
1909 return 0;
1910 }
1911
1912 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1913 {
1914 int type = CURSEG_HOT_DATA;
1915 int err;
1916
1917 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1918 int npages = npages_for_summary_flush(sbi, true);
1919
1920 if (npages >= 2)
1921 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1922 META_CP, true);
1923
1924 /* restore for compacted data summary */
1925 if (read_compacted_summaries(sbi))
1926 return -EINVAL;
1927 type = CURSEG_HOT_NODE;
1928 }
1929
1930 if (__exist_node_summaries(sbi))
1931 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1932 NR_CURSEG_TYPE - type, META_CP, true);
1933
1934 for (; type <= CURSEG_COLD_NODE; type++) {
1935 err = read_normal_summaries(sbi, type);
1936 if (err)
1937 return err;
1938 }
1939
1940 return 0;
1941 }
1942
1943 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1944 {
1945 struct page *page;
1946 unsigned char *kaddr;
1947 struct f2fs_summary *summary;
1948 struct curseg_info *seg_i;
1949 int written_size = 0;
1950 int i, j;
1951
1952 page = grab_meta_page(sbi, blkaddr++);
1953 kaddr = (unsigned char *)page_address(page);
1954
1955 /* Step 1: write nat cache */
1956 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1957 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1958 written_size += SUM_JOURNAL_SIZE;
1959
1960 /* Step 2: write sit cache */
1961 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1962 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1963 written_size += SUM_JOURNAL_SIZE;
1964
1965 /* Step 3: write summary entries */
1966 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1967 unsigned short blkoff;
1968 seg_i = CURSEG_I(sbi, i);
1969 if (sbi->ckpt->alloc_type[i] == SSR)
1970 blkoff = sbi->blocks_per_seg;
1971 else
1972 blkoff = curseg_blkoff(sbi, i);
1973
1974 for (j = 0; j < blkoff; j++) {
1975 if (!page) {
1976 page = grab_meta_page(sbi, blkaddr++);
1977 kaddr = (unsigned char *)page_address(page);
1978 written_size = 0;
1979 }
1980 summary = (struct f2fs_summary *)(kaddr + written_size);
1981 *summary = seg_i->sum_blk->entries[j];
1982 written_size += SUMMARY_SIZE;
1983
1984 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1985 SUM_FOOTER_SIZE)
1986 continue;
1987
1988 set_page_dirty(page);
1989 f2fs_put_page(page, 1);
1990 page = NULL;
1991 }
1992 }
1993 if (page) {
1994 set_page_dirty(page);
1995 f2fs_put_page(page, 1);
1996 }
1997 }
1998
1999 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2000 block_t blkaddr, int type)
2001 {
2002 int i, end;
2003 if (IS_DATASEG(type))
2004 end = type + NR_CURSEG_DATA_TYPE;
2005 else
2006 end = type + NR_CURSEG_NODE_TYPE;
2007
2008 for (i = type; i < end; i++)
2009 write_current_sum_page(sbi, i, blkaddr + (i - type));
2010 }
2011
2012 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2013 {
2014 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2015 write_compacted_summaries(sbi, start_blk);
2016 else
2017 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2018 }
2019
2020 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2021 {
2022 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2023 }
2024
2025 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2026 unsigned int val, int alloc)
2027 {
2028 int i;
2029
2030 if (type == NAT_JOURNAL) {
2031 for (i = 0; i < nats_in_cursum(journal); i++) {
2032 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2033 return i;
2034 }
2035 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2036 return update_nats_in_cursum(journal, 1);
2037 } else if (type == SIT_JOURNAL) {
2038 for (i = 0; i < sits_in_cursum(journal); i++)
2039 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2040 return i;
2041 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2042 return update_sits_in_cursum(journal, 1);
2043 }
2044 return -1;
2045 }
2046
2047 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2048 unsigned int segno)
2049 {
2050 return get_meta_page(sbi, current_sit_addr(sbi, segno));
2051 }
2052
2053 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2054 unsigned int start)
2055 {
2056 struct sit_info *sit_i = SIT_I(sbi);
2057 struct page *src_page, *dst_page;
