]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/f2fs/segment.h
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm...
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */
20
21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
26
27 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
29
30 #define IS_CURSEG(sbi, seg) \
31 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
34 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
35 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
36 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
37
38 #define IS_CURSEC(sbi, secno) \
39 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
46 sbi->segs_per_sec) || \
47 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
48 sbi->segs_per_sec) || \
49 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
50 sbi->segs_per_sec)) \
51
52 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
53 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
54
55 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
56 #define MAIN_SECS(sbi) (sbi->total_sections)
57
58 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
59 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
60
61 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
62 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
63 sbi->log_blocks_per_seg))
64
65 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
66 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
67
68 #define NEXT_FREE_BLKADDR(sbi, curseg) \
69 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
70
71 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
72 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
73 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
74 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
75 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
76
77 #define GET_SEGNO(sbi, blk_addr) \
78 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
79 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
80 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
81 #define GET_SECNO(sbi, segno) \
82 ((segno) / sbi->segs_per_sec)
83 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
84 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
85
86 #define GET_SUM_BLOCK(sbi, segno) \
87 ((sbi->sm_info->ssa_blkaddr) + segno)
88
89 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
90 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
91
92 #define SIT_ENTRY_OFFSET(sit_i, segno) \
93 (segno % sit_i->sents_per_block)
94 #define SIT_BLOCK_OFFSET(segno) \
95 (segno / SIT_ENTRY_PER_BLOCK)
96 #define START_SEGNO(segno) \
97 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
98 #define SIT_BLK_CNT(sbi) \
99 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100 #define f2fs_bitmap_size(nr) \
101 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
102
103 #define SECTOR_FROM_BLOCK(blk_addr) \
104 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105 #define SECTOR_TO_BLOCK(sectors) \
106 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
107
108 /*
109 * indicate a block allocation direction: RIGHT and LEFT.
110 * RIGHT means allocating new sections towards the end of volume.
111 * LEFT means the opposite direction.
112 */
113 enum {
114 ALLOC_RIGHT = 0,
115 ALLOC_LEFT
116 };
117
118 /*
119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120 * LFS writes data sequentially with cleaning operations.
121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122 */
123 enum {
124 LFS = 0,
125 SSR
126 };
127
128 /*
129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130 * GC_CB is based on cost-benefit algorithm.
131 * GC_GREEDY is based on greedy algorithm.
132 */
133 enum {
134 GC_CB = 0,
135 GC_GREEDY
136 };
137
138 /*
139 * BG_GC means the background cleaning job.
140 * FG_GC means the on-demand cleaning job.
141 * FORCE_FG_GC means on-demand cleaning job in background.
142 */
143 enum {
144 BG_GC = 0,
145 FG_GC,
146 FORCE_FG_GC,
147 };
148
149 /* for a function parameter to select a victim segment */
150 struct victim_sel_policy {
151 int alloc_mode; /* LFS or SSR */
152 int gc_mode; /* GC_CB or GC_GREEDY */
153 unsigned long *dirty_segmap; /* dirty segment bitmap */
154 unsigned int max_search; /* maximum # of segments to search */
155 unsigned int offset; /* last scanned bitmap offset */
156 unsigned int ofs_unit; /* bitmap search unit */
157 unsigned int min_cost; /* minimum cost */
158 unsigned int min_segno; /* segment # having min. cost */
159 };
160
161 struct seg_entry {
162 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */
163 unsigned int valid_blocks:10; /* # of valid blocks */
164 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */
165 unsigned int padding:6; /* padding */
166 unsigned char *cur_valid_map; /* validity bitmap of blocks */
167 /*
168 * # of valid blocks and the validity bitmap stored in the the last
169 * checkpoint pack. This information is used by the SSR mode.
170 */
171 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */
172 unsigned char *discard_map;
173 unsigned long long mtime; /* modification time of the segment */
174 };
175
176 struct sec_entry {
177 unsigned int valid_blocks; /* # of valid blocks in a section */
178 };
179
180 struct segment_allocation {
181 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
182 };
183
184 /*
185 * this value is set in page as a private data which indicate that
186 * the page is atomically written, and it is in inmem_pages list.
