]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/segment.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 unsigned long tmp = 0;
36 int shift = 24, idx = 0;
37
38 #if BITS_PER_LONG == 64
39 shift = 56;
40 #endif
41 while (shift >= 0) {
42 tmp |= (unsigned long)str[idx++] << shift;
43 shift -= BITS_PER_BYTE;
44 }
45 return tmp;
46 }
47
48 /*
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
51 */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 int num = 0;
55
56 #if BITS_PER_LONG == 64
57 if ((word & 0xffffffff00000000UL) == 0)
58 num += 32;
59 else
60 word >>= 32;
61 #endif
62 if ((word & 0xffff0000) == 0)
63 num += 16;
64 else
65 word >>= 16;
66
67 if ((word & 0xff00) == 0)
68 num += 8;
69 else
70 word >>= 8;
71
72 if ((word & 0xf0) == 0)
73 num += 4;
74 else
75 word >>= 4;
76
77 if ((word & 0xc) == 0)
78 num += 2;
79 else
80 word >>= 2;
81
82 if ((word & 0x2) == 0)
83 num += 1;
84 return num;
85 }
86
87 /*
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
91 * Example:
92 * MSB <--> LSB
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
95 */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 unsigned long size, unsigned long offset)
98 {
99 const unsigned long *p = addr + BIT_WORD(offset);
100 unsigned long result = size;
101 unsigned long tmp;
102
103 if (offset >= size)
104 return size;
105
106 size -= (offset & ~(BITS_PER_LONG - 1));
107 offset %= BITS_PER_LONG;
108
109 while (1) {
110 if (*p == 0)
111 goto pass;
112
113 tmp = __reverse_ulong((unsigned char *)p);
114
115 tmp &= ~0UL >> offset;
116 if (size < BITS_PER_LONG)
117 tmp &= (~0UL << (BITS_PER_LONG - size));
118 if (tmp)
119 goto found;
120 pass:
121 if (size <= BITS_PER_LONG)
122 break;
123 size -= BITS_PER_LONG;
124 offset = 0;
125 p++;
126 }
127 return result;
128 found:
129 return result - size + __reverse_ffs(tmp);
130 }
131
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 unsigned long size, unsigned long offset)
134 {
135 const unsigned long *p = addr + BIT_WORD(offset);
136 unsigned long result = size;
137 unsigned long tmp;
138
139 if (offset >= size)
140 return size;
141
142 size -= (offset & ~(BITS_PER_LONG - 1));
143 offset %= BITS_PER_LONG;
144
145 while (1) {
146 if (*p == ~0UL)
147 goto pass;
148
149 tmp = __reverse_ulong((unsigned char *)p);
150
151 if (offset)
152 tmp |= ~0UL << (BITS_PER_LONG - offset);
153 if (size < BITS_PER_LONG)
154 tmp |= ~0UL >> size;
155 if (tmp != ~0UL)
156 goto found;
157 pass:
158 if (size <= BITS_PER_LONG)
159 break;
160 size -= BITS_PER_LONG;
161 offset = 0;
162 p++;
163 }
164 return result;
165 found:
166 return result - size + __reverse_ffz(tmp);
167 }
168
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 struct f2fs_inode_info *fi = F2FS_I(inode);
172 struct inmem_pages *new;
173
174 f2fs_trace_pid(page);
175
176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 SetPagePrivate(page);
178
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180
181 /* add atomic page indices to the list */
182 new->page = page;
183 INIT_LIST_HEAD(&new->list);
184
185 /* increase reference count with clean state */
186 mutex_lock(&fi->inmem_lock);
187 get_page(page);
188 list_add_tail(&new->list, &fi->inmem_pages);
189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 mutex_unlock(&fi->inmem_lock);
191
192 trace_f2fs_register_inmem_page(page, INMEM);
193 }
194
195 static int __revoke_inmem_pages(struct inode *inode,
196 struct list_head *head, bool drop, bool recover)
197 {
198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 struct inmem_pages *cur, *tmp;
200 int err = 0;
201
202 list_for_each_entry_safe(cur, tmp, head, list) {
203 struct page *page = cur->page;
204
205 if (drop)
206 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207
208 lock_page(page);
209
210 if (recover) {
211 struct dnode_of_data dn;
212 struct node_info ni;
213
214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215
216 set_new_dnode(&dn, inode, NULL, NULL, 0);
217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 err = -EAGAIN;
219 goto next;
220 }
221 get_node_info(sbi, dn.nid, &ni);
222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 cur->old_addr, ni.version, true, true);
224 f2fs_put_dnode(&dn);
225 }
226 next:
227 /* we don't need to invalidate this in the sccessful status */
228 if (drop || recover)
229 ClearPageUptodate(page);
230 set_page_private(page, 0);
231 ClearPagePrivate(page);
232 f2fs_put_page(page, 1);
233
234 list_del(&cur->list);
235 kmem_cache_free(inmem_entry_slab, cur);
236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 }
238 return err;
239 }
240
241 void drop_inmem_pages(struct inode *inode)
242 {
243 struct f2fs_inode_info *fi = F2FS_I(inode);
244
245 mutex_lock(&fi->inmem_lock);
246 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
247 mutex_unlock(&fi->inmem_lock);
248
249 clear_inode_flag(inode, FI_ATOMIC_FILE);
250 stat_dec_atomic_write(inode);
251 }
252
253 static int __commit_inmem_pages(struct inode *inode,
254 struct list_head *revoke_list)
255 {
256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 struct f2fs_inode_info *fi = F2FS_I(inode);
258 struct inmem_pages *cur, *tmp;
259 struct f2fs_io_info fio = {
260 .sbi = sbi,
261 .type = DATA,
262 .op = REQ_OP_WRITE,
263 .op_flags = REQ_SYNC | REQ_PRIO,
264 .encrypted_page = NULL,
265 };
266 pgoff_t last_idx = ULONG_MAX;
267 int err = 0;
268
269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
270 struct page *page = cur->page;
271
272 lock_page(page);
273 if (page->mapping == inode->i_mapping) {
274 trace_f2fs_commit_inmem_page(page, INMEM);
275
276 set_page_dirty(page);
277 f2fs_wait_on_page_writeback(page, DATA, true);
278 if (clear_page_dirty_for_io(page)) {
279 inode_dec_dirty_pages(inode);
280 remove_dirty_inode(inode);
281 }
282
283 fio.page = page;
284 err = do_write_data_page(&fio);
285 if (err) {
286 unlock_page(page);
287 break;
288 }
289
290 /* record old blkaddr for revoking */
291 cur->old_addr = fio.old_blkaddr;
292 last_idx = page->index;
293 }
294 unlock_page(page);
295 list_move_tail(&cur->list, revoke_list);
296 }
297
298 if (last_idx != ULONG_MAX)
299 f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
300 DATA, WRITE);
301
302 if (!err)
303 __revoke_inmem_pages(inode, revoke_list, false, false);
304
305 return err;
306 }
307
308 int commit_inmem_pages(struct inode *inode)
309 {
310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 struct list_head revoke_list;
313 int err;
314
315 INIT_LIST_HEAD(&revoke_list);
316 f2fs_balance_fs(sbi, true);
317 f2fs_lock_op(sbi);
318
319 set_inode_flag(inode, FI_ATOMIC_COMMIT);
320
321 mutex_lock(&fi->inmem_lock);
322 err = __commit_inmem_pages(inode, &revoke_list);
323 if (err) {
324 int ret;
325 /*
326 * try to revoke all committed pages, but still we could fail
327 * due to no memory or other reason, if that happened, EAGAIN
328 * will be returned, which means in such case, transaction is
329 * already not integrity, caller should use journal to do the
330 * recovery or rewrite & commit last transaction. For other
331 * error number, revoking was done by filesystem itself.
332 */
333 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
334 if (ret)
335 err = ret;
336
337 /* drop all uncommitted pages */
338 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
339 }
340 mutex_unlock(&fi->inmem_lock);
341
342 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
343
344 f2fs_unlock_op(sbi);
345 return err;
346 }
347
348 /*
349 * This function balances dirty node and dentry pages.
350 * In addition, it controls garbage collection.
351 */
352 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
353 {
354 #ifdef CONFIG_F2FS_FAULT_INJECTION
355 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
356 f2fs_show_injection_info(FAULT_CHECKPOINT);
357 f2fs_stop_checkpoint(sbi, false);
358 }
359 #endif
360
361 if (!need)
362 return;
363
364 /* balance_fs_bg is able to be pending */
365 if (excess_cached_nats(sbi))
366 f2fs_balance_fs_bg(sbi);
367
368 /*
369 * We should do GC or end up with checkpoint, if there are so many dirty
370 * dir/node pages without enough free segments.
