]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/super.c
f2fs: support project quota
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38
39 static struct kmem_cache *f2fs_inode_cachep;
40
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42
43 char *fault_name[FAULT_MAX] = {
44 [FAULT_KMALLOC] = "kmalloc",
45 [FAULT_PAGE_ALLOC] = "page alloc",
46 [FAULT_ALLOC_NID] = "alloc nid",
47 [FAULT_ORPHAN] = "orphan",
48 [FAULT_BLOCK] = "no more block",
49 [FAULT_DIR_DEPTH] = "too big dir depth",
50 [FAULT_EVICT_INODE] = "evict_inode fail",
51 [FAULT_TRUNCATE] = "truncate fail",
52 [FAULT_IO] = "IO error",
53 [FAULT_CHECKPOINT] = "checkpoint error",
54 };
55
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57 unsigned int rate)
58 {
59 struct f2fs_fault_info *ffi = &sbi->fault_info;
60
61 if (rate) {
62 atomic_set(&ffi->inject_ops, 0);
63 ffi->inject_rate = rate;
64 ffi->inject_type = (1 << FAULT_MAX) - 1;
65 } else {
66 memset(ffi, 0, sizeof(struct f2fs_fault_info));
67 }
68 }
69 #endif
70
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73 .scan_objects = f2fs_shrink_scan,
74 .count_objects = f2fs_shrink_count,
75 .seeks = DEFAULT_SEEKS,
76 };
77
78 enum {
79 Opt_gc_background,
80 Opt_disable_roll_forward,
81 Opt_norecovery,
82 Opt_discard,
83 Opt_nodiscard,
84 Opt_noheap,
85 Opt_heap,
86 Opt_user_xattr,
87 Opt_nouser_xattr,
88 Opt_acl,
89 Opt_noacl,
90 Opt_active_logs,
91 Opt_disable_ext_identify,
92 Opt_inline_xattr,
93 Opt_noinline_xattr,
94 Opt_inline_data,
95 Opt_inline_dentry,
96 Opt_noinline_dentry,
97 Opt_flush_merge,
98 Opt_noflush_merge,
99 Opt_nobarrier,
100 Opt_fastboot,
101 Opt_extent_cache,
102 Opt_noextent_cache,
103 Opt_noinline_data,
104 Opt_data_flush,
105 Opt_mode,
106 Opt_io_size_bits,
107 Opt_fault_injection,
108 Opt_lazytime,
109 Opt_nolazytime,
110 Opt_usrquota,
111 Opt_grpquota,
112 Opt_prjquota,
113 Opt_err,
114 };
115
116 static match_table_t f2fs_tokens = {
117 {Opt_gc_background, "background_gc=%s"},
118 {Opt_disable_roll_forward, "disable_roll_forward"},
119 {Opt_norecovery, "norecovery"},
120 {Opt_discard, "discard"},
121 {Opt_nodiscard, "nodiscard"},
122 {Opt_noheap, "no_heap"},
123 {Opt_heap, "heap"},
124 {Opt_user_xattr, "user_xattr"},
125 {Opt_nouser_xattr, "nouser_xattr"},
126 {Opt_acl, "acl"},
127 {Opt_noacl, "noacl"},
128 {Opt_active_logs, "active_logs=%u"},
129 {Opt_disable_ext_identify, "disable_ext_identify"},
130 {Opt_inline_xattr, "inline_xattr"},
131 {Opt_noinline_xattr, "noinline_xattr"},
132 {Opt_inline_data, "inline_data"},
133 {Opt_inline_dentry, "inline_dentry"},
134 {Opt_noinline_dentry, "noinline_dentry"},
135 {Opt_flush_merge, "flush_merge"},
136 {Opt_noflush_merge, "noflush_merge"},
137 {Opt_nobarrier, "nobarrier"},
138 {Opt_fastboot, "fastboot"},
139 {Opt_extent_cache, "extent_cache"},
140 {Opt_noextent_cache, "noextent_cache"},
141 {Opt_noinline_data, "noinline_data"},
142 {Opt_data_flush, "data_flush"},
143 {Opt_mode, "mode=%s"},
144 {Opt_io_size_bits, "io_bits=%u"},
145 {Opt_fault_injection, "fault_injection=%u"},
146 {Opt_lazytime, "lazytime"},
147 {Opt_nolazytime, "nolazytime"},
148 {Opt_usrquota, "usrquota"},
149 {Opt_grpquota, "grpquota"},
150 {Opt_prjquota, "prjquota"},
151 {Opt_err, NULL},
152 };
153
154 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
155 {
156 struct va_format vaf;
157 va_list args;
158
159 va_start(args, fmt);
160 vaf.fmt = fmt;
161 vaf.va = &args;
162 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
163 va_end(args);
164 }
165
166 static void init_once(void *foo)
167 {
168 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
169
170 inode_init_once(&fi->vfs_inode);
171 }
172
173 static int parse_options(struct super_block *sb, char *options)
174 {
175 struct f2fs_sb_info *sbi = F2FS_SB(sb);
176 struct request_queue *q;
177 substring_t args[MAX_OPT_ARGS];
178 char *p, *name;
179 int arg = 0;
180
181 if (!options)
182 return 0;
183
184 while ((p = strsep(&options, ",")) != NULL) {
185 int token;
186 if (!*p)
187 continue;
188 /*
189 * Initialize args struct so we know whether arg was
190 * found; some options take optional arguments.