2058 pgoff_t src_off, dst_off;
2059 void *src_addr, *dst_addr;
2060
2061 src_off = current_sit_addr(sbi, start);
2062 dst_off = next_sit_addr(sbi, src_off);
2063
2064 /* get current sit block page without lock */
2065 src_page = get_meta_page(sbi, src_off);
2066 dst_page = grab_meta_page(sbi, dst_off);
2067 f2fs_bug_on(sbi, PageDirty(src_page));
2068
2069 src_addr = page_address(src_page);
2070 dst_addr = page_address(dst_page);
2071 memcpy(dst_addr, src_addr, PAGE_SIZE);
2072
2073 set_page_dirty(dst_page);
2074 f2fs_put_page(src_page, 1);
2075
2076 set_to_next_sit(sit_i, start);
2077
2078 return dst_page;
2079 }
2080
2081 static struct sit_entry_set *grab_sit_entry_set(void)
2082 {
2083 struct sit_entry_set *ses =
2084 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2085
2086 ses->entry_cnt = 0;
2087 INIT_LIST_HEAD(&ses->set_list);
2088 return ses;
2089 }
2090
2091 static void release_sit_entry_set(struct sit_entry_set *ses)
2092 {
2093 list_del(&ses->set_list);
2094 kmem_cache_free(sit_entry_set_slab, ses);
2095 }
2096
2097 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2098 struct list_head *head)
2099 {
2100 struct sit_entry_set *next = ses;
2101
2102 if (list_is_last(&ses->set_list, head))
2103 return;
2104
2105 list_for_each_entry_continue(next, head, set_list)
2106 if (ses->entry_cnt <= next->entry_cnt)
2107 break;
2108
2109 list_move_tail(&ses->set_list, &next->set_list);
2110 }
2111
2112 static void add_sit_entry(unsigned int segno, struct list_head *head)
2113 {
2114 struct sit_entry_set *ses;
2115 unsigned int start_segno = START_SEGNO(segno);
2116
2117 list_for_each_entry(ses, head, set_list) {
2118 if (ses->start_segno == start_segno) {
2119 ses->entry_cnt++;
2120 adjust_sit_entry_set(ses, head);
2121 return;
2122 }
2123 }
2124
2125 ses = grab_sit_entry_set();
2126
2127 ses->start_segno = start_segno;
2128 ses->entry_cnt++;
2129 list_add(&ses->set_list, head);
2130 }
2131
2132 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2133 {
2134 struct f2fs_sm_info *sm_info = SM_I(sbi);
2135 struct list_head *set_list = &sm_info->sit_entry_set;
2136 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2137 unsigned int segno;
2138
2139 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2140 add_sit_entry(segno, set_list);
2141 }
2142
2143 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2144 {
2145 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2146 struct f2fs_journal *journal = curseg->journal;
2147 int i;
2148
2149 down_write(&curseg->journal_rwsem);
2150 for (i = 0; i < sits_in_cursum(journal); i++) {
2151 unsigned int segno;
2152 bool dirtied;
2153
2154 segno = le32_to_cpu(segno_in_journal(journal, i));
2155 dirtied = __mark_sit_entry_dirty(sbi, segno);
2156
2157 if (!dirtied)
2158 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2159 }
2160 update_sits_in_cursum(journal, -i);
2161 up_write(&curseg->journal_rwsem);
2162 }
2163
2164 /*
2165 * CP calls this function, which flushes SIT entries including sit_journal,
2166 * and moves prefree segs to free segs.
2167 */
2168 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2169 {
2170 struct sit_info *sit_i = SIT_I(sbi);
2171 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2172 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2173 struct f2fs_journal *journal = curseg->journal;
2174 struct sit_entry_set *ses, *tmp;
2175 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2176 bool to_journal = true;
2177 struct seg_entry *se;
2178
2179 mutex_lock(&sit_i->sentry_lock);
2180
2181 if (!sit_i->dirty_sentries)
2182 goto out;
2183
2184 /*
2185 * add and account sit entries of dirty bitmap in sit entry
2186 * set temporarily
2187 */
2188 add_sits_in_set(sbi);
2189
2190 /*
2191 * if there are no enough space in journal to store dirty sit
2192 * entries, remove all entries from journal and add and account
2193 * them in sit entry set.
2194 */
2195 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2196 remove_sits_in_journal(sbi);
2197
2198 /*
2199 * there are two steps to flush sit entries:
2200 * #1, flush sit entries to journal in current cold data summary block.
2201 * #2, flush sit entries to sit page.