371 */
372 if (has_not_enough_free_secs(sbi, 0, 0)) {
373 mutex_lock(&sbi->gc_mutex);
374 f2fs_gc(sbi, false, false);
375 }
376 }
377
378 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
379 {
380 /* try to shrink extent cache when there is no enough memory */
381 if (!available_free_memory(sbi, EXTENT_CACHE))
382 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
383
384 /* check the # of cached NAT entries */
385 if (!available_free_memory(sbi, NAT_ENTRIES))
386 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
387
388 if (!available_free_memory(sbi, FREE_NIDS))
389 try_to_free_nids(sbi, MAX_FREE_NIDS);
390 else
391 build_free_nids(sbi, false, false);
392
393 if (!is_idle(sbi))
394 return;
395
396 /* checkpoint is the only way to shrink partial cached entries */
397 if (!available_free_memory(sbi, NAT_ENTRIES) ||
398 !available_free_memory(sbi, INO_ENTRIES) ||
399 excess_prefree_segs(sbi) ||
400 excess_dirty_nats(sbi) ||
401 f2fs_time_over(sbi, CP_TIME)) {
402 if (test_opt(sbi, DATA_FLUSH)) {
403 struct blk_plug plug;
404
405 blk_start_plug(&plug);
406 sync_dirty_inodes(sbi, FILE_INODE);
407 blk_finish_plug(&plug);
408 }
409 f2fs_sync_fs(sbi->sb, true);
410 stat_inc_bg_cp_count(sbi->stat_info);
411 }
412 }
413
414 static int __submit_flush_wait(struct block_device *bdev)
415 {
416 struct bio *bio = f2fs_bio_alloc(0);
417 int ret;
418
419 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
420 bio->bi_bdev = bdev;
421 ret = submit_bio_wait(bio);
422 bio_put(bio);
423 return ret;
424 }
425
426 static int submit_flush_wait(struct f2fs_sb_info *sbi)
427 {
428 int ret = __submit_flush_wait(sbi->sb->s_bdev);
429 int i;
430
431 if (sbi->s_ndevs && !ret) {
432 for (i = 1; i < sbi->s_ndevs; i++) {
433 trace_f2fs_issue_flush(FDEV(i).bdev,
434 test_opt(sbi, NOBARRIER),
435 test_opt(sbi, FLUSH_MERGE));
436 ret = __submit_flush_wait(FDEV(i).bdev);
437 if (ret)
438 break;
439 }
440 }
441 return ret;
442 }
443
444 static int issue_flush_thread(void *data)
445 {
446 struct f2fs_sb_info *sbi = data;
447 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
448 wait_queue_head_t *q = &fcc->flush_wait_queue;
449 repeat:
450 if (kthread_should_stop())
451 return 0;
452
453 if (!llist_empty(&fcc->issue_list)) {
454 struct flush_cmd *cmd, *next;
455 int ret;
456
457 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
458 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
459
460 ret = submit_flush_wait(sbi);
461 llist_for_each_entry_safe(cmd, next,
462 fcc->dispatch_list, llnode) {
463 cmd->ret = ret;
464 complete(&cmd->wait);
465 }
466 fcc->dispatch_list = NULL;
467 }
468
469 wait_event_interruptible(*q,
470 kthread_should_stop() || !llist_empty(&fcc->issue_list));
471 goto repeat;
472 }
473
474 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
475 {
476 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
477 struct flush_cmd cmd;
478
479 if (test_opt(sbi, NOBARRIER))
480 return 0;
481
482 if (!test_opt(sbi, FLUSH_MERGE))
483 return submit_flush_wait(sbi);
484
485 if (!atomic_read(&fcc->submit_flush)) {
486 int ret;
487
488 atomic_inc(&fcc->submit_flush);
489 ret = submit_flush_wait(sbi);
490 atomic_dec(&fcc->submit_flush);
491 return ret;
492 }
493
494 init_completion(&cmd.wait);
495
496 atomic_inc(&fcc->submit_flush);
497 llist_add(&cmd.llnode, &fcc->issue_list);
498
499 if (!fcc->dispatch_list)
500 wake_up(&fcc->flush_wait_queue);
501
502 if (fcc->f2fs_issue_flush) {
503 wait_for_completion(&cmd.wait);
504 atomic_dec(&fcc->submit_flush);
505 } else {
506 llist_del_all(&fcc->issue_list);
507 atomic_set(&fcc->submit_flush, 0);
508 }
509
510 return cmd.ret;
511 }
512
513 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
514 {
515 dev_t dev = sbi->sb->s_bdev->bd_dev;
516 struct flush_cmd_control *fcc;
517 int err = 0;
518
519 if (SM_I(sbi)->fcc_info) {
520 fcc = SM_I(sbi)->fcc_info;
521 goto init_thread;
522 }
523
524 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
525 if (!fcc)
526 return -ENOMEM;
527 atomic_set(&fcc->submit_flush, 0);
528 init_waitqueue_head(&fcc->flush_wait_queue);
529 init_llist_head(&fcc->issue_list);
530 SM_I(sbi)->fcc_info = fcc;
531 init_thread:
532 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
533 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
534 if (IS_ERR(fcc->f2fs_issue_flush)) {
535 err = PTR_ERR(fcc->f2fs_issue_flush);
536 kfree(fcc);
537 SM_I(sbi)->fcc_info = NULL;
538 return err;
539 }
540
541 return err;
542 }
543
544 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
545 {
546 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
547
548 if (fcc && fcc->f2fs_issue_flush) {
549 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
550
551 fcc->f2fs_issue_flush = NULL;
552 kthread_stop(flush_thread);
553 }
554 if (free) {
555 kfree(fcc);
556 SM_I(sbi)->fcc_info = NULL;
557 }
558 }
559
560 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
561 enum dirty_type dirty_type)
562 {
563 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
564
565 /* need not be added */
566 if (IS_CURSEG(sbi, segno))
567 return;
568
569 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
570 dirty_i->nr_dirty[dirty_type]++;
571
572 if (dirty_type == DIRTY) {
573 struct seg_entry *sentry = get_seg_entry(sbi, segno);
574 enum dirty_type t = sentry->type;
575
576 if (unlikely(t >= DIRTY)) {
577 f2fs_bug_on(sbi, 1);
578 return;
579 }
580 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
581 dirty_i->nr_dirty[t]++;
582 }
583 }
584
585 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
586 enum dirty_type dirty_type)
587 {
588 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
589
590 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
591 dirty_i->nr_dirty[dirty_type]--;
592
593 if (dirty_type == DIRTY) {
594 struct seg_entry *sentry = get_seg_entry(sbi, segno);
595 enum dirty_type t = sentry->type;
596
597 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
598 dirty_i->nr_dirty[t]--;
599
600 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
601 clear_bit(GET_SECNO(sbi, segno),
602 dirty_i->victim_secmap);
603 }
604 }
605
606 /*
607 * Should not occur error such as -ENOMEM.
608 * Adding dirty entry into seglist is not critical operation.
609 * If a given segment is one of current working segments, it won't be added.
610 */
611 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
612 {
613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
614 unsigned short valid_blocks;
615
616 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
617 return;
618
619 mutex_lock(&dirty_i->seglist_lock);
620
621 valid_blocks = get_valid_blocks(sbi, segno, 0);
622
623 if (valid_blocks == 0) {
624 __locate_dirty_segment(sbi, segno, PRE);
625 __remove_dirty_segment(sbi, segno, DIRTY);
626 } else if (valid_blocks < sbi->blocks_per_seg) {
627 __locate_dirty_segment(sbi, segno, DIRTY);
628 } else {
629 /* Recovery routine with SSR needs this */
630 __remove_dirty_segment(sbi, segno, DIRTY);
631 }
632
633 mutex_unlock(&dirty_i->seglist_lock);
634 }
635
636 static void __add_discard_cmd(struct f2fs_sb_info *sbi,
637 struct bio *bio, block_t lstart, block_t len)
638 {
639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
640 struct list_head *cmd_list = &(dcc->discard_cmd_list);
641 struct discard_cmd *dc;
642
643 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
644 INIT_LIST_HEAD(&dc->list);
645 dc->bio = bio;
646 bio->bi_private = dc;
647 dc->lstart = lstart;
648 dc->len = len;
649 dc->state = D_PREP;
650 init_completion(&dc->wait);
651
652 mutex_lock(&dcc->cmd_lock);
653 list_add_tail(&dc->list, cmd_list);
654 mutex_unlock(&dcc->cmd_lock);
655 }
656
657 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc)
658 {
659 int err = dc->bio->bi_error;
660
661 if (dc->state == D_DONE)
662 atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard));
663
664 if (err == -EOPNOTSUPP)
665 err = 0;
666
667 if (err)
668 f2fs_msg(sbi->sb, KERN_INFO,
669 "Issue discard failed, ret: %d", err);
670 bio_put(dc->bio);
671 list_del(&dc->list);
672 kmem_cache_free(discard_cmd_slab, dc);
673 }
674
675 /* This should be covered by global mutex, &sit_i->sentry_lock */
676 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
677 {
678 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
679 struct list_head *wait_list = &(dcc->discard_cmd_list);
680 struct discard_cmd *dc, *tmp;
681 struct blk_plug plug;
682
683 mutex_lock(&dcc->cmd_lock);
684
685 blk_start_plug(&plug);
686
687 list_for_each_entry_safe(dc, tmp, wait_list, list) {
688
689 if (blkaddr == NULL_ADDR) {
690 if (dc->state == D_PREP) {
691 dc->state = D_SUBMIT;
692 submit_bio(dc->bio);
693 atomic_inc(&dcc->submit_discard);
694 }
695 continue;
696 }
697
698 if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) {
699 if (dc->state == D_SUBMIT)
700 wait_for_completion_io(&dc->wait);
701 else
702 __remove_discard_cmd(sbi, dc);
703 }
704 }
705 blk_finish_plug(&plug);
706
707 /* this comes from f2fs_put_super */
708 if (blkaddr == NULL_ADDR) {
709 list_for_each_entry_safe(dc, tmp, wait_list, list) {
710 wait_for_completion_io(&dc->wait);
711 __remove_discard_cmd(sbi, dc);
712 }
713 }
714 mutex_unlock(&dcc->cmd_lock);
715 }
716
717 static void f2fs_submit_discard_endio(struct bio *bio)
718 {
719 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
720
721 complete(&dc->wait);
722 dc->state = D_DONE;
723 }
724
725 static int issue_discard_thread(void *data)
726 {
727 struct f2fs_sb_info *sbi = data;
728 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
729 wait_queue_head_t *q = &dcc->discard_wait_queue;
730 struct list_head *cmd_list = &dcc->discard_cmd_list;
731 struct discard_cmd *dc, *tmp;
732 struct blk_plug plug;
733 int iter = 0;
734 repeat:
735 if (kthread_should_stop())
736 return 0;
737
738 blk_start_plug(&plug);
739
740 mutex_lock(&dcc->cmd_lock);
741 list_for_each_entry_safe(dc, tmp, cmd_list, list) {
742 if (dc->state == D_PREP) {
743 dc->state = D_SUBMIT;
744 submit_bio(dc->bio);
745 atomic_inc(&dcc->submit_discard);
746 if (iter++ > DISCARD_ISSUE_RATE)
747 break;
748 } else if (dc->state == D_DONE) {
749 __remove_discard_cmd(sbi, dc);
750 }
751 }
752 mutex_unlock(&dcc->cmd_lock);
753
754 blk_finish_plug(&plug);
755
756 iter = 0;
757 congestion_wait(BLK_RW_SYNC, HZ/50);
758
759 wait_event_interruptible(*q,
760 kthread_should_stop() || !list_empty(&dcc->discard_cmd_list));
761 goto repeat;
762 }
763
764
765 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
766 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi,
767 struct block_device *bdev, block_t blkstart, block_t blklen)
768 {
769 struct bio *bio = NULL;
770 block_t lblkstart = blkstart;
771 int err;
772
773 trace_f2fs_issue_discard(bdev, blkstart, blklen);
774
775 if (sbi->s_ndevs) {
776 int devi = f2fs_target_device_index(sbi, blkstart);
777
778 blkstart -= FDEV(devi).start_blk;
779 }
780 err = __blkdev_issue_discard(bdev,
781 SECTOR_FROM_BLOCK(blkstart),
782 SECTOR_FROM_BLOCK(blklen),
783 GFP_NOFS, 0, &bio);
784 if (!err && bio) {
785 bio->bi_end_io = f2fs_submit_discard_endio;
786 bio->bi_opf |= REQ_SYNC;
787
788 __add_discard_cmd(sbi, bio, lblkstart, blklen);
789 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
790 }
791 return err;
792 }
793
794 #ifdef CONFIG_BLK_DEV_ZONED
795 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
796 struct block_device *bdev, block_t blkstart, block_t blklen)
797 {
798 sector_t sector, nr_sects;
799 int devi = 0;
800
801 if (sbi->s_ndevs) {
802 devi = f2fs_target_device_index(sbi, blkstart);
803 blkstart -= FDEV(devi).start_blk;
804 }
805
806 /*
807 * We need to know the type of the zone: for conventional zones,
808 * use regular discard if the drive supports it. For sequential
809 * zones, reset the zone write pointer.