191 */
192 args[0].to = args[0].from = NULL;
193 token = match_token(p, f2fs_tokens, args);
194
195 switch (token) {
196 case Opt_gc_background:
197 name = match_strdup(&args[0]);
198
199 if (!name)
200 return -ENOMEM;
201 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
202 set_opt(sbi, BG_GC);
203 clear_opt(sbi, FORCE_FG_GC);
204 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
205 clear_opt(sbi, BG_GC);
206 clear_opt(sbi, FORCE_FG_GC);
207 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
208 set_opt(sbi, BG_GC);
209 set_opt(sbi, FORCE_FG_GC);
210 } else {
211 kfree(name);
212 return -EINVAL;
213 }
214 kfree(name);
215 break;
216 case Opt_disable_roll_forward:
217 set_opt(sbi, DISABLE_ROLL_FORWARD);
218 break;
219 case Opt_norecovery:
220 /* this option mounts f2fs with ro */
221 set_opt(sbi, DISABLE_ROLL_FORWARD);
222 if (!f2fs_readonly(sb))
223 return -EINVAL;
224 break;
225 case Opt_discard:
226 q = bdev_get_queue(sb->s_bdev);
227 if (blk_queue_discard(q)) {
228 set_opt(sbi, DISCARD);
229 } else if (!f2fs_sb_mounted_blkzoned(sb)) {
230 f2fs_msg(sb, KERN_WARNING,
231 "mounting with \"discard\" option, but "
232 "the device does not support discard");
233 }
234 break;
235 case Opt_nodiscard:
236 if (f2fs_sb_mounted_blkzoned(sb)) {
237 f2fs_msg(sb, KERN_WARNING,
238 "discard is required for zoned block devices");
239 return -EINVAL;
240 }
241 clear_opt(sbi, DISCARD);
242 break;
243 case Opt_noheap:
244 set_opt(sbi, NOHEAP);
245 break;
246 case Opt_heap:
247 clear_opt(sbi, NOHEAP);
248 break;
249 #ifdef CONFIG_F2FS_FS_XATTR
250 case Opt_user_xattr:
251 set_opt(sbi, XATTR_USER);
252 break;
253 case Opt_nouser_xattr:
254 clear_opt(sbi, XATTR_USER);
255 break;
256 case Opt_inline_xattr:
257 set_opt(sbi, INLINE_XATTR);
258 break;
259 case Opt_noinline_xattr:
260 clear_opt(sbi, INLINE_XATTR);
261 break;
262 #else
263 case Opt_user_xattr:
264 f2fs_msg(sb, KERN_INFO,
265 "user_xattr options not supported");
266 break;
267 case Opt_nouser_xattr:
268 f2fs_msg(sb, KERN_INFO,
269 "nouser_xattr options not supported");
270 break;
271 case Opt_inline_xattr:
272 f2fs_msg(sb, KERN_INFO,
273 "inline_xattr options not supported");
274 break;
275 case Opt_noinline_xattr:
276 f2fs_msg(sb, KERN_INFO,
277 "noinline_xattr options not supported");
278 break;
279 #endif
280 #ifdef CONFIG_F2FS_FS_POSIX_ACL
281 case Opt_acl:
282 set_opt(sbi, POSIX_ACL);
283 break;
284 case Opt_noacl:
285 clear_opt(sbi, POSIX_ACL);
286 break;
287 #else
288 case Opt_acl:
289 f2fs_msg(sb, KERN_INFO, "acl options not supported");
290 break;
291 case Opt_noacl:
292 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
293 break;
294 #endif
295 case Opt_active_logs:
296 if (args->from && match_int(args, &arg))
297 return -EINVAL;
298 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
299 return -EINVAL;
300 sbi->active_logs = arg;
301 break;
302 case Opt_disable_ext_identify:
303 set_opt(sbi, DISABLE_EXT_IDENTIFY);
304 break;
305 case Opt_inline_data:
306 set_opt(sbi, INLINE_DATA);
307 break;
308 case Opt_inline_dentry:
309 set_opt(sbi, INLINE_DENTRY);
310 break;
311 case Opt_noinline_dentry:
