]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/segment.h
f2fs: flush inode metadata when checkpoint is doing
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
54
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
61
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
85
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107 /*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112 enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
115 };
116
117 /*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122 enum {
123 LFS = 0,
124 SSR
125 };
126
127 /*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132 enum {
133 GC_CB = 0,
134 GC_GREEDY
135 };
136
137 /*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 * FORCE_FG_GC means on-demand cleaning job in background.
141 */
142 enum {
143 BG_GC = 0,
144 FG_GC,
145 FORCE_FG_GC,
146 };
147
148 /* for a function parameter to select a victim segment */
149 struct victim_sel_policy {
150 int alloc_mode; /* LFS or SSR */
151 int gc_mode; /* GC_CB or GC_GREEDY */
152 unsigned long *dirty_segmap; /* dirty segment bitmap */
153 unsigned int max_search; /* maximum # of segments to search */
154 unsigned int offset; /* last scanned bitmap offset */
155 unsigned int ofs_unit; /* bitmap search unit */
156 unsigned int min_cost; /* minimum cost */
157 unsigned int min_segno; /* segment # having min. cost */
158 };
159
160 struct seg_entry {
161 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
162 unsigned int valid_blocks:10; /* # of valid blocks */
163 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
164 unsigned int padding:6; /* padding */
165 unsigned char *cur_valid_map; /* validity bitmap of blocks */
166 /*
167 * # of valid blocks and the validity bitmap stored in the the last
168 * checkpoint pack. This information is used by the SSR mode.
169 */
170 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
171 unsigned char *discard_map;
172 unsigned long long mtime; /* modification time of the segment */
173 };
174
175 struct sec_entry {
176 unsigned int valid_blocks; /* # of valid blocks in a section */
177 };
178
179 struct segment_allocation {
180 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
181 };
182
183 /*
184 * this value is set in page as a private data which indicate that
185 * the page is atomically written, and it is in inmem_pages list.
186 */
187 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
188
189 #define IS_ATOMIC_WRITTEN_PAGE(page) \
190 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
191
192 struct inmem_pages {
193 struct list_head list;
194 struct page *page;
195 block_t old_addr; /* for revoking when fail to commit */
196 };
197
198 struct sit_info {
199 const struct segment_allocation *s_ops;
200
201 block_t sit_base_addr; /* start block address of SIT area */
202 block_t sit_blocks; /* # of blocks used by SIT area */
203 block_t written_valid_blocks; /* # of valid blocks in main area */
204 char *sit_bitmap; /* SIT bitmap pointer */
205 unsigned int bitmap_size; /* SIT bitmap size */
206
207 unsigned long *tmp_map; /* bitmap for temporal use */
208 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
209 unsigned int dirty_sentries; /* # of dirty sentries */
210 unsigned int sents_per_block; /* # of SIT entries per block */
211 struct mutex sentry_lock; /* to protect SIT cache */
212 struct seg_entry *sentries; /* SIT segment-level cache */
213 struct sec_entry *sec_entries; /* SIT section-level cache */
214
215 /* for cost-benefit algorithm in cleaning procedure */
216 unsigned long long elapsed_time; /* elapsed time after mount */
217 unsigned long long mounted_time; /* mount time */
218 unsigned long long min_mtime; /* min. modification time */
219 unsigned long long max_mtime; /* max. modification time */
220 };
221
222 struct free_segmap_info {
223 unsigned int start_segno; /* start segment number logically */
224 unsigned int free_segments; /* # of free segments */
225 unsigned int free_sections; /* # of free sections */
226 spinlock_t segmap_lock; /* free segmap lock */
227 unsigned long *free_segmap; /* free segment bitmap */
228 unsigned long *free_secmap; /* free section bitmap */
229 };
230
231 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
232 enum dirty_type {
233 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
234 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
235 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
236 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
237 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
238 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
239 DIRTY, /* to count # of dirty segments */
240 PRE, /* to count # of entirely obsolete segments */
241 NR_DIRTY_TYPE
242 };
243
244 struct dirty_seglist_info {
245 const struct victim_selection *v_ops; /* victim selction operation */
246 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