810 */
811 switch (get_blkz_type(sbi, bdev, blkstart)) {
812
813 case BLK_ZONE_TYPE_CONVENTIONAL:
814 if (!blk_queue_discard(bdev_get_queue(bdev)))
815 return 0;
816 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
817 case BLK_ZONE_TYPE_SEQWRITE_REQ:
818 case BLK_ZONE_TYPE_SEQWRITE_PREF:
819 sector = SECTOR_FROM_BLOCK(blkstart);
820 nr_sects = SECTOR_FROM_BLOCK(blklen);
821
822 if (sector & (bdev_zone_sectors(bdev) - 1) ||
823 nr_sects != bdev_zone_sectors(bdev)) {
824 f2fs_msg(sbi->sb, KERN_INFO,
825 "(%d) %s: Unaligned discard attempted (block %x + %x)",
826 devi, sbi->s_ndevs ? FDEV(devi).path: "",
827 blkstart, blklen);
828 return -EIO;
829 }
830 trace_f2fs_issue_reset_zone(bdev, blkstart);
831 return blkdev_reset_zones(bdev, sector,
832 nr_sects, GFP_NOFS);
833 default:
834 /* Unknown zone type: broken device ? */
835 return -EIO;
836 }
837 }
838 #endif
839
840 static int __issue_discard_async(struct f2fs_sb_info *sbi,
841 struct block_device *bdev, block_t blkstart, block_t blklen)
842 {
843 #ifdef CONFIG_BLK_DEV_ZONED
844 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
845 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
846 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
847 #endif
848 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen);
849 }
850
851 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
852 block_t blkstart, block_t blklen)
853 {
854 sector_t start = blkstart, len = 0;
855 struct block_device *bdev;
856 struct seg_entry *se;
857 unsigned int offset;
858 block_t i;
859 int err = 0;
860
861 bdev = f2fs_target_device(sbi, blkstart, NULL);
862
863 for (i = blkstart; i < blkstart + blklen; i++, len++) {
864 if (i != start) {
865 struct block_device *bdev2 =
866 f2fs_target_device(sbi, i, NULL);
867
868 if (bdev2 != bdev) {
869 err = __issue_discard_async(sbi, bdev,
870 start, len);
871 if (err)
872 return err;
873 bdev = bdev2;
874 start = i;
875 len = 0;
876 }
877 }
878
879 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
880 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
881
882 if (!f2fs_test_and_set_bit(offset, se->discard_map))
883 sbi->discard_blks--;
884 }
885
886 if (len)
887 err = __issue_discard_async(sbi, bdev, start, len);
888 return err;
889 }
890
891 static void __add_discard_entry(struct f2fs_sb_info *sbi,
892 struct cp_control *cpc, struct seg_entry *se,
893 unsigned int start, unsigned int end)
894 {
895 struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list;
896 struct discard_entry *new, *last;
897
898 if (!list_empty(head)) {
899 last = list_last_entry(head, struct discard_entry, list);
900 if (START_BLOCK(sbi, cpc->trim_start) + start ==
901 last->blkaddr + last->len &&
902 last->len < MAX_DISCARD_BLOCKS(sbi)) {
903 last->len += end - start;
904 goto done;
905 }
906 }
907
908 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
909 INIT_LIST_HEAD(&new->list);
910 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
911 new->len = end - start;
912 list_add_tail(&new->list, head);
913 done:
914 SM_I(sbi)->dcc_info->nr_discards += end - start;
915 }
916
917 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
918 bool check_only)
919 {
920 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
921 int max_blocks = sbi->blocks_per_seg;
922 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
923 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
924 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
925 unsigned long *discard_map = (unsigned long *)se->discard_map;
926 unsigned long *dmap = SIT_I(sbi)->tmp_map;
927 unsigned int start = 0, end = -1;
928 bool force = (cpc->reason == CP_DISCARD);
929 int i;
930
931 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
932 return false;
933
934 if (!force) {
935 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
936 SM_I(sbi)->dcc_info->nr_discards >=
937 SM_I(sbi)->dcc_info->max_discards)
938 return false;
939 }
940
941 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
942 for (i = 0; i < entries; i++)
943 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
944 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
945
946 while (force || SM_I(sbi)->dcc_info->nr_discards <=
947 SM_I(sbi)->dcc_info->max_discards) {
948 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
949 if (start >= max_blocks)
950 break;
951
952 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
953 if (force && start && end != max_blocks
954 && (end - start) < cpc->trim_minlen)
955 continue;
956
957 if (check_only)
958 return true;
959
960 __add_discard_entry(sbi, cpc, se, start, end);
961 }
962 return false;
963 }
964
965 void release_discard_addrs(struct f2fs_sb_info *sbi)
966 {
967 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
968 struct discard_entry *entry, *this;
969
970 /* drop caches */
971 list_for_each_entry_safe(entry, this, head, list) {
972 list_del(&entry->list);
973 kmem_cache_free(discard_entry_slab, entry);
974 }
975 }
976
977 /*
978 * Should call clear_prefree_segments after checkpoint is done.
979 */
980 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
981 {
982 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
983 unsigned int segno;
984
985 mutex_lock(&dirty_i->seglist_lock);
986 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
987 __set_test_and_free(sbi, segno);
988 mutex_unlock(&dirty_i->seglist_lock);
989 }
990
991 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
992 {
993 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list);
994 struct discard_entry *entry, *this;
995 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
996 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
997 unsigned int start = 0, end = -1;
998 unsigned int secno, start_segno;
999 bool force = (cpc->reason == CP_DISCARD);
1000
1001 mutex_lock(&dirty_i->seglist_lock);
1002
1003 while (1) {
1004 int i;
1005 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1006 if (start >= MAIN_SEGS(sbi))
1007 break;
1008 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1009 start + 1);
1010
1011 for (i = start; i < end; i++)
1012 clear_bit(i, prefree_map);
1013
1014 dirty_i->nr_dirty[PRE] -= end - start;
1015
1016 if (!test_opt(sbi, DISCARD))
1017 continue;
1018
1019 if (force && start >= cpc->trim_start &&
1020 (end - 1) <= cpc->trim_end)
1021 continue;
1022
1023 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1024 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1025 (end - start) << sbi->log_blocks_per_seg);
1026 continue;
1027 }
1028 next:
1029 secno = GET_SECNO(sbi, start);
1030 start_segno = secno * sbi->segs_per_sec;
1031 if (!IS_CURSEC(sbi, secno) &&
1032 !get_valid_blocks(sbi, start, sbi->segs_per_sec))
1033 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1034 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1035
1036 start = start_segno + sbi->segs_per_sec;
1037 if (start < end)
1038 goto next;
1039 else
1040 end = start - 1;
1041 }
1042 mutex_unlock(&dirty_i->seglist_lock);
1043
1044 /* send small discards */
1045 list_for_each_entry_safe(entry, this, head, list) {
1046 if (force && entry->len < cpc->trim_minlen)
1047 goto skip;
1048 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
1049 cpc->trimmed += entry->len;
1050 skip:
1051 list_del(&entry->list);
1052 SM_I(sbi)->dcc_info->nr_discards -= entry->len;
1053 kmem_cache_free(discard_entry_slab, entry);
1054 }
1055 }
1056
1057 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1058 {
1059 dev_t dev = sbi->sb->s_bdev->bd_dev;
1060 struct discard_cmd_control *dcc;
1061 int err = 0;
1062
1063 if (SM_I(sbi)->dcc_info) {
1064 dcc = SM_I(sbi)->dcc_info;
1065 goto init_thread;
1066 }
1067
1068 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1069 if (!dcc)
1070 return -ENOMEM;
1071
1072 INIT_LIST_HEAD(&dcc->discard_entry_list);
1073 INIT_LIST_HEAD(&dcc->discard_cmd_list);
1074 mutex_init(&dcc->cmd_lock);
1075 atomic_set(&dcc->submit_discard, 0);
1076 dcc->nr_discards = 0;
1077 dcc->max_discards = 0;
1078
1079 init_waitqueue_head(&dcc->discard_wait_queue);
1080 SM_I(sbi)->dcc_info = dcc;
1081 init_thread:
1082 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1083 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1084 if (IS_ERR(dcc->f2fs_issue_discard)) {
1085 err = PTR_ERR(dcc->f2fs_issue_discard);
1086 kfree(dcc);
1087 SM_I(sbi)->dcc_info = NULL;
1088 return err;
1089 }
1090
1091 return err;
1092 }
1093
1094 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free)
1095 {
1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1097
1098 if (dcc && dcc->f2fs_issue_discard) {
1099 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1100
1101 dcc->f2fs_issue_discard = NULL;
1102 kthread_stop(discard_thread);
1103 }
1104 if (free) {
1105 kfree(dcc);
1106 SM_I(sbi)->dcc_info = NULL;
1107 }
1108 }
1109
1110 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1111 {
1112 struct sit_info *sit_i = SIT_I(sbi);
1113
1114 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1115 sit_i->dirty_sentries++;
1116 return false;
1117 }
1118
1119 return true;
1120 }
1121
1122 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1123 unsigned int segno, int modified)
1124 {
1125 struct seg_entry *se = get_seg_entry(sbi, segno);
1126 se->type = type;
1127 if (modified)
1128 __mark_sit_entry_dirty(sbi, segno);
1129 }
1130
1131 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1132 {
1133 struct seg_entry *se;
1134 unsigned int segno, offset;
1135 long int new_vblocks;
1136
1137 segno = GET_SEGNO(sbi, blkaddr);
