]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/segment.h
f2fs: clean checkpatch warnings
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
48 #define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
55
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr) \
61 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
62 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
63 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno) \
65 ((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
67 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69 #define GET_SUM_BLOCK(sbi, segno) \
70 ((sbi->sm_info->ssa_blkaddr) + segno)
71
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75 #define SIT_ENTRY_OFFSET(sit_i, segno) \
76 (segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno) \
78 (segno / SIT_ENTRY_PER_BLOCK)
79 #define START_SEGNO(sit_i, segno) \
80 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define SIT_BLK_CNT(sbi) \
82 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
83 #define f2fs_bitmap_size(nr) \
84 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
85 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
86 #define TOTAL_SECS(sbi) (sbi->total_sections)
87
88 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \
89 (((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
90 #define SECTOR_TO_BLOCK(sbi, sectors) \
91 (sectors >> (sbi)->log_sectors_per_block)
92 #define MAX_BIO_BLOCKS(max_hw_blocks) \
93 (min((int)max_hw_blocks, BIO_MAX_PAGES))
94
95 /*
96 * indicate a block allocation direction: RIGHT and LEFT.
97 * RIGHT means allocating new sections towards the end of volume.
98 * LEFT means the opposite direction.
99 */
100 enum {
101 ALLOC_RIGHT = 0,
102 ALLOC_LEFT
103 };
104
105 /*
106 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
107 * LFS writes data sequentially with cleaning operations.
108 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
109 */
110 enum {
111 LFS = 0,
112 SSR
113 };
114
115 /*
116 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
117 * GC_CB is based on cost-benefit algorithm.
118 * GC_GREEDY is based on greedy algorithm.
119 */
120 enum {
121 GC_CB = 0,
122 GC_GREEDY
123 };
124
125 /*
126 * BG_GC means the background cleaning job.
127 * FG_GC means the on-demand cleaning job.
128 */
129 enum {
130 BG_GC = 0,
131 FG_GC
132 };
133
134 /* for a function parameter to select a victim segment */
135 struct victim_sel_policy {
136 int alloc_mode; /* LFS or SSR */
137 int gc_mode; /* GC_CB or GC_GREEDY */
138 unsigned long *dirty_segmap; /* dirty segment bitmap */
139 unsigned int max_search; /* maximum # of segments to search */
140 unsigned int offset; /* last scanned bitmap offset */
141 unsigned int ofs_unit; /* bitmap search unit */
142 unsigned int min_cost; /* minimum cost */
143 unsigned int min_segno; /* segment # having min. cost */
144 };
145
146 struct seg_entry {
147 unsigned short valid_blocks; /* # of valid blocks */
148 unsigned char *cur_valid_map; /* validity bitmap of blocks */
149 /*
150 * # of valid blocks and the validity bitmap stored in the the last
151 * checkpoint pack. This information is used by the SSR mode.
152 */
153 unsigned short ckpt_valid_blocks;
154 unsigned char *ckpt_valid_map;
155 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
156 unsigned long long mtime; /* modification time of the segment */
157 };
158
159 struct sec_entry {
160 unsigned int valid_blocks; /* # of valid blocks in a section */
161 };
162
163 struct segment_allocation {
164 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
165 };
166
167 struct sit_info {
168 const struct segment_allocation *s_ops;
169
170 block_t sit_base_addr; /* start block address of SIT area */
171 block_t sit_blocks; /* # of blocks used by SIT area */
172 block_t written_valid_blocks; /* # of valid blocks in main area */
173 char *sit_bitmap; /* SIT bitmap pointer */
174 unsigned int bitmap_size; /* SIT bitmap size */
175
176 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
177 unsigned int dirty_sentries; /* # of dirty sentries */
178 unsigned int sents_per_block; /* # of SIT entries per block */
179 struct mutex sentry_lock; /* to protect SIT cache */
180 struct seg_entry *sentries; /* SIT segment-level cache */
181 struct sec_entry *sec_entries; /* SIT section-level cache */
182
183 /* for cost-benefit algorithm in cleaning procedure */
184 unsigned long long elapsed_time; /* elapsed time after mount */
185 unsigned long long mounted_time; /* mount time */
186 unsigned long long min_mtime; /* min. modification time */
187 unsigned long long max_mtime; /* max. modification time */
