]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/segment.h
writeback: separate out include/linux/backing-dev-defs.h
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13
14 /* constant macro */
15 #define NULL_SEGNO ((unsigned int)(~0))
16 #define NULL_SECNO ((unsigned int)(~0))
17
18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
19
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
23
24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
26
27 #define IS_CURSEG(sbi, seg) \
28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
34
35 #define IS_CURSEC(sbi, secno) \
36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
37 sbi->segs_per_sec) || \
38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
39 sbi->segs_per_sec) || \
40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
41 sbi->segs_per_sec) || \
42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
43 sbi->segs_per_sec) || \
44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
45 sbi->segs_per_sec) || \
46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
47 sbi->segs_per_sec)) \
48
49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
51
52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
53 #define MAIN_SECS(sbi) (sbi->total_sections)
54
55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
57
58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
60 sbi->log_blocks_per_seg))
61
62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
64
65 #define NEXT_FREE_BLKADDR(sbi, curseg) \
66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
67
68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
73
74 #define GET_SEGNO(sbi, blk_addr) \
75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
77 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
78 #define GET_SECNO(sbi, segno) \
79 ((segno) / sbi->segs_per_sec)
80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
82
83 #define GET_SUM_BLOCK(sbi, segno) \
84 ((sbi->sm_info->ssa_blkaddr) + segno)
85
86 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
88
89 #define SIT_ENTRY_OFFSET(sit_i, segno) \
90 (segno % sit_i->sents_per_block)
91 #define SIT_BLOCK_OFFSET(segno) \
92 (segno / SIT_ENTRY_PER_BLOCK)
93 #define START_SEGNO(segno) \
94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
95 #define SIT_BLK_CNT(sbi) \
96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
97 #define f2fs_bitmap_size(nr) \
98 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
99
100 #define SECTOR_FROM_BLOCK(blk_addr) \
101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102 #define SECTOR_TO_BLOCK(sectors) \
103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104 #define MAX_BIO_BLOCKS(sbi) \
105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107 /*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112 enum {
113 ALLOC_RIGHT = 0,
114 ALLOC_LEFT
115 };
116
117 /*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
121 */
122 enum {
123 LFS = 0,
124 SSR
125 };
126
127 /*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
131 */
132 enum {
133 GC_CB = 0,
134 GC_GREEDY
135 };
136
137 /*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 */
141 enum {
142 BG_GC = 0,
143 FG_GC
144 };
145
146 /* for a function parameter to select a victim segment */
147 struct victim_sel_policy {
148 int alloc_mode; /* LFS or SSR */
149 int gc_mode; /* GC_CB or GC_GREEDY */
150 unsigned long *dirty_segmap; /* dirty segment bitmap */
151 unsigned int max_search; /* maximum # of segments to search */
152 unsigned int offset; /* last scanned bitmap offset */
153 unsigned int ofs_unit; /* bitmap search unit */
154 unsigned int min_cost; /* minimum cost */
155 unsigned int min_segno; /* segment # having min. cost */
156 };
157
158 struct seg_entry {
159 unsigned short valid_blocks; /* # of valid blocks */
160 unsigned char *cur_valid_map; /* validity bitmap of blocks */
161 /*
162 * # of valid blocks and the validity bitmap stored in the the last
163 * checkpoint pack. This information is used by the SSR mode.