247 struct mutex seglist_lock; /* lock for segment bitmaps */
248 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
249 unsigned long *victim_secmap; /* background GC victims */
250 };
251
252 /* victim selection function for cleaning and SSR */
253 struct victim_selection {
254 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
255 int, int, char);
256 };
257
258 /* for active log information */
259 struct curseg_info {
260 struct mutex curseg_mutex; /* lock for consistency */
261 struct f2fs_summary_block *sum_blk; /* cached summary block */
262 struct rw_semaphore journal_rwsem; /* protect journal area */
263 struct f2fs_journal *journal; /* cached journal info */
264 unsigned char alloc_type; /* current allocation type */
265 unsigned int segno; /* current segment number */
266 unsigned short next_blkoff; /* next block offset to write */
267 unsigned int zone; /* current zone number */
268 unsigned int next_segno; /* preallocated segment */
269 };
270
271 struct sit_entry_set {
272 struct list_head set_list; /* link with all sit sets */
273 unsigned int start_segno; /* start segno of sits in set */
274 unsigned int entry_cnt; /* the # of sit entries in set */
275 };
276
277 /*
278 * inline functions
279 */
280 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
281 {
282 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
283 }
284
285 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
286 unsigned int segno)
287 {
288 struct sit_info *sit_i = SIT_I(sbi);
289 return &sit_i->sentries[segno];
290 }
291
292 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
293 unsigned int segno)
294 {
295 struct sit_info *sit_i = SIT_I(sbi);
296 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
297 }
298
299 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
300 unsigned int segno, int section)
301 {
302 /*
303 * In order to get # of valid blocks in a section instantly from many
304 * segments, f2fs manages two counting structures separately.
305 */
306 if (section > 1)
307 return get_sec_entry(sbi, segno)->valid_blocks;
308 else
309 return get_seg_entry(sbi, segno)->valid_blocks;
310 }
311
312 static inline void seg_info_from_raw_sit(struct seg_entry *se,
313 struct f2fs_sit_entry *rs)
314 {
315 se->valid_blocks = GET_SIT_VBLOCKS(rs);
316 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
317 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
318 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319 se->type = GET_SIT_TYPE(rs);
320 se->mtime = le64_to_cpu(rs->mtime);
321 }
322
323 static inline void seg_info_to_raw_sit(struct seg_entry *se,
324 struct f2fs_sit_entry *rs)
325 {
326 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
327 se->valid_blocks;
328 rs->vblocks = cpu_to_le16(raw_vblocks);
329 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
330 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
331 se->ckpt_valid_blocks = se->valid_blocks;
332 rs->mtime = cpu_to_le64(se->mtime);
333 }
334
335 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
336 unsigned int max, unsigned int segno)
337 {
338 unsigned int ret;
339 spin_lock(&free_i->segmap_lock);
340 ret = find_next_bit(free_i->free_segmap, max, segno);
341 spin_unlock(&free_i->segmap_lock);
342 return ret;
343 }
344
345 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
346 {
347 struct free_segmap_info *free_i = FREE_I(sbi);
348 unsigned int secno = segno / sbi->segs_per_sec;
349 unsigned int start_segno = secno * sbi->segs_per_sec;
350 unsigned int next;
351
352 spin_lock(&free_i->segmap_lock);
353 clear_bit(segno, free_i->free_segmap);
354 free_i->free_segments++;
355
356 next = find_next_bit(free_i->free_segmap,
357 start_segno + sbi->segs_per_sec, start_segno);
358 if (next >= start_segno + sbi->segs_per_sec) {
359 clear_bit(secno, free_i->free_secmap);
360 free_i->free_sections++;
361 }
362 spin_unlock(&free_i->segmap_lock);
363 }
364
365 static inline void __set_inuse(struct f2fs_sb_info *sbi,
366 unsigned int segno)
367 {
368 struct free_segmap_info *free_i = FREE_I(sbi);
369 unsigned int secno = segno / sbi->segs_per_sec;
370 set_bit(segno, free_i->free_segmap);
371 free_i->free_segments--;
372 if (!test_and_set_bit(secno, free_i->free_secmap))
373 free_i->free_sections--;
374 }
375
376 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
377 unsigned int segno)
378 {
379 struct free_segmap_info *free_i = FREE_I(sbi);
380 unsigned int secno = segno / sbi->segs_per_sec;
381 unsigned int start_segno = secno * sbi->segs_per_sec;
382 unsigned int next;
383
384 spin_lock(&free_i->segmap_lock);
385 if (test_and_clear_bit(segno, free_i->free_segmap)) {
386 free_i->free_segments++;
387
388 next = find_next_bit(free_i->free_segmap,
389 start_segno + sbi->segs_per_sec, start_segno);
390 if (next >= start_segno + sbi->segs_per_sec) {
391 if (test_and_clear_bit(secno, free_i->free_secmap))
392 free_i->free_sections++;
393 }
394 }
395 spin_unlock(&free_i->segmap_lock);
396 }
397