188 };
189
190 struct free_segmap_info {
191 unsigned int start_segno; /* start segment number logically */
192 unsigned int free_segments; /* # of free segments */
193 unsigned int free_sections; /* # of free sections */
194 rwlock_t segmap_lock; /* free segmap lock */
195 unsigned long *free_segmap; /* free segment bitmap */
196 unsigned long *free_secmap; /* free section bitmap */
197 };
198
199 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
200 enum dirty_type {
201 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
202 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
203 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
204 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
205 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
206 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
207 DIRTY, /* to count # of dirty segments */
208 PRE, /* to count # of entirely obsolete segments */
209 NR_DIRTY_TYPE
210 };
211
212 struct dirty_seglist_info {
213 const struct victim_selection *v_ops; /* victim selction operation */
214 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
215 struct mutex seglist_lock; /* lock for segment bitmaps */
216 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
217 unsigned long *victim_secmap; /* background GC victims */
218 };
219
220 /* victim selection function for cleaning and SSR */
221 struct victim_selection {
222 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
223 int, int, char);
224 };
225
226 /* for active log information */
227 struct curseg_info {
228 struct mutex curseg_mutex; /* lock for consistency */
229 struct f2fs_summary_block *sum_blk; /* cached summary block */
230 unsigned char alloc_type; /* current allocation type */
231 unsigned int segno; /* current segment number */
232 unsigned short next_blkoff; /* next block offset to write */
233 unsigned int zone; /* current zone number */
234 unsigned int next_segno; /* preallocated segment */
235 };
236
237 /*
238 * inline functions
239 */
240 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
241 {
242 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
243 }
244
245 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
246 unsigned int segno)
247 {
248 struct sit_info *sit_i = SIT_I(sbi);
249 return &sit_i->sentries[segno];
250 }
251
252 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
253 unsigned int segno)
254 {
255 struct sit_info *sit_i = SIT_I(sbi);
256 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
257 }
258
259 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
260 unsigned int segno, int section)
261 {
262 /*
263 * In order to get # of valid blocks in a section instantly from many
264 * segments, f2fs manages two counting structures separately.
265 */
266 if (section > 1)
267 return get_sec_entry(sbi, segno)->valid_blocks;
268 else
269 return get_seg_entry(sbi, segno)->valid_blocks;
270 }
271
272 static inline void seg_info_from_raw_sit(struct seg_entry *se,
273 struct f2fs_sit_entry *rs)
274 {
275 se->valid_blocks = GET_SIT_VBLOCKS(rs);
276 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
277 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
278 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
279 se->type = GET_SIT_TYPE(rs);
280 se->mtime = le64_to_cpu(rs->mtime);
281 }
282
283 static inline void seg_info_to_raw_sit(struct seg_entry *se,
284 struct f2fs_sit_entry *rs)
285 {
286 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
287 se->valid_blocks;
288 rs->vblocks = cpu_to_le16(raw_vblocks);
289 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
290 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
291 se->ckpt_valid_blocks = se->valid_blocks;
292 rs->mtime = cpu_to_le64(se->mtime);
293 }
294
295 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
296 unsigned int max, unsigned int segno)
297 {
298 unsigned int ret;
299 read_lock(&free_i->segmap_lock);
300 ret = find_next_bit(free_i->free_segmap, max, segno);
301 read_unlock(&free_i->segmap_lock);
302 return ret;
303 }
304
305 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
306 {
307 struct free_segmap_info *free_i = FREE_I(sbi);
308 unsigned int secno = segno / sbi->segs_per_sec;
309 unsigned int start_segno = secno * sbi->segs_per_sec;
310 unsigned int next;
311
312 write_lock(&free_i->segmap_lock);
313 clear_bit(segno, free_i->free_segmap);
314 free_i->free_segments++;
315
316 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
317 if (next >= start_segno + sbi->segs_per_sec) {
318 clear_bit(secno, free_i->free_secmap);
319 free_i->free_sections++;
320 }
321 write_unlock(&free_i->segmap_lock);