2202 */
2203 list_for_each_entry_safe(ses, tmp, head, set_list) {
2204 struct page *page = NULL;
2205 struct f2fs_sit_block *raw_sit = NULL;
2206 unsigned int start_segno = ses->start_segno;
2207 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2208 (unsigned long)MAIN_SEGS(sbi));
2209 unsigned int segno = start_segno;
2210
2211 if (to_journal &&
2212 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2213 to_journal = false;
2214
2215 if (to_journal) {
2216 down_write(&curseg->journal_rwsem);
2217 } else {
2218 page = get_next_sit_page(sbi, start_segno);
2219 raw_sit = page_address(page);
2220 }
2221
2222 /* flush dirty sit entries in region of current sit set */
2223 for_each_set_bit_from(segno, bitmap, end) {
2224 int offset, sit_offset;
2225
2226 se = get_seg_entry(sbi, segno);
2227
2228 /* add discard candidates */
2229 if (cpc->reason != CP_DISCARD) {
2230 cpc->trim_start = segno;
2231 add_discard_addrs(sbi, cpc);
2232 }
2233
2234 if (to_journal) {
2235 offset = lookup_journal_in_cursum(journal,
2236 SIT_JOURNAL, segno, 1);
2237 f2fs_bug_on(sbi, offset < 0);
2238 segno_in_journal(journal, offset) =
2239 cpu_to_le32(segno);
2240 seg_info_to_raw_sit(se,
2241 &sit_in_journal(journal, offset));
2242 } else {
2243 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2244 seg_info_to_raw_sit(se,
2245 &raw_sit->entries[sit_offset]);
2246 }
2247
2248 __clear_bit(segno, bitmap);
2249 sit_i->dirty_sentries--;
2250 ses->entry_cnt--;
2251 }
2252
2253 if (to_journal)
2254 up_write(&curseg->journal_rwsem);
2255 else
2256 f2fs_put_page(page, 1);
2257
2258 f2fs_bug_on(sbi, ses->entry_cnt);
2259 release_sit_entry_set(ses);
2260 }
2261
2262 f2fs_bug_on(sbi, !list_empty(head));
2263 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2264 out:
2265 if (cpc->reason == CP_DISCARD) {
2266 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2267 add_discard_addrs(sbi, cpc);
2268 }
2269 mutex_unlock(&sit_i->sentry_lock);
2270
2271 set_prefree_as_free_segments(sbi);
2272 }
2273
2274 static int build_sit_info(struct f2fs_sb_info *sbi)
2275 {
2276 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2277 struct sit_info *sit_i;
2278 unsigned int sit_segs, start;
2279 char *src_bitmap, *dst_bitmap;
2280 unsigned int bitmap_size;
2281
2282 /* allocate memory for SIT information */
2283 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2284 if (!sit_i)
2285 return -ENOMEM;
2286
2287 SM_I(sbi)->sit_info = sit_i;
2288
2289 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2290 sizeof(struct seg_entry), GFP_KERNEL);
2291 if (!sit_i->sentries)
2292 return -ENOMEM;
2293
2294 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2295 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2296 if (!sit_i->dirty_sentries_bitmap)
2297 return -ENOMEM;
2298
2299 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2300 sit_i->sentries[start].cur_valid_map
2301 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2302 sit_i->sentries[start].ckpt_valid_map
2303 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2304 if (!sit_i->sentries[start].cur_valid_map ||
2305 !sit_i->sentries[start].ckpt_valid_map)
2306 return -ENOMEM;
2307
2308 if (f2fs_discard_en(sbi)) {
2309 sit_i->sentries[start].discard_map
2310 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2311 if (!sit_i->sentries[start].discard_map)
2312 return -ENOMEM;
2313 }
2314 }
2315
2316 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2317 if (!sit_i->tmp_map)
2318 return -ENOMEM;
2319
2320 if (sbi->segs_per_sec > 1) {
2321 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2322 sizeof(struct sec_entry), GFP_KERNEL);
2323 if (!sit_i->sec_entries)
2324 return -ENOMEM;
2325 }
2326
2327 /* get information related with SIT */
2328 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2329
2330 /* setup SIT bitmap from ckeckpoint pack */
2331 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2332 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2333
2334 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2335 if (!dst_bitmap)
2336 return -ENOMEM;
2337
2338 /* init SIT information */
2339 sit_i->s_ops = &default_salloc_ops;
2340
2341 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2342 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2343 sit_i->written_valid_blocks = 0;
2344 sit_i->sit_bitmap = dst_bitmap;
2345 sit_i->bitmap_size = bitmap_size;
2346 sit_i->dirty_sentries = 0;