1138
1139 se = get_seg_entry(sbi, segno);
1140 new_vblocks = se->valid_blocks + del;
1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1142
1143 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1144 (new_vblocks > sbi->blocks_per_seg)));
1145
1146 se->valid_blocks = new_vblocks;
1147 se->mtime = get_mtime(sbi);
1148 SIT_I(sbi)->max_mtime = se->mtime;
1149
1150 /* Update valid block bitmap */
1151 if (del > 0) {
1152 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
1153 #ifdef CONFIG_F2FS_CHECK_FS
1154 if (f2fs_test_and_set_bit(offset,
1155 se->cur_valid_map_mir))
1156 f2fs_bug_on(sbi, 1);
1157 else
1158 WARN_ON(1);
1159 #else
1160 f2fs_bug_on(sbi, 1);
1161 #endif
1162 }
1163 if (f2fs_discard_en(sbi) &&
1164 !f2fs_test_and_set_bit(offset, se->discard_map))
1165 sbi->discard_blks--;
1166
1167 /* don't overwrite by SSR to keep node chain */
1168 if (se->type == CURSEG_WARM_NODE) {
1169 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1170 se->ckpt_valid_blocks++;
1171 }
1172 } else {
1173 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
1174 #ifdef CONFIG_F2FS_CHECK_FS
1175 if (!f2fs_test_and_clear_bit(offset,
1176 se->cur_valid_map_mir))
1177 f2fs_bug_on(sbi, 1);
1178 else
1179 WARN_ON(1);
1180 #else
1181 f2fs_bug_on(sbi, 1);
1182 #endif
1183 }
1184 if (f2fs_discard_en(sbi) &&
1185 f2fs_test_and_clear_bit(offset, se->discard_map))
1186 sbi->discard_blks++;
1187 }
1188 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1189 se->ckpt_valid_blocks += del;
1190
1191 __mark_sit_entry_dirty(sbi, segno);
1192
1193 /* update total number of valid blocks to be written in ckpt area */
1194 SIT_I(sbi)->written_valid_blocks += del;
1195
1196 if (sbi->segs_per_sec > 1)
1197 get_sec_entry(sbi, segno)->valid_blocks += del;
1198 }
1199
1200 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1201 {
1202 update_sit_entry(sbi, new, 1);
1203 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1204 update_sit_entry(sbi, old, -1);
1205
1206 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1207 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1208 }
1209
1210 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1211 {
1212 unsigned int segno = GET_SEGNO(sbi, addr);
1213 struct sit_info *sit_i = SIT_I(sbi);
1214
1215 f2fs_bug_on(sbi, addr == NULL_ADDR);
1216 if (addr == NEW_ADDR)
1217 return;
1218
1219 /* add it into sit main buffer */
1220 mutex_lock(&sit_i->sentry_lock);
1221
1222 update_sit_entry(sbi, addr, -1);
1223
1224 /* add it into dirty seglist */
1225 locate_dirty_segment(sbi, segno);
1226
1227 mutex_unlock(&sit_i->sentry_lock);
1228 }
1229
1230 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1231 {
1232 struct sit_info *sit_i = SIT_I(sbi);
1233 unsigned int segno, offset;
1234 struct seg_entry *se;
1235 bool is_cp = false;
1236
1237 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1238 return true;
1239
1240 mutex_lock(&sit_i->sentry_lock);
1241
1242 segno = GET_SEGNO(sbi, blkaddr);
1243 se = get_seg_entry(sbi, segno);
1244 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1245
1246 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1247 is_cp = true;
1248
1249 mutex_unlock(&sit_i->sentry_lock);
1250
1251 return is_cp;
1252 }
1253
1254 /*
1255 * This function should be resided under the curseg_mutex lock
1256 */
1257 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1258 struct f2fs_summary *sum)
1259 {
1260 struct curseg_info *curseg = CURSEG_I(sbi, type);
1261 void *addr = curseg->sum_blk;
1262 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1263 memcpy(addr, sum, sizeof(struct f2fs_summary));
1264 }
1265
1266 /*
1267 * Calculate the number of current summary pages for writing
1268 */
1269 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1270 {
1271 int valid_sum_count = 0;
1272 int i, sum_in_page;
1273
1274 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1275 if (sbi->ckpt->alloc_type[i] == SSR)
1276 valid_sum_count += sbi->blocks_per_seg;
1277 else {
1278 if (for_ra)
1279 valid_sum_count += le16_to_cpu(
1280 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1281 else
1282 valid_sum_count += curseg_blkoff(sbi, i);
1283 }
1284 }
1285
1286 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1287 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1288 if (valid_sum_count <= sum_in_page)
1289 return 1;
1290 else if ((valid_sum_count - sum_in_page) <=
1291 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1292 return 2;
1293 return 3;
1294 }
1295
1296 /*
1297 * Caller should put this summary page
1298 */
1299 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1300 {
1301 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1302 }
1303
1304 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1305 {
1306 struct page *page = grab_meta_page(sbi, blk_addr);
1307 void *dst = page_address(page);
1308
1309 if (src)
1310 memcpy(dst, src, PAGE_SIZE);
1311 else
1312 memset(dst, 0, PAGE_SIZE);
1313 set_page_dirty(page);
1314 f2fs_put_page(page, 1);
1315 }
1316
1317 static void write_sum_page(struct f2fs_sb_info *sbi,
1318 struct f2fs_summary_block *sum_blk, block_t blk_addr)
1319 {
1320 update_meta_page(sbi, (void *)sum_blk, blk_addr);
1321 }
1322
1323 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1324 int type, block_t blk_addr)
1325 {
1326 struct curseg_info *curseg = CURSEG_I(sbi, type);
1327 struct page *page = grab_meta_page(sbi, blk_addr);
1328 struct f2fs_summary_block *src = curseg->sum_blk;
1329 struct f2fs_summary_block *dst;
1330
1331 dst = (struct f2fs_summary_block *)page_address(page);
1332
1333 mutex_lock(&curseg->curseg_mutex);
1334
1335 down_read(&curseg->journal_rwsem);
1336 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1337 up_read(&curseg->journal_rwsem);
1338
1339 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1340 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1341
1342 mutex_unlock(&curseg->curseg_mutex);
1343
1344 set_page_dirty(page);
1345 f2fs_put_page(page, 1);
1346 }
1347
1348 /*
1349 * Find a new segment from the free segments bitmap to right order
1350 * This function should be returned with success, otherwise BUG
1351 */
1352 static void get_new_segment(struct f2fs_sb_info *sbi,
1353 unsigned int *newseg, bool new_sec, int dir)
1354 {
1355 struct free_segmap_info *free_i = FREE_I(sbi);
1356 unsigned int segno, secno, zoneno;
1357 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1358 unsigned int hint = *newseg / sbi->segs_per_sec;
1359 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1360 unsigned int left_start = hint;
1361 bool init = true;
1362 int go_left = 0;
1363 int i;
1364
1365 spin_lock(&free_i->segmap_lock);
1366
1367 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1368 segno = find_next_zero_bit(free_i->free_segmap,
1369 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1370 if (segno < (hint + 1) * sbi->segs_per_sec)
1371 goto got_it;
1372 }
1373 find_other_zone:
1374 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1375 if (secno >= MAIN_SECS(sbi)) {
1376 if (dir == ALLOC_RIGHT) {
1377 secno = find_next_zero_bit(free_i->free_secmap,
1378 MAIN_SECS(sbi), 0);
1379 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1380 } else {
1381 go_left = 1;
1382 left_start = hint - 1;
1383 }
1384 }
1385 if (go_left == 0)
1386 goto skip_left;
1387
1388 while (test_bit(left_start, free_i->free_secmap)) {
1389 if (left_start > 0) {
1390 left_start--;
1391 continue;
1392 }
1393 left_start = find_next_zero_bit(free_i->free_secmap,
1394 MAIN_SECS(sbi), 0);
1395 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1396 break;
1397 }
1398 secno = left_start;
1399 skip_left:
1400 hint = secno;
1401 segno = secno * sbi->segs_per_sec;
1402 zoneno = secno / sbi->secs_per_zone;
1403
1404 /* give up on finding another zone */
1405 if (!init)
1406 goto got_it;
1407 if (sbi->secs_per_zone == 1)
1408 goto got_it;
1409 if (zoneno == old_zoneno)
1410 goto got_it;
1411 if (dir == ALLOC_LEFT) {
1412 if (!go_left && zoneno + 1 >= total_zones)
1413 goto got_it;
1414 if (go_left && zoneno == 0)
1415 goto got_it;
1416 }
1417 for (i = 0; i < NR_CURSEG_TYPE; i++)
1418 if (CURSEG_I(sbi, i)->zone == zoneno)
1419 break;
1420
1421 if (i < NR_CURSEG_TYPE) {
1422 /* zone is in user, try another */
1423 if (go_left)
1424 hint = zoneno * sbi->secs_per_zone - 1;
1425 else if (zoneno + 1 >= total_zones)
1426 hint = 0;
1427 else
1428 hint = (zoneno + 1) * sbi->secs_per_zone;
1429 init = false;
1430 goto find_other_zone;
1431 }
1432 got_it:
1433 /* set it as dirty segment in free segmap */
1434 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1435 __set_inuse(sbi, segno);
1436 *newseg = segno;
1437 spin_unlock(&free_i->segmap_lock);
1438 }
1439
1440 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1441 {
1442 struct curseg_info *curseg = CURSEG_I(sbi, type);
1443 struct summary_footer *sum_footer;
1444
1445 curseg->segno = curseg->next_segno;
1446 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1447 curseg->next_blkoff = 0;
1448 curseg->next_segno = NULL_SEGNO;
1449
1450 sum_footer = &(curseg->sum_blk->footer);
1451 memset(sum_footer, 0, sizeof(struct summary_footer));
1452 if (IS_DATASEG(type))
1453 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1454 if (IS_NODESEG(type))
1455 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1456 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1457 }
1458
1459 /*
1460 * Allocate a current working segment.
1461 * This function always allocates a free segment in LFS manner.