187 */
188 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1)
189
190 #define IS_ATOMIC_WRITTEN_PAGE(page) \
191 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
192
193 struct inmem_pages {
194 struct list_head list;
195 struct page *page;
196 block_t old_addr; /* for revoking when fail to commit */
197 };
198
199 struct sit_info {
200 const struct segment_allocation *s_ops;
201
202 block_t sit_base_addr; /* start block address of SIT area */
203 block_t sit_blocks; /* # of blocks used by SIT area */
204 block_t written_valid_blocks; /* # of valid blocks in main area */
205 char *sit_bitmap; /* SIT bitmap pointer */
206 unsigned int bitmap_size; /* SIT bitmap size */
207
208 unsigned long *tmp_map; /* bitmap for temporal use */
209 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
210 unsigned int dirty_sentries; /* # of dirty sentries */
211 unsigned int sents_per_block; /* # of SIT entries per block */
212 struct mutex sentry_lock; /* to protect SIT cache */
213 struct seg_entry *sentries; /* SIT segment-level cache */
214 struct sec_entry *sec_entries; /* SIT section-level cache */
215
216 /* for cost-benefit algorithm in cleaning procedure */
217 unsigned long long elapsed_time; /* elapsed time after mount */
218 unsigned long long mounted_time; /* mount time */
219 unsigned long long min_mtime; /* min. modification time */
220 unsigned long long max_mtime; /* max. modification time */
221 };
222
223 struct free_segmap_info {
224 unsigned int start_segno; /* start segment number logically */
225 unsigned int free_segments; /* # of free segments */
226 unsigned int free_sections; /* # of free sections */
227 spinlock_t segmap_lock; /* free segmap lock */
228 unsigned long *free_segmap; /* free segment bitmap */
229 unsigned long *free_secmap; /* free section bitmap */
230 };
231
232 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
233 enum dirty_type {
234 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
235 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
236 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
237 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
238 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
239 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
240 DIRTY, /* to count # of dirty segments */
241 PRE, /* to count # of entirely obsolete segments */
242 NR_DIRTY_TYPE
243 };
244
245 struct dirty_seglist_info {
246 const struct victim_selection *v_ops; /* victim selction operation */
247 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
248 struct mutex seglist_lock; /* lock for segment bitmaps */
249 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
250 unsigned long *victim_secmap; /* background GC victims */
251 };
252
253 /* victim selection function for cleaning and SSR */
254 struct victim_selection {
255 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
256 int, int, char);
257 };
258
259 /* for active log information */
260 struct curseg_info {
261 struct mutex curseg_mutex; /* lock for consistency */
262 struct f2fs_summary_block *sum_blk; /* cached summary block */
263 struct rw_semaphore journal_rwsem; /* protect journal area */
264 struct f2fs_journal *journal; /* cached journal info */
265 unsigned char alloc_type; /* current allocation type */
266 unsigned int segno; /* current segment number */
267 unsigned short next_blkoff; /* next block offset to write */
268 unsigned int zone; /* current zone number */
269 unsigned int next_segno; /* preallocated segment */
270 };
271
272 struct sit_entry_set {
273 struct list_head set_list; /* link with all sit sets */
274 unsigned int start_segno; /* start segno of sits in set */
275 unsigned int entry_cnt; /* the # of sit entries in set */
276 };
277
278 /*
279 * inline functions
280 */
281 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
282 {
283 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
284 }
285
286 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
287 unsigned int segno)
288 {
289 struct sit_info *sit_i = SIT_I(sbi);
290 return &sit_i->sentries[segno];
291 }
292
293 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
294 unsigned int segno)
295 {
296 struct sit_info *sit_i = SIT_I(sbi);
297 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
298 }
299
300 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
301 unsigned int segno, int section)
302 {
303 /*
304 * In order to get # of valid blocks in a section instantly from many
305 * segments, f2fs manages two counting structures separately.