2347 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2348 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2349 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2350 mutex_init(&sit_i->sentry_lock);
2351 return 0;
2352 }
2353
2354 static int build_free_segmap(struct f2fs_sb_info *sbi)
2355 {
2356 struct free_segmap_info *free_i;
2357 unsigned int bitmap_size, sec_bitmap_size;
2358
2359 /* allocate memory for free segmap information */
2360 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2361 if (!free_i)
2362 return -ENOMEM;
2363
2364 SM_I(sbi)->free_info = free_i;
2365
2366 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2367 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2368 if (!free_i->free_segmap)
2369 return -ENOMEM;
2370
2371 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2372 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2373 if (!free_i->free_secmap)
2374 return -ENOMEM;
2375
2376 /* set all segments as dirty temporarily */
2377 memset(free_i->free_segmap, 0xff, bitmap_size);
2378 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2379
2380 /* init free segmap information */
2381 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2382 free_i->free_segments = 0;
2383 free_i->free_sections = 0;
2384 spin_lock_init(&free_i->segmap_lock);
2385 return 0;
2386 }
2387
2388 static int build_curseg(struct f2fs_sb_info *sbi)
2389 {
2390 struct curseg_info *array;
2391 int i;
2392
2393 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2394 if (!array)
2395 return -ENOMEM;
2396
2397 SM_I(sbi)->curseg_array = array;
2398
2399 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2400 mutex_init(&array[i].curseg_mutex);
2401 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2402 if (!array[i].sum_blk)
2403 return -ENOMEM;
2404 init_rwsem(&array[i].journal_rwsem);
2405 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2406 GFP_KERNEL);
2407 if (!array[i].journal)
2408 return -ENOMEM;
2409 array[i].segno = NULL_SEGNO;
2410 array[i].next_blkoff = 0;
2411 }
2412 return restore_curseg_summaries(sbi);
2413 }
2414
2415 static void build_sit_entries(struct f2fs_sb_info *sbi)
2416 {
2417 struct sit_info *sit_i = SIT_I(sbi);
2418 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2419 struct f2fs_journal *journal = curseg->journal;
2420 struct seg_entry *se;
2421 struct f2fs_sit_entry sit;
2422 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2423 unsigned int i, start, end;
2424 unsigned int readed, start_blk = 0;
2425
2426 do {
2427 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2428 META_SIT, true);
2429
2430 start = start_blk * sit_i->sents_per_block;
2431 end = (start_blk + readed) * sit_i->sents_per_block;
2432
2433 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2434 struct f2fs_sit_block *sit_blk;
2435 struct page *page;
2436
2437 se = &sit_i->sentries[start];
2438 page = get_current_sit_page(sbi, start);
2439 sit_blk = (struct f2fs_sit_block *)page_address(page);
2440 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2441 f2fs_put_page(page, 1);
2442
2443 check_block_count(sbi, start, &sit);
2444 seg_info_from_raw_sit(se, &sit);
2445
2446 /* build discard map only one time */
2447 if (f2fs_discard_en(sbi)) {
2448 memcpy(se->discard_map, se->cur_valid_map,
2449 SIT_VBLOCK_MAP_SIZE);
2450 sbi->discard_blks += sbi->blocks_per_seg -
2451 se->valid_blocks;
2452 }
2453
2454 if (sbi->segs_per_sec > 1)
2455 get_sec_entry(sbi, start)->valid_blocks +=
2456 se->valid_blocks;
2457 }
2458 start_blk += readed;
2459 } while (start_blk < sit_blk_cnt);
2460
2461 down_read(&curseg->journal_rwsem);
2462 for (i = 0; i < sits_in_cursum(journal); i++) {
2463 unsigned int old_valid_blocks;
2464
2465 start = le32_to_cpu(segno_in_journal(journal, i));
2466 se = &sit_i->sentries[start];
2467 sit = sit_in_journal(journal, i);
2468
2469 old_valid_blocks = se->valid_blocks;
2470
2471 check_block_count(sbi, start, &sit);
2472 seg_info_from_raw_sit(se, &sit);
2473
2474 if (f2fs_discard_en(sbi)) {
2475 memcpy(se->discard_map, se->cur_valid_map,
2476 SIT_VBLOCK_MAP_SIZE);
2477 sbi->discard_blks += old_valid_blocks -
2478 se->valid_blocks;
2479 }
2480
2481 if (sbi->segs_per_sec > 1)
2482 get_sec_entry(sbi, start)->valid_blocks +=
2483 se->valid_blocks - old_valid_blocks;
2484 }
2485 up_read(&curseg->journal_rwsem);
2486 }
2487
2488 static void init_free_segmap(struct f2fs_sb_info *sbi)
2489 {
2490 unsigned int start;
2491 int type;
2492
2493 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2494 struct seg_entry *sentry = get_seg_entry(sbi, start);