164 */
165 unsigned short ckpt_valid_blocks;
166 unsigned char *ckpt_valid_map;
167 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
168 unsigned long long mtime; /* modification time of the segment */
169 };
170
171 struct sec_entry {
172 unsigned int valid_blocks; /* # of valid blocks in a section */
173 };
174
175 struct segment_allocation {
176 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
177 };
178
179 struct inmem_pages {
180 struct list_head list;
181 struct page *page;
182 };
183
184 struct sit_info {
185 const struct segment_allocation *s_ops;
186
187 block_t sit_base_addr; /* start block address of SIT area */
188 block_t sit_blocks; /* # of blocks used by SIT area */
189 block_t written_valid_blocks; /* # of valid blocks in main area */
190 char *sit_bitmap; /* SIT bitmap pointer */
191 unsigned int bitmap_size; /* SIT bitmap size */
192
193 unsigned long *tmp_map; /* bitmap for temporal use */
194 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
195 unsigned int dirty_sentries; /* # of dirty sentries */
196 unsigned int sents_per_block; /* # of SIT entries per block */
197 struct mutex sentry_lock; /* to protect SIT cache */
198 struct seg_entry *sentries; /* SIT segment-level cache */
199 struct sec_entry *sec_entries; /* SIT section-level cache */
200
201 /* for cost-benefit algorithm in cleaning procedure */
202 unsigned long long elapsed_time; /* elapsed time after mount */
203 unsigned long long mounted_time; /* mount time */
204 unsigned long long min_mtime; /* min. modification time */
205 unsigned long long max_mtime; /* max. modification time */
206 };
207
208 struct free_segmap_info {
209 unsigned int start_segno; /* start segment number logically */
210 unsigned int free_segments; /* # of free segments */
211 unsigned int free_sections; /* # of free sections */
212 spinlock_t segmap_lock; /* free segmap lock */
213 unsigned long *free_segmap; /* free segment bitmap */
214 unsigned long *free_secmap; /* free section bitmap */
215 };
216
217 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
218 enum dirty_type {
219 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
220 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
221 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
222 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
223 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
224 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
225 DIRTY, /* to count # of dirty segments */
226 PRE, /* to count # of entirely obsolete segments */
227 NR_DIRTY_TYPE
228 };
229
230 struct dirty_seglist_info {
231 const struct victim_selection *v_ops; /* victim selction operation */
232 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
233 struct mutex seglist_lock; /* lock for segment bitmaps */
234 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
235 unsigned long *victim_secmap; /* background GC victims */
236 };
237
238 /* victim selection function for cleaning and SSR */
239 struct victim_selection {
240 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
241 int, int, char);
242 };
243
244 /* for active log information */
245 struct curseg_info {
246 struct mutex curseg_mutex; /* lock for consistency */
247 struct f2fs_summary_block *sum_blk; /* cached summary block */
248 unsigned char alloc_type; /* current allocation type */
249 unsigned int segno; /* current segment number */
250 unsigned short next_blkoff; /* next block offset to write */
251 unsigned int zone; /* current zone number */
252 unsigned int next_segno; /* preallocated segment */
253 };
254
255 struct sit_entry_set {
256 struct list_head set_list; /* link with all sit sets */
257 unsigned int start_segno; /* start segno of sits in set */
258 unsigned int entry_cnt; /* the # of sit entries in set */
259 };
260
261 /*
262 * inline functions
263 */
264 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
265 {
266 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
267 }
268
269 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
270 unsigned int segno)
271 {
272 struct sit_info *sit_i = SIT_I(sbi);
273 return &sit_i->sentries[segno];
274 }
275
276 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
277 unsigned int segno)
278 {
279 struct sit_info *sit_i = SIT_I(sbi);
280 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
281 }
282
283 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
284 unsigned int segno, int section)
285 {
286 /*
287 * In order to get # of valid blocks in a section instantly from many
288 * segments, f2fs manages two counting structures separately.