322 }
323
324 static inline void __set_inuse(struct f2fs_sb_info *sbi,
325 unsigned int segno)
326 {
327 struct free_segmap_info *free_i = FREE_I(sbi);
328 unsigned int secno = segno / sbi->segs_per_sec;
329 set_bit(segno, free_i->free_segmap);
330 free_i->free_segments--;
331 if (!test_and_set_bit(secno, free_i->free_secmap))
332 free_i->free_sections--;
333 }
334
335 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
336 unsigned int segno)
337 {
338 struct free_segmap_info *free_i = FREE_I(sbi);
339 unsigned int secno = segno / sbi->segs_per_sec;
340 unsigned int start_segno = secno * sbi->segs_per_sec;
341 unsigned int next;
342
343 write_lock(&free_i->segmap_lock);
344 if (test_and_clear_bit(segno, free_i->free_segmap)) {
345 free_i->free_segments++;
346
347 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
348 start_segno);
349 if (next >= start_segno + sbi->segs_per_sec) {
350 if (test_and_clear_bit(secno, free_i->free_secmap))
351 free_i->free_sections++;
352 }
353 }
354 write_unlock(&free_i->segmap_lock);
355 }
356
357 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
358 unsigned int segno)
359 {
360 struct free_segmap_info *free_i = FREE_I(sbi);
361 unsigned int secno = segno / sbi->segs_per_sec;
362 write_lock(&free_i->segmap_lock);
363 if (!test_and_set_bit(segno, free_i->free_segmap)) {
364 free_i->free_segments--;
365 if (!test_and_set_bit(secno, free_i->free_secmap))
366 free_i->free_sections--;
367 }
368 write_unlock(&free_i->segmap_lock);
369 }
370
371 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
372 void *dst_addr)
373 {
374 struct sit_info *sit_i = SIT_I(sbi);
375 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
376 }
377
378 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
379 {
380 struct sit_info *sit_i = SIT_I(sbi);
381 block_t vblocks;
382
383 mutex_lock(&sit_i->sentry_lock);
384 vblocks = sit_i->written_valid_blocks;
385 mutex_unlock(&sit_i->sentry_lock);
386
387 return vblocks;
388 }
389
390 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
391 {
392 struct free_segmap_info *free_i = FREE_I(sbi);
393 unsigned int free_segs;
394
395 read_lock(&free_i->segmap_lock);
396 free_segs = free_i->free_segments;
397 read_unlock(&free_i->segmap_lock);
398
399 return free_segs;
400 }
401
402 static inline int reserved_segments(struct f2fs_sb_info *sbi)
403 {
404 return SM_I(sbi)->reserved_segments;
405 }
406
407 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
408 {
409 struct free_segmap_info *free_i = FREE_I(sbi);
410 unsigned int free_secs;
411
412 read_lock(&free_i->segmap_lock);
413 free_secs = free_i->free_sections;
414 read_unlock(&free_i->segmap_lock);
415
416 return free_secs;
417 }
418
419 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
420 {
421 return DIRTY_I(sbi)->nr_dirty[PRE];
422 }
423
424 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
425 {
426 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
427 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
428 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
429 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
430 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
431 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
432 }
433
434 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
435 {
436 return SM_I(sbi)->ovp_segments;
437 }
438
439 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
440 {
441 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
442 }
443
444 static inline int reserved_sections(struct f2fs_sb_info *sbi)
445 {
446 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
447 }
448
449 static inline bool need_SSR(struct f2fs_sb_info *sbi)
450 {
451 return (prefree_segments(sbi) / sbi->segs_per_sec)
452 + free_sections(sbi) < overprovision_sections(sbi);
453 }
454
455 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
456 {
457 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
458 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
459
460 if (unlikely(sbi->por_doing))
461 return false;
462
463 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
464 reserved_sections(sbi));
465 }
466
467 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
468 {
469 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
470 }
471
472 static inline int utilization(struct f2fs_sb_info *sbi)
473 {
474 return div_u64((u64)valid_user_blocks(sbi) * 100,
475 sbi->user_block_count);
476 }
477
478 /*
479 * Sometimes f2fs may be better to drop out-of-place update policy.
480 * And, users can control the policy through sysfs entries.
481 * There are five policies with triggering conditions as follows.