306 */
307 if (section > 1)
308 return get_sec_entry(sbi, segno)->valid_blocks;
309 else
310 return get_seg_entry(sbi, segno)->valid_blocks;
311 }
312
313 static inline void seg_info_from_raw_sit(struct seg_entry *se,
314 struct f2fs_sit_entry *rs)
315 {
316 se->valid_blocks = GET_SIT_VBLOCKS(rs);
317 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
318 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
319 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
320 se->type = GET_SIT_TYPE(rs);
321 se->mtime = le64_to_cpu(rs->mtime);
322 }
323
324 static inline void seg_info_to_raw_sit(struct seg_entry *se,
325 struct f2fs_sit_entry *rs)
326 {
327 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
328 se->valid_blocks;
329 rs->vblocks = cpu_to_le16(raw_vblocks);
330 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
331 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
332 se->ckpt_valid_blocks = se->valid_blocks;
333 rs->mtime = cpu_to_le64(se->mtime);
334 }
335
336 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
337 unsigned int max, unsigned int segno)
338 {
339 unsigned int ret;
340 spin_lock(&free_i->segmap_lock);
341 ret = find_next_bit(free_i->free_segmap, max, segno);
342 spin_unlock(&free_i->segmap_lock);
343 return ret;
344 }
345
346 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
347 {
348 struct free_segmap_info *free_i = FREE_I(sbi);
349 unsigned int secno = segno / sbi->segs_per_sec;
350 unsigned int start_segno = secno * sbi->segs_per_sec;
351 unsigned int next;
352
353 spin_lock(&free_i->segmap_lock);
354 clear_bit(segno, free_i->free_segmap);
355 free_i->free_segments++;
356
357 next = find_next_bit(free_i->free_segmap,
358 start_segno + sbi->segs_per_sec, start_segno);
359 if (next >= start_segno + sbi->segs_per_sec) {
360 clear_bit(secno, free_i->free_secmap);
361 free_i->free_sections++;
362 }
363 spin_unlock(&free_i->segmap_lock);
364 }
365
366 static inline void __set_inuse(struct f2fs_sb_info *sbi,
367 unsigned int segno)
368 {
369 struct free_segmap_info *free_i = FREE_I(sbi);
370 unsigned int secno = segno / sbi->segs_per_sec;
371 set_bit(segno, free_i->free_segmap);
372 free_i->free_segments--;
373 if (!test_and_set_bit(secno, free_i->free_secmap))
374 free_i->free_sections--;
375 }
376
377 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
378 unsigned int segno)
379 {
380 struct free_segmap_info *free_i = FREE_I(sbi);
381 unsigned int secno = segno / sbi->segs_per_sec;
382 unsigned int start_segno = secno * sbi->segs_per_sec;
383 unsigned int next;
384
385 spin_lock(&free_i->segmap_lock);
386 if (test_and_clear_bit(segno, free_i->free_segmap)) {
387 free_i->free_segments++;
388
389 next = find_next_bit(free_i->free_segmap,
390 start_segno + sbi->segs_per_sec, start_segno);
391 if (next >= start_segno + sbi->segs_per_sec) {
392 if (test_and_clear_bit(secno, free_i->free_secmap))
393 free_i->free_sections++;
394 }
395 }
396 spin_unlock(&free_i->segmap_lock);
397 }
398
399 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
400 unsigned int segno)
401 {
402 struct free_segmap_info *free_i = FREE_I(sbi);
403 unsigned int secno = segno / sbi->segs_per_sec;
404 spin_lock(&free_i->segmap_lock);
405 if (!test_and_set_bit(segno, free_i->free_segmap)) {
406 free_i->free_segments--;
407 if (!test_and_set_bit(secno, free_i->free_secmap))
408 free_i->free_sections--;
409 }
410 spin_unlock(&free_i->segmap_lock);
411 }
412
413 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
414 void *dst_addr)
415 {
416 struct sit_info *sit_i = SIT_I(sbi);
417 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
418 }
419
420 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
421 {
422 return SIT_I(sbi)->written_valid_blocks;
423 }
424
425 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
426 {
427 return FREE_I(sbi)->free_segments;
428 }
429
430 static inline int reserved_segments(struct f2fs_sb_info *sbi)
431 {
432 return SM_I(sbi)->reserved_segments;
433 }
434
435 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
436 {
437 return FREE_I(sbi)->free_sections;
438 }
439
440 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
441 {
442 return DIRTY_I(sbi)->nr_dirty[PRE];
443 }
444
445 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