312 clear_opt(sbi, INLINE_DENTRY);
313 break;
314 case Opt_flush_merge:
315 set_opt(sbi, FLUSH_MERGE);
316 break;
317 case Opt_noflush_merge:
318 clear_opt(sbi, FLUSH_MERGE);
319 break;
320 case Opt_nobarrier:
321 set_opt(sbi, NOBARRIER);
322 break;
323 case Opt_fastboot:
324 set_opt(sbi, FASTBOOT);
325 break;
326 case Opt_extent_cache:
327 set_opt(sbi, EXTENT_CACHE);
328 break;
329 case Opt_noextent_cache:
330 clear_opt(sbi, EXTENT_CACHE);
331 break;
332 case Opt_noinline_data:
333 clear_opt(sbi, INLINE_DATA);
334 break;
335 case Opt_data_flush:
336 set_opt(sbi, DATA_FLUSH);
337 break;
338 case Opt_mode:
339 name = match_strdup(&args[0]);
340
341 if (!name)
342 return -ENOMEM;
343 if (strlen(name) == 8 &&
344 !strncmp(name, "adaptive", 8)) {
345 if (f2fs_sb_mounted_blkzoned(sb)) {
346 f2fs_msg(sb, KERN_WARNING,
347 "adaptive mode is not allowed with "
348 "zoned block device feature");
349 kfree(name);
350 return -EINVAL;
351 }
352 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
353 } else if (strlen(name) == 3 &&
354 !strncmp(name, "lfs", 3)) {
355 set_opt_mode(sbi, F2FS_MOUNT_LFS);
356 } else {
357 kfree(name);
358 return -EINVAL;
359 }
360 kfree(name);
361 break;
362 case Opt_io_size_bits:
363 if (args->from && match_int(args, &arg))
364 return -EINVAL;
365 if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
366 f2fs_msg(sb, KERN_WARNING,
367 "Not support %d, larger than %d",
368 1 << arg, BIO_MAX_PAGES);
369 return -EINVAL;
370 }
371 sbi->write_io_size_bits = arg;
372 break;
373 case Opt_fault_injection:
374 if (args->from && match_int(args, &arg))
375 return -EINVAL;
376 #ifdef CONFIG_F2FS_FAULT_INJECTION
377 f2fs_build_fault_attr(sbi, arg);
378 set_opt(sbi, FAULT_INJECTION);
379 #else
380 f2fs_msg(sb, KERN_INFO,
381 "FAULT_INJECTION was not selected");
382 #endif
383 break;
384 case Opt_lazytime:
385 sb->s_flags |= MS_LAZYTIME;
386 break;
387 case Opt_nolazytime:
388 sb->s_flags &= ~MS_LAZYTIME;
389 break;
390 #ifdef CONFIG_QUOTA
391 case Opt_usrquota:
392 set_opt(sbi, USRQUOTA);
393 break;
394 case Opt_grpquota:
395 set_opt(sbi, GRPQUOTA);
396 break;
397 case Opt_prjquota:
398 set_opt(sbi, PRJQUOTA);
399 break;
400 #else
401 case Opt_usrquota:
402 case Opt_grpquota:
403 case Opt_prjquota:
404 f2fs_msg(sb, KERN_INFO,
405 "quota operations not supported");
406 break;
407 #endif
408 default:
409 f2fs_msg(sb, KERN_ERR,
410 "Unrecognized mount option \"%s\" or missing value",
411 p);
412 return -EINVAL;
413 }
414 }
415
416 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
417 f2fs_msg(sb, KERN_ERR,
418 "Should set mode=lfs with %uKB-sized IO",
419 F2FS_IO_SIZE_KB(sbi));
420 return -EINVAL;
421 }
422 return 0;
423 }
424
425 static struct inode *f2fs_alloc_inode(struct super_block *sb)
426 {
427 struct f2fs_inode_info *fi;
428
429 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
430 if (!fi)
431 return NULL;
432
433 init_once((void *) fi);
434
435 /* Initialize f2fs-specific inode info */
436 fi->vfs_inode.i_version = 1;
437 atomic_set(&fi->dirty_pages, 0);
438 fi->i_current_depth = 1;
439 fi->i_advise = 0;
440 init_rwsem(&fi->i_sem);