289 */
290 if (section > 1)
291 return get_sec_entry(sbi, segno)->valid_blocks;
292 else
293 return get_seg_entry(sbi, segno)->valid_blocks;
294 }
295
296 static inline void seg_info_from_raw_sit(struct seg_entry *se,
297 struct f2fs_sit_entry *rs)
298 {
299 se->valid_blocks = GET_SIT_VBLOCKS(rs);
300 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
301 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
302 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
303 se->type = GET_SIT_TYPE(rs);
304 se->mtime = le64_to_cpu(rs->mtime);
305 }
306
307 static inline void seg_info_to_raw_sit(struct seg_entry *se,
308 struct f2fs_sit_entry *rs)
309 {
310 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
311 se->valid_blocks;
312 rs->vblocks = cpu_to_le16(raw_vblocks);
313 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
314 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
315 se->ckpt_valid_blocks = se->valid_blocks;
316 rs->mtime = cpu_to_le64(se->mtime);
317 }
318
319 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
320 unsigned int max, unsigned int segno)
321 {
322 unsigned int ret;
323 spin_lock(&free_i->segmap_lock);
324 ret = find_next_bit(free_i->free_segmap, max, segno);
325 spin_unlock(&free_i->segmap_lock);
326 return ret;
327 }
328
329 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
330 {
331 struct free_segmap_info *free_i = FREE_I(sbi);
332 unsigned int secno = segno / sbi->segs_per_sec;
333 unsigned int start_segno = secno * sbi->segs_per_sec;
334 unsigned int next;
335
336 spin_lock(&free_i->segmap_lock);
337 clear_bit(segno, free_i->free_segmap);
338 free_i->free_segments++;
339
340 next = find_next_bit(free_i->free_segmap,
341 start_segno + sbi->segs_per_sec, start_segno);
342 if (next >= start_segno + sbi->segs_per_sec) {
343 clear_bit(secno, free_i->free_secmap);
344 free_i->free_sections++;
345 }
346 spin_unlock(&free_i->segmap_lock);
347 }
348
349 static inline void __set_inuse(struct f2fs_sb_info *sbi,
350 unsigned int segno)
351 {
352 struct free_segmap_info *free_i = FREE_I(sbi);
353 unsigned int secno = segno / sbi->segs_per_sec;
354 set_bit(segno, free_i->free_segmap);
355 free_i->free_segments--;
356 if (!test_and_set_bit(secno, free_i->free_secmap))
357 free_i->free_sections--;
358 }
359
360 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
361 unsigned int segno)
362 {
363 struct free_segmap_info *free_i = FREE_I(sbi);
364 unsigned int secno = segno / sbi->segs_per_sec;
365 unsigned int start_segno = secno * sbi->segs_per_sec;
366 unsigned int next;
367
368 spin_lock(&free_i->segmap_lock);
369 if (test_and_clear_bit(segno, free_i->free_segmap)) {
370 free_i->free_segments++;
371
372 next = find_next_bit(free_i->free_segmap,
373 start_segno + sbi->segs_per_sec, start_segno);
374 if (next >= start_segno + sbi->segs_per_sec) {
375 if (test_and_clear_bit(secno, free_i->free_secmap))
376 free_i->free_sections++;
377 }
378 }
379 spin_unlock(&free_i->segmap_lock);
380 }
381
382 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
383 unsigned int segno)
384 {
385 struct free_segmap_info *free_i = FREE_I(sbi);
386 unsigned int secno = segno / sbi->segs_per_sec;
387 spin_lock(&free_i->segmap_lock);
388 if (!test_and_set_bit(segno, free_i->free_segmap)) {
389 free_i->free_segments--;
390 if (!test_and_set_bit(secno, free_i->free_secmap))
391 free_i->free_sections--;
392 }
393 spin_unlock(&free_i->segmap_lock);
394 }
395
396 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
397 void *dst_addr)
398 {
399 struct sit_info *sit_i = SIT_I(sbi);
400 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
401 }
402
403 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
404 {
405 return SIT_I(sbi)->written_valid_blocks;
406 }
407
408 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
409 {
410 return FREE_I(sbi)->free_segments;
411 }
412
413 static inline int reserved_segments(struct f2fs_sb_info *sbi)
414 {
415 return SM_I(sbi)->reserved_segments;
416 }
417
418 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
419 {
420 return FREE_I(sbi)->free_sections;
421 }
422
423 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
424 {
425 return DIRTY_I(sbi)->nr_dirty[PRE];
426 }
427
428 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
429 {
430 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
431 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
433 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
434 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
435 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
436 }
437
438 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
439 {
440 return SM_I(sbi)->ovp_segments;
441 }
442
443 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
444 {
445 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
446 }
447
448 static inline int reserved_sections(struct f2fs_sb_info *sbi)
449 {
450 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
451 }
452
453 static inline bool need_SSR(struct f2fs_sb_info *sbi)
454 {
455 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
456 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
457 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
458 reserved_sections(sbi) + 1);
459 }
460
461 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
462 {
463 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
464 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
465
466 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
467 return false;
468
469 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
470 reserved_sections(sbi));
471 }
472
473 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
474 {
475 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
476 }
477
478 static inline int utilization(struct f2fs_sb_info *sbi)
479 {
480 return div_u64((u64)valid_user_blocks(sbi) * 100,
481 sbi->user_block_count);
482 }
483
484 /*
485 * Sometimes f2fs may be better to drop out-of-place update policy.