446 {
447 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
448 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
449 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
450 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
451 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
452 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
453 }
454
455 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
456 {
457 return SM_I(sbi)->ovp_segments;
458 }
459
460 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
461 {
462 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
463 }
464
465 static inline int reserved_sections(struct f2fs_sb_info *sbi)
466 {
467 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
468 }
469
470 static inline bool need_SSR(struct f2fs_sb_info *sbi)
471 {
472 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
473 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
474 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
475
476 if (test_opt(sbi, LFS))
477 return false;
478
479 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
480 reserved_sections(sbi) + 1);
481 }
482
483 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
484 int freed, int needed)
485 {
486 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
487 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
488 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
489
490 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
491 return false;
492
493 return (free_sections(sbi) + freed) <=
494 (node_secs + 2 * dent_secs + imeta_secs +
495 reserved_sections(sbi) + needed);
496 }
497
498 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
499 {
500 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
501 }
502
503 static inline int utilization(struct f2fs_sb_info *sbi)
504 {
505 return div_u64((u64)valid_user_blocks(sbi) * 100,
506 sbi->user_block_count);
507 }
508
509 /*
510 * Sometimes f2fs may be better to drop out-of-place update policy.
511 * And, users can control the policy through sysfs entries.
512 * There are five policies with triggering conditions as follows.
513 * F2FS_IPU_FORCE - all the time,
514 * F2FS_IPU_SSR - if SSR mode is activated,
515 * F2FS_IPU_UTIL - if FS utilization is over threashold,
516 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
517 * threashold,
518 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
519 * storages. IPU will be triggered only if the # of dirty
520 * pages over min_fsync_blocks.
521 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
522 */
523 #define DEF_MIN_IPU_UTIL 70
524 #define DEF_MIN_FSYNC_BLOCKS 8
525
526 enum {
527 F2FS_IPU_FORCE,
528 F2FS_IPU_SSR,
529 F2FS_IPU_UTIL,
530 F2FS_IPU_SSR_UTIL,
531 F2FS_IPU_FSYNC,
532 };
533
534 static inline bool need_inplace_update(struct inode *inode)
535 {
536 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
537 unsigned int policy = SM_I(sbi)->ipu_policy;
538
539 /* IPU can be done only for the user data */
540 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
541 return false;
542
543 if (test_opt(sbi, LFS))
544 return false;
545
546 if (policy & (0x1 << F2FS_IPU_FORCE))
547 return true;
548 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
549 return true;
550 if (policy & (0x1 << F2FS_IPU_UTIL) &&
551 utilization(sbi) > SM_I(sbi)->min_ipu_util)
552 return true;
553 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
554 utilization(sbi) > SM_I(sbi)->min_ipu_util)
555 return true;
556
557 /* this is only set during fdatasync */
558 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
559 is_inode_flag_set(inode, FI_NEED_IPU))
560 return true;
561
562 return false;
563 }
564
565 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
566 int type)
567 {
568 struct curseg_info *curseg = CURSEG_I(sbi, type);
569 return curseg->segno;
570 }
571
572 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
573 int type)
574 {
575 struct curseg_info *curseg = CURSEG_I(sbi, type);
576 return curseg->alloc_type;
577 }
578
579 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
580 {
581 struct curseg_info *curseg = CURSEG_I(sbi, type);
582 return curseg->next_blkoff;
583 }
584
585 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
586 {