482 * F2FS_IPU_FORCE - all the time,
483 * F2FS_IPU_SSR - if SSR mode is activated,
484 * F2FS_IPU_UTIL - if FS utilization is over threashold,
485 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
486 * threashold,
487 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
488 */
489 #define DEF_MIN_IPU_UTIL 70
490
491 enum {
492 F2FS_IPU_FORCE,
493 F2FS_IPU_SSR,
494 F2FS_IPU_UTIL,
495 F2FS_IPU_SSR_UTIL,
496 F2FS_IPU_DISABLE,
497 };
498
499 static inline bool need_inplace_update(struct inode *inode)
500 {
501 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
502
503 /* IPU can be done only for the user data */
504 if (S_ISDIR(inode->i_mode))
505 return false;
506
507 switch (SM_I(sbi)->ipu_policy) {
508 case F2FS_IPU_FORCE:
509 return true;
510 case F2FS_IPU_SSR:
511 if (need_SSR(sbi))
512 return true;
513 break;
514 case F2FS_IPU_UTIL:
515 if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
516 return true;
517 break;
518 case F2FS_IPU_SSR_UTIL:
519 if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
520 return true;
521 break;
522 case F2FS_IPU_DISABLE:
523 break;
524 }
525 return false;
526 }
527
528 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
529 int type)
530 {
531 struct curseg_info *curseg = CURSEG_I(sbi, type);
532 return curseg->segno;
533 }
534
535 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
536 int type)
537 {
538 struct curseg_info *curseg = CURSEG_I(sbi, type);
539 return curseg->alloc_type;
540 }
541
542 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
543 {
544 struct curseg_info *curseg = CURSEG_I(sbi, type);
545 return curseg->next_blkoff;
546 }
547
548 #ifdef CONFIG_F2FS_CHECK_FS
549 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
550 {
551 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
552 BUG_ON(segno > end_segno);
553 }
554
555 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
556 {
557 struct f2fs_sm_info *sm_info = SM_I(sbi);
558 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
559 block_t start_addr = sm_info->seg0_blkaddr;
560 block_t end_addr = start_addr + total_blks - 1;
561 BUG_ON(blk_addr < start_addr);
562 BUG_ON(blk_addr > end_addr);
563 }
564
565 /*
566 * Summary block is always treated as invalid block
567 */
568 static inline void check_block_count(struct f2fs_sb_info *sbi,
569 int segno, struct f2fs_sit_entry *raw_sit)
570 {
571 struct f2fs_sm_info *sm_info = SM_I(sbi);
572 unsigned int end_segno = sm_info->segment_count - 1;
573 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
574 int valid_blocks = 0;
575 int cur_pos = 0, next_pos;
576
577 /* check segment usage */
578 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
579
580 /* check boundary of a given segment number */
581 BUG_ON(segno > end_segno);
582
583 /* check bitmap with valid block count */
584 do {
585 if (is_valid) {
586 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
587 sbi->blocks_per_seg,
588 cur_pos);
589 valid_blocks += next_pos - cur_pos;
590 } else
591 next_pos = find_next_bit_le(&raw_sit->valid_map,
592 sbi->blocks_per_seg,
593 cur_pos);
594 cur_pos = next_pos;
595 is_valid = !is_valid;
596 } while (cur_pos < sbi->blocks_per_seg);
597 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
598 }
599 #else
600 #define check_seg_range(sbi, segno)
601 #define verify_block_addr(sbi, blk_addr)
602 #define check_block_count(sbi, segno, raw_sit)
603 #endif
604
605 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
606 unsigned int start)
607 {
608 struct sit_info *sit_i = SIT_I(sbi);
609 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
610 block_t blk_addr = sit_i->sit_base_addr + offset;
611
612 check_seg_range(sbi, start);
613
614 /* calculate sit block address */
615 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
616 blk_addr += sit_i->sit_blocks;
617
618 return blk_addr;
619 }
620
621 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
622 pgoff_t block_addr)
623 {
624 struct sit_info *sit_i = SIT_I(sbi);
625 block_addr -= sit_i->sit_base_addr;
626 if (block_addr < sit_i->sit_blocks)
627 block_addr += sit_i->sit_blocks;
628 else
629 block_addr -= sit_i->sit_blocks;
630
631 return block_addr + sit_i->sit_base_addr;
632 }
633
634 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
635 {
636 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
637
638 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
639 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
640 else
641 f2fs_set_bit(block_off, sit_i->sit_bitmap);
642 }
643
644 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
645 {
646 struct sit_info *sit_i = SIT_I(sbi);
647 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
648 sit_i->mounted_time;
649 }
650
651 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
652 unsigned int ofs_in_node, unsigned char version)
653 {
654 sum->nid = cpu_to_le32(nid);
655 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
656 sum->version = version;
657 }
658
659 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
660 {
661 return __start_cp_addr(sbi) +
662 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
663 }
664
665 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
666 {
667 return __start_cp_addr(sbi) +
668 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
669 - (base + 1) + type;
670 }
671
672 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
673 {
674 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
675 return true;
676 return false;
677 }
678
679 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
680 {
681 struct block_device *bdev = sbi->sb->s_bdev;
682 struct request_queue *q = bdev_get_queue(bdev);
683 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
684 }