486 * And, users can control the policy through sysfs entries.
487 * There are five policies with triggering conditions as follows.
488 * F2FS_IPU_FORCE - all the time,
489 * F2FS_IPU_SSR - if SSR mode is activated,
490 * F2FS_IPU_UTIL - if FS utilization is over threashold,
491 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
492 * threashold,
493 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
494 * storages. IPU will be triggered only if the # of dirty
495 * pages over min_fsync_blocks.
496 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
497 */
498 #define DEF_MIN_IPU_UTIL 70
499 #define DEF_MIN_FSYNC_BLOCKS 8
500
501 enum {
502 F2FS_IPU_FORCE,
503 F2FS_IPU_SSR,
504 F2FS_IPU_UTIL,
505 F2FS_IPU_SSR_UTIL,
506 F2FS_IPU_FSYNC,
507 };
508
509 static inline bool need_inplace_update(struct inode *inode)
510 {
511 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
512 unsigned int policy = SM_I(sbi)->ipu_policy;
513
514 /* IPU can be done only for the user data */
515 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
516 return false;
517
518 if (policy & (0x1 << F2FS_IPU_FORCE))
519 return true;
520 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
521 return true;
522 if (policy & (0x1 << F2FS_IPU_UTIL) &&
523 utilization(sbi) > SM_I(sbi)->min_ipu_util)
524 return true;
525 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
526 utilization(sbi) > SM_I(sbi)->min_ipu_util)
527 return true;
528
529 /* this is only set during fdatasync */
530 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
531 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
532 return true;
533
534 return false;
535 }
536
537 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
538 int type)
539 {
540 struct curseg_info *curseg = CURSEG_I(sbi, type);
541 return curseg->segno;
542 }
543
544 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
545 int type)
546 {
547 struct curseg_info *curseg = CURSEG_I(sbi, type);
548 return curseg->alloc_type;
549 }
550
551 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
552 {
553 struct curseg_info *curseg = CURSEG_I(sbi, type);
554 return curseg->next_blkoff;
555 }
556
557 #ifdef CONFIG_F2FS_CHECK_FS
558 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
559 {
560 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
561 }
562
563 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
564 {
565 BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
566 BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
567 }
568
569 /*
570 * Summary block is always treated as an invalid block
571 */
572 static inline void check_block_count(struct f2fs_sb_info *sbi,
573 int segno, struct f2fs_sit_entry *raw_sit)
574 {
575 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
576 int valid_blocks = 0;
577 int cur_pos = 0, next_pos;
578
579 /* check segment usage */
580 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
581
582 /* check boundary of a given segment number */
583 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
584
585 /* check bitmap with valid block count */
586 do {
587 if (is_valid) {
588 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
589 sbi->blocks_per_seg,
590 cur_pos);
591 valid_blocks += next_pos - cur_pos;
592 } else
593 next_pos = find_next_bit_le(&raw_sit->valid_map,
594 sbi->blocks_per_seg,
595 cur_pos);
596 cur_pos = next_pos;
597 is_valid = !is_valid;
598 } while (cur_pos < sbi->blocks_per_seg);
599 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
600 }
601 #else
602 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
603 {
604 if (segno > TOTAL_SEGS(sbi) - 1)
605 set_sbi_flag(sbi, SBI_NEED_FSCK);
606 }
607
608 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
609 {
610 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
611 set_sbi_flag(sbi, SBI_NEED_FSCK);
612 }