398 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
399 unsigned int segno)
400 {
401 struct free_segmap_info *free_i = FREE_I(sbi);
402 unsigned int secno = segno / sbi->segs_per_sec;
403 spin_lock(&free_i->segmap_lock);
404 if (!test_and_set_bit(segno, free_i->free_segmap)) {
405 free_i->free_segments--;
406 if (!test_and_set_bit(secno, free_i->free_secmap))
407 free_i->free_sections--;
408 }
409 spin_unlock(&free_i->segmap_lock);
410 }
411
412 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
413 void *dst_addr)
414 {
415 struct sit_info *sit_i = SIT_I(sbi);
416 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
417 }
418
419 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
420 {
421 return SIT_I(sbi)->written_valid_blocks;
422 }
423
424 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
425 {
426 return FREE_I(sbi)->free_segments;
427 }
428
429 static inline int reserved_segments(struct f2fs_sb_info *sbi)
430 {
431 return SM_I(sbi)->reserved_segments;
432 }
433
434 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
435 {
436 return FREE_I(sbi)->free_sections;
437 }
438
439 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
440 {
441 return DIRTY_I(sbi)->nr_dirty[PRE];
442 }
443
444 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
445 {
446 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
447 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
448 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
449 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
450 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
451 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
452 }
453
454 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
455 {
456 return SM_I(sbi)->ovp_segments;
457 }
458
459 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
460 {
461 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
462 }
463
464 static inline int reserved_sections(struct f2fs_sb_info *sbi)
465 {
466 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
467 }
468
469 static inline bool need_SSR(struct f2fs_sb_info *sbi)
470 {
471 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
472 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
473 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
474 reserved_sections(sbi) + 1);
475 }
476
477 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
478 {
479 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
480 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
481
482 node_secs += get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
483
484 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
485 return false;
486
487 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
488 reserved_sections(sbi));
489 }
490
491 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
492 {
493 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
494 }
495
496 static inline int utilization(struct f2fs_sb_info *sbi)
497 {
498 return div_u64((u64)valid_user_blocks(sbi) * 100,
499 sbi->user_block_count);
500 }
501
502 /*
503 * Sometimes f2fs may be better to drop out-of-place update policy.
504 * And, users can control the policy through sysfs entries.
505 * There are five policies with triggering conditions as follows.
506 * F2FS_IPU_FORCE - all the time,
507 * F2FS_IPU_SSR - if SSR mode is activated,
508 * F2FS_IPU_UTIL - if FS utilization is over threashold,
509 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
510 * threashold,
511 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
512 * storages. IPU will be triggered only if the # of dirty
513 * pages over min_fsync_blocks.
514 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
515 */
516 #define DEF_MIN_IPU_UTIL 70
517 #define DEF_MIN_FSYNC_BLOCKS 8
518
519 enum {
520 F2FS_IPU_FORCE,
521 F2FS_IPU_SSR,
522 F2FS_IPU_UTIL,
523 F2FS_IPU_SSR_UTIL,
524 F2FS_IPU_FSYNC,
525 };
526
527 static inline bool need_inplace_update(struct inode *inode)
528 {
529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
530 unsigned int policy = SM_I(sbi)->ipu_policy;
531
532 /* IPU can be done only for the user data */
533 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
534 return false;
535
536 if (policy & (0x1 << F2FS_IPU_FORCE))
537 return true;
538 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
539 return true;
540 if (policy & (0x1 << F2FS_IPU_UTIL) &&
541 utilization(sbi) > SM_I(sbi)->min_ipu_util)
542 return true;
543 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
544 utilization(sbi) > SM_I(sbi)->min_ipu_util)
545 return true;
546
547 /* this is only set during fdatasync */
548 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
549 is_inode_flag_set(inode, FI_NEED_IPU))
550 return true;
551
552 return false;
553 }
554
555 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
556 int type)
557 {
558 struct curseg_info *curseg = CURSEG_I(sbi, type);
559 return curseg->segno;
560 }
561
562 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