587 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
588 }
589
590 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
591 {
592 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
593 || blk_addr >= MAX_BLKADDR(sbi));
594 }
595
596 /*
597 * Summary block is always treated as an invalid block
598 */
599 static inline void check_block_count(struct f2fs_sb_info *sbi,
600 int segno, struct f2fs_sit_entry *raw_sit)
601 {
602 #ifdef CONFIG_F2FS_CHECK_FS
603 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
604 int valid_blocks = 0;
605 int cur_pos = 0, next_pos;
606
607 /* check bitmap with valid block count */
608 do {
609 if (is_valid) {
610 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
611 sbi->blocks_per_seg,
612 cur_pos);
613 valid_blocks += next_pos - cur_pos;
614 } else
615 next_pos = find_next_bit_le(&raw_sit->valid_map,
616 sbi->blocks_per_seg,
617 cur_pos);
618 cur_pos = next_pos;
619 is_valid = !is_valid;
620 } while (cur_pos < sbi->blocks_per_seg);
621 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
622 #endif
623 /* check segment usage, and check boundary of a given segment number */
624 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
625 || segno > TOTAL_SEGS(sbi) - 1);
626 }
627
628 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
629 unsigned int start)
630 {
631 struct sit_info *sit_i = SIT_I(sbi);
632 unsigned int offset = SIT_BLOCK_OFFSET(start);
633 block_t blk_addr = sit_i->sit_base_addr + offset;
634
635 check_seg_range(sbi, start);
636
637 /* calculate sit block address */
638 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
639 blk_addr += sit_i->sit_blocks;
640
641 return blk_addr;
642 }
643
644 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
645 pgoff_t block_addr)
646 {
647 struct sit_info *sit_i = SIT_I(sbi);
648 block_addr -= sit_i->sit_base_addr;
649 if (block_addr < sit_i->sit_blocks)
650 block_addr += sit_i->sit_blocks;
651 else
652 block_addr -= sit_i->sit_blocks;
653
654 return block_addr + sit_i->sit_base_addr;
655 }
656
657 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
658 {
659 unsigned int block_off = SIT_BLOCK_OFFSET(start);
660
661 f2fs_change_bit(block_off, sit_i->sit_bitmap);
662 }
663
664 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
665 {
666 struct sit_info *sit_i = SIT_I(sbi);
667 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
668 sit_i->mounted_time;
669 }
670
671 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
672 unsigned int ofs_in_node, unsigned char version)
673 {
674 sum->nid = cpu_to_le32(nid);
675 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
676 sum->version = version;
677 }
678
679 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
680 {
681 return __start_cp_addr(sbi) +
682 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
683 }
684
685 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
686 {
687 return __start_cp_addr(sbi) +
688 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
689 - (base + 1) + type;
690 }
691
692 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
693 {
694 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
695 return true;
696 return false;
697 }
698
699 /*
700 * It is very important to gather dirty pages and write at once, so that we can
701 * submit a big bio without interfering other data writes.
702 * By default, 512 pages for directory data,
703 * 512 pages (2MB) * 3 for three types of nodes, and
704 * max_bio_blocks for meta are set.
705 */
706 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
707 {
708 if (sbi->sb->s_bdi->wb.dirty_exceeded)
709 return 0;
710
711 if (type == DATA)
712 return sbi->blocks_per_seg;
713 else if (type == NODE)
714 return 8 * sbi->blocks_per_seg;
715 else if (type == META)
716 return 8 * BIO_MAX_PAGES;
717 else
718 return 0;
719 }
720
721 /*
722 * When writing pages, it'd better align nr_to_write for segment size.
723 */
724 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
725 struct writeback_control *wbc)
726 {
727 long nr_to_write, desired;
728
729 if (wbc->sync_mode != WB_SYNC_NONE)
730 return 0;
731
732 nr_to_write = wbc->nr_to_write;
733 desired = BIO_MAX_PAGES;
734 if (type == NODE)
735 desired <<= 1;
736
737 wbc->nr_to_write = desired;
738 return desired - nr_to_write;
739 }