613
614 /*
615 * Summary block is always treated as an invalid block
616 */
617 static inline void check_block_count(struct f2fs_sb_info *sbi,
618 int segno, struct f2fs_sit_entry *raw_sit)
619 {
620 /* check segment usage */
621 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
622 set_sbi_flag(sbi, SBI_NEED_FSCK);
623
624 /* check boundary of a given segment number */
625 if (segno > TOTAL_SEGS(sbi) - 1)
626 set_sbi_flag(sbi, SBI_NEED_FSCK);
627 }
628 #endif
629
630 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
631 unsigned int start)
632 {
633 struct sit_info *sit_i = SIT_I(sbi);
634 unsigned int offset = SIT_BLOCK_OFFSET(start);
635 block_t blk_addr = sit_i->sit_base_addr + offset;
636
637 check_seg_range(sbi, start);
638
639 /* calculate sit block address */
640 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
641 blk_addr += sit_i->sit_blocks;
642
643 return blk_addr;
644 }
645
646 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
647 pgoff_t block_addr)
648 {
649 struct sit_info *sit_i = SIT_I(sbi);
650 block_addr -= sit_i->sit_base_addr;
651 if (block_addr < sit_i->sit_blocks)
652 block_addr += sit_i->sit_blocks;
653 else
654 block_addr -= sit_i->sit_blocks;
655
656 return block_addr + sit_i->sit_base_addr;
657 }
658
659 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
660 {
661 unsigned int block_off = SIT_BLOCK_OFFSET(start);
662
663 f2fs_change_bit(block_off, sit_i->sit_bitmap);
664 }
665
666 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
667 {
668 struct sit_info *sit_i = SIT_I(sbi);
669 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
670 sit_i->mounted_time;
671 }
672
673 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
674 unsigned int ofs_in_node, unsigned char version)
675 {
676 sum->nid = cpu_to_le32(nid);
677 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
678 sum->version = version;
679 }
680
681 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
682 {
683 return __start_cp_addr(sbi) +
684 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
685 }
686
687 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
688 {
689 return __start_cp_addr(sbi) +
690 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
691 - (base + 1) + type;
692 }
693
694 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
695 {
696 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
697 return true;
698 return false;
699 }
700
701 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
702 {
703 struct block_device *bdev = sbi->sb->s_bdev;
704 struct request_queue *q = bdev_get_queue(bdev);
705 return SECTOR_TO_BLOCK(queue_max_sectors(q));
706 }
707
708 /*
709 * It is very important to gather dirty pages and write at once, so that we can
710 * submit a big bio without interfering other data writes.
711 * By default, 512 pages for directory data,
712 * 512 pages (2MB) * 3 for three types of nodes, and
713 * max_bio_blocks for meta are set.
714 */
715 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
716 {
717 if (sbi->sb->s_bdi->wb.dirty_exceeded)
718 return 0;
719
720 if (type == DATA)
721 return sbi->blocks_per_seg;
722 else if (type == NODE)
723 return 3 * sbi->blocks_per_seg;
724 else if (type == META)
725 return MAX_BIO_BLOCKS(sbi);
726 else
727 return 0;
728 }
729
730 /*
731 * When writing pages, it'd better align nr_to_write for segment size.
732 */
733 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
734 struct writeback_control *wbc)
735 {
736 long nr_to_write, desired;
737
738 if (wbc->sync_mode != WB_SYNC_NONE)
739 return 0;
740
741 nr_to_write = wbc->nr_to_write;
742
743 if (type == DATA)
744 desired = 4096;
745 else if (type == NODE)
746 desired = 3 * max_hw_blocks(sbi);
747 else
748 desired = MAX_BIO_BLOCKS(sbi);
749
750 wbc->nr_to_write = desired;
751 return desired - nr_to_write;
752 }