1462 */
1463 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1464 {
1465 struct curseg_info *curseg = CURSEG_I(sbi, type);
1466 unsigned int segno = curseg->segno;
1467 int dir = ALLOC_LEFT;
1468
1469 write_sum_page(sbi, curseg->sum_blk,
1470 GET_SUM_BLOCK(sbi, segno));
1471 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1472 dir = ALLOC_RIGHT;
1473
1474 if (test_opt(sbi, NOHEAP))
1475 dir = ALLOC_RIGHT;
1476
1477 get_new_segment(sbi, &segno, new_sec, dir);
1478 curseg->next_segno = segno;
1479 reset_curseg(sbi, type, 1);
1480 curseg->alloc_type = LFS;
1481 }
1482
1483 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1484 struct curseg_info *seg, block_t start)
1485 {
1486 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1487 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1488 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1489 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1490 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1491 int i, pos;
1492
1493 for (i = 0; i < entries; i++)
1494 target_map[i] = ckpt_map[i] | cur_map[i];
1495
1496 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1497
1498 seg->next_blkoff = pos;
1499 }
1500
1501 /*
1502 * If a segment is written by LFS manner, next block offset is just obtained
1503 * by increasing the current block offset. However, if a segment is written by
1504 * SSR manner, next block offset obtained by calling __next_free_blkoff
1505 */
1506 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1507 struct curseg_info *seg)
1508 {
1509 if (seg->alloc_type == SSR)
1510 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1511 else
1512 seg->next_blkoff++;
1513 }
1514
1515 /*
1516 * This function always allocates a used segment(from dirty seglist) by SSR
1517 * manner, so it should recover the existing segment information of valid blocks
1518 */
1519 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1520 {
1521 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1522 struct curseg_info *curseg = CURSEG_I(sbi, type);
1523 unsigned int new_segno = curseg->next_segno;
1524 struct f2fs_summary_block *sum_node;
1525 struct page *sum_page;
1526
1527 write_sum_page(sbi, curseg->sum_blk,
1528 GET_SUM_BLOCK(sbi, curseg->segno));
1529 __set_test_and_inuse(sbi, new_segno);
1530
1531 mutex_lock(&dirty_i->seglist_lock);
1532 __remove_dirty_segment(sbi, new_segno, PRE);
1533 __remove_dirty_segment(sbi, new_segno, DIRTY);
1534 mutex_unlock(&dirty_i->seglist_lock);
1535
1536 reset_curseg(sbi, type, 1);
1537 curseg->alloc_type = SSR;
1538 __next_free_blkoff(sbi, curseg, 0);
1539
1540 if (reuse) {
1541 sum_page = get_sum_page(sbi, new_segno);
1542 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1543 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1544 f2fs_put_page(sum_page, 1);
1545 }
1546 }
1547
1548 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1549 {
1550 struct curseg_info *curseg = CURSEG_I(sbi, type);
1551 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1552 int i, cnt;
1553 bool reversed = false;
1554
1555 /* need_SSR() already forces to do this */
1556 if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR))
1557 return 1;
1558
1559 /* For node segments, let's do SSR more intensively */
1560 if (IS_NODESEG(type)) {
1561 if (type >= CURSEG_WARM_NODE) {
1562 reversed = true;
1563 i = CURSEG_COLD_NODE;
1564 } else {
1565 i = CURSEG_HOT_NODE;
1566 }
1567 cnt = NR_CURSEG_NODE_TYPE;
1568 } else {
1569 if (type >= CURSEG_WARM_DATA) {
1570 reversed = true;
1571 i = CURSEG_COLD_DATA;
1572 } else {
1573 i = CURSEG_HOT_DATA;
1574 }
1575 cnt = NR_CURSEG_DATA_TYPE;
1576 }
1577
1578 for (; cnt-- > 0; reversed ? i-- : i++) {
1579 if (i == type)
1580 continue;
1581 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1582 BG_GC, i, SSR))
1583 return 1;
1584 }
1585 return 0;
1586 }
1587
1588 /*
1589 * flush out current segment and replace it with new segment
1590 * This function should be returned with success, otherwise BUG
1591 */
1592 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1593 int type, bool force)
1594 {
1595 if (force)
1596 new_curseg(sbi, type, true);
1597 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
1598 type == CURSEG_WARM_NODE)
1599 new_curseg(sbi, type, false);
1600 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1601 change_curseg(sbi, type, true);
1602 else
1603 new_curseg(sbi, type, false);
1604
1605 stat_inc_seg_type(sbi, CURSEG_I(sbi, type));
1606 }
1607
1608 void allocate_new_segments(struct f2fs_sb_info *sbi)
1609 {
1610 struct curseg_info *curseg;
1611 unsigned int old_segno;
1612 int i;
1613
1614 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1615 curseg = CURSEG_I(sbi, i);
1616 old_segno = curseg->segno;
1617 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1618 locate_dirty_segment(sbi, old_segno);
1619 }
1620 }
1621
1622 static const struct segment_allocation default_salloc_ops = {
1623 .allocate_segment = allocate_segment_by_default,
1624 };
1625
1626 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1627 {
1628 __u64 trim_start = cpc->trim_start;
1629 bool has_candidate = false;
1630
1631 mutex_lock(&SIT_I(sbi)->sentry_lock);
1632 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
1633 if (add_discard_addrs(sbi, cpc, true)) {
1634 has_candidate = true;
1635 break;
1636 }
1637 }
1638 mutex_unlock(&SIT_I(sbi)->sentry_lock);
1639
1640 cpc->trim_start = trim_start;
1641 return has_candidate;
1642 }
1643
1644 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1645 {
1646 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1647 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1648 unsigned int start_segno, end_segno;
1649 struct cp_control cpc;
1650 int err = 0;
1651
1652 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1653 return -EINVAL;
1654
1655 cpc.trimmed = 0;
1656 if (end <= MAIN_BLKADDR(sbi))
1657 goto out;
1658
1659 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1660 f2fs_msg(sbi->sb, KERN_WARNING,
1661 "Found FS corruption, run fsck to fix.");
1662 goto out;
1663 }
1664
1665 /* start/end segment number in main_area */
1666 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1667 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1668 GET_SEGNO(sbi, end);
1669 cpc.reason = CP_DISCARD;
1670 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1671
1672 /* do checkpoint to issue discard commands safely */
1673 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1674 cpc.trim_start = start_segno;
1675
1676 if (sbi->discard_blks == 0)
1677 break;
1678 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1679 cpc.trim_end = end_segno;
1680 else
1681 cpc.trim_end = min_t(unsigned int,
1682 rounddown(start_segno +
1683 BATCHED_TRIM_SEGMENTS(sbi),
1684 sbi->segs_per_sec) - 1, end_segno);
1685
1686 mutex_lock(&sbi->gc_mutex);
1687 err = write_checkpoint(sbi, &cpc);
1688 mutex_unlock(&sbi->gc_mutex);
1689 if (err)
1690 break;
1691
1692 schedule();
1693 }
1694 out:
1695 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1696 return err;
1697 }
1698
1699 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1700 {
1701 struct curseg_info *curseg = CURSEG_I(sbi, type);
1702 if (curseg->next_blkoff < sbi->blocks_per_seg)
1703 return true;
1704 return false;
1705 }
1706
1707 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1708 {
1709 if (p_type == DATA)
1710 return CURSEG_HOT_DATA;
1711 else
1712 return CURSEG_HOT_NODE;
1713 }
1714
1715 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1716 {
1717 if (p_type == DATA) {
1718 struct inode *inode = page->mapping->host;
1719
1720 if (S_ISDIR(inode->i_mode))
1721 return CURSEG_HOT_DATA;
1722 else
1723 return CURSEG_COLD_DATA;
1724 } else {
1725 if (IS_DNODE(page) && is_cold_node(page))
1726 return CURSEG_WARM_NODE;
1727 else
1728 return CURSEG_COLD_NODE;
1729 }
1730 }
1731
1732 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1733 {
1734 if (p_type == DATA) {
1735 struct inode *inode = page->mapping->host;
1736
1737 if (S_ISDIR(inode->i_mode))
1738 return CURSEG_HOT_DATA;
1739 else if (is_cold_data(page) || file_is_cold(inode))
1740 return CURSEG_COLD_DATA;
1741 else
1742 return CURSEG_WARM_DATA;
1743 } else {
1744 if (IS_DNODE(page))
1745 return is_cold_node(page) ? CURSEG_WARM_NODE :
1746 CURSEG_HOT_NODE;
1747 else
1748 return CURSEG_COLD_NODE;
1749 }
1750 }
1751
1752 static int __get_segment_type(struct page *page, enum page_type p_type)
1753 {
1754 switch (F2FS_P_SB(page)->active_logs) {
1755 case 2:
1756 return __get_segment_type_2(page, p_type);
1757 case 4:
1758 return __get_segment_type_4(page, p_type);
1759 }
1760 /* NR_CURSEG_TYPE(6) logs by default */
1761 f2fs_bug_on(F2FS_P_SB(page),
1762 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1763 return __get_segment_type_6(page, p_type);
1764 }
1765
1766 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1767 block_t old_blkaddr, block_t *new_blkaddr,
1768 struct f2fs_summary *sum, int type)
1769 {
1770 struct sit_info *sit_i = SIT_I(sbi);
1771 struct curseg_info *curseg = CURSEG_I(sbi, type);
1772
1773 mutex_lock(&curseg->curseg_mutex);
1774 mutex_lock(&sit_i->sentry_lock);
1775
1776 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1777
1778 f2fs_wait_discard_bio(sbi, *new_blkaddr);
1779
1780 /*
1781 * __add_sum_entry should be resided under the curseg_mutex
1782 * because, this function updates a summary entry in the
1783 * current summary block.
1784 */
1785 __add_sum_entry(sbi, type, sum);
1786
1787 __refresh_next_blkoff(sbi, curseg);
1788
1789 stat_inc_block_count(sbi, curseg);
1790
1791 /*
1792 * SIT information should be updated before segment allocation,
1793 * since SSR needs latest valid block information.
1794 */
1795 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1796
1797 if (!__has_curseg_space(sbi, type))
1798 sit_i->s_ops->allocate_segment(sbi, type, false);
1799
1800 mutex_unlock(&sit_i->sentry_lock);
1801
1802 if (page && IS_NODESEG(type))
1803 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1804
1805 mutex_unlock(&curseg->curseg_mutex);
1806 }
1807
1808 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1809 {
1810 int type = __get_segment_type(fio->page, fio->type);
1811 int err;
1812
1813 if (fio->type == NODE || fio->type == DATA)
1814 mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1815 reallocate:
1816 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1817 &fio->new_blkaddr, sum, type);
1818
1819 /* writeout dirty page into bdev */
1820 err = f2fs_submit_page_mbio(fio);
1821 if (err == -EAGAIN) {
1822 fio->old_blkaddr = fio->new_blkaddr;
1823 goto reallocate;
1824 }
1825
1826 if (fio->type == NODE || fio->type == DATA)
1827 mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1828 }
1829
1830 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1831 {
1832 struct f2fs_io_info fio = {
1833 .sbi = sbi,
1834 .type = META,
1835 .op = REQ_OP_WRITE,
1836 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
1837 .old_blkaddr = page->index,
1838 .new_blkaddr = page->index,
1839 .page = page,
1840 .encrypted_page = NULL,
1841 };
1842
1843 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1844 fio.op_flags &= ~REQ_META;
1845
1846 set_page_writeback(page);
1847 f2fs_submit_page_mbio(&fio);
1848 }
1849
1850 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1851 {
1852 struct f2fs_summary sum;
1853
1854 set_summary(&sum, nid, 0, 0);
1855 do_write_page(&sum, fio);
1856 }
1857
1858 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1859 {
1860 struct f2fs_sb_info *sbi = fio->sbi;
1861 struct f2fs_summary sum;
1862 struct node_info ni;
1863
1864 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1865 get_node_info(sbi, dn->nid, &ni);
1866 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1867 do_write_page(&sum, fio);
1868 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1869 }
1870
1871 void rewrite_data_page(struct f2fs_io_info *fio)
1872 {
1873 fio->new_blkaddr = fio->old_blkaddr;
1874 stat_inc_inplace_blocks(fio->sbi);
1875 f2fs_submit_page_mbio(fio);
1876 }
1877
1878 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1879 block_t old_blkaddr, block_t new_blkaddr,
1880 bool recover_curseg, bool recover_newaddr)
1881 {
1882 struct sit_info *sit_i = SIT_I(sbi);
1883 struct curseg_info *curseg;
1884 unsigned int segno, old_cursegno;
1885 struct seg_entry *se;
1886 int type;
1887 unsigned short old_blkoff;
1888
1889 segno = GET_SEGNO(sbi, new_blkaddr);
1890 se = get_seg_entry(sbi, segno);
1891 type = se->type;
1892
1893 if (!recover_curseg) {
1894 /* for recovery flow */
1895 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1896 if (old_blkaddr == NULL_ADDR)
1897 type = CURSEG_COLD_DATA;
1898 else
1899 type = CURSEG_WARM_DATA;
1900 }
1901 } else {
1902 if (!IS_CURSEG(sbi, segno))
1903 type = CURSEG_WARM_DATA;
1904 }
1905
1906 curseg = CURSEG_I(sbi, type);
1907
1908 mutex_lock(&curseg->curseg_mutex);
1909 mutex_lock(&sit_i->sentry_lock);
1910
1911 old_cursegno = curseg->segno;
1912 old_blkoff = curseg->next_blkoff;
1913
1914 /* change the current segment */
1915 if (segno != curseg->segno) {
1916 curseg->next_segno = segno;
1917 change_curseg(sbi, type, true);
1918 }
1919