441 INIT_LIST_HEAD(&fi->dirty_list);
442 INIT_LIST_HEAD(&fi->gdirty_list);
443 INIT_LIST_HEAD(&fi->inmem_pages);
444 mutex_init(&fi->inmem_lock);
445 init_rwsem(&fi->dio_rwsem[READ]);
446 init_rwsem(&fi->dio_rwsem[WRITE]);
447 init_rwsem(&fi->i_mmap_sem);
448
449 #ifdef CONFIG_QUOTA
450 memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
451 fi->i_reserved_quota = 0;
452 #endif
453 /* Will be used by directory only */
454 fi->i_dir_level = F2FS_SB(sb)->dir_level;
455
456 return &fi->vfs_inode;
457 }
458
459 static int f2fs_drop_inode(struct inode *inode)
460 {
461 int ret;
462 /*
463 * This is to avoid a deadlock condition like below.
464 * writeback_single_inode(inode)
465 * - f2fs_write_data_page
466 * - f2fs_gc -> iput -> evict
467 * - inode_wait_for_writeback(inode)
468 */
469 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
470 if (!inode->i_nlink && !is_bad_inode(inode)) {
471 /* to avoid evict_inode call simultaneously */
472 atomic_inc(&inode->i_count);
473 spin_unlock(&inode->i_lock);
474
475 /* some remained atomic pages should discarded */
476 if (f2fs_is_atomic_file(inode))
477 drop_inmem_pages(inode);
478
479 /* should remain fi->extent_tree for writepage */
480 f2fs_destroy_extent_node(inode);
481
482 sb_start_intwrite(inode->i_sb);
483 f2fs_i_size_write(inode, 0);
484
485 if (F2FS_HAS_BLOCKS(inode))
486 f2fs_truncate(inode);
487
488 sb_end_intwrite(inode->i_sb);
489
490 fscrypt_put_encryption_info(inode, NULL);
491 spin_lock(&inode->i_lock);
492 atomic_dec(&inode->i_count);
493 }
494 trace_f2fs_drop_inode(inode, 0);
495 return 0;
496 }
497 ret = generic_drop_inode(inode);
498 trace_f2fs_drop_inode(inode, ret);
499 return ret;
500 }
501
502 int f2fs_inode_dirtied(struct inode *inode, bool sync)
503 {
504 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
505 int ret = 0;
506
507 spin_lock(&sbi->inode_lock[DIRTY_META]);
508 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
509 ret = 1;
510 } else {
511 set_inode_flag(inode, FI_DIRTY_INODE);
512 stat_inc_dirty_inode(sbi, DIRTY_META);
513 }
514 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
515 list_add_tail(&F2FS_I(inode)->gdirty_list,
516 &sbi->inode_list[DIRTY_META]);
517 inc_page_count(sbi, F2FS_DIRTY_IMETA);
518 }
519 spin_unlock(&sbi->inode_lock[DIRTY_META]);
520 return ret;
521 }
522
523 void f2fs_inode_synced(struct inode *inode)
524 {
525 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
526
527 spin_lock(&sbi->inode_lock[DIRTY_META]);
528 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
529 spin_unlock(&sbi->inode_lock[DIRTY_META]);
530 return;
531 }
532 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
533 list_del_init(&F2FS_I(inode)->gdirty_list);
534 dec_page_count(sbi, F2FS_DIRTY_IMETA);
535 }
536 clear_inode_flag(inode, FI_DIRTY_INODE);
537 clear_inode_flag(inode, FI_AUTO_RECOVER);
538 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
539 spin_unlock(&sbi->inode_lock[DIRTY_META]);
540 }
541
542 /*
543 * f2fs_dirty_inode() is called from __mark_inode_dirty()
544 *
545 * We should call set_dirty_inode to write the dirty inode through write_inode.