2495 if (!sentry->valid_blocks)
2496 __set_free(sbi, start);
2497 else
2498 SIT_I(sbi)->written_valid_blocks +=
2499 sentry->valid_blocks;
2500 }
2501
2502 /* set use the current segments */
2503 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2504 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2505 __set_test_and_inuse(sbi, curseg_t->segno);
2506 }
2507 }
2508
2509 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2510 {
2511 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2512 struct free_segmap_info *free_i = FREE_I(sbi);
2513 unsigned int segno = 0, offset = 0;
2514 unsigned short valid_blocks;
2515
2516 while (1) {
2517 /* find dirty segment based on free segmap */
2518 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2519 if (segno >= MAIN_SEGS(sbi))
2520 break;
2521 offset = segno + 1;
2522 valid_blocks = get_valid_blocks(sbi, segno, 0);
2523 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2524 continue;
2525 if (valid_blocks > sbi->blocks_per_seg) {
2526 f2fs_bug_on(sbi, 1);
2527 continue;
2528 }
2529 mutex_lock(&dirty_i->seglist_lock);
2530 __locate_dirty_segment(sbi, segno, DIRTY);
2531 mutex_unlock(&dirty_i->seglist_lock);
2532 }
2533 }
2534
2535 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2536 {
2537 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2538 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2539
2540 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2541 if (!dirty_i->victim_secmap)
2542 return -ENOMEM;
2543 return 0;
2544 }
2545
2546 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2547 {
2548 struct dirty_seglist_info *dirty_i;
2549 unsigned int bitmap_size, i;
2550
2551 /* allocate memory for dirty segments list information */
2552 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2553 if (!dirty_i)
2554 return -ENOMEM;
2555
2556 SM_I(sbi)->dirty_info = dirty_i;
2557 mutex_init(&dirty_i->seglist_lock);
2558
2559 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2560
2561 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2562 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2563 if (!dirty_i->dirty_segmap[i])
2564 return -ENOMEM;
2565 }
2566
2567 init_dirty_segmap(sbi);
2568 return init_victim_secmap(sbi);
2569 }
2570
2571 /*
2572 * Update min, max modified time for cost-benefit GC algorithm
2573 */
2574 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2575 {
2576 struct sit_info *sit_i = SIT_I(sbi);
2577 unsigned int segno;
2578
2579 mutex_lock(&sit_i->sentry_lock);
2580
2581 sit_i->min_mtime = LLONG_MAX;
2582
2583 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2584 unsigned int i;
2585 unsigned long long mtime = 0;
2586
2587 for (i = 0; i < sbi->segs_per_sec; i++)
2588 mtime += get_seg_entry(sbi, segno + i)->mtime;
2589
2590 mtime = div_u64(mtime, sbi->segs_per_sec);
2591
2592 if (sit_i->min_mtime > mtime)
2593 sit_i->min_mtime = mtime;
2594 }
2595 sit_i->max_mtime = get_mtime(sbi);
2596 mutex_unlock(&sit_i->sentry_lock);
2597 }
2598
2599 int build_segment_manager(struct f2fs_sb_info *sbi)
2600 {
2601 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2602 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2603 struct f2fs_sm_info *sm_info;
2604 int err;
2605
2606 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2607 if (!sm_info)
2608 return -ENOMEM;
2609
2610 /* init sm info */
2611 sbi->sm_info = sm_info;
2612 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2613 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2614 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2615 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2616 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2617 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2618 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2619 sm_info->rec_prefree_segments = sm_info->main_segments *
2620 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2621 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2622 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2623
2624 if (!test_opt(sbi, LFS))
2625 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2626 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2627 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2628
2629 INIT_LIST_HEAD(&sm_info->discard_list);
2630 INIT_LIST_HEAD(&sm_info->wait_list);
2631 sm_info->nr_discards = 0;
2632 sm_info->max_discards = 0;
2633