1920 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1921 __add_sum_entry(sbi, type, sum);
1922
1923 if (!recover_curseg || recover_newaddr)
1924 update_sit_entry(sbi, new_blkaddr, 1);
1925 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1926 update_sit_entry(sbi, old_blkaddr, -1);
1927
1928 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1929 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1930
1931 locate_dirty_segment(sbi, old_cursegno);
1932
1933 if (recover_curseg) {
1934 if (old_cursegno != curseg->segno) {
1935 curseg->next_segno = old_cursegno;
1936 change_curseg(sbi, type, true);
1937 }
1938 curseg->next_blkoff = old_blkoff;
1939 }
1940
1941 mutex_unlock(&sit_i->sentry_lock);
1942 mutex_unlock(&curseg->curseg_mutex);
1943 }
1944
1945 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1946 block_t old_addr, block_t new_addr,
1947 unsigned char version, bool recover_curseg,
1948 bool recover_newaddr)
1949 {
1950 struct f2fs_summary sum;
1951
1952 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1953
1954 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1955 recover_curseg, recover_newaddr);
1956
1957 f2fs_update_data_blkaddr(dn, new_addr);
1958 }
1959
1960 void f2fs_wait_on_page_writeback(struct page *page,
1961 enum page_type type, bool ordered)
1962 {
1963 if (PageWriteback(page)) {
1964 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1965
1966 f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
1967 0, page->index, type, WRITE);
1968 if (ordered)
1969 wait_on_page_writeback(page);
1970 else
1971 wait_for_stable_page(page);
1972 }
1973 }
1974
1975 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1976 block_t blkaddr)
1977 {
1978 struct page *cpage;
1979
1980 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1981 return;
1982
1983 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1984 if (cpage) {
1985 f2fs_wait_on_page_writeback(cpage, DATA, true);
1986 f2fs_put_page(cpage, 1);
1987 }
1988 }
1989
1990 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1991 {
1992 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1993 struct curseg_info *seg_i;
1994 unsigned char *kaddr;
1995 struct page *page;
1996 block_t start;
1997 int i, j, offset;
1998
1999 start = start_sum_block(sbi);
2000
2001 page = get_meta_page(sbi, start++);
2002 kaddr = (unsigned char *)page_address(page);
2003
2004 /* Step 1: restore nat cache */
2005 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2006 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2007
2008 /* Step 2: restore sit cache */
2009 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2010 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2011 offset = 2 * SUM_JOURNAL_SIZE;
2012
2013 /* Step 3: restore summary entries */
2014 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2015 unsigned short blk_off;
2016 unsigned int segno;
2017
2018 seg_i = CURSEG_I(sbi, i);
2019 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2020 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2021 seg_i->next_segno = segno;
2022 reset_curseg(sbi, i, 0);
2023 seg_i->alloc_type = ckpt->alloc_type[i];
2024 seg_i->next_blkoff = blk_off;
2025
2026 if (seg_i->alloc_type == SSR)
2027 blk_off = sbi->blocks_per_seg;
2028
2029 for (j = 0; j < blk_off; j++) {
2030 struct f2fs_summary *s;
2031 s = (struct f2fs_summary *)(kaddr + offset);
2032 seg_i->sum_blk->entries[j] = *s;
2033 offset += SUMMARY_SIZE;
2034 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2035 SUM_FOOTER_SIZE)
2036 continue;
2037
2038 f2fs_put_page(page, 1);
2039 page = NULL;
2040
2041 page = get_meta_page(sbi, start++);
2042 kaddr = (unsigned char *)page_address(page);
2043 offset = 0;
2044 }
2045 }
2046 f2fs_put_page(page, 1);
2047 return 0;
2048 }
2049
2050 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2051 {
2052 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2053 struct f2fs_summary_block *sum;
2054 struct curseg_info *curseg;
2055 struct page *new;
2056 unsigned short blk_off;
2057 unsigned int segno = 0;
2058 block_t blk_addr = 0;
2059
2060 /* get segment number and block addr */
2061 if (IS_DATASEG(type)) {
2062 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2063 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2064 CURSEG_HOT_DATA]);
2065 if (__exist_node_summaries(sbi))
2066 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2067 else
2068 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2069 } else {
2070 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2071 CURSEG_HOT_NODE]);
2072 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2073 CURSEG_HOT_NODE]);
2074 if (__exist_node_summaries(sbi))
2075 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2076 type - CURSEG_HOT_NODE);
2077 else
2078 blk_addr = GET_SUM_BLOCK(sbi, segno);
2079 }
2080
2081 new = get_meta_page(sbi, blk_addr);
2082 sum = (struct f2fs_summary_block *)page_address(new);
2083
2084 if (IS_NODESEG(type)) {
2085 if (__exist_node_summaries(sbi)) {
2086 struct f2fs_summary *ns = &sum->entries[0];
2087 int i;
2088 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2089 ns->version = 0;
2090 ns->ofs_in_node = 0;
2091 }
2092 } else {
2093 int err;
2094
2095 err = restore_node_summary(sbi, segno, sum);
2096 if (err) {
2097 f2fs_put_page(new, 1);
2098 return err;
2099 }
2100 }
2101 }
2102
2103 /* set uncompleted segment to curseg */
2104 curseg = CURSEG_I(sbi, type);
2105 mutex_lock(&curseg->curseg_mutex);
2106
2107 /* update journal info */
2108 down_write(&curseg->journal_rwsem);
2109 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2110 up_write(&curseg->journal_rwsem);
2111
2112 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2113 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2114 curseg->next_segno = segno;
2115 reset_curseg(sbi, type, 0);
2116 curseg->alloc_type = ckpt->alloc_type[type];
2117 curseg->next_blkoff = blk_off;
2118 mutex_unlock(&curseg->curseg_mutex);
2119 f2fs_put_page(new, 1);
2120 return 0;
2121 }
2122
2123 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2124 {
2125 int type = CURSEG_HOT_DATA;
2126 int err;
2127
2128 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2129 int npages = npages_for_summary_flush(sbi, true);
2130
2131 if (npages >= 2)
2132 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2133 META_CP, true);
2134
2135 /* restore for compacted data summary */
2136 if (read_compacted_summaries(sbi))
2137 return -EINVAL;
2138 type = CURSEG_HOT_NODE;
2139 }
2140
2141 if (__exist_node_summaries(sbi))
2142 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2143 NR_CURSEG_TYPE - type, META_CP, true);
2144
2145 for (; type <= CURSEG_COLD_NODE; type++) {
2146 err = read_normal_summaries(sbi, type);
2147 if (err)
2148 return err;
2149 }
2150
2151 return 0;
2152 }
2153
2154 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2155 {
2156 struct page *page;
2157 unsigned char *kaddr;
2158 struct f2fs_summary *summary;
2159 struct curseg_info *seg_i;
2160 int written_size = 0;
2161 int i, j;
2162
2163 page = grab_meta_page(sbi, blkaddr++);
2164 kaddr = (unsigned char *)page_address(page);
2165
2166 /* Step 1: write nat cache */
2167 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2168 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2169 written_size += SUM_JOURNAL_SIZE;
2170
2171 /* Step 2: write sit cache */
2172 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2173 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2174 written_size += SUM_JOURNAL_SIZE;
2175
2176 /* Step 3: write summary entries */
2177 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2178 unsigned short blkoff;
2179 seg_i = CURSEG_I(sbi, i);
2180 if (sbi->ckpt->alloc_type[i] == SSR)
2181 blkoff = sbi->blocks_per_seg;
2182 else
2183 blkoff = curseg_blkoff(sbi, i);
2184
2185 for (j = 0; j < blkoff; j++) {
2186 if (!page) {
2187 page = grab_meta_page(sbi, blkaddr++);
2188 kaddr = (unsigned char *)page_address(page);
2189 written_size = 0;
2190 }
2191 summary = (struct f2fs_summary *)(kaddr + written_size);
2192 *summary = seg_i->sum_blk->entries[j];
2193 written_size += SUMMARY_SIZE;
2194
2195 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2196 SUM_FOOTER_SIZE)
2197 continue;
2198
2199 set_page_dirty(page);
2200 f2fs_put_page(page, 1);
2201 page = NULL;
2202 }
2203 }
2204 if (page) {
2205 set_page_dirty(page);
2206 f2fs_put_page(page, 1);
2207 }
2208 }
2209
2210 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2211 block_t blkaddr, int type)
2212 {
2213 int i, end;
2214 if (IS_DATASEG(type))
2215 end = type + NR_CURSEG_DATA_TYPE;
2216 else
2217 end = type + NR_CURSEG_NODE_TYPE;
2218
2219 for (i = type; i < end; i++)
2220 write_current_sum_page(sbi, i, blkaddr + (i - type));
2221 }
2222
2223 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2224 {
2225 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2226 write_compacted_summaries(sbi, start_blk);
2227 else
2228 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2229 }
2230
2231 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2232 {
2233 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2234 }
2235
2236 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2237 unsigned int val, int alloc)
2238 {
2239 int i;
2240
2241 if (type == NAT_JOURNAL) {
2242 for (i = 0; i < nats_in_cursum(journal); i++) {
2243 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2244 return i;
2245 }
2246 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2247 return update_nats_in_cursum(journal, 1);
2248 } else if (type == SIT_JOURNAL) {
2249 for (i = 0; i < sits_in_cursum(journal); i++)
2250 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2251 return i;
2252 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2253 return update_sits_in_cursum(journal, 1);
2254 }
2255 return -1;
2256 }
2257
2258 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2259 unsigned int segno)
2260 {
2261 return get_meta_page(sbi, current_sit_addr(sbi, segno));
2262 }
2263
2264 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2265 unsigned int start)
2266 {
2267 struct sit_info *sit_i = SIT_I(sbi);
2268 struct page *src_page, *dst_page;
2269 pgoff_t src_off, dst_off;
2270 void *src_addr, *dst_addr;
2271
2272 src_off = current_sit_addr(sbi, start);
2273 dst_off = next_sit_addr(sbi, src_off);
2274
2275 /* get current sit block page without lock */
2276 src_page = get_meta_page(sbi, src_off);
2277 dst_page = grab_meta_page(sbi, dst_off);
2278 f2fs_bug_on(sbi, PageDirty(src_page));
2279
2280 src_addr = page_address(src_page);
2281 dst_addr = page_address(dst_page);
2282 memcpy(dst_addr, src_addr, PAGE_SIZE);
2283
2284 set_page_dirty(dst_page);
2285 f2fs_put_page(src_page, 1);
2286
2287 set_to_next_sit(sit_i, start);
2288
2289 return dst_page;
2290 }
2291
2292 static struct sit_entry_set *grab_sit_entry_set(void)
2293 {
2294 struct sit_entry_set *ses =
2295 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2296
2297 ses->entry_cnt = 0;
2298 INIT_LIST_HEAD(&ses->set_list);
2299 return ses;
2300 }
2301
2302 static void release_sit_entry_set(struct sit_entry_set *ses)
2303 {
2304 list_del(&ses->set_list);
2305 kmem_cache_free(sit_entry_set_slab, ses);
2306 }
2307
2308 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2309 struct list_head *head)
2310 {
2311 struct sit_entry_set *next = ses;
2312
2313 if (list_is_last(&ses->set_list, head))
2314 return;
2315
2316 list_for_each_entry_continue(next, head, set_list)
2317 if (ses->entry_cnt <= next->entry_cnt)
2318 break;
2319
2320 list_move_tail(&ses->set_list, &next->set_list);
2321 }
2322
2323 static void add_sit_entry(unsigned int segno, struct list_head *head)
2324 {
2325 struct sit_entry_set *ses;
2326 unsigned int start_segno = START_SEGNO(segno);
2327
2328 list_for_each_entry(ses, head, set_list) {
2329 if (ses->start_segno == start_segno) {
2330 ses->entry_cnt++;
2331 adjust_sit_entry_set(ses, head);
2332 return;
2333 }
2334 }
2335
2336 ses = grab_sit_entry_set();
2337
2338 ses->start_segno = start_segno;
2339 ses->entry_cnt++;
2340 list_add(&ses->set_list, head);
2341 }
2342
2343 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2344 {
2345 struct f2fs_sm_info *sm_info = SM_I(sbi);
2346 struct list_head *set_list = &sm_info->sit_entry_set;
2347 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2348 unsigned int segno;
2349
2350 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2351 add_sit_entry(segno, set_list);
2352 }
2353
2354 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2355 {
2356 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2357 struct f2fs_journal *journal = curseg->journal;
2358 int i;
2359
2360 down_write(&curseg->journal_rwsem);
2361 for (i = 0; i < sits_in_cursum(journal); i++) {
2362 unsigned int segno;
2363 bool dirtied;
2364
2365 segno = le32_to_cpu(segno_in_journal(journal, i));
2366 dirtied = __mark_sit_entry_dirty(sbi, segno);
2367
2368 if (!dirtied)
2369 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2370 }
2371 update_sits_in_cursum(journal, -i);
2372 up_write(&curseg->journal_rwsem);
2373 }
2374
2375 /*
2376 * CP calls this function, which flushes SIT entries including sit_journal,
2377 * and moves prefree segs to free segs.