546 */
547 static void f2fs_dirty_inode(struct inode *inode, int flags)
548 {
549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
550
551 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
552 inode->i_ino == F2FS_META_INO(sbi))
553 return;
554
555 if (flags == I_DIRTY_TIME)
556 return;
557
558 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
559 clear_inode_flag(inode, FI_AUTO_RECOVER);
560
561 f2fs_inode_dirtied(inode, false);
562 }
563
564 static void f2fs_i_callback(struct rcu_head *head)
565 {
566 struct inode *inode = container_of(head, struct inode, i_rcu);
567 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
568 }
569
570 static void f2fs_destroy_inode(struct inode *inode)
571 {
572 call_rcu(&inode->i_rcu, f2fs_i_callback);
573 }
574
575 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
576 {
577 percpu_counter_destroy(&sbi->alloc_valid_block_count);
578 percpu_counter_destroy(&sbi->total_valid_inode_count);
579 }
580
581 static void destroy_device_list(struct f2fs_sb_info *sbi)
582 {
583 int i;
584
585 for (i = 0; i < sbi->s_ndevs; i++) {
586 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
587 #ifdef CONFIG_BLK_DEV_ZONED
588 kfree(FDEV(i).blkz_type);
589 #endif
590 }
591 kfree(sbi->devs);
592 }
593
594 static void f2fs_quota_off_umount(struct super_block *sb);
595 static void f2fs_put_super(struct super_block *sb)
596 {
597 struct f2fs_sb_info *sbi = F2FS_SB(sb);
598 int i;
599
600 f2fs_quota_off_umount(sb);
601
602 /* prevent remaining shrinker jobs */
603 mutex_lock(&sbi->umount_mutex);
604
605 /*
606 * We don't need to do checkpoint when superblock is clean.
607 * But, the previous checkpoint was not done by umount, it needs to do
608 * clean checkpoint again.
609 */
610 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
611 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
612 struct cp_control cpc = {
613 .reason = CP_UMOUNT,
614 };
615 write_checkpoint(sbi, &cpc);
616 }
617
618 /* be sure to wait for any on-going discard commands */
619 f2fs_wait_discard_bios(sbi);
620
621 if (f2fs_discard_en(sbi) && !sbi->discard_blks) {
622 struct cp_control cpc = {
623 .reason = CP_UMOUNT | CP_TRIMMED,
624 };
625 write_checkpoint(sbi, &cpc);
626 }
627
628 /* write_checkpoint can update stat informaion */
629 f2fs_destroy_stats(sbi);
630
631 /*
632 * normally superblock is clean, so we need to release this.
633 * In addition, EIO will skip do checkpoint, we need this as well.
634 */
635 release_ino_entry(sbi, true);
636
637 f2fs_leave_shrinker(sbi);
638 mutex_unlock(&sbi->umount_mutex);
639
640 /* our cp_error case, we can wait for any writeback page */
641 f2fs_flush_merged_writes(sbi);
642
643 iput(sbi->node_inode);
644 iput(sbi->meta_inode);
645
646 /* destroy f2fs internal modules */
647 destroy_node_manager(sbi);
648 destroy_segment_manager(sbi);
649
650 kfree(sbi->ckpt);
651
652 f2fs_exit_sysfs(sbi);
653
654 sb->s_fs_info = NULL;
655 if (sbi->s_chksum_driver)
656 crypto_free_shash(sbi->s_chksum_driver);
657 kfree(sbi->raw_super);
658
659 destroy_device_list(sbi);
660 mempool_destroy(sbi->write_io_dummy);
661 destroy_percpu_info(sbi);
662 for (i = 0; i < NR_PAGE_TYPE