2634 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2635
2636 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2637
2638 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2639 err = create_flush_cmd_control(sbi);
2640 if (err)
2641 return err;
2642 }
2643
2644 err = build_sit_info(sbi);
2645 if (err)
2646 return err;
2647 err = build_free_segmap(sbi);
2648 if (err)
2649 return err;
2650 err = build_curseg(sbi);
2651 if (err)
2652 return err;
2653
2654 /* reinit free segmap based on SIT */
2655 build_sit_entries(sbi);
2656
2657 init_free_segmap(sbi);
2658 err = build_dirty_segmap(sbi);
2659 if (err)
2660 return err;
2661
2662 init_min_max_mtime(sbi);
2663 return 0;
2664 }
2665
2666 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2667 enum dirty_type dirty_type)
2668 {
2669 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2670
2671 mutex_lock(&dirty_i->seglist_lock);
2672 kvfree(dirty_i->dirty_segmap[dirty_type]);
2673 dirty_i->nr_dirty[dirty_type] = 0;
2674 mutex_unlock(&dirty_i->seglist_lock);
2675 }
2676
2677 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2678 {
2679 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2680 kvfree(dirty_i->victim_secmap);
2681 }
2682
2683 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2684 {
2685 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2686 int i;
2687
2688 if (!dirty_i)
2689 return;
2690
2691 /* discard pre-free/dirty segments list */
2692 for (i = 0; i < NR_DIRTY_TYPE; i++)
2693 discard_dirty_segmap(sbi, i);
2694
2695 destroy_victim_secmap(sbi);
2696 SM_I(sbi)->dirty_info = NULL;
2697 kfree(dirty_i);
2698 }
2699
2700 static void destroy_curseg(struct f2fs_sb_info *sbi)
2701 {
2702 struct curseg_info *array = SM_I(sbi)->curseg_array;
2703 int i;
2704
2705 if (!array)
2706 return;
2707 SM_I(sbi)->curseg_array = NULL;
2708 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2709 kfree(array[i].sum_blk);
2710 kfree(array[i].journal);
2711 }
2712 kfree(array);
2713 }
2714
2715 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2716 {
2717 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2718 if (!free_i)
2719 return;
2720 SM_I(sbi)->free_info = NULL;
2721 kvfree(free_i->free_segmap);
2722 kvfree(free_i->free_secmap);
2723 kfree(free_i);
2724 }
2725
2726 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2727 {
2728 struct sit_info *sit_i = SIT_I(sbi);
2729 unsigned int start;
2730
2731 if (!sit_i)
2732 return;
2733
2734 if (sit_i->sentries) {
2735 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2736 kfree(sit_i->sentries[start].cur_valid_map);
2737 kfree(sit_i->sentries[start].ckpt_valid_map);
2738 kfree(sit_i->sentries[start].discard_map);
2739 }
2740 }
2741 kfree(sit_i->tmp_map);
2742
2743 kvfree(sit_i->sentries);
2744 kvfree(sit_i->sec_entries);
2745 kvfree(sit_i->dirty_sentries_bitmap);
2746
2747 SM_I(sbi)->sit_info = NULL;
2748 kfree(sit_i->sit_bitmap);
2749 kfree(sit_i);
2750 }
2751
2752 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2753 {
2754 struct f2fs_sm_info *sm_info = SM_I(sbi);
2755
2756 if (!sm_info)
2757 return;
2758 destroy_flush_cmd_control(sbi, true);
2759 destroy_dirty_segmap(sbi);
2760 destroy_curseg(sbi);
2761 destroy_free_segmap(sbi);
2762 destroy_sit_info(sbi);
2763 sbi->sm_info = NULL;
2764 kfree(sm_info);
2765 }
2766
2767 int __init create_segment_manager_caches(void)
2768 {
2769 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2770 sizeof(struct discard_entry));
2771 if (!discard_entry_slab)
2772 goto fail;
2773
2774 bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2775 sizeof(struct bio_entry));
2776 if (!bio_entry_slab)
2777 goto destroy_discard_entry;
2778
2779 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2780 sizeof(struct sit_entry_set));
2781 if (!sit_entry_set_slab)
2782 goto destroy_bio_entry;
2783
2784 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2785 sizeof(struct inmem_pages));
2786 if (!inmem_entry_slab)
2787 goto destroy_sit_entry_set;
2788 return 0;
2789
2790 destroy_sit_entry_set:
2791 kmem_cache_destroy(sit_entry_set_slab);
2792 destroy_bio_entry:
2793 kmem_cache_destroy(bio_entry_slab);
2794 destroy_discard_entry:
2795 kmem_cache_destroy(discard_entry_slab);
2796 fail:
2797 return -ENOMEM;
2798 }
2799
2800 void destroy_segment_manager_caches(void)
2801 {
2802 kmem_cache_destroy(sit_entry_set_slab);
2803 kmem_cache_destroy(bio_entry_slab);
2804 kmem_cache_destroy(discard_entry_slab);
2805 kmem_cache_destroy(inmem_entry_slab);
2806 }