2378 */
2379 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2380 {
2381 struct sit_info *sit_i = SIT_I(sbi);
2382 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2383 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2384 struct f2fs_journal *journal = curseg->journal;
2385 struct sit_entry_set *ses, *tmp;
2386 struct list_head *head = &SM_I(sbi)->sit_entry_set;
2387 bool to_journal = true;
2388 struct seg_entry *se;
2389
2390 mutex_lock(&sit_i->sentry_lock);
2391
2392 if (!sit_i->dirty_sentries)
2393 goto out;
2394
2395 /*
2396 * add and account sit entries of dirty bitmap in sit entry
2397 * set temporarily
2398 */
2399 add_sits_in_set(sbi);
2400
2401 /*
2402 * if there are no enough space in journal to store dirty sit
2403 * entries, remove all entries from journal and add and account
2404 * them in sit entry set.
2405 */
2406 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2407 remove_sits_in_journal(sbi);
2408
2409 /*
2410 * there are two steps to flush sit entries:
2411 * #1, flush sit entries to journal in current cold data summary block.
2412 * #2, flush sit entries to sit page.
2413 */
2414 list_for_each_entry_safe(ses, tmp, head, set_list) {
2415 struct page *page = NULL;
2416 struct f2fs_sit_block *raw_sit = NULL;
2417 unsigned int start_segno = ses->start_segno;
2418 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2419 (unsigned long)MAIN_SEGS(sbi));
2420 unsigned int segno = start_segno;
2421
2422 if (to_journal &&
2423 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2424 to_journal = false;
2425
2426 if (to_journal) {
2427 down_write(&curseg->journal_rwsem);
2428 } else {
2429 page = get_next_sit_page(sbi, start_segno);
2430 raw_sit = page_address(page);
2431 }
2432
2433 /* flush dirty sit entries in region of current sit set */
2434 for_each_set_bit_from(segno, bitmap, end) {
2435 int offset, sit_offset;
2436
2437 se = get_seg_entry(sbi, segno);
2438
2439 /* add discard candidates */
2440 if (cpc->reason != CP_DISCARD) {
2441 cpc->trim_start = segno;
2442 add_discard_addrs(sbi, cpc, false);
2443 }
2444
2445 if (to_journal) {
2446 offset = lookup_journal_in_cursum(journal,
2447 SIT_JOURNAL, segno, 1);
2448 f2fs_bug_on(sbi, offset < 0);
2449 segno_in_journal(journal, offset) =
2450 cpu_to_le32(segno);
2451 seg_info_to_raw_sit(se,
2452 &sit_in_journal(journal, offset));
2453 } else {
2454 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2455 seg_info_to_raw_sit(se,
2456 &raw_sit->entries[sit_offset]);
2457 }
2458
2459 __clear_bit(segno, bitmap);
2460 sit_i->dirty_sentries--;
2461 ses->entry_cnt--;
2462 }
2463
2464 if (to_journal)
2465 up_write(&curseg->journal_rwsem);
2466 else
2467 f2fs_put_page(page, 1);
2468
2469 f2fs_bug_on(sbi, ses->entry_cnt);
2470 release_sit_entry_set(ses);
2471 }
2472
2473 f2fs_bug_on(sbi, !list_empty(head));
2474 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2475 out:
2476 if (cpc->reason == CP_DISCARD) {
2477 __u64 trim_start = cpc->trim_start;
2478
2479 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2480 add_discard_addrs(sbi, cpc, false);
2481
2482 cpc->trim_start = trim_start;
2483 }
2484 mutex_unlock(&sit_i->sentry_lock);
2485
2486 set_prefree_as_free_segments(sbi);
2487 }
2488
2489 static int build_sit_info(struct f2fs_sb_info *sbi)
2490 {
2491 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2492 struct sit_info *sit_i;
2493 unsigned int sit_segs, start;
2494 char *src_bitmap;
2495 unsigned int bitmap_size;
2496
2497 /* allocate memory for SIT information */
2498 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2499 if (!sit_i)
2500 return -ENOMEM;
2501
2502 SM_I(sbi)->sit_info = sit_i;
2503
2504 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2505 sizeof(struct seg_entry), GFP_KERNEL);
2506 if (!sit_i->sentries)
2507 return -ENOMEM;
2508
2509 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2510 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2511 if (!sit_i->dirty_sentries_bitmap)
2512 return -ENOMEM;
2513
2514 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2515 sit_i->sentries[start].cur_valid_map
2516 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2517 sit_i->sentries[start].ckpt_valid_map
2518 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2519 if (!sit_i->sentries[start].cur_valid_map ||
2520 !sit_i->sentries[start].ckpt_valid_map)
2521 return -ENOMEM;
2522
2523 #ifdef CONFIG_F2FS_CHECK_FS
2524 sit_i->sentries[start].cur_valid_map_mir
2525 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2526 if (!sit_i->sentries[start].cur_valid_map_mir)
2527 return -ENOMEM;
2528 #endif
2529
2530 if (f2fs_discard_en(sbi)) {
2531 sit_i->sentries[start].discard_map
2532 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2533 if (!sit_i->sentries[start].discard_map)
2534 return -ENOMEM;
2535 }
2536 }
2537
2538 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2539 if (!sit_i->tmp_map)
2540 return -ENOMEM;
2541
2542 if (sbi->segs_per_sec > 1) {
2543 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2544 sizeof(struct sec_entry), GFP_KERNEL);
2545 if (!sit_i->sec_entries)
2546 return -ENOMEM;
2547 }
2548
2549 /* get information related with SIT */
2550 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2551
2552 /* setup SIT bitmap from ckeckpoint pack */
2553 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2554 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2555
2556 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2557 if (!sit_i->sit_bitmap)
2558 return -ENOMEM;
2559
2560 #ifdef CONFIG_F2FS_CHECK_FS
2561 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2562 if (!sit_i->sit_bitmap_mir)
2563 return -ENOMEM;
2564 #endif
2565
2566 /* init SIT information */
2567 sit_i->s_ops = &default_salloc_ops;
2568
2569 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2570 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2571 sit_i->written_valid_blocks = 0;
2572 sit_i->bitmap_size = bitmap_size;
2573 sit_i->dirty_sentries = 0;
2574 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2575 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2576 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2577 mutex_init(&sit_i->sentry_lock);
2578 return 0;
2579 }
2580
2581 static int build_free_segmap(struct f2fs_sb_info *sbi)
2582 {
2583 struct free_segmap_info *free_i;
2584 unsigned int bitmap_size, sec_bitmap_size;
2585
2586 /* allocate memory for free segmap information */
2587 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2588 if (!free_i)
2589 return -ENOMEM;
2590
2591 SM_I(sbi)->free_info = free_i;
2592
2593 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2594 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2595 if (!free_i->free_segmap)
2596 return -ENOMEM;
2597
2598 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2599 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2600 if (!free_i->free_secmap)
2601 return -ENOMEM;
2602
2603 /* set all segments as dirty temporarily */
2604 memset(free_i->free_segmap, 0xff, bitmap_size);
2605 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2606
2607 /* init free segmap information */
2608 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2609 free_i->free_segments = 0;
2610 free_i->free_sections = 0;
2611 spin_lock_init(&free_i->segmap_lock);
2612 return 0;
2613 }
2614
2615 static int build_curseg(struct f2fs_sb_info *sbi)
2616 {
2617 struct curseg_info *array;
2618 int i;
2619
2620 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2621 if (!array)
2622 return -ENOMEM;
2623
2624 SM_I(sbi)->curseg_array = array;
2625
2626 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2627 mutex_init(&array[i].curseg_mutex);
2628 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2629 if (!array[i].sum_blk)
2630 return -ENOMEM;
2631 init_rwsem(&array[i].journal_rwsem);
2632 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2633 GFP_KERNEL);
2634 if (!array[i].journal)
2635 return -ENOMEM;
2636 array[i].segno = NULL_SEGNO;
2637 array[i].next_blkoff = 0;
2638 }
2639 return restore_curseg_summaries(sbi);
2640 }
2641
2642 static void build_sit_entries(struct f2fs_sb_info *sbi)
2643 {
2644 struct sit_info *sit_i = SIT_I(sbi);
2645 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2646 struct f2fs_journal *journal = curseg->journal;
2647 struct seg_entry *se;
2648 struct f2fs_sit_entry sit;
2649 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2650 unsigned int i, start, end;
2651 unsigned int readed, start_blk = 0;
2652
2653 do {
2654 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2655 META_SIT, true);
2656
2657 start = start_blk * sit_i->sents_per_block;
2658 end = (start_blk + readed) * sit_i->sents_per_block;
2659
2660 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2661 struct f2fs_sit_block *sit_blk;
2662 struct page *page;
2663
2664 se = &sit_i->sentries[start];
2665 page = get_current_sit_page(sbi, start);
2666 sit_blk = (struct f2fs_sit_block *)page_address(page);
2667 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2668 f2fs_put_page(page, 1);
2669
2670 check_block_count(sbi, start, &sit);
2671 seg_info_from_raw_sit(se, &sit);
2672
2673 /* build discard map only one time */
2674 if (f2fs_discard_en(sbi)) {
2675 memcpy(se->discard_map, se->cur_valid_map,
2676 SIT_VBLOCK_MAP_SIZE);
2677 sbi->discard_blks += sbi->blocks_per_seg -
2678 se->valid_blocks;
2679 }
2680
2681 if (sbi->segs_per_sec > 1)
2682 get_sec_entry(sbi, start)->valid_blocks +=
2683 se->valid_blocks;
2684 }
2685 start_blk += readed;
2686 } while (start_blk < sit_blk_cnt);
2687
2688 down_read(&curseg->journal_rwsem);
2689 for (i = 0; i < sits_in_cursum(journal); i++) {
2690 unsigned int old_valid_blocks;
2691
2692 start = le32_to_cpu(segno_in_journal(journal, i));
2693 se = &sit_i->sentries[start];