563 int type)
564 {
565 struct curseg_info *curseg = CURSEG_I(sbi, type);
566 return curseg->alloc_type;
567 }
568
569 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
570 {
571 struct curseg_info *curseg = CURSEG_I(sbi, type);
572 return curseg->next_blkoff;
573 }
574
575 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
576 {
577 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
578 }
579
580 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
581 {
582 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
583 || blk_addr >= MAX_BLKADDR(sbi));
584 }
585
586 /*
587 * Summary block is always treated as an invalid block
588 */
589 static inline void check_block_count(struct f2fs_sb_info *sbi,
590 int segno, struct f2fs_sit_entry *raw_sit)
591 {
592 #ifdef CONFIG_F2FS_CHECK_FS
593 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
594 int valid_blocks = 0;
595 int cur_pos = 0, next_pos;
596
597 /* check bitmap with valid block count */
598 do {
599 if (is_valid) {
600 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
601 sbi->blocks_per_seg,
602 cur_pos);
603 valid_blocks += next_pos - cur_pos;
604 } else
605 next_pos = find_next_bit_le(&raw_sit->valid_map,
606 sbi->blocks_per_seg,
607 cur_pos);
608 cur_pos = next_pos;
609 is_valid = !is_valid;
610 } while (cur_pos < sbi->blocks_per_seg);
611 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
612 #endif
613 /* check segment usage, and check boundary of a given segment number */
614 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
615 || segno > TOTAL_SEGS(sbi) - 1);
616 }
617
618 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
619 unsigned int start)
620 {
621 struct sit_info *sit_i = SIT_I(sbi);
622 unsigned int offset = SIT_BLOCK_OFFSET(start);
623 block_t blk_addr = sit_i->sit_base_addr + offset;
624
625 check_seg_range(sbi, start);
626
627 /* calculate sit block address */
628 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
629 blk_addr += sit_i->sit_blocks;
630
631 return blk_addr;
632 }
633
634 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
635 pgoff_t block_addr)
636 {
637 struct sit_info *sit_i = SIT_I(sbi);
638 block_addr -= sit_i->sit_base_addr;
639 if (block_addr < sit_i->sit_blocks)
640 block_addr += sit_i->sit_blocks;
641 else
642 block_addr -= sit_i->sit_blocks;
643
644 return block_addr + sit_i->sit_base_addr;
645 }
646
647 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
648 {
649 unsigned int block_off = SIT_BLOCK_OFFSET(start);
650
651 f2fs_change_bit(block_off, sit_i->sit_bitmap);
652 }
653
654 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
655 {
656 struct sit_info *sit_i = SIT_I(sbi);
657 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
658 sit_i->mounted_time;
659 }
660
661 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
662 unsigned int ofs_in_node, unsigned char version)
663 {
664 sum->nid = cpu_to_le32(nid);
665 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
666 sum->version = version;
667 }
668
669 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
670 {
671 return __start_cp_addr(sbi) +
672 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
673 }
674
675 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
676 {
677 return __start_cp_addr(sbi) +
678 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
679 - (base + 1) + type;
680 }
681
682 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
683 {
684 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
685 return true;
686 return false;
687 }
688
689 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
690 {
691 struct block_device *bdev = sbi->sb->s_bdev;
692 struct request_queue *q = bdev_get_queue(bdev);
693 return SECTOR_TO_BLOCK(queue_max_sectors(q));
694 }
695
696 /*
697 * It is very important to gather dirty pages and write at once, so that we can
698 * submit a big bio without interfering other data writes.
699 * By default, 512 pages for directory data,
700 * 512 pages (2MB) * 3 for three types of nodes, and
701 * max_bio_blocks for meta are set.
702 */
703 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
704 {
705 if (sbi->sb->s_bdi->wb.dirty_exceeded)
706 return 0;
707
708 if (type == DATA)
709 return sbi->blocks_per_seg;
710 else if (type == NODE)
711 return 3 * sbi->blocks_per_seg;
712 else if (type == META)
713 return MAX_BIO_BLOCKS(sbi);
714 else
715 return 0;
716 }
717
718 /*
719 * When writing pages, it'd better align nr_to_write for segment size.
720 */
721 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
722 struct writeback_control *wbc)
723 {
724 long nr_to_write, desired;
725
726 if (wbc->sync_mode != WB_SYNC_NONE)
727 return 0;
728
729 nr_to_write = wbc->nr_to_write;
730
731 if (type == DATA)
732 desired = 4096;
733 else if (type == NODE)
734 desired = 3 * max_hw_blocks(sbi);
735 else
736 desired = MAX_BIO_BLOCKS(sbi);
737
738 wbc->nr_to_write = desired;
739 return desired - nr_to_write;
740 }