]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/f2fs/segment.c
Merge branches 'ib-mfd-4.19', 'ib-mfd-gpio-pinctrl-4.19', 'ib-mfd-i915-media-platform...
[mirror_ubuntu-eoan-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42 shift = 56;
43 #endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49 }
50
51 /*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 int num = 0;
58
59 #if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64 #endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88 }
89
90 /*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101 {
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123 pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131 found:
132 return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137 {
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160 pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168 found:
169 return result - size + __reverse_ffz(tmp);
170 }
171
172 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
173 {
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_mode == GC_URGENT)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
188 {
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
214
215 trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover)
220 {
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct inmem_pages *cur, *tmp;
223 int err = 0;
224
225 list_for_each_entry_safe(cur, tmp, head, list) {
226 struct page *page = cur->page;
227
228 if (drop)
229 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231 lock_page(page);
232
233 f2fs_wait_on_page_writeback(page, DATA, true);
234
235 if (recover) {
236 struct dnode_of_data dn;
237 struct node_info ni;
238
239 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
240 retry:
241 set_new_dnode(&dn, inode, NULL, NULL, 0);
242 err = f2fs_get_dnode_of_data(&dn, page->index,
243 LOOKUP_NODE);
244 if (err) {
245 if (err == -ENOMEM) {
246 congestion_wait(BLK_RW_ASYNC, HZ/50);
247 cond_resched();
248 goto retry;
249 }
250 err = -EAGAIN;
251 goto next;
252 }
253 f2fs_get_node_info(sbi, dn.nid, &ni);
254 if (cur->old_addr == NEW_ADDR) {
255 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
256 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
257 } else
258 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
259 cur->old_addr, ni.version, true, true);
260 f2fs_put_dnode(&dn);
261 }
262 next:
263 /* we don't need to invalidate this in the sccessful status */
264 if (drop || recover)
265 ClearPageUptodate(page);
266 set_page_private(page, 0);
267 ClearPagePrivate(page);
268 f2fs_put_page(page, 1);
269
270 list_del(&cur->list);
271 kmem_cache_free(inmem_entry_slab, cur);
272 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
273 }
274 return err;
275 }
276
277 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
278 {
279 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
280 struct inode *inode;
281 struct f2fs_inode_info *fi;
282 next:
283 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
284 if (list_empty(head)) {
285 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
286 return;
287 }
288 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
289 inode = igrab(&fi->vfs_inode);
290 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
291
292 if (inode) {
293 if (gc_failure) {
294 if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
295 goto drop;
296 goto skip;
297 }
298 drop:
299 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
300 f2fs_drop_inmem_pages(inode);
301 iput(inode);
302 }
303 skip:
304 congestion_wait(BLK_RW_ASYNC, HZ/50);
305 cond_resched();
306 goto next;
307 }
308
309 void f2fs_drop_inmem_pages(struct inode *inode)
310 {
311 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
312 struct f2fs_inode_info *fi = F2FS_I(inode);
313
314 mutex_lock(&fi->inmem_lock);
315 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
316 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
317 if (!list_empty(&fi->inmem_ilist))
318 list_del_init(&fi->inmem_ilist);
319 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
320 mutex_unlock(&fi->inmem_lock);
321
322 clear_inode_flag(inode, FI_ATOMIC_FILE);
323 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
324 stat_dec_atomic_write(inode);
325 }
326
327 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
328 {
329 struct f2fs_inode_info *fi = F2FS_I(inode);
330 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
331 struct list_head *head = &fi->inmem_pages;
332 struct inmem_pages *cur = NULL;
333
334 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
335
336 mutex_lock(&fi->inmem_lock);
337 list_for_each_entry(cur, head, list) {
338 if (cur->page == page)
339 break;
340 }
341
342 f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
343 list_del(&cur->list);
344 mutex_unlock(&fi->inmem_lock);
345
346 dec_page_count(sbi, F2FS_INMEM_PAGES);
347 kmem_cache_free(inmem_entry_slab, cur);
348
349 ClearPageUptodate(page);
350 set_page_private(page, 0);
351 ClearPagePrivate(page);
352 f2fs_put_page(page, 0);
353
354 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
355 }
356
357 static int __f2fs_commit_inmem_pages(struct inode *inode)
358 {
359 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
360 struct f2fs_inode_info *fi = F2FS_I(inode);
361 struct inmem_pages *cur, *tmp;
362 struct f2fs_io_info fio = {
363 .sbi = sbi,
364 .ino = inode->i_ino,
365 .type = DATA,
366 .op = REQ_OP_WRITE,
367 .op_flags = REQ_SYNC | REQ_PRIO,
368 .io_type = FS_DATA_IO,
369 };
370 struct list_head revoke_list;
371 pgoff_t last_idx = ULONG_MAX;
372 int err = 0;
373
374 INIT_LIST_HEAD(&revoke_list);
375
376 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
377 struct page *page = cur->page;
378
379 lock_page(page);
380 if (page->mapping == inode->i_mapping) {
381 trace_f2fs_commit_inmem_page(page, INMEM);
382
383 set_page_dirty(page);
384 f2fs_wait_on_page_writeback(page, DATA, true);
385 if (clear_page_dirty_for_io(page)) {
386 inode_dec_dirty_pages(inode);
387 f2fs_remove_dirty_inode(inode);
388 }
389 retry:
390 fio.page = page;
391 fio.old_blkaddr = NULL_ADDR;
392 fio.encrypted_page = NULL;
393 fio.need_lock = LOCK_DONE;
394 err = f2fs_do_write_data_page(&fio);
395 if (err) {
396 if (err == -ENOMEM) {
397 congestion_wait(BLK_RW_ASYNC, HZ/50);
398 cond_resched();
399 goto retry;
400 }
401 unlock_page(page);
402 break;
403 }
404 /* record old blkaddr for revoking */
405 cur->old_addr = fio.old_blkaddr;
406 last_idx = page->index;
407 }
408 unlock_page(page);
409 list_move_tail(&cur->list, &revoke_list);
410 }
411
412 if (last_idx != ULONG_MAX)
413 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
414
415 if (err) {
416 /*
417 * try to revoke all committed pages, but still we could fail
418 * due to no memory or other reason, if that happened, EAGAIN
419 * will be returned, which means in such case, transaction is
420 * already not integrity, caller should use journal to do the
421 * recovery or rewrite & commit last transaction. For other
422 * error number, revoking was done by filesystem itself.
423 */
424 err = __revoke_inmem_pages(inode, &revoke_list, false, true);
425
426 /* drop all uncommitted pages */
427 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
428 } else {
429 __revoke_inmem_pages(inode, &revoke_list, false, false);
430 }
431
432 return err;
433 }
434
435 int f2fs_commit_inmem_pages(struct inode *inode)
436 {
437 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
438 struct f2fs_inode_info *fi = F2FS_I(inode);
439 int err;
440
441 f2fs_balance_fs(sbi, true);
442 f2fs_lock_op(sbi);
443
444 set_inode_flag(inode, FI_ATOMIC_COMMIT);
445
446 mutex_lock(&fi->inmem_lock);
447 err = __f2fs_commit_inmem_pages(inode);
448
449 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
450 if (!list_empty(&fi->inmem_ilist))
451 list_del_init(&fi->inmem_ilist);
452 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
453 mutex_unlock(&fi->inmem_lock);
454
455 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
456
457 f2fs_unlock_op(sbi);
458 return err;
459 }
460
461 /*
462 * This function balances dirty node and dentry pages.
463 * In addition, it controls garbage collection.
464 */
465 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
466 {
467 #ifdef CONFIG_F2FS_FAULT_INJECTION
468 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
469 f2fs_show_injection_info(FAULT_CHECKPOINT);
470 f2fs_stop_checkpoint(sbi, false);
471 }
472 #endif
473
474 /* balance_fs_bg is able to be pending */
475 if (need && excess_cached_nats(sbi))
476 f2fs_balance_fs_bg(sbi);
477
478 /*
479 * We should do GC or end up with checkpoint, if there are so many dirty
480 * dir/node pages without enough free segments.
481 */
482 if (has_not_enough_free_secs(sbi, 0, 0)) {
483 mutex_lock(&sbi->gc_mutex);
484 f2fs_gc(sbi, false, false, NULL_SEGNO);
485 }
486 }
487
488 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
489 {
490 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491 return;
492
493 /* try to shrink extent cache when there is no enough memory */
494 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
495 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
496
497 /* check the # of cached NAT entries */
498 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
499 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
500
501 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
502 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
503 else
504 f2fs_build_free_nids(sbi, false, false);
505
506 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
507 return;
508
509 /* checkpoint is the only way to shrink partial cached entries */
510 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
511 !f2fs_available_free_memory(sbi, INO_ENTRIES) ||
512 excess_prefree_segs(sbi) ||
513 excess_dirty_nats(sbi) ||
514 f2fs_time_over(sbi, CP_TIME)) {
515 if (test_opt(sbi, DATA_FLUSH)) {
516 struct blk_plug plug;
517
518 blk_start_plug(&plug);
519 f2fs_sync_dirty_inodes(sbi, FILE_INODE);
520 blk_finish_plug(&plug);
521 }
522 f2fs_sync_fs(sbi->sb, true);
523 stat_inc_bg_cp_count(sbi->stat_info);
524 }
525 }
526
527 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
528 struct block_device *bdev)
529 {
530 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
531 int ret;
532
533 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
534 bio_set_dev(bio, bdev);
535 ret = submit_bio_wait(bio);
536 bio_put(bio);
537
538 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
539 test_opt(sbi, FLUSH_MERGE), ret);
540 return ret;
541 }
542
543 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
544 {
545 int ret = 0;
546 int i;
547
548 if (!sbi->s_ndevs)
549 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
550
551 for (i = 0; i < sbi->s_ndevs; i++) {
552 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
553 continue;
554 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
555 if (ret)
556 break;
557 }
558 return ret;
559 }
560
561 static int issue_flush_thread(void *data)
562 {
563 struct f2fs_sb_info *sbi = data;
564 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
565 wait_queue_head_t *q = &fcc->flush_wait_queue;
566 repeat:
567 if (kthread_should_stop())
568 return 0;
569
570 sb_start_intwrite(sbi->sb);
571
572 if (!llist_empty(&fcc->issue_list)) {
573 struct flush_cmd *cmd, *next;
574 int ret;
575
576 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
577 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
578
579 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
580
581 ret = submit_flush_wait(sbi, cmd->ino);
582 atomic_inc(&fcc->issued_flush);
583
584 llist_for_each_entry_safe(cmd, next,
585 fcc->dispatch_list, llnode) {
586 cmd->ret = ret;
587 complete(&cmd->wait);
588 }
589 fcc->dispatch_list = NULL;
590 }
591
592 sb_end_intwrite(sbi->sb);
593
594 wait_event_interruptible(*q,
595 kthread_should_stop() || !llist_empty(&fcc->issue_list));
596 goto repeat;
597 }
598
599 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
600 {
601 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
602 struct flush_cmd cmd;
603 int ret;
604
605 if (test_opt(sbi, NOBARRIER))
606 return 0;
607
608 if (!test_opt(sbi, FLUSH_MERGE)) {
609 ret = submit_flush_wait(sbi, ino);
610 atomic_inc(&fcc->issued_flush);
611 return ret;
612 }
613
614 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
615 ret = submit_flush_wait(sbi, ino);
616 atomic_dec(&fcc->issing_flush);
617
618 atomic_inc(&fcc->issued_flush);
619 return ret;
620 }
621
622 cmd.ino = ino;
623 init_completion(&cmd.wait);
624
625 llist_add(&cmd.llnode, &fcc->issue_list);
626
627 /* update issue_list before we wake up issue_flush thread */
628 smp_mb();
629
630 if (waitqueue_active(&fcc->flush_wait_queue))
631 wake_up(&fcc->flush_wait_queue);
632
633 if (fcc->f2fs_issue_flush) {
634 wait_for_completion(&cmd.wait);
635 atomic_dec(&fcc->issing_flush);
636 } else {
637 struct llist_node *list;
638
639 list = llist_del_all(&fcc->issue_list);
640 if (!list) {
641 wait_for_completion(&cmd.wait);
642 atomic_dec(&fcc->issing_flush);
643 } else {
644 struct flush_cmd *tmp, *next;
645
646 ret = submit_flush_wait(sbi, ino);
647
648 llist_for_each_entry_safe(tmp, next, list, llnode) {
649 if (tmp == &cmd) {
650 cmd.ret = ret;
651 atomic_dec(&fcc->issing_flush);
652 continue;
653 }
654 tmp->ret = ret;
655 complete(&tmp->wait);
656 }
657 }
658 }
659
660 return cmd.ret;
661 }
662
663 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
664 {
665 dev_t dev = sbi->sb->s_bdev->bd_dev;
666 struct flush_cmd_control *fcc;
667 int err = 0;
668
669 if (SM_I(sbi)->fcc_info) {
670 fcc = SM_I(sbi)->fcc_info;
671 if (fcc->f2fs_issue_flush)
672 return err;
673 goto init_thread;
674 }
675
676 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
677 if (!fcc)
678 return -ENOMEM;
679 atomic_set(&fcc->issued_flush, 0);
680 atomic_set(&fcc->issing_flush, 0);
681 init_waitqueue_head(&fcc->flush_wait_queue);
682 init_llist_head(&fcc->issue_list);
683 SM_I(sbi)->fcc_info = fcc;
684 if (!test_opt(sbi, FLUSH_MERGE))
685 return err;
686
687 init_thread:
688 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
689 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
690 if (IS_ERR(fcc->f2fs_issue_flush)) {
691 err = PTR_ERR(fcc->f2fs_issue_flush);
692 kfree(fcc);
693 SM_I(sbi)->fcc_info = NULL;
694 return err;
695 }
696
697 return err;
698 }
699
700 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
701 {
702 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
703
704 if (fcc && fcc->f2fs_issue_flush) {
705 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
706
707 fcc->f2fs_issue_flush = NULL;
708 kthread_stop(flush_thread);
709 }
710 if (free) {
711 kfree(fcc);
712 SM_I(sbi)->fcc_info = NULL;
713 }
714 }
715
716 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
717 {
718 int ret = 0, i;
719
720 if (!sbi->s_ndevs)
721 return 0;
722
723 for (i = 1; i < sbi->s_ndevs; i++) {
724 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
725 continue;
726 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
727 if (ret)
728 break;
729
730 spin_lock(&sbi->dev_lock);
731 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
732 spin_unlock(&sbi->dev_lock);
733 }
734
735 return ret;
736 }
737
738 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
739 enum dirty_type dirty_type)
740 {
741 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
742
743 /* need not be added */
744 if (IS_CURSEG(sbi, segno))
745 return;
746
747 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
748 dirty_i->nr_dirty[dirty_type]++;
749
750 if (dirty_type == DIRTY) {
751 struct seg_entry *sentry = get_seg_entry(sbi, segno);
752 enum dirty_type t = sentry->type;
753
754 if (unlikely(t >= DIRTY)) {
755 f2fs_bug_on(sbi, 1);
756 return;
757 }
758 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
759 dirty_i->nr_dirty[t]++;
760 }
761 }
762
763 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
764 enum dirty_type dirty_type)
765 {
766 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
767
768 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
769 dirty_i->nr_dirty[dirty_type]--;
770
771 if (dirty_type == DIRTY) {
772 struct seg_entry *sentry = get_seg_entry(sbi, segno);
773 enum dirty_type t = sentry->type;
774
775 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
776 dirty_i->nr_dirty[t]--;
777
778 if (get_valid_blocks(sbi, segno, true) == 0)
779 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
780 dirty_i->victim_secmap);
781 }
782 }
783
784 /*
785 * Should not occur error such as -ENOMEM.
786 * Adding dirty entry into seglist is not critical operation.
787 * If a given segment is one of current working segments, it won't be added.
788 */
789 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
790 {
791 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
792 unsigned short valid_blocks;
793
794 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
795 return;
796
797 mutex_lock(&dirty_i->seglist_lock);
798
799 valid_blocks = get_valid_blocks(sbi, segno, false);
800
801 if (valid_blocks == 0) {
802 __locate_dirty_segment(sbi, segno, PRE);
803 __remove_dirty_segment(sbi, segno, DIRTY);
804 } else if (valid_blocks < sbi->blocks_per_seg) {
805 __locate_dirty_segment(sbi, segno, DIRTY);
806 } else {
807 /* Recovery routine with SSR needs this */
808 __remove_dirty_segment(sbi, segno, DIRTY);
809 }
810
811 mutex_unlock(&dirty_i->seglist_lock);
812 }
813
814 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
815 struct block_device *bdev, block_t lstart,
816 block_t start, block_t len)
817 {
818 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
819 struct list_head *pend_list;
820 struct discard_cmd *dc;
821
822 f2fs_bug_on(sbi, !len);
823
824 pend_list = &dcc->pend_list[plist_idx(len)];
825
826 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
827 INIT_LIST_HEAD(&dc->list);
828 dc->bdev = bdev;
829 dc->lstart = lstart;
830 dc->start = start;
831 dc->len = len;
832 dc->ref = 0;
833 dc->state = D_PREP;
834 dc->error = 0;
835 init_completion(&dc->wait);
836 list_add_tail(&dc->list, pend_list);
837 atomic_inc(&dcc->discard_cmd_cnt);
838 dcc->undiscard_blks += len;
839
840 return dc;
841 }
842
843 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
844 struct block_device *bdev, block_t lstart,
845 block_t start, block_t len,
846 struct rb_node *parent, struct rb_node **p)
847 {
848 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
849 struct discard_cmd *dc;
850
851 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
852
853 rb_link_node(&dc->rb_node, parent, p);
854 rb_insert_color(&dc->rb_node, &dcc->root);
855
856 return dc;
857 }
858
859 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
860 struct discard_cmd *dc)
861 {
862 if (dc->state == D_DONE)
863 atomic_dec(&dcc->issing_discard);
864
865 list_del(&dc->list);
866 rb_erase(&dc->rb_node, &dcc->root);
867 dcc->undiscard_blks -= dc->len;
868
869 kmem_cache_free(discard_cmd_slab, dc);
870
871 atomic_dec(&dcc->discard_cmd_cnt);
872 }
873
874 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
875 struct discard_cmd *dc)
876 {
877 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
878
879 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
880
881 f2fs_bug_on(sbi, dc->ref);
882
883 if (dc->error == -EOPNOTSUPP)
884 dc->error = 0;
885
886 if (dc->error)
887 f2fs_msg(sbi->sb, KERN_INFO,
888 "Issue discard(%u, %u, %u) failed, ret: %d",
889 dc->lstart, dc->start, dc->len, dc->error);
890 __detach_discard_cmd(dcc, dc);
891 }
892
893 static void f2fs_submit_discard_endio(struct bio *bio)
894 {
895 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
896
897 dc->error = blk_status_to_errno(bio->bi_status);
898 dc->state = D_DONE;
899 complete_all(&dc->wait);
900 bio_put(bio);
901 }
902
903 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
904 block_t start, block_t end)
905 {
906 #ifdef CONFIG_F2FS_CHECK_FS
907 struct seg_entry *sentry;
908 unsigned int segno;
909 block_t blk = start;
910 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
911 unsigned long *map;
912
913 while (blk < end) {
914 segno = GET_SEGNO(sbi, blk);
915 sentry = get_seg_entry(sbi, segno);
916 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
917
918 if (end < START_BLOCK(sbi, segno + 1))
919 size = GET_BLKOFF_FROM_SEG0(sbi, end);
920 else
921 size = max_blocks;
922 map = (unsigned long *)(sentry->cur_valid_map);
923 offset = __find_rev_next_bit(map, size, offset);
924 f2fs_bug_on(sbi, offset != size);
925 blk = START_BLOCK(sbi, segno + 1);
926 }
927 #endif
928 }
929
930 static void __init_discard_policy(struct f2fs_sb_info *sbi,
931 struct discard_policy *dpolicy,
932 int discard_type, unsigned int granularity)
933 {
934 /* common policy */
935 dpolicy->type = discard_type;
936 dpolicy->sync = true;
937 dpolicy->granularity = granularity;
938
939 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
940 dpolicy->io_aware_gran = MAX_PLIST_NUM;
941
942 if (discard_type == DPOLICY_BG) {
943 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
944 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
945 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
946 dpolicy->io_aware = true;
947 dpolicy->sync = false;
948 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
949 dpolicy->granularity = 1;
950 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
951 }
952 } else if (discard_type == DPOLICY_FORCE) {
953 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
954 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
955 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
956 dpolicy->io_aware = false;
957 } else if (discard_type == DPOLICY_FSTRIM) {
958 dpolicy->io_aware = false;
959 } else if (discard_type == DPOLICY_UMOUNT) {
960 dpolicy->max_requests = UINT_MAX;
961 dpolicy->io_aware = false;
962 }
963 }
964
965
966 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
967 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
968 struct discard_policy *dpolicy,
969 struct discard_cmd *dc)
970 {
971 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
972 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
973 &(dcc->fstrim_list) : &(dcc->wait_list);
974 struct bio *bio = NULL;
975 int flag = dpolicy->sync ? REQ_SYNC : 0;
976
977 if (dc->state != D_PREP)
978 return;
979
980 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
981 return;
982
983 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
984
985 dc->error = __blkdev_issue_discard(dc->bdev,
986 SECTOR_FROM_BLOCK(dc->start),
987 SECTOR_FROM_BLOCK(dc->len),
988 GFP_NOFS, 0, &bio);
989 if (!dc->error) {
990 /* should keep before submission to avoid D_DONE right away */
991 dc->state = D_SUBMIT;
992 atomic_inc(&dcc->issued_discard);
993 atomic_inc(&dcc->issing_discard);
994 if (bio) {
995 bio->bi_private = dc;
996 bio->bi_end_io = f2fs_submit_discard_endio;
997 bio->bi_opf |= flag;
998 submit_bio(bio);
999 list_move_tail(&dc->list, wait_list);
1000 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
1001
1002 f2fs_update_iostat(sbi, FS_DISCARD, 1);
1003 }
1004 } else {
1005 __remove_discard_cmd(sbi, dc);
1006 }
1007 }
1008
1009 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1010 struct block_device *bdev, block_t lstart,
1011 block_t start, block_t len,
1012 struct rb_node **insert_p,
1013 struct rb_node *insert_parent)
1014 {
1015 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1016 struct rb_node **p;
1017 struct rb_node *parent = NULL;
1018 struct discard_cmd *dc = NULL;
1019
1020 if (insert_p && insert_parent) {
1021 parent = insert_parent;
1022 p = insert_p;
1023 goto do_insert;
1024 }
1025
1026 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
1027 do_insert:
1028 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
1029 if (!dc)
1030 return NULL;
1031
1032 return dc;
1033 }
1034
1035 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1036 struct discard_cmd *dc)
1037 {
1038 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1039 }
1040
1041 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1042 struct discard_cmd *dc, block_t blkaddr)
1043 {
1044 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1045 struct discard_info di = dc->di;
1046 bool modified = false;
1047
1048 if (dc->state == D_DONE || dc->len == 1) {
1049 __remove_discard_cmd(sbi, dc);
1050 return;
1051 }
1052
1053 dcc->undiscard_blks -= di.len;
1054
1055 if (blkaddr > di.lstart) {
1056 dc->len = blkaddr - dc->lstart;
1057 dcc->undiscard_blks += dc->len;
1058 __relocate_discard_cmd(dcc, dc);
1059 modified = true;
1060 }
1061
1062 if (blkaddr < di.lstart + di.len - 1) {
1063 if (modified) {
1064 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1065 di.start + blkaddr + 1 - di.lstart,
1066 di.lstart + di.len - 1 - blkaddr,
1067 NULL, NULL);
1068 } else {
1069 dc->lstart++;
1070 dc->len--;
1071 dc->start++;
1072 dcc->undiscard_blks += dc->len;
1073 __relocate_discard_cmd(dcc, dc);
1074 }
1075 }
1076 }
1077
1078 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1079 struct block_device *bdev, block_t lstart,
1080 block_t start, block_t len)
1081 {
1082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1083 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1084 struct discard_cmd *dc;
1085 struct discard_info di = {0};
1086 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1087 block_t end = lstart + len;
1088
1089 mutex_lock(&dcc->cmd_lock);
1090
1091 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1092 NULL, lstart,
1093 (struct rb_entry **)&prev_dc,
1094 (struct rb_entry **)&next_dc,
1095 &insert_p, &insert_parent, true);
1096 if (dc)
1097 prev_dc = dc;
1098
1099 if (!prev_dc) {
1100 di.lstart = lstart;
1101 di.len = next_dc ? next_dc->lstart - lstart : len;
1102 di.len = min(di.len, len);
1103 di.start = start;
1104 }
1105
1106 while (1) {
1107 struct rb_node *node;
1108 bool merged = false;
1109 struct discard_cmd *tdc = NULL;
1110
1111 if (prev_dc) {
1112 di.lstart = prev_dc->lstart + prev_dc->len;
1113 if (di.lstart < lstart)
1114 di.lstart = lstart;
1115 if (di.lstart >= end)
1116 break;
1117
1118 if (!next_dc || next_dc->lstart > end)
1119 di.len = end - di.lstart;
1120 else
1121 di.len = next_dc->lstart - di.lstart;
1122 di.start = start + di.lstart - lstart;
1123 }
1124
1125 if (!di.len)
1126 goto next;
1127
1128 if (prev_dc && prev_dc->state == D_PREP &&
1129 prev_dc->bdev == bdev &&
1130 __is_discard_back_mergeable(&di, &prev_dc->di)) {
1131 prev_dc->di.len += di.len;
1132 dcc->undiscard_blks += di.len;
1133 __relocate_discard_cmd(dcc, prev_dc);
1134 di = prev_dc->di;
1135 tdc = prev_dc;
1136 merged = true;
1137 }
1138
1139 if (next_dc && next_dc->state == D_PREP &&
1140 next_dc->bdev == bdev &&
1141 __is_discard_front_mergeable(&di, &next_dc->di)) {
1142 next_dc->di.lstart = di.lstart;
1143 next_dc->di.len += di.len;
1144 next_dc->di.start = di.start;
1145 dcc->undiscard_blks += di.len;
1146 __relocate_discard_cmd(dcc, next_dc);
1147 if (tdc)
1148 __remove_discard_cmd(sbi, tdc);
1149 merged = true;
1150 }
1151
1152 if (!merged) {
1153 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1154 di.len, NULL, NULL);
1155 }
1156 next:
1157 prev_dc = next_dc;
1158 if (!prev_dc)
1159 break;
1160
1161 node = rb_next(&prev_dc->rb_node);
1162 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1163 }
1164
1165 mutex_unlock(&dcc->cmd_lock);
1166 }
1167
1168 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1169 struct block_device *bdev, block_t blkstart, block_t blklen)
1170 {
1171 block_t lblkstart = blkstart;
1172
1173 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1174
1175 if (sbi->s_ndevs) {
1176 int devi = f2fs_target_device_index(sbi, blkstart);
1177
1178 blkstart -= FDEV(devi).start_blk;
1179 }
1180 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1181 return 0;
1182 }
1183
1184 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1185 struct discard_policy *dpolicy)
1186 {
1187 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188 struct list_head *pend_list;
1189 struct discard_cmd *dc, *tmp;
1190 struct blk_plug plug;
1191 int i, iter = 0, issued = 0;
1192 bool io_interrupted = false;
1193
1194 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1195 if (i + 1 < dpolicy->granularity)
1196 break;
1197 pend_list = &dcc->pend_list[i];
1198
1199 mutex_lock(&dcc->cmd_lock);
1200 if (list_empty(pend_list))
1201 goto next;
1202 f2fs_bug_on(sbi,
1203 !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
1204 blk_start_plug(&plug);
1205 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1206 f2fs_bug_on(sbi, dc->state != D_PREP);
1207
1208 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1209 !is_idle(sbi)) {
1210 io_interrupted = true;
1211 goto skip;
1212 }
1213
1214 __submit_discard_cmd(sbi, dpolicy, dc);
1215 issued++;
1216 skip:
1217 if (++iter >= dpolicy->max_requests)
1218 break;
1219 }
1220 blk_finish_plug(&plug);
1221 next:
1222 mutex_unlock(&dcc->cmd_lock);
1223
1224 if (iter >= dpolicy->max_requests)
1225 break;
1226 }
1227
1228 if (!issued && io_interrupted)
1229 issued = -1;
1230
1231 return issued;
1232 }
1233
1234 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1235 {
1236 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1237 struct list_head *pend_list;
1238 struct discard_cmd *dc, *tmp;
1239 int i;
1240 bool dropped = false;
1241
1242 mutex_lock(&dcc->cmd_lock);
1243 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1244 pend_list = &dcc->pend_list[i];
1245 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1246 f2fs_bug_on(sbi, dc->state != D_PREP);
1247 __remove_discard_cmd(sbi, dc);
1248 dropped = true;
1249 }
1250 }
1251 mutex_unlock(&dcc->cmd_lock);
1252
1253 return dropped;
1254 }
1255
1256 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1257 {
1258 __drop_discard_cmd(sbi);
1259 }
1260
1261 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1262 struct discard_cmd *dc)
1263 {
1264 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1265 unsigned int len = 0;
1266
1267 wait_for_completion_io(&dc->wait);
1268 mutex_lock(&dcc->cmd_lock);
1269 f2fs_bug_on(sbi, dc->state != D_DONE);
1270 dc->ref--;
1271 if (!dc->ref) {
1272 if (!dc->error)
1273 len = dc->len;
1274 __remove_discard_cmd(sbi, dc);
1275 }
1276 mutex_unlock(&dcc->cmd_lock);
1277
1278 return len;
1279 }
1280
1281 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1282 struct discard_policy *dpolicy,
1283 block_t start, block_t end)
1284 {
1285 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1286 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1287 &(dcc->fstrim_list) : &(dcc->wait_list);
1288 struct discard_cmd *dc, *tmp;
1289 bool need_wait;
1290 unsigned int trimmed = 0;
1291
1292 next:
1293 need_wait = false;
1294
1295 mutex_lock(&dcc->cmd_lock);
1296 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1297 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1298 continue;
1299 if (dc->len < dpolicy->granularity)
1300 continue;
1301 if (dc->state == D_DONE && !dc->ref) {
1302 wait_for_completion_io(&dc->wait);
1303 if (!dc->error)
1304 trimmed += dc->len;
1305 __remove_discard_cmd(sbi, dc);
1306 } else {
1307 dc->ref++;
1308 need_wait = true;
1309 break;
1310 }
1311 }
1312 mutex_unlock(&dcc->cmd_lock);
1313
1314 if (need_wait) {
1315 trimmed += __wait_one_discard_bio(sbi, dc);
1316 goto next;
1317 }
1318
1319 return trimmed;
1320 }
1321
1322 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1323 struct discard_policy *dpolicy)
1324 {
1325 struct discard_policy dp;
1326
1327 if (dpolicy) {
1328 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1329 return;
1330 }
1331
1332 /* wait all */
1333 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1334 __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1335 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1336 __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1337 }
1338
1339 /* This should be covered by global mutex, &sit_i->sentry_lock */
1340 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1341 {
1342 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1343 struct discard_cmd *dc;
1344 bool need_wait = false;
1345
1346 mutex_lock(&dcc->cmd_lock);
1347 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1348 NULL, blkaddr);
1349 if (dc) {
1350 if (dc->state == D_PREP) {
1351 __punch_discard_cmd(sbi, dc, blkaddr);
1352 } else {
1353 dc->ref++;
1354 need_wait = true;
1355 }
1356 }
1357 mutex_unlock(&dcc->cmd_lock);
1358
1359 if (need_wait)
1360 __wait_one_discard_bio(sbi, dc);
1361 }
1362
1363 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1364 {
1365 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1366
1367 if (dcc && dcc->f2fs_issue_discard) {
1368 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1369
1370 dcc->f2fs_issue_discard = NULL;
1371 kthread_stop(discard_thread);
1372 }
1373 }
1374
1375 /* This comes from f2fs_put_super */
1376 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1377 {
1378 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1379 struct discard_policy dpolicy;
1380 bool dropped;
1381
1382 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1383 dcc->discard_granularity);
1384 __issue_discard_cmd(sbi, &dpolicy);
1385 dropped = __drop_discard_cmd(sbi);
1386
1387 /* just to make sure there is no pending discard commands */
1388 __wait_all_discard_cmd(sbi, NULL);
1389 return dropped;
1390 }
1391
1392 static int issue_discard_thread(void *data)
1393 {
1394 struct f2fs_sb_info *sbi = data;
1395 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1396 wait_queue_head_t *q = &dcc->discard_wait_queue;
1397 struct discard_policy dpolicy;
1398 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1399 int issued;
1400
1401 set_freezable();
1402
1403 do {
1404 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1405 dcc->discard_granularity);
1406
1407 wait_event_interruptible_timeout(*q,
1408 kthread_should_stop() || freezing(current) ||
1409 dcc->discard_wake,
1410 msecs_to_jiffies(wait_ms));
1411
1412 if (dcc->discard_wake)
1413 dcc->discard_wake = 0;
1414
1415 if (try_to_freeze())
1416 continue;
1417 if (f2fs_readonly(sbi->sb))
1418 continue;
1419 if (kthread_should_stop())
1420 return 0;
1421 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1422 wait_ms = dpolicy.max_interval;
1423 continue;
1424 }
1425
1426 if (sbi->gc_mode == GC_URGENT)
1427 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1428
1429 sb_start_intwrite(sbi->sb);
1430
1431 issued = __issue_discard_cmd(sbi, &dpolicy);
1432 if (issued > 0) {
1433 __wait_all_discard_cmd(sbi, &dpolicy);
1434 wait_ms = dpolicy.min_interval;
1435 } else if (issued == -1){
1436 wait_ms = dpolicy.mid_interval;
1437 } else {
1438 wait_ms = dpolicy.max_interval;
1439 }
1440
1441 sb_end_intwrite(sbi->sb);
1442
1443 } while (!kthread_should_stop());
1444 return 0;
1445 }
1446
1447 #ifdef CONFIG_BLK_DEV_ZONED
1448 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1449 struct block_device *bdev, block_t blkstart, block_t blklen)
1450 {
1451 sector_t sector, nr_sects;
1452 block_t lblkstart = blkstart;
1453 int devi = 0;
1454
1455 if (sbi->s_ndevs) {
1456 devi = f2fs_target_device_index(sbi, blkstart);
1457 blkstart -= FDEV(devi).start_blk;
1458 }
1459
1460 /*
1461 * We need to know the type of the zone: for conventional zones,
1462 * use regular discard if the drive supports it. For sequential
1463 * zones, reset the zone write pointer.
1464 */
1465 switch (get_blkz_type(sbi, bdev, blkstart)) {
1466
1467 case BLK_ZONE_TYPE_CONVENTIONAL:
1468 if (!blk_queue_discard(bdev_get_queue(bdev)))
1469 return 0;
1470 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1471 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1472 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1473 sector = SECTOR_FROM_BLOCK(blkstart);
1474 nr_sects = SECTOR_FROM_BLOCK(blklen);
1475
1476 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1477 nr_sects != bdev_zone_sectors(bdev)) {
1478 f2fs_msg(sbi->sb, KERN_INFO,
1479 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1480 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1481 blkstart, blklen);
1482 return -EIO;
1483 }
1484 trace_f2fs_issue_reset_zone(bdev, blkstart);
1485 return blkdev_reset_zones(bdev, sector,
1486 nr_sects, GFP_NOFS);
1487 default:
1488 /* Unknown zone type: broken device ? */
1489 return -EIO;
1490 }
1491 }
1492 #endif
1493
1494 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1495 struct block_device *bdev, block_t blkstart, block_t blklen)
1496 {
1497 #ifdef CONFIG_BLK_DEV_ZONED
1498 if (f2fs_sb_has_blkzoned(sbi->sb) &&
1499 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1500 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1501 #endif
1502 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1503 }
1504
1505 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1506 block_t blkstart, block_t blklen)
1507 {
1508 sector_t start = blkstart, len = 0;
1509 struct block_device *bdev;
1510 struct seg_entry *se;
1511 unsigned int offset;
1512 block_t i;
1513 int err = 0;
1514
1515 bdev = f2fs_target_device(sbi, blkstart, NULL);
1516
1517 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1518 if (i != start) {
1519 struct block_device *bdev2 =
1520 f2fs_target_device(sbi, i, NULL);
1521
1522 if (bdev2 != bdev) {
1523 err = __issue_discard_async(sbi, bdev,
1524 start, len);
1525 if (err)
1526 return err;
1527 bdev = bdev2;
1528 start = i;
1529 len = 0;
1530 }
1531 }
1532
1533 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1534 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1535
1536 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1537 sbi->discard_blks--;
1538 }
1539
1540 if (len)
1541 err = __issue_discard_async(sbi, bdev, start, len);
1542 return err;
1543 }
1544
1545 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1546 bool check_only)
1547 {
1548 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1549 int max_blocks = sbi->blocks_per_seg;
1550 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1551 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1552 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1553 unsigned long *discard_map = (unsigned long *)se->discard_map;
1554 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1555 unsigned int start = 0, end = -1;
1556 bool force = (cpc->reason & CP_DISCARD);
1557 struct discard_entry *de = NULL;
1558 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1559 int i;
1560
1561 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1562 return false;
1563
1564 if (!force) {
1565 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1566 SM_I(sbi)->dcc_info->nr_discards >=
1567 SM_I(sbi)->dcc_info->max_discards)
1568 return false;
1569 }
1570
1571 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1572 for (i = 0; i < entries; i++)
1573 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1574 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1575
1576 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1577 SM_I(sbi)->dcc_info->max_discards) {
1578 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1579 if (start >= max_blocks)
1580 break;
1581
1582 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1583 if (force && start && end != max_blocks
1584 && (end - start) < cpc->trim_minlen)
1585 continue;
1586
1587 if (check_only)
1588 return true;
1589
1590 if (!de) {
1591 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1592 GFP_F2FS_ZERO);
1593 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1594 list_add_tail(&de->list, head);
1595 }
1596
1597 for (i = start; i < end; i++)
1598 __set_bit_le(i, (void *)de->discard_map);
1599
1600 SM_I(sbi)->dcc_info->nr_discards += end - start;
1601 }
1602 return false;
1603 }
1604
1605 static void release_discard_addr(struct discard_entry *entry)
1606 {
1607 list_del(&entry->list);
1608 kmem_cache_free(discard_entry_slab, entry);
1609 }
1610
1611 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1612 {
1613 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1614 struct discard_entry *entry, *this;
1615
1616 /* drop caches */
1617 list_for_each_entry_safe(entry, this, head, list)
1618 release_discard_addr(entry);
1619 }
1620
1621 /*
1622 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1623 */
1624 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1625 {
1626 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1627 unsigned int segno;
1628
1629 mutex_lock(&dirty_i->seglist_lock);
1630 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1631 __set_test_and_free(sbi, segno);
1632 mutex_unlock(&dirty_i->seglist_lock);
1633 }
1634
1635 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1636 struct cp_control *cpc)
1637 {
1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 struct list_head *head = &dcc->entry_list;
1640 struct discard_entry *entry, *this;
1641 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1642 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1643 unsigned int start = 0, end = -1;
1644 unsigned int secno, start_segno;
1645 bool force = (cpc->reason & CP_DISCARD);
1646
1647 mutex_lock(&dirty_i->seglist_lock);
1648
1649 while (1) {
1650 int i;
1651 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1652 if (start >= MAIN_SEGS(sbi))
1653 break;
1654 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1655 start + 1);
1656
1657 for (i = start; i < end; i++)
1658 clear_bit(i, prefree_map);
1659
1660 dirty_i->nr_dirty[PRE] -= end - start;
1661
1662 if (!test_opt(sbi, DISCARD))
1663 continue;
1664
1665 if (force && start >= cpc->trim_start &&
1666 (end - 1) <= cpc->trim_end)
1667 continue;
1668
1669 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1670 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1671 (end - start) << sbi->log_blocks_per_seg);
1672 continue;
1673 }
1674 next:
1675 secno = GET_SEC_FROM_SEG(sbi, start);
1676 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1677 if (!IS_CURSEC(sbi, secno) &&
1678 !get_valid_blocks(sbi, start, true))
1679 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1680 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1681
1682 start = start_segno + sbi->segs_per_sec;
1683 if (start < end)
1684 goto next;
1685 else
1686 end = start - 1;
1687 }
1688 mutex_unlock(&dirty_i->seglist_lock);
1689
1690 /* send small discards */
1691 list_for_each_entry_safe(entry, this, head, list) {
1692 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1693 bool is_valid = test_bit_le(0, entry->discard_map);
1694
1695 find_next:
1696 if (is_valid) {
1697 next_pos = find_next_zero_bit_le(entry->discard_map,
1698 sbi->blocks_per_seg, cur_pos);
1699 len = next_pos - cur_pos;
1700
1701 if (f2fs_sb_has_blkzoned(sbi->sb) ||
1702 (force && len < cpc->trim_minlen))
1703 goto skip;
1704
1705 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1706 len);
1707 total_len += len;
1708 } else {
1709 next_pos = find_next_bit_le(entry->discard_map,
1710 sbi->blocks_per_seg, cur_pos);
1711 }
1712 skip:
1713 cur_pos = next_pos;
1714 is_valid = !is_valid;
1715
1716 if (cur_pos < sbi->blocks_per_seg)
1717 goto find_next;
1718
1719 release_discard_addr(entry);
1720 dcc->nr_discards -= total_len;
1721 }
1722
1723 wake_up_discard_thread(sbi, false);
1724 }
1725
1726 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1727 {
1728 dev_t dev = sbi->sb->s_bdev->bd_dev;
1729 struct discard_cmd_control *dcc;
1730 int err = 0, i;
1731
1732 if (SM_I(sbi)->dcc_info) {
1733 dcc = SM_I(sbi)->dcc_info;
1734 goto init_thread;
1735 }
1736
1737 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1738 if (!dcc)
1739 return -ENOMEM;
1740
1741 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1742 INIT_LIST_HEAD(&dcc->entry_list);
1743 for (i = 0; i < MAX_PLIST_NUM; i++)
1744 INIT_LIST_HEAD(&dcc->pend_list[i]);
1745 INIT_LIST_HEAD(&dcc->wait_list);
1746 INIT_LIST_HEAD(&dcc->fstrim_list);
1747 mutex_init(&dcc->cmd_lock);
1748 atomic_set(&dcc->issued_discard, 0);
1749 atomic_set(&dcc->issing_discard, 0);
1750 atomic_set(&dcc->discard_cmd_cnt, 0);
1751 dcc->nr_discards = 0;
1752 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1753 dcc->undiscard_blks = 0;
1754 dcc->root = RB_ROOT;
1755
1756 init_waitqueue_head(&dcc->discard_wait_queue);
1757 SM_I(sbi)->dcc_info = dcc;
1758 init_thread:
1759 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1760 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1761 if (IS_ERR(dcc->f2fs_issue_discard)) {
1762 err = PTR_ERR(dcc->f2fs_issue_discard);
1763 kfree(dcc);
1764 SM_I(sbi)->dcc_info = NULL;
1765 return err;
1766 }
1767
1768 return err;
1769 }
1770
1771 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1772 {
1773 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1774
1775 if (!dcc)
1776 return;
1777
1778 f2fs_stop_discard_thread(sbi);
1779
1780 kfree(dcc);
1781 SM_I(sbi)->dcc_info = NULL;
1782 }
1783
1784 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1785 {
1786 struct sit_info *sit_i = SIT_I(sbi);
1787
1788 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1789 sit_i->dirty_sentries++;
1790 return false;
1791 }
1792
1793 return true;
1794 }
1795
1796 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1797 unsigned int segno, int modified)
1798 {
1799 struct seg_entry *se = get_seg_entry(sbi, segno);
1800 se->type = type;
1801 if (modified)
1802 __mark_sit_entry_dirty(sbi, segno);
1803 }
1804
1805 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1806 {
1807 struct seg_entry *se;
1808 unsigned int segno, offset;
1809 long int new_vblocks;
1810 bool exist;
1811 #ifdef CONFIG_F2FS_CHECK_FS
1812 bool mir_exist;
1813 #endif
1814
1815 segno = GET_SEGNO(sbi, blkaddr);
1816
1817 se = get_seg_entry(sbi, segno);
1818 new_vblocks = se->valid_blocks + del;
1819 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1820
1821 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1822 (new_vblocks > sbi->blocks_per_seg)));
1823
1824 se->valid_blocks = new_vblocks;
1825 se->mtime = get_mtime(sbi, false);
1826 if (se->mtime > SIT_I(sbi)->max_mtime)
1827 SIT_I(sbi)->max_mtime = se->mtime;
1828
1829 /* Update valid block bitmap */
1830 if (del > 0) {
1831 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1832 #ifdef CONFIG_F2FS_CHECK_FS
1833 mir_exist = f2fs_test_and_set_bit(offset,
1834 se->cur_valid_map_mir);
1835 if (unlikely(exist != mir_exist)) {
1836 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1837 "when setting bitmap, blk:%u, old bit:%d",
1838 blkaddr, exist);
1839 f2fs_bug_on(sbi, 1);
1840 }
1841 #endif
1842 if (unlikely(exist)) {
1843 f2fs_msg(sbi->sb, KERN_ERR,
1844 "Bitmap was wrongly set, blk:%u", blkaddr);
1845 f2fs_bug_on(sbi, 1);
1846 se->valid_blocks--;
1847 del = 0;
1848 }
1849
1850 if (f2fs_discard_en(sbi) &&
1851 !f2fs_test_and_set_bit(offset, se->discard_map))
1852 sbi->discard_blks--;
1853
1854 /* don't overwrite by SSR to keep node chain */
1855 if (IS_NODESEG(se->type)) {
1856 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1857 se->ckpt_valid_blocks++;
1858 }
1859 } else {
1860 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1861 #ifdef CONFIG_F2FS_CHECK_FS
1862 mir_exist = f2fs_test_and_clear_bit(offset,
1863 se->cur_valid_map_mir);
1864 if (unlikely(exist != mir_exist)) {
1865 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1866 "when clearing bitmap, blk:%u, old bit:%d",
1867 blkaddr, exist);
1868 f2fs_bug_on(sbi, 1);
1869 }
1870 #endif
1871 if (unlikely(!exist)) {
1872 f2fs_msg(sbi->sb, KERN_ERR,
1873 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1874 f2fs_bug_on(sbi, 1);
1875 se->valid_blocks++;
1876 del = 0;
1877 }
1878
1879 if (f2fs_discard_en(sbi) &&
1880 f2fs_test_and_clear_bit(offset, se->discard_map))
1881 sbi->discard_blks++;
1882 }
1883 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1884 se->ckpt_valid_blocks += del;
1885
1886 __mark_sit_entry_dirty(sbi, segno);
1887
1888 /* update total number of valid blocks to be written in ckpt area */
1889 SIT_I(sbi)->written_valid_blocks += del;
1890
1891 if (sbi->segs_per_sec > 1)
1892 get_sec_entry(sbi, segno)->valid_blocks += del;
1893 }
1894
1895 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1896 {
1897 unsigned int segno = GET_SEGNO(sbi, addr);
1898 struct sit_info *sit_i = SIT_I(sbi);
1899
1900 f2fs_bug_on(sbi, addr == NULL_ADDR);
1901 if (addr == NEW_ADDR)
1902 return;
1903
1904 /* add it into sit main buffer */
1905 down_write(&sit_i->sentry_lock);
1906
1907 update_sit_entry(sbi, addr, -1);
1908
1909 /* add it into dirty seglist */
1910 locate_dirty_segment(sbi, segno);
1911
1912 up_write(&sit_i->sentry_lock);
1913 }
1914
1915 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1916 {
1917 struct sit_info *sit_i = SIT_I(sbi);
1918 unsigned int segno, offset;
1919 struct seg_entry *se;
1920 bool is_cp = false;
1921
1922 if (!is_valid_blkaddr(blkaddr))
1923 return true;
1924
1925 down_read(&sit_i->sentry_lock);
1926
1927 segno = GET_SEGNO(sbi, blkaddr);
1928 se = get_seg_entry(sbi, segno);
1929 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1930
1931 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1932 is_cp = true;
1933
1934 up_read(&sit_i->sentry_lock);
1935
1936 return is_cp;
1937 }
1938
1939 /*
1940 * This function should be resided under the curseg_mutex lock
1941 */
1942 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1943 struct f2fs_summary *sum)
1944 {
1945 struct curseg_info *curseg = CURSEG_I(sbi, type);
1946 void *addr = curseg->sum_blk;
1947 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1948 memcpy(addr, sum, sizeof(struct f2fs_summary));
1949 }
1950
1951 /*
1952 * Calculate the number of current summary pages for writing
1953 */
1954 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1955 {
1956 int valid_sum_count = 0;
1957 int i, sum_in_page;
1958
1959 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1960 if (sbi->ckpt->alloc_type[i] == SSR)
1961 valid_sum_count += sbi->blocks_per_seg;
1962 else {
1963 if (for_ra)
1964 valid_sum_count += le16_to_cpu(
1965 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1966 else
1967 valid_sum_count += curseg_blkoff(sbi, i);
1968 }
1969 }
1970
1971 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1972 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1973 if (valid_sum_count <= sum_in_page)
1974 return 1;
1975 else if ((valid_sum_count - sum_in_page) <=
1976 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1977 return 2;
1978 return 3;
1979 }
1980
1981 /*
1982 * Caller should put this summary page
1983 */
1984 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1985 {
1986 return f2fs_get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1987 }
1988
1989 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
1990 void *src, block_t blk_addr)
1991 {
1992 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1993
1994 memcpy(page_address(page), src, PAGE_SIZE);
1995 set_page_dirty(page);
1996 f2fs_put_page(page, 1);
1997 }
1998
1999 static void write_sum_page(struct f2fs_sb_info *sbi,
2000 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2001 {
2002 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2003 }
2004
2005 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2006 int type, block_t blk_addr)
2007 {
2008 struct curseg_info *curseg = CURSEG_I(sbi, type);
2009 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2010 struct f2fs_summary_block *src = curseg->sum_blk;
2011 struct f2fs_summary_block *dst;
2012
2013 dst = (struct f2fs_summary_block *)page_address(page);
2014 memset(dst, 0, PAGE_SIZE);
2015
2016 mutex_lock(&curseg->curseg_mutex);
2017
2018 down_read(&curseg->journal_rwsem);
2019 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2020 up_read(&curseg->journal_rwsem);
2021
2022 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2023 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2024
2025 mutex_unlock(&curseg->curseg_mutex);
2026
2027 set_page_dirty(page);
2028 f2fs_put_page(page, 1);
2029 }
2030
2031 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2032 {
2033 struct curseg_info *curseg = CURSEG_I(sbi, type);
2034 unsigned int segno = curseg->segno + 1;
2035 struct free_segmap_info *free_i = FREE_I(sbi);
2036
2037 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2038 return !test_bit(segno, free_i->free_segmap);
2039 return 0;
2040 }
2041
2042 /*
2043 * Find a new segment from the free segments bitmap to right order
2044 * This function should be returned with success, otherwise BUG
2045 */
2046 static void get_new_segment(struct f2fs_sb_info *sbi,
2047 unsigned int *newseg, bool new_sec, int dir)
2048 {
2049 struct free_segmap_info *free_i = FREE_I(sbi);
2050 unsigned int segno, secno, zoneno;
2051 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2052 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2053 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2054 unsigned int left_start = hint;
2055 bool init = true;
2056 int go_left = 0;
2057 int i;
2058
2059 spin_lock(&free_i->segmap_lock);
2060
2061 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2062 segno = find_next_zero_bit(free_i->free_segmap,
2063 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2064 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2065 goto got_it;
2066 }
2067 find_other_zone:
2068 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2069 if (secno >= MAIN_SECS(sbi)) {
2070 if (dir == ALLOC_RIGHT) {
2071 secno = find_next_zero_bit(free_i->free_secmap,
2072 MAIN_SECS(sbi), 0);
2073 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2074 } else {
2075 go_left = 1;
2076 left_start = hint - 1;
2077 }
2078 }
2079 if (go_left == 0)
2080 goto skip_left;
2081
2082 while (test_bit(left_start, free_i->free_secmap)) {
2083 if (left_start > 0) {
2084 left_start--;
2085 continue;
2086 }
2087 left_start = find_next_zero_bit(free_i->free_secmap,
2088 MAIN_SECS(sbi), 0);
2089 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2090 break;
2091 }
2092 secno = left_start;
2093 skip_left:
2094 segno = GET_SEG_FROM_SEC(sbi, secno);
2095 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2096
2097 /* give up on finding another zone */
2098 if (!init)
2099 goto got_it;
2100 if (sbi->secs_per_zone == 1)
2101 goto got_it;
2102 if (zoneno == old_zoneno)
2103 goto got_it;
2104 if (dir == ALLOC_LEFT) {
2105 if (!go_left && zoneno + 1 >= total_zones)
2106 goto got_it;
2107 if (go_left && zoneno == 0)
2108 goto got_it;
2109 }
2110 for (i = 0; i < NR_CURSEG_TYPE; i++)
2111 if (CURSEG_I(sbi, i)->zone == zoneno)
2112 break;
2113
2114 if (i < NR_CURSEG_TYPE) {
2115 /* zone is in user, try another */
2116 if (go_left)
2117 hint = zoneno * sbi->secs_per_zone - 1;
2118 else if (zoneno + 1 >= total_zones)
2119 hint = 0;
2120 else
2121 hint = (zoneno + 1) * sbi->secs_per_zone;
2122 init = false;
2123 goto find_other_zone;
2124 }
2125 got_it:
2126 /* set it as dirty segment in free segmap */
2127 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2128 __set_inuse(sbi, segno);
2129 *newseg = segno;
2130 spin_unlock(&free_i->segmap_lock);
2131 }
2132
2133 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2134 {
2135 struct curseg_info *curseg = CURSEG_I(sbi, type);
2136 struct summary_footer *sum_footer;
2137
2138 curseg->segno = curseg->next_segno;
2139 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2140 curseg->next_blkoff = 0;
2141 curseg->next_segno = NULL_SEGNO;
2142
2143 sum_footer = &(curseg->sum_blk->footer);
2144 memset(sum_footer, 0, sizeof(struct summary_footer));
2145 if (IS_DATASEG(type))
2146 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2147 if (IS_NODESEG(type))
2148 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2149 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2150 }
2151
2152 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2153 {
2154 /* if segs_per_sec is large than 1, we need to keep original policy. */
2155 if (sbi->segs_per_sec != 1)
2156 return CURSEG_I(sbi, type)->segno;
2157
2158 if (test_opt(sbi, NOHEAP) &&
2159 (type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2160 return 0;
2161
2162 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2163 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2164
2165 /* find segments from 0 to reuse freed segments */
2166 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2167 return 0;
2168
2169 return CURSEG_I(sbi, type)->segno;
2170 }
2171
2172 /*
2173 * Allocate a current working segment.
2174 * This function always allocates a free segment in LFS manner.
2175 */
2176 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2177 {
2178 struct curseg_info *curseg = CURSEG_I(sbi, type);
2179 unsigned int segno = curseg->segno;
2180 int dir = ALLOC_LEFT;
2181
2182 write_sum_page(sbi, curseg->sum_blk,
2183 GET_SUM_BLOCK(sbi, segno));
2184 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2185 dir = ALLOC_RIGHT;
2186
2187 if (test_opt(sbi, NOHEAP))
2188 dir = ALLOC_RIGHT;
2189
2190 segno = __get_next_segno(sbi, type);
2191 get_new_segment(sbi, &segno, new_sec, dir);
2192 curseg->next_segno = segno;
2193 reset_curseg(sbi, type, 1);
2194 curseg->alloc_type = LFS;
2195 }
2196
2197 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2198 struct curseg_info *seg, block_t start)
2199 {
2200 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2201 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2202 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2203 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2204 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2205 int i, pos;
2206
2207 for (i = 0; i < entries; i++)
2208 target_map[i] = ckpt_map[i] | cur_map[i];
2209
2210 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2211
2212 seg->next_blkoff = pos;
2213 }
2214
2215 /*
2216 * If a segment is written by LFS manner, next block offset is just obtained
2217 * by increasing the current block offset. However, if a segment is written by
2218 * SSR manner, next block offset obtained by calling __next_free_blkoff
2219 */
2220 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2221 struct curseg_info *seg)
2222 {
2223 if (seg->alloc_type == SSR)
2224 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2225 else
2226 seg->next_blkoff++;
2227 }
2228
2229 /*
2230 * This function always allocates a used segment(from dirty seglist) by SSR
2231 * manner, so it should recover the existing segment information of valid blocks
2232 */
2233 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2234 {
2235 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2236 struct curseg_info *curseg = CURSEG_I(sbi, type);
2237 unsigned int new_segno = curseg->next_segno;
2238 struct f2fs_summary_block *sum_node;
2239 struct page *sum_page;
2240
2241 write_sum_page(sbi, curseg->sum_blk,
2242 GET_SUM_BLOCK(sbi, curseg->segno));
2243 __set_test_and_inuse(sbi, new_segno);
2244
2245 mutex_lock(&dirty_i->seglist_lock);
2246 __remove_dirty_segment(sbi, new_segno, PRE);
2247 __remove_dirty_segment(sbi, new_segno, DIRTY);
2248 mutex_unlock(&dirty_i->seglist_lock);
2249
2250 reset_curseg(sbi, type, 1);
2251 curseg->alloc_type = SSR;
2252 __next_free_blkoff(sbi, curseg, 0);
2253
2254 sum_page = f2fs_get_sum_page(sbi, new_segno);
2255 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2256 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2257 f2fs_put_page(sum_page, 1);
2258 }
2259
2260 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2261 {
2262 struct curseg_info *curseg = CURSEG_I(sbi, type);
2263 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2264 unsigned segno = NULL_SEGNO;
2265 int i, cnt;
2266 bool reversed = false;
2267
2268 /* f2fs_need_SSR() already forces to do this */
2269 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2270 curseg->next_segno = segno;
2271 return 1;
2272 }
2273
2274 /* For node segments, let's do SSR more intensively */
2275 if (IS_NODESEG(type)) {
2276 if (type >= CURSEG_WARM_NODE) {
2277 reversed = true;
2278 i = CURSEG_COLD_NODE;
2279 } else {
2280 i = CURSEG_HOT_NODE;
2281 }
2282 cnt = NR_CURSEG_NODE_TYPE;
2283 } else {
2284 if (type >= CURSEG_WARM_DATA) {
2285 reversed = true;
2286 i = CURSEG_COLD_DATA;
2287 } else {
2288 i = CURSEG_HOT_DATA;
2289 }
2290 cnt = NR_CURSEG_DATA_TYPE;
2291 }
2292
2293 for (; cnt-- > 0; reversed ? i-- : i++) {
2294 if (i == type)
2295 continue;
2296 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2297 curseg->next_segno = segno;
2298 return 1;
2299 }
2300 }
2301 return 0;
2302 }
2303
2304 /*
2305 * flush out current segment and replace it with new segment
2306 * This function should be returned with success, otherwise BUG
2307 */
2308 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2309 int type, bool force)
2310 {
2311 struct curseg_info *curseg = CURSEG_I(sbi, type);
2312
2313 if (force)
2314 new_curseg(sbi, type, true);
2315 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2316 type == CURSEG_WARM_NODE)
2317 new_curseg(sbi, type, false);
2318 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2319 new_curseg(sbi, type, false);
2320 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2321 change_curseg(sbi, type);
2322 else
2323 new_curseg(sbi, type, false);
2324
2325 stat_inc_seg_type(sbi, curseg);
2326 }
2327
2328 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2329 {
2330 struct curseg_info *curseg;
2331 unsigned int old_segno;
2332 int i;
2333
2334 down_write(&SIT_I(sbi)->sentry_lock);
2335
2336 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2337 curseg = CURSEG_I(sbi, i);
2338 old_segno = curseg->segno;
2339 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2340 locate_dirty_segment(sbi, old_segno);
2341 }
2342
2343 up_write(&SIT_I(sbi)->sentry_lock);
2344 }
2345
2346 static const struct segment_allocation default_salloc_ops = {
2347 .allocate_segment = allocate_segment_by_default,
2348 };
2349
2350 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2351 struct cp_control *cpc)
2352 {
2353 __u64 trim_start = cpc->trim_start;
2354 bool has_candidate = false;
2355
2356 down_write(&SIT_I(sbi)->sentry_lock);
2357 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2358 if (add_discard_addrs(sbi, cpc, true)) {
2359 has_candidate = true;
2360 break;
2361 }
2362 }
2363 up_write(&SIT_I(sbi)->sentry_lock);
2364
2365 cpc->trim_start = trim_start;
2366 return has_candidate;
2367 }
2368
2369 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2370 struct discard_policy *dpolicy,
2371 unsigned int start, unsigned int end)
2372 {
2373 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2374 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2375 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2376 struct discard_cmd *dc;
2377 struct blk_plug plug;
2378 int issued;
2379
2380 next:
2381 issued = 0;
2382
2383 mutex_lock(&dcc->cmd_lock);
2384 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root));
2385
2386 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2387 NULL, start,
2388 (struct rb_entry **)&prev_dc,
2389 (struct rb_entry **)&next_dc,
2390 &insert_p, &insert_parent, true);
2391 if (!dc)
2392 dc = next_dc;
2393
2394 blk_start_plug(&plug);
2395
2396 while (dc && dc->lstart <= end) {
2397 struct rb_node *node;
2398
2399 if (dc->len < dpolicy->granularity)
2400 goto skip;
2401
2402 if (dc->state != D_PREP) {
2403 list_move_tail(&dc->list, &dcc->fstrim_list);
2404 goto skip;
2405 }
2406
2407 __submit_discard_cmd(sbi, dpolicy, dc);
2408
2409 if (++issued >= dpolicy->max_requests) {
2410 start = dc->lstart + dc->len;
2411
2412 blk_finish_plug(&plug);
2413 mutex_unlock(&dcc->cmd_lock);
2414 __wait_all_discard_cmd(sbi, NULL);
2415 congestion_wait(BLK_RW_ASYNC, HZ/50);
2416 goto next;
2417 }
2418 skip:
2419 node = rb_next(&dc->rb_node);
2420 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2421
2422 if (fatal_signal_pending(current))
2423 break;
2424 }
2425
2426 blk_finish_plug(&plug);
2427 mutex_unlock(&dcc->cmd_lock);
2428 }
2429
2430 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2431 {
2432 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2433 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2434 unsigned int start_segno, end_segno;
2435 block_t start_block, end_block;
2436 struct cp_control cpc;
2437 struct discard_policy dpolicy;
2438 unsigned long long trimmed = 0;
2439 int err = 0;
2440
2441 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2442 return -EINVAL;
2443
2444 if (end <= MAIN_BLKADDR(sbi))
2445 return -EINVAL;
2446
2447 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2448 f2fs_msg(sbi->sb, KERN_WARNING,
2449 "Found FS corruption, run fsck to fix.");
2450 return -EIO;
2451 }
2452
2453 /* start/end segment number in main_area */
2454 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2455 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2456 GET_SEGNO(sbi, end);
2457
2458 cpc.reason = CP_DISCARD;
2459 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2460 cpc.trim_start = start_segno;
2461 cpc.trim_end = end_segno;
2462
2463 if (sbi->discard_blks == 0)
2464 goto out;
2465
2466 mutex_lock(&sbi->gc_mutex);
2467 err = f2fs_write_checkpoint(sbi, &cpc);
2468 mutex_unlock(&sbi->gc_mutex);
2469 if (err)
2470 goto out;
2471
2472 start_block = START_BLOCK(sbi, start_segno);
2473 end_block = START_BLOCK(sbi, end_segno + 1);
2474
2475 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2476 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2477
2478 /*
2479 * We filed discard candidates, but actually we don't need to wait for
2480 * all of them, since they'll be issued in idle time along with runtime
2481 * discard option. User configuration looks like using runtime discard
2482 * or periodic fstrim instead of it.
2483 */
2484 if (!test_opt(sbi, DISCARD)) {
2485 trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2486 start_block, end_block);
2487 range->len = F2FS_BLK_TO_BYTES(trimmed);
2488 }
2489 out:
2490 return err;
2491 }
2492
2493 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2494 {
2495 struct curseg_info *curseg = CURSEG_I(sbi, type);
2496 if (curseg->next_blkoff < sbi->blocks_per_seg)
2497 return true;
2498 return false;
2499 }
2500
2501 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2502 {
2503 switch (hint) {
2504 case WRITE_LIFE_SHORT:
2505 return CURSEG_HOT_DATA;
2506 case WRITE_LIFE_EXTREME:
2507 return CURSEG_COLD_DATA;
2508 default:
2509 return CURSEG_WARM_DATA;
2510 }
2511 }
2512
2513 /* This returns write hints for each segment type. This hints will be
2514 * passed down to block layer. There are mapping tables which depend on
2515 * the mount option 'whint_mode'.
2516 *
2517 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2518 *
2519 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2520 *
2521 * User F2FS Block
2522 * ---- ---- -----
2523 * META WRITE_LIFE_NOT_SET
2524 * HOT_NODE "
2525 * WARM_NODE "
2526 * COLD_NODE "
2527 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2528 * extension list " "
2529 *
2530 * -- buffered io
2531 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2532 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2533 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2534 * WRITE_LIFE_NONE " "
2535 * WRITE_LIFE_MEDIUM " "
2536 * WRITE_LIFE_LONG " "
2537 *
2538 * -- direct io
2539 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2540 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2541 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2542 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2543 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2544 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2545 *
2546 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2547 *
2548 * User F2FS Block
2549 * ---- ---- -----
2550 * META WRITE_LIFE_MEDIUM;
2551 * HOT_NODE WRITE_LIFE_NOT_SET
2552 * WARM_NODE "
2553 * COLD_NODE WRITE_LIFE_NONE
2554 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME
2555 * extension list " "
2556 *
2557 * -- buffered io
2558 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2559 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2560 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG
2561 * WRITE_LIFE_NONE " "
2562 * WRITE_LIFE_MEDIUM " "
2563 * WRITE_LIFE_LONG " "
2564 *
2565 * -- direct io
2566 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME
2567 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT
2568 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET
2569 * WRITE_LIFE_NONE " WRITE_LIFE_NONE
2570 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM
2571 * WRITE_LIFE_LONG " WRITE_LIFE_LONG
2572 */
2573
2574 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2575 enum page_type type, enum temp_type temp)
2576 {
2577 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2578 if (type == DATA) {
2579 if (temp == WARM)
2580 return WRITE_LIFE_NOT_SET;
2581 else if (temp == HOT)
2582 return WRITE_LIFE_SHORT;
2583 else if (temp == COLD)
2584 return WRITE_LIFE_EXTREME;
2585 } else {
2586 return WRITE_LIFE_NOT_SET;
2587 }
2588 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2589 if (type == DATA) {
2590 if (temp == WARM)
2591 return WRITE_LIFE_LONG;
2592 else if (temp == HOT)
2593 return WRITE_LIFE_SHORT;
2594 else if (temp == COLD)
2595 return WRITE_LIFE_EXTREME;
2596 } else if (type == NODE) {
2597 if (temp == WARM || temp == HOT)
2598 return WRITE_LIFE_NOT_SET;
2599 else if (temp == COLD)
2600 return WRITE_LIFE_NONE;
2601 } else if (type == META) {
2602 return WRITE_LIFE_MEDIUM;
2603 }
2604 }
2605 return WRITE_LIFE_NOT_SET;
2606 }
2607
2608 static int __get_segment_type_2(struct f2fs_io_info *fio)
2609 {
2610 if (fio->type == DATA)
2611 return CURSEG_HOT_DATA;
2612 else
2613 return CURSEG_HOT_NODE;
2614 }
2615
2616 static int __get_segment_type_4(struct f2fs_io_info *fio)
2617 {
2618 if (fio->type == DATA) {
2619 struct inode *inode = fio->page->mapping->host;
2620
2621 if (S_ISDIR(inode->i_mode))
2622 return CURSEG_HOT_DATA;
2623 else
2624 return CURSEG_COLD_DATA;
2625 } else {
2626 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2627 return CURSEG_WARM_NODE;
2628 else
2629 return CURSEG_COLD_NODE;
2630 }
2631 }
2632
2633 static int __get_segment_type_6(struct f2fs_io_info *fio)
2634 {
2635 if (fio->type == DATA) {
2636 struct inode *inode = fio->page->mapping->host;
2637
2638 if (is_cold_data(fio->page) || file_is_cold(inode))
2639 return CURSEG_COLD_DATA;
2640 if (file_is_hot(inode) ||
2641 is_inode_flag_set(inode, FI_HOT_DATA) ||
2642 is_inode_flag_set(inode, FI_ATOMIC_FILE) ||
2643 is_inode_flag_set(inode, FI_VOLATILE_FILE))
2644 return CURSEG_HOT_DATA;
2645 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2646 } else {
2647 if (IS_DNODE(fio->page))
2648 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2649 CURSEG_HOT_NODE;
2650 return CURSEG_COLD_NODE;
2651 }
2652 }
2653
2654 static int __get_segment_type(struct f2fs_io_info *fio)
2655 {
2656 int type = 0;
2657
2658 switch (F2FS_OPTION(fio->sbi).active_logs) {
2659 case 2:
2660 type = __get_segment_type_2(fio);
2661 break;
2662 case 4:
2663 type = __get_segment_type_4(fio);
2664 break;
2665 case 6:
2666 type = __get_segment_type_6(fio);
2667 break;
2668 default:
2669 f2fs_bug_on(fio->sbi, true);
2670 }
2671
2672 if (IS_HOT(type))
2673 fio->temp = HOT;
2674 else if (IS_WARM(type))
2675 fio->temp = WARM;
2676 else
2677 fio->temp = COLD;
2678 return type;
2679 }
2680
2681 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2682 block_t old_blkaddr, block_t *new_blkaddr,
2683 struct f2fs_summary *sum, int type,
2684 struct f2fs_io_info *fio, bool add_list)
2685 {
2686 struct sit_info *sit_i = SIT_I(sbi);
2687 struct curseg_info *curseg = CURSEG_I(sbi, type);
2688
2689 down_read(&SM_I(sbi)->curseg_lock);
2690
2691 mutex_lock(&curseg->curseg_mutex);
2692 down_write(&sit_i->sentry_lock);
2693
2694 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2695
2696 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2697
2698 /*
2699 * __add_sum_entry should be resided under the curseg_mutex
2700 * because, this function updates a summary entry in the
2701 * current summary block.
2702 */
2703 __add_sum_entry(sbi, type, sum);
2704
2705 __refresh_next_blkoff(sbi, curseg);
2706
2707 stat_inc_block_count(sbi, curseg);
2708
2709 /*
2710 * SIT information should be updated before segment allocation,
2711 * since SSR needs latest valid block information.
2712 */
2713 update_sit_entry(sbi, *new_blkaddr, 1);
2714 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2715 update_sit_entry(sbi, old_blkaddr, -1);
2716
2717 if (!__has_curseg_space(sbi, type))
2718 sit_i->s_ops->allocate_segment(sbi, type, false);
2719
2720 /*
2721 * segment dirty status should be updated after segment allocation,
2722 * so we just need to update status only one time after previous
2723 * segment being closed.
2724 */
2725 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2726 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2727
2728 up_write(&sit_i->sentry_lock);
2729
2730 if (page && IS_NODESEG(type)) {
2731 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2732
2733 f2fs_inode_chksum_set(sbi, page);
2734 }
2735
2736 if (add_list) {
2737 struct f2fs_bio_info *io;
2738
2739 INIT_LIST_HEAD(&fio->list);
2740 fio->in_list = true;
2741 fio->retry = false;
2742 io = sbi->write_io[fio->type] + fio->temp;
2743 spin_lock(&io->io_lock);
2744 list_add_tail(&fio->list, &io->io_list);
2745 spin_unlock(&io->io_lock);
2746 }
2747
2748 mutex_unlock(&curseg->curseg_mutex);
2749
2750 up_read(&SM_I(sbi)->curseg_lock);
2751 }
2752
2753 static void update_device_state(struct f2fs_io_info *fio)
2754 {
2755 struct f2fs_sb_info *sbi = fio->sbi;
2756 unsigned int devidx;
2757
2758 if (!sbi->s_ndevs)
2759 return;
2760
2761 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2762
2763 /* update device state for fsync */
2764 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2765
2766 /* update device state for checkpoint */
2767 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2768 spin_lock(&sbi->dev_lock);
2769 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2770 spin_unlock(&sbi->dev_lock);
2771 }
2772 }
2773
2774 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2775 {
2776 int type = __get_segment_type(fio);
2777 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
2778
2779 if (keep_order)
2780 down_read(&fio->sbi->io_order_lock);
2781 reallocate:
2782 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2783 &fio->new_blkaddr, sum, type, fio, true);
2784
2785 /* writeout dirty page into bdev */
2786 f2fs_submit_page_write(fio);
2787 if (fio->retry) {
2788 fio->old_blkaddr = fio->new_blkaddr;
2789 goto reallocate;
2790 }
2791
2792 update_device_state(fio);
2793
2794 if (keep_order)
2795 up_read(&fio->sbi->io_order_lock);
2796 }
2797
2798 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2799 enum iostat_type io_type)
2800 {
2801 struct f2fs_io_info fio = {
2802 .sbi = sbi,
2803 .type = META,
2804 .temp = HOT,
2805 .op = REQ_OP_WRITE,
2806 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2807 .old_blkaddr = page->index,
2808 .new_blkaddr = page->index,
2809 .page = page,
2810 .encrypted_page = NULL,
2811 .in_list = false,
2812 };
2813
2814 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2815 fio.op_flags &= ~REQ_META;
2816
2817 set_page_writeback(page);
2818 ClearPageError(page);
2819 f2fs_submit_page_write(&fio);
2820
2821 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2822 }
2823
2824 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2825 {
2826 struct f2fs_summary sum;
2827
2828 set_summary(&sum, nid, 0, 0);
2829 do_write_page(&sum, fio);
2830
2831 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2832 }
2833
2834 void f2fs_outplace_write_data(struct dnode_of_data *dn,
2835 struct f2fs_io_info *fio)
2836 {
2837 struct f2fs_sb_info *sbi = fio->sbi;
2838 struct f2fs_summary sum;
2839 struct node_info ni;
2840
2841 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2842 f2fs_get_node_info(sbi, dn->nid, &ni);
2843 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2844 do_write_page(&sum, fio);
2845 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2846
2847 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2848 }
2849
2850 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
2851 {
2852 int err;
2853 struct f2fs_sb_info *sbi = fio->sbi;
2854
2855 fio->new_blkaddr = fio->old_blkaddr;
2856 /* i/o temperature is needed for passing down write hints */
2857 __get_segment_type(fio);
2858
2859 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2860 GET_SEGNO(sbi, fio->new_blkaddr))->type));
2861
2862 stat_inc_inplace_blocks(fio->sbi);
2863
2864 err = f2fs_submit_page_bio(fio);
2865 if (!err)
2866 update_device_state(fio);
2867
2868 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2869
2870 return err;
2871 }
2872
2873 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2874 unsigned int segno)
2875 {
2876 int i;
2877
2878 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2879 if (CURSEG_I(sbi, i)->segno == segno)
2880 break;
2881 }
2882 return i;
2883 }
2884
2885 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2886 block_t old_blkaddr, block_t new_blkaddr,
2887 bool recover_curseg, bool recover_newaddr)
2888 {
2889 struct sit_info *sit_i = SIT_I(sbi);
2890 struct curseg_info *curseg;
2891 unsigned int segno, old_cursegno;
2892 struct seg_entry *se;
2893 int type;
2894 unsigned short old_blkoff;
2895
2896 segno = GET_SEGNO(sbi, new_blkaddr);
2897 se = get_seg_entry(sbi, segno);
2898 type = se->type;
2899
2900 down_write(&SM_I(sbi)->curseg_lock);
2901
2902 if (!recover_curseg) {
2903 /* for recovery flow */
2904 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2905 if (old_blkaddr == NULL_ADDR)
2906 type = CURSEG_COLD_DATA;
2907 else
2908 type = CURSEG_WARM_DATA;
2909 }
2910 } else {
2911 if (IS_CURSEG(sbi, segno)) {
2912 /* se->type is volatile as SSR allocation */
2913 type = __f2fs_get_curseg(sbi, segno);
2914 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2915 } else {
2916 type = CURSEG_WARM_DATA;
2917 }
2918 }
2919
2920 f2fs_bug_on(sbi, !IS_DATASEG(type));
2921 curseg = CURSEG_I(sbi, type);
2922
2923 mutex_lock(&curseg->curseg_mutex);
2924 down_write(&sit_i->sentry_lock);
2925
2926 old_cursegno = curseg->segno;
2927 old_blkoff = curseg->next_blkoff;
2928
2929 /* change the current segment */
2930 if (segno != curseg->segno) {
2931 curseg->next_segno = segno;
2932 change_curseg(sbi, type);
2933 }
2934
2935 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2936 __add_sum_entry(sbi, type, sum);
2937
2938 if (!recover_curseg || recover_newaddr)
2939 update_sit_entry(sbi, new_blkaddr, 1);
2940 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2941 update_sit_entry(sbi, old_blkaddr, -1);
2942
2943 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2944 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2945
2946 locate_dirty_segment(sbi, old_cursegno);
2947
2948 if (recover_curseg) {
2949 if (old_cursegno != curseg->segno) {
2950 curseg->next_segno = old_cursegno;
2951 change_curseg(sbi, type);
2952 }
2953 curseg->next_blkoff = old_blkoff;
2954 }
2955
2956 up_write(&sit_i->sentry_lock);
2957 mutex_unlock(&curseg->curseg_mutex);
2958 up_write(&SM_I(sbi)->curseg_lock);
2959 }
2960
2961 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2962 block_t old_addr, block_t new_addr,
2963 unsigned char version, bool recover_curseg,
2964 bool recover_newaddr)
2965 {
2966 struct f2fs_summary sum;
2967
2968 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2969
2970 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
2971 recover_curseg, recover_newaddr);
2972
2973 f2fs_update_data_blkaddr(dn, new_addr);
2974 }
2975
2976 void f2fs_wait_on_page_writeback(struct page *page,
2977 enum page_type type, bool ordered)
2978 {
2979 if (PageWriteback(page)) {
2980 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2981
2982 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2983 0, page->index, type);
2984 if (ordered)
2985 wait_on_page_writeback(page);
2986 else
2987 wait_for_stable_page(page);
2988 }
2989 }
2990
2991 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2992 {
2993 struct page *cpage;
2994
2995 if (!is_valid_blkaddr(blkaddr))
2996 return;
2997
2998 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2999 if (cpage) {
3000 f2fs_wait_on_page_writeback(cpage, DATA, true);
3001 f2fs_put_page(cpage, 1);
3002 }
3003 }
3004
3005 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
3006 {
3007 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3008 struct curseg_info *seg_i;
3009 unsigned char *kaddr;
3010 struct page *page;
3011 block_t start;
3012 int i, j, offset;
3013
3014 start = start_sum_block(sbi);
3015
3016 page = f2fs_get_meta_page(sbi, start++);
3017 kaddr = (unsigned char *)page_address(page);
3018
3019 /* Step 1: restore nat cache */
3020 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3021 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3022
3023 /* Step 2: restore sit cache */
3024 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3025 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3026 offset = 2 * SUM_JOURNAL_SIZE;
3027
3028 /* Step 3: restore summary entries */
3029 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3030 unsigned short blk_off;
3031 unsigned int segno;
3032
3033 seg_i = CURSEG_I(sbi, i);
3034 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3035 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3036 seg_i->next_segno = segno;
3037 reset_curseg(sbi, i, 0);
3038 seg_i->alloc_type = ckpt->alloc_type[i];
3039 seg_i->next_blkoff = blk_off;
3040
3041 if (seg_i->alloc_type == SSR)
3042 blk_off = sbi->blocks_per_seg;
3043
3044 for (j = 0; j < blk_off; j++) {
3045 struct f2fs_summary *s;
3046 s = (struct f2fs_summary *)(kaddr + offset);
3047 seg_i->sum_blk->entries[j] = *s;
3048 offset += SUMMARY_SIZE;
3049 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3050 SUM_FOOTER_SIZE)
3051 continue;
3052
3053 f2fs_put_page(page, 1);
3054 page = NULL;
3055
3056 page = f2fs_get_meta_page(sbi, start++);
3057 kaddr = (unsigned char *)page_address(page);
3058 offset = 0;
3059 }
3060 }
3061 f2fs_put_page(page, 1);
3062 }
3063
3064 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3065 {
3066 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3067 struct f2fs_summary_block *sum;
3068 struct curseg_info *curseg;
3069 struct page *new;
3070 unsigned short blk_off;
3071 unsigned int segno = 0;
3072 block_t blk_addr = 0;
3073
3074 /* get segment number and block addr */
3075 if (IS_DATASEG(type)) {
3076 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3077 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3078 CURSEG_HOT_DATA]);
3079 if (__exist_node_summaries(sbi))
3080 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3081 else
3082 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3083 } else {
3084 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3085 CURSEG_HOT_NODE]);
3086 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3087 CURSEG_HOT_NODE]);
3088 if (__exist_node_summaries(sbi))
3089 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3090 type - CURSEG_HOT_NODE);
3091 else
3092 blk_addr = GET_SUM_BLOCK(sbi, segno);
3093 }
3094
3095 new = f2fs_get_meta_page(sbi, blk_addr);
3096 sum = (struct f2fs_summary_block *)page_address(new);
3097
3098 if (IS_NODESEG(type)) {
3099 if (__exist_node_summaries(sbi)) {
3100 struct f2fs_summary *ns = &sum->entries[0];
3101 int i;
3102 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3103 ns->version = 0;
3104 ns->ofs_in_node = 0;
3105 }
3106 } else {
3107 f2fs_restore_node_summary(sbi, segno, sum);
3108 }
3109 }
3110
3111 /* set uncompleted segment to curseg */
3112 curseg = CURSEG_I(sbi, type);
3113 mutex_lock(&curseg->curseg_mutex);
3114
3115 /* update journal info */
3116 down_write(&curseg->journal_rwsem);
3117 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3118 up_write(&curseg->journal_rwsem);
3119
3120 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3121 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3122 curseg->next_segno = segno;
3123 reset_curseg(sbi, type, 0);
3124 curseg->alloc_type = ckpt->alloc_type[type];
3125 curseg->next_blkoff = blk_off;
3126 mutex_unlock(&curseg->curseg_mutex);
3127 f2fs_put_page(new, 1);
3128 return 0;
3129 }
3130
3131 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3132 {
3133 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3134 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3135 int type = CURSEG_HOT_DATA;
3136 int err;
3137
3138 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3139 int npages = f2fs_npages_for_summary_flush(sbi, true);
3140
3141 if (npages >= 2)
3142 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3143 META_CP, true);
3144
3145 /* restore for compacted data summary */
3146 read_compacted_summaries(sbi);
3147 type = CURSEG_HOT_NODE;
3148 }
3149
3150 if (__exist_node_summaries(sbi))
3151 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3152 NR_CURSEG_TYPE - type, META_CP, true);
3153
3154 for (; type <= CURSEG_COLD_NODE; type++) {
3155 err = read_normal_summaries(sbi, type);
3156 if (err)
3157 return err;
3158 }
3159
3160 /* sanity check for summary blocks */
3161 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3162 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3163 return -EINVAL;
3164
3165 return 0;
3166 }
3167
3168 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3169 {
3170 struct page *page;
3171 unsigned char *kaddr;
3172 struct f2fs_summary *summary;
3173 struct curseg_info *seg_i;
3174 int written_size = 0;
3175 int i, j;
3176
3177 page = f2fs_grab_meta_page(sbi, blkaddr++);
3178 kaddr = (unsigned char *)page_address(page);
3179 memset(kaddr, 0, PAGE_SIZE);
3180
3181 /* Step 1: write nat cache */
3182 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3183 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3184 written_size += SUM_JOURNAL_SIZE;
3185
3186 /* Step 2: write sit cache */
3187 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3188 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3189 written_size += SUM_JOURNAL_SIZE;
3190
3191 /* Step 3: write summary entries */
3192 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3193 unsigned short blkoff;
3194 seg_i = CURSEG_I(sbi, i);
3195 if (sbi->ckpt->alloc_type[i] == SSR)
3196 blkoff = sbi->blocks_per_seg;
3197 else
3198 blkoff = curseg_blkoff(sbi, i);
3199
3200 for (j = 0; j < blkoff; j++) {
3201 if (!page) {
3202 page = f2fs_grab_meta_page(sbi, blkaddr++);
3203 kaddr = (unsigned char *)page_address(page);
3204 memset(kaddr, 0, PAGE_SIZE);
3205 written_size = 0;
3206 }
3207 summary = (struct f2fs_summary *)(kaddr + written_size);
3208 *summary = seg_i->sum_blk->entries[j];
3209 written_size += SUMMARY_SIZE;
3210
3211 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3212 SUM_FOOTER_SIZE)
3213 continue;
3214
3215 set_page_dirty(page);
3216 f2fs_put_page(page, 1);
3217 page = NULL;
3218 }
3219 }
3220 if (page) {
3221 set_page_dirty(page);
3222 f2fs_put_page(page, 1);
3223 }
3224 }
3225
3226 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3227 block_t blkaddr, int type)
3228 {
3229 int i, end;
3230 if (IS_DATASEG(type))
3231 end = type + NR_CURSEG_DATA_TYPE;
3232 else
3233 end = type + NR_CURSEG_NODE_TYPE;
3234
3235 for (i = type; i < end; i++)
3236 write_current_sum_page(sbi, i, blkaddr + (i - type));
3237 }
3238
3239 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3240 {
3241 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3242 write_compacted_summaries(sbi, start_blk);
3243 else
3244 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3245 }
3246
3247 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3248 {
3249 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3250 }
3251
3252 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3253 unsigned int val, int alloc)
3254 {
3255 int i;
3256
3257 if (type == NAT_JOURNAL) {
3258 for (i = 0; i < nats_in_cursum(journal); i++) {
3259 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3260 return i;
3261 }
3262 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3263 return update_nats_in_cursum(journal, 1);
3264 } else if (type == SIT_JOURNAL) {
3265 for (i = 0; i < sits_in_cursum(journal); i++)
3266 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3267 return i;
3268 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3269 return update_sits_in_cursum(journal, 1);
3270 }
3271 return -1;
3272 }
3273
3274 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3275 unsigned int segno)
3276 {
3277 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3278 }
3279
3280 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3281 unsigned int start)
3282 {
3283 struct sit_info *sit_i = SIT_I(sbi);
3284 struct page *page;
3285 pgoff_t src_off, dst_off;
3286
3287 src_off = current_sit_addr(sbi, start);
3288 dst_off = next_sit_addr(sbi, src_off);
3289
3290 page = f2fs_grab_meta_page(sbi, dst_off);
3291 seg_info_to_sit_page(sbi, page, start);
3292
3293 set_page_dirty(page);
3294 set_to_next_sit(sit_i, start);
3295
3296 return page;
3297 }
3298
3299 static struct sit_entry_set *grab_sit_entry_set(void)
3300 {
3301 struct sit_entry_set *ses =
3302 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3303
3304 ses->entry_cnt = 0;
3305 INIT_LIST_HEAD(&ses->set_list);
3306 return ses;
3307 }
3308
3309 static void release_sit_entry_set(struct sit_entry_set *ses)
3310 {
3311 list_del(&ses->set_list);
3312 kmem_cache_free(sit_entry_set_slab, ses);
3313 }
3314
3315 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3316 struct list_head *head)
3317 {
3318 struct sit_entry_set *next = ses;
3319
3320 if (list_is_last(&ses->set_list, head))
3321 return;
3322
3323 list_for_each_entry_continue(next, head, set_list)
3324 if (ses->entry_cnt <= next->entry_cnt)
3325 break;
3326
3327 list_move_tail(&ses->set_list, &next->set_list);
3328 }
3329
3330 static void add_sit_entry(unsigned int segno, struct list_head *head)
3331 {
3332 struct sit_entry_set *ses;
3333 unsigned int start_segno = START_SEGNO(segno);
3334
3335 list_for_each_entry(ses, head, set_list) {
3336 if (ses->start_segno == start_segno) {
3337 ses->entry_cnt++;
3338 adjust_sit_entry_set(ses, head);
3339 return;
3340 }
3341 }
3342
3343 ses = grab_sit_entry_set();
3344
3345 ses->start_segno = start_segno;
3346 ses->entry_cnt++;
3347 list_add(&ses->set_list, head);
3348 }
3349
3350 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3351 {
3352 struct f2fs_sm_info *sm_info = SM_I(sbi);
3353 struct list_head *set_list = &sm_info->sit_entry_set;
3354 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3355 unsigned int segno;
3356
3357 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3358 add_sit_entry(segno, set_list);
3359 }
3360
3361 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3362 {
3363 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3364 struct f2fs_journal *journal = curseg->journal;
3365 int i;
3366
3367 down_write(&curseg->journal_rwsem);
3368 for (i = 0; i < sits_in_cursum(journal); i++) {
3369 unsigned int segno;
3370 bool dirtied;
3371
3372 segno = le32_to_cpu(segno_in_journal(journal, i));
3373 dirtied = __mark_sit_entry_dirty(sbi, segno);
3374
3375 if (!dirtied)
3376 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3377 }
3378 update_sits_in_cursum(journal, -i);
3379 up_write(&curseg->journal_rwsem);
3380 }
3381
3382 /*
3383 * CP calls this function, which flushes SIT entries including sit_journal,
3384 * and moves prefree segs to free segs.
3385 */
3386 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3387 {
3388 struct sit_info *sit_i = SIT_I(sbi);
3389 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3390 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3391 struct f2fs_journal *journal = curseg->journal;
3392 struct sit_entry_set *ses, *tmp;
3393 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3394 bool to_journal = true;
3395 struct seg_entry *se;
3396
3397 down_write(&sit_i->sentry_lock);
3398
3399 if (!sit_i->dirty_sentries)
3400 goto out;
3401
3402 /*
3403 * add and account sit entries of dirty bitmap in sit entry
3404 * set temporarily
3405 */
3406 add_sits_in_set(sbi);
3407
3408 /*
3409 * if there are no enough space in journal to store dirty sit
3410 * entries, remove all entries from journal and add and account
3411 * them in sit entry set.
3412 */
3413 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3414 remove_sits_in_journal(sbi);
3415
3416 /*
3417 * there are two steps to flush sit entries:
3418 * #1, flush sit entries to journal in current cold data summary block.
3419 * #2, flush sit entries to sit page.
3420 */
3421 list_for_each_entry_safe(ses, tmp, head, set_list) {
3422 struct page *page = NULL;
3423 struct f2fs_sit_block *raw_sit = NULL;
3424 unsigned int start_segno = ses->start_segno;
3425 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3426 (unsigned long)MAIN_SEGS(sbi));
3427 unsigned int segno = start_segno;
3428
3429 if (to_journal &&
3430 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3431 to_journal = false;
3432
3433 if (to_journal) {
3434 down_write(&curseg->journal_rwsem);
3435 } else {
3436 page = get_next_sit_page(sbi, start_segno);
3437 raw_sit = page_address(page);
3438 }
3439
3440 /* flush dirty sit entries in region of current sit set */
3441 for_each_set_bit_from(segno, bitmap, end) {
3442 int offset, sit_offset;
3443
3444 se = get_seg_entry(sbi, segno);
3445 #ifdef CONFIG_F2FS_CHECK_FS
3446 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3447 SIT_VBLOCK_MAP_SIZE))
3448 f2fs_bug_on(sbi, 1);
3449 #endif
3450
3451 /* add discard candidates */
3452 if (!(cpc->reason & CP_DISCARD)) {
3453 cpc->trim_start = segno;
3454 add_discard_addrs(sbi, cpc, false);
3455 }
3456
3457 if (to_journal) {
3458 offset = f2fs_lookup_journal_in_cursum(journal,
3459 SIT_JOURNAL, segno, 1);
3460 f2fs_bug_on(sbi, offset < 0);
3461 segno_in_journal(journal, offset) =
3462 cpu_to_le32(segno);
3463 seg_info_to_raw_sit(se,
3464 &sit_in_journal(journal, offset));
3465 check_block_count(sbi, segno,
3466 &sit_in_journal(journal, offset));
3467 } else {
3468 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3469 seg_info_to_raw_sit(se,
3470 &raw_sit->entries[sit_offset]);
3471 check_block_count(sbi, segno,
3472 &raw_sit->entries[sit_offset]);
3473 }
3474
3475 __clear_bit(segno, bitmap);
3476 sit_i->dirty_sentries--;
3477 ses->entry_cnt--;
3478 }
3479
3480 if (to_journal)
3481 up_write(&curseg->journal_rwsem);
3482 else
3483 f2fs_put_page(page, 1);
3484
3485 f2fs_bug_on(sbi, ses->entry_cnt);
3486 release_sit_entry_set(ses);
3487 }
3488
3489 f2fs_bug_on(sbi, !list_empty(head));
3490 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3491 out:
3492 if (cpc->reason & CP_DISCARD) {
3493 __u64 trim_start = cpc->trim_start;
3494
3495 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3496 add_discard_addrs(sbi, cpc, false);
3497
3498 cpc->trim_start = trim_start;
3499 }
3500 up_write(&sit_i->sentry_lock);
3501
3502 set_prefree_as_free_segments(sbi);
3503 }
3504
3505 static int build_sit_info(struct f2fs_sb_info *sbi)
3506 {
3507 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3508 struct sit_info *sit_i;
3509 unsigned int sit_segs, start;
3510 char *src_bitmap;
3511 unsigned int bitmap_size;
3512
3513 /* allocate memory for SIT information */
3514 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3515 if (!sit_i)
3516 return -ENOMEM;
3517
3518 SM_I(sbi)->sit_info = sit_i;
3519
3520 sit_i->sentries =
3521 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3522 MAIN_SEGS(sbi)),
3523 GFP_KERNEL);
3524 if (!sit_i->sentries)
3525 return -ENOMEM;
3526
3527 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3528 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3529 GFP_KERNEL);
3530 if (!sit_i->dirty_sentries_bitmap)
3531 return -ENOMEM;
3532
3533 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3534 sit_i->sentries[start].cur_valid_map
3535 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3536 sit_i->sentries[start].ckpt_valid_map
3537 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3538 if (!sit_i->sentries[start].cur_valid_map ||
3539 !sit_i->sentries[start].ckpt_valid_map)
3540 return -ENOMEM;
3541
3542 #ifdef CONFIG_F2FS_CHECK_FS
3543 sit_i->sentries[start].cur_valid_map_mir
3544 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3545 if (!sit_i->sentries[start].cur_valid_map_mir)
3546 return -ENOMEM;
3547 #endif
3548
3549 if (f2fs_discard_en(sbi)) {
3550 sit_i->sentries[start].discard_map
3551 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3552 GFP_KERNEL);
3553 if (!sit_i->sentries[start].discard_map)
3554 return -ENOMEM;
3555 }
3556 }
3557
3558 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3559 if (!sit_i->tmp_map)
3560 return -ENOMEM;
3561
3562 if (sbi->segs_per_sec > 1) {
3563 sit_i->sec_entries =
3564 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3565 MAIN_SECS(sbi)),
3566 GFP_KERNEL);
3567 if (!sit_i->sec_entries)
3568 return -ENOMEM;
3569 }
3570
3571 /* get information related with SIT */
3572 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3573
3574 /* setup SIT bitmap from ckeckpoint pack */
3575 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3576 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3577
3578 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3579 if (!sit_i->sit_bitmap)
3580 return -ENOMEM;
3581
3582 #ifdef CONFIG_F2FS_CHECK_FS
3583 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3584 if (!sit_i->sit_bitmap_mir)
3585 return -ENOMEM;
3586 #endif
3587
3588 /* init SIT information */
3589 sit_i->s_ops = &default_salloc_ops;
3590
3591 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3592 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3593 sit_i->written_valid_blocks = 0;
3594 sit_i->bitmap_size = bitmap_size;
3595 sit_i->dirty_sentries = 0;
3596 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3597 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3598 sit_i->mounted_time = ktime_get_real_seconds();
3599 init_rwsem(&sit_i->sentry_lock);
3600 return 0;
3601 }
3602
3603 static int build_free_segmap(struct f2fs_sb_info *sbi)
3604 {
3605 struct free_segmap_info *free_i;
3606 unsigned int bitmap_size, sec_bitmap_size;
3607
3608 /* allocate memory for free segmap information */
3609 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3610 if (!free_i)
3611 return -ENOMEM;
3612
3613 SM_I(sbi)->free_info = free_i;
3614
3615 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3616 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3617 if (!free_i->free_segmap)
3618 return -ENOMEM;
3619
3620 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3621 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3622 if (!free_i->free_secmap)
3623 return -ENOMEM;
3624
3625 /* set all segments as dirty temporarily */
3626 memset(free_i->free_segmap, 0xff, bitmap_size);
3627 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3628
3629 /* init free segmap information */
3630 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3631 free_i->free_segments = 0;
3632 free_i->free_sections = 0;
3633 spin_lock_init(&free_i->segmap_lock);
3634 return 0;
3635 }
3636
3637 static int build_curseg(struct f2fs_sb_info *sbi)
3638 {
3639 struct curseg_info *array;
3640 int i;
3641
3642 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
3643 GFP_KERNEL);
3644 if (!array)
3645 return -ENOMEM;
3646
3647 SM_I(sbi)->curseg_array = array;
3648
3649 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3650 mutex_init(&array[i].curseg_mutex);
3651 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3652 if (!array[i].sum_blk)
3653 return -ENOMEM;
3654 init_rwsem(&array[i].journal_rwsem);
3655 array[i].journal = f2fs_kzalloc(sbi,
3656 sizeof(struct f2fs_journal), GFP_KERNEL);
3657 if (!array[i].journal)
3658 return -ENOMEM;
3659 array[i].segno = NULL_SEGNO;
3660 array[i].next_blkoff = 0;
3661 }
3662 return restore_curseg_summaries(sbi);
3663 }
3664
3665 static int build_sit_entries(struct f2fs_sb_info *sbi)
3666 {
3667 struct sit_info *sit_i = SIT_I(sbi);
3668 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3669 struct f2fs_journal *journal = curseg->journal;
3670 struct seg_entry *se;
3671 struct f2fs_sit_entry sit;
3672 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3673 unsigned int i, start, end;
3674 unsigned int readed, start_blk = 0;
3675 int err = 0;
3676 block_t total_node_blocks = 0;
3677
3678 do {
3679 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3680 META_SIT, true);
3681
3682 start = start_blk * sit_i->sents_per_block;
3683 end = (start_blk + readed) * sit_i->sents_per_block;
3684
3685 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3686 struct f2fs_sit_block *sit_blk;
3687 struct page *page;
3688
3689 se = &sit_i->sentries[start];
3690 page = get_current_sit_page(sbi, start);
3691 sit_blk = (struct f2fs_sit_block *)page_address(page);
3692 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3693 f2fs_put_page(page, 1);
3694
3695 err = check_block_count(sbi, start, &sit);
3696 if (err)
3697 return err;
3698 seg_info_from_raw_sit(se, &sit);
3699 if (IS_NODESEG(se->type))
3700 total_node_blocks += se->valid_blocks;
3701
3702 /* build discard map only one time */
3703 if (f2fs_discard_en(sbi)) {
3704 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3705 memset(se->discard_map, 0xff,
3706 SIT_VBLOCK_MAP_SIZE);
3707 } else {
3708 memcpy(se->discard_map,
3709 se->cur_valid_map,
3710 SIT_VBLOCK_MAP_SIZE);
3711 sbi->discard_blks +=
3712 sbi->blocks_per_seg -
3713 se->valid_blocks;
3714 }
3715 }
3716
3717 if (sbi->segs_per_sec > 1)
3718 get_sec_entry(sbi, start)->valid_blocks +=
3719 se->valid_blocks;
3720 }
3721 start_blk += readed;
3722 } while (start_blk < sit_blk_cnt);
3723
3724 down_read(&curseg->journal_rwsem);
3725 for (i = 0; i < sits_in_cursum(journal); i++) {
3726 unsigned int old_valid_blocks;
3727
3728 start = le32_to_cpu(segno_in_journal(journal, i));
3729 if (start >= MAIN_SEGS(sbi)) {
3730 f2fs_msg(sbi->sb, KERN_ERR,
3731 "Wrong journal entry on segno %u",
3732 start);
3733 set_sbi_flag(sbi, SBI_NEED_FSCK);
3734 err = -EINVAL;
3735 break;
3736 }
3737
3738 se = &sit_i->sentries[start];
3739 sit = sit_in_journal(journal, i);
3740
3741 old_valid_blocks = se->valid_blocks;
3742 if (IS_NODESEG(se->type))
3743 total_node_blocks -= old_valid_blocks;
3744
3745 err = check_block_count(sbi, start, &sit);
3746 if (err)
3747 break;
3748 seg_info_from_raw_sit(se, &sit);
3749 if (IS_NODESEG(se->type))
3750 total_node_blocks += se->valid_blocks;
3751
3752 if (f2fs_discard_en(sbi)) {
3753 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3754 memset(se->discard_map, 0xff,
3755 SIT_VBLOCK_MAP_SIZE);
3756 } else {
3757 memcpy(se->discard_map, se->cur_valid_map,
3758 SIT_VBLOCK_MAP_SIZE);
3759 sbi->discard_blks += old_valid_blocks;
3760 sbi->discard_blks -= se->valid_blocks;
3761 }
3762 }
3763
3764 if (sbi->segs_per_sec > 1) {
3765 get_sec_entry(sbi, start)->valid_blocks +=
3766 se->valid_blocks;
3767 get_sec_entry(sbi, start)->valid_blocks -=
3768 old_valid_blocks;
3769 }
3770 }
3771 up_read(&curseg->journal_rwsem);
3772
3773 if (!err && total_node_blocks != valid_node_count(sbi)) {
3774 f2fs_msg(sbi->sb, KERN_ERR,
3775 "SIT is corrupted node# %u vs %u",
3776 total_node_blocks, valid_node_count(sbi));
3777 set_sbi_flag(sbi, SBI_NEED_FSCK);
3778 err = -EINVAL;
3779 }
3780
3781 return err;
3782 }
3783
3784 static void init_free_segmap(struct f2fs_sb_info *sbi)
3785 {
3786 unsigned int start;
3787 int type;
3788
3789 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3790 struct seg_entry *sentry = get_seg_entry(sbi, start);
3791 if (!sentry->valid_blocks)
3792 __set_free(sbi, start);
3793 else
3794 SIT_I(sbi)->written_valid_blocks +=
3795 sentry->valid_blocks;
3796 }
3797
3798 /* set use the current segments */
3799 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3800 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3801 __set_test_and_inuse(sbi, curseg_t->segno);
3802 }
3803 }
3804
3805 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3806 {
3807 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3808 struct free_segmap_info *free_i = FREE_I(sbi);
3809 unsigned int segno = 0, offset = 0;
3810 unsigned short valid_blocks;
3811
3812 while (1) {
3813 /* find dirty segment based on free segmap */
3814 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3815 if (segno >= MAIN_SEGS(sbi))
3816 break;
3817 offset = segno + 1;
3818 valid_blocks = get_valid_blocks(sbi, segno, false);
3819 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3820 continue;
3821 if (valid_blocks > sbi->blocks_per_seg) {
3822 f2fs_bug_on(sbi, 1);
3823 continue;
3824 }
3825 mutex_lock(&dirty_i->seglist_lock);
3826 __locate_dirty_segment(sbi, segno, DIRTY);
3827 mutex_unlock(&dirty_i->seglist_lock);
3828 }
3829 }
3830
3831 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3832 {
3833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3834 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3835
3836 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3837 if (!dirty_i->victim_secmap)
3838 return -ENOMEM;
3839 return 0;
3840 }
3841
3842 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3843 {
3844 struct dirty_seglist_info *dirty_i;
3845 unsigned int bitmap_size, i;
3846
3847 /* allocate memory for dirty segments list information */
3848 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3849 GFP_KERNEL);
3850 if (!dirty_i)
3851 return -ENOMEM;
3852
3853 SM_I(sbi)->dirty_info = dirty_i;
3854 mutex_init(&dirty_i->seglist_lock);
3855
3856 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3857
3858 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3859 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3860 GFP_KERNEL);
3861 if (!dirty_i->dirty_segmap[i])
3862 return -ENOMEM;
3863 }
3864
3865 init_dirty_segmap(sbi);
3866 return init_victim_secmap(sbi);
3867 }
3868
3869 /*
3870 * Update min, max modified time for cost-benefit GC algorithm
3871 */
3872 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3873 {
3874 struct sit_info *sit_i = SIT_I(sbi);
3875 unsigned int segno;
3876
3877 down_write(&sit_i->sentry_lock);
3878
3879 sit_i->min_mtime = ULLONG_MAX;
3880
3881 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3882 unsigned int i;
3883 unsigned long long mtime = 0;
3884
3885 for (i = 0; i < sbi->segs_per_sec; i++)
3886 mtime += get_seg_entry(sbi, segno + i)->mtime;
3887
3888 mtime = div_u64(mtime, sbi->segs_per_sec);
3889
3890 if (sit_i->min_mtime > mtime)
3891 sit_i->min_mtime = mtime;
3892 }
3893 sit_i->max_mtime = get_mtime(sbi, false);
3894 up_write(&sit_i->sentry_lock);
3895 }
3896
3897 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
3898 {
3899 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3900 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3901 struct f2fs_sm_info *sm_info;
3902 int err;
3903
3904 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3905 if (!sm_info)
3906 return -ENOMEM;
3907
3908 /* init sm info */
3909 sbi->sm_info = sm_info;
3910 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3911 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3912 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3913 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3914 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3915 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3916 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3917 sm_info->rec_prefree_segments = sm_info->main_segments *
3918 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3919 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3920 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3921
3922 if (!test_opt(sbi, LFS))
3923 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3924 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3925 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3926 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3927 sm_info->min_ssr_sections = reserved_sections(sbi);
3928
3929 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3930
3931 init_rwsem(&sm_info->curseg_lock);
3932
3933 if (!f2fs_readonly(sbi->sb)) {
3934 err = f2fs_create_flush_cmd_control(sbi);
3935 if (err)
3936 return err;
3937 }
3938
3939 err = create_discard_cmd_control(sbi);
3940 if (err)
3941 return err;
3942
3943 err = build_sit_info(sbi);
3944 if (err)
3945 return err;
3946 err = build_free_segmap(sbi);
3947 if (err)
3948 return err;
3949 err = build_curseg(sbi);
3950 if (err)
3951 return err;
3952
3953 /* reinit free segmap based on SIT */
3954 err = build_sit_entries(sbi);
3955 if (err)
3956 return err;
3957
3958 init_free_segmap(sbi);
3959 err = build_dirty_segmap(sbi);
3960 if (err)
3961 return err;
3962
3963 init_min_max_mtime(sbi);
3964 return 0;
3965 }
3966
3967 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3968 enum dirty_type dirty_type)
3969 {
3970 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3971
3972 mutex_lock(&dirty_i->seglist_lock);
3973 kvfree(dirty_i->dirty_segmap[dirty_type]);
3974 dirty_i->nr_dirty[dirty_type] = 0;
3975 mutex_unlock(&dirty_i->seglist_lock);
3976 }
3977
3978 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3979 {
3980 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3981 kvfree(dirty_i->victim_secmap);
3982 }
3983
3984 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3985 {
3986 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3987 int i;
3988
3989 if (!dirty_i)
3990 return;
3991
3992 /* discard pre-free/dirty segments list */
3993 for (i = 0; i < NR_DIRTY_TYPE; i++)
3994 discard_dirty_segmap(sbi, i);
3995
3996 destroy_victim_secmap(sbi);
3997 SM_I(sbi)->dirty_info = NULL;
3998 kfree(dirty_i);
3999 }
4000
4001 static void destroy_curseg(struct f2fs_sb_info *sbi)
4002 {
4003 struct curseg_info *array = SM_I(sbi)->curseg_array;
4004 int i;
4005
4006 if (!array)
4007 return;
4008 SM_I(sbi)->curseg_array = NULL;
4009 for (i = 0; i < NR_CURSEG_TYPE; i++) {
4010 kfree(array[i].sum_blk);
4011 kfree(array[i].journal);
4012 }
4013 kfree(array);
4014 }
4015
4016 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4017 {
4018 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4019 if (!free_i)
4020 return;
4021 SM_I(sbi)->free_info = NULL;
4022 kvfree(free_i->free_segmap);
4023 kvfree(free_i->free_secmap);
4024 kfree(free_i);
4025 }
4026
4027 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4028 {
4029 struct sit_info *sit_i = SIT_I(sbi);
4030 unsigned int start;
4031
4032 if (!sit_i)
4033 return;
4034
4035 if (sit_i->sentries) {
4036 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4037 kfree(sit_i->sentries[start].cur_valid_map);
4038 #ifdef CONFIG_F2FS_CHECK_FS
4039 kfree(sit_i->sentries[start].cur_valid_map_mir);
4040 #endif
4041 kfree(sit_i->sentries[start].ckpt_valid_map);
4042 kfree(sit_i->sentries[start].discard_map);
4043 }
4044 }
4045 kfree(sit_i->tmp_map);
4046
4047 kvfree(sit_i->sentries);
4048 kvfree(sit_i->sec_entries);
4049 kvfree(sit_i->dirty_sentries_bitmap);
4050
4051 SM_I(sbi)->sit_info = NULL;
4052 kfree(sit_i->sit_bitmap);
4053 #ifdef CONFIG_F2FS_CHECK_FS
4054 kfree(sit_i->sit_bitmap_mir);
4055 #endif
4056 kfree(sit_i);
4057 }
4058
4059 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4060 {
4061 struct f2fs_sm_info *sm_info = SM_I(sbi);
4062
4063 if (!sm_info)
4064 return;
4065 f2fs_destroy_flush_cmd_control(sbi, true);
4066 destroy_discard_cmd_control(sbi);
4067 destroy_dirty_segmap(sbi);
4068 destroy_curseg(sbi);
4069 destroy_free_segmap(sbi);
4070 destroy_sit_info(sbi);
4071 sbi->sm_info = NULL;
4072 kfree(sm_info);
4073 }
4074
4075 int __init f2fs_create_segment_manager_caches(void)
4076 {
4077 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4078 sizeof(struct discard_entry));
4079 if (!discard_entry_slab)
4080 goto fail;
4081
4082 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4083 sizeof(struct discard_cmd));
4084 if (!discard_cmd_slab)
4085 goto destroy_discard_entry;
4086
4087 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4088 sizeof(struct sit_entry_set));
4089 if (!sit_entry_set_slab)
4090 goto destroy_discard_cmd;
4091
4092 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4093 sizeof(struct inmem_pages));
4094 if (!inmem_entry_slab)
4095 goto destroy_sit_entry_set;
4096 return 0;
4097
4098 destroy_sit_entry_set:
4099 kmem_cache_destroy(sit_entry_set_slab);
4100 destroy_discard_cmd:
4101 kmem_cache_destroy(discard_cmd_slab);
4102 destroy_discard_entry:
4103 kmem_cache_destroy(discard_entry_slab);
4104 fail:
4105 return -ENOMEM;
4106 }
4107
4108 void f2fs_destroy_segment_manager_caches(void)
4109 {
4110 kmem_cache_destroy(sit_entry_set_slab);
4111 kmem_cache_destroy(discard_cmd_slab);
4112 kmem_cache_destroy(discard_entry_slab);
4113 kmem_cache_destroy(inmem_entry_slab);
4114 }