2694 sit = sit_in_journal(journal, i);
2695
2696 old_valid_blocks = se->valid_blocks;
2697
2698 check_block_count(sbi, start, &sit);
2699 seg_info_from_raw_sit(se, &sit);
2700
2701 if (f2fs_discard_en(sbi)) {
2702 memcpy(se->discard_map, se->cur_valid_map,
2703 SIT_VBLOCK_MAP_SIZE);
2704 sbi->discard_blks += old_valid_blocks -
2705 se->valid_blocks;
2706 }
2707
2708 if (sbi->segs_per_sec > 1)
2709 get_sec_entry(sbi, start)->valid_blocks +=
2710 se->valid_blocks - old_valid_blocks;
2711 }
2712 up_read(&curseg->journal_rwsem);
2713 }
2714
2715 static void init_free_segmap(struct f2fs_sb_info *sbi)
2716 {
2717 unsigned int start;
2718 int type;
2719
2720 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2721 struct seg_entry *sentry = get_seg_entry(sbi, start);
2722 if (!sentry->valid_blocks)
2723 __set_free(sbi, start);
2724 else
2725 SIT_I(sbi)->written_valid_blocks +=
2726 sentry->valid_blocks;
2727 }
2728
2729 /* set use the current segments */
2730 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2731 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2732 __set_test_and_inuse(sbi, curseg_t->segno);
2733 }
2734 }
2735
2736 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2737 {
2738 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2739 struct free_segmap_info *free_i = FREE_I(sbi);
2740 unsigned int segno = 0, offset = 0;
2741 unsigned short valid_blocks;
2742
2743 while (1) {
2744 /* find dirty segment based on free segmap */
2745 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2746 if (segno >= MAIN_SEGS(sbi))
2747 break;
2748 offset = segno + 1;
2749 valid_blocks = get_valid_blocks(sbi, segno, 0);
2750 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2751 continue;
2752 if (valid_blocks > sbi->blocks_per_seg) {
2753 f2fs_bug_on(sbi, 1);
2754 continue;
2755 }
2756 mutex_lock(&dirty_i->seglist_lock);
2757 __locate_dirty_segment(sbi, segno, DIRTY);
2758 mutex_unlock(&dirty_i->seglist_lock);
2759 }
2760 }
2761
2762 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2763 {
2764 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2765 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2766
2767 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2768 if (!dirty_i->victim_secmap)
2769 return -ENOMEM;
2770 return 0;
2771 }
2772
2773 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2774 {
2775 struct dirty_seglist_info *dirty_i;
2776 unsigned int bitmap_size, i;
2777
2778 /* allocate memory for dirty segments list information */
2779 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2780 if (!dirty_i)
2781 return -ENOMEM;
2782
2783 SM_I(sbi)->dirty_info = dirty_i;
2784 mutex_init(&dirty_i->seglist_lock);
2785
2786 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2787
2788 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2789 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2790 if (!dirty_i->dirty_segmap[i])
2791 return -ENOMEM;
2792 }
2793
2794 init_dirty_segmap(sbi);
2795 return init_victim_secmap(sbi);
2796 }
2797
2798 /*
2799 * Update min, max modified time for cost-benefit GC algorithm
2800 */
2801 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2802 {
2803 struct sit_info *sit_i = SIT_I(sbi);
2804 unsigned int segno;
2805
2806 mutex_lock(&sit_i->sentry_lock);
2807
2808 sit_i->min_mtime = LLONG_MAX;
2809
2810 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2811 unsigned int i;
2812 unsigned long long mtime = 0;
2813
2814 for (i = 0; i < sbi->segs_per_sec; i++)
2815 mtime += get_seg_entry(sbi, segno + i)->mtime;
2816
2817 mtime = div_u64(mtime, sbi->segs_per_sec);
2818
2819 if (sit_i->min_mtime > mtime)
2820 sit_i->min_mtime = mtime;
2821 }
2822 sit_i->max_mtime = get_mtime(sbi);
2823 mutex_unlock(&sit_i->sentry_lock);
2824 }
2825
2826 int build_segment_manager(struct f2fs_sb_info *sbi)
2827 {
2828 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2829 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2830 struct f2fs_sm_info *sm_info;
2831 int err;
2832
2833 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2834 if (!sm_info)
2835 return -ENOMEM;
2836
2837 /* init sm info */
2838 sbi->sm_info = sm_info;
2839 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2840 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2841 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2842 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2843 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2844 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2845 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2846 sm_info->rec_prefree_segments = sm_info->main_segments *
2847 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2848 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2849 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2850
2851 if (!test_opt(sbi, LFS))
2852 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2853 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2854 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2855
2856 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2857
2858 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2859
2860 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2861 err = create_flush_cmd_control(sbi);
2862 if (err)
2863 return err;
2864 }
2865
2866 err = create_discard_cmd_control(sbi);
2867 if (err)
2868 return err;
2869
2870 err = build_sit_info(sbi);
2871 if (err)
2872 return err;
2873 err = build_free_segmap(sbi);
2874 if (err)
2875 return err;
2876 err = build_curseg(sbi);
2877 if (err)
2878 return err;
2879
2880 /* reinit free segmap based on SIT */
2881 build_sit_entries(sbi);
2882
2883 init_free_segmap(sbi);
2884 err = build_dirty_segmap(sbi);
2885 if (err)
2886 return err;
2887
2888 init_min_max_mtime(sbi);
2889 return 0;
2890 }
2891
2892 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2893 enum dirty_type dirty_type)
2894 {
2895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2896
2897 mutex_lock(&dirty_i->seglist_lock);
2898 kvfree(dirty_i->dirty_segmap[dirty_type]);
2899 dirty_i->nr_dirty[dirty_type] = 0;
2900 mutex_unlock(&dirty_i->seglist_lock);
2901 }
2902
2903 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2904 {
2905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2906 kvfree(dirty_i->victim_secmap);
2907 }
2908
2909 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2910 {
2911 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2912 int i;
2913
2914 if (!dirty_i)
2915 return;
2916
2917 /* discard pre-free/dirty segments list */
2918 for (i = 0; i < NR_DIRTY_TYPE; i++)
2919 discard_dirty_segmap(sbi, i);
2920
2921 destroy_victim_secmap(sbi);
2922 SM_I(sbi)->dirty_info = NULL;
2923 kfree(dirty_i);
2924 }
2925
2926 static void destroy_curseg(struct f2fs_sb_info *sbi)
2927 {
2928 struct curseg_info *array = SM_I(sbi)->curseg_array;
2929 int i;
2930
2931 if (!array)
2932 return;
2933 SM_I(sbi)->curseg_array = NULL;
2934 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2935 kfree(array[i].sum_blk);
2936 kfree(array[i].journal);
2937 }
2938 kfree(array);
2939 }
2940
2941 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2942 {
2943 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2944 if (!free_i)
2945 return;
2946 SM_I(sbi)->free_info = NULL;
2947 kvfree(free_i->free_segmap);
2948 kvfree(free_i->free_secmap);
2949 kfree(free_i);
2950 }
2951
2952 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2953 {
2954 struct sit_info *sit_i = SIT_I(sbi);
2955 unsigned int start;
2956
2957 if (!sit_i)
2958 return;
2959
2960 if (sit_i->sentries) {
2961 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2962 kfree(sit_i->sentries[start].cur_valid_map);
2963 #ifdef CONFIG_F2FS_CHECK_FS
2964 kfree(sit_i->sentries[start].cur_valid_map_mir);
2965 #endif
2966 kfree(sit_i->sentries[start].ckpt_valid_map);
2967 kfree(sit_i->sentries[start].discard_map);
2968 }
2969 }
2970 kfree(sit_i->tmp_map);
2971
2972 kvfree(sit_i->sentries);
2973 kvfree(sit_i->sec_entries);
2974 kvfree(sit_i->dirty_sentries_bitmap);
2975
2976 SM_I(sbi)->sit_info = NULL;
2977 kfree(sit_i->sit_bitmap);
2978 #ifdef CONFIG_F2FS_CHECK_FS
2979 kfree(sit_i->sit_bitmap_mir);
2980 #endif
2981 kfree(sit_i);
2982 }
2983
2984 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2985 {
2986 struct f2fs_sm_info *sm_info = SM_I(sbi);
2987
2988 if (!sm_info)
2989 return;
2990 destroy_flush_cmd_control(sbi, true);
2991 destroy_discard_cmd_control(sbi, true);
2992 destroy_dirty_segmap(sbi);
2993 destroy_curseg(sbi);
2994 destroy_free_segmap(sbi);
2995 destroy_sit_info(sbi);
2996 sbi->sm_info = NULL;
2997 kfree(sm_info);
2998 }
2999
3000 int __init create_segment_manager_caches(void)
3001 {
3002 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3003 sizeof(struct discard_entry));
3004 if (!discard_entry_slab)
3005 goto fail;
3006
3007 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3008 sizeof(struct discard_cmd));
3009 if (!discard_cmd_slab)
3010 goto destroy_discard_entry;
3011
3012 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3013 sizeof(struct sit_entry_set));
3014 if (!sit_entry_set_slab)
3015 goto destroy_discard_cmd;
3016
3017 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3018 sizeof(struct inmem_pages));
3019 if (!inmem_entry_slab)
3020 goto destroy_sit_entry_set;
3021 return 0;
3022
3023 destroy_sit_entry_set:
3024 kmem_cache_destroy(sit_entry_set_slab);
3025 destroy_discard_cmd:
3026 kmem_cache_destroy(discard_cmd_slab);
3027 destroy_discard_entry:
3028 kmem_cache_destroy(discard_entry_slab);
3029 fail:
3030 return -ENOMEM;
3031 }
3032
3033 void destroy_segment_manager_caches(void)
3034 {
3035 kmem_cache_destroy(sit_entry_set_slab);
3036 kmem_cache_destroy(discard_cmd_slab);
3037 kmem_cache_destroy(discard_entry_slab);
3038 kmem_cache_destroy(inmem_entry_slab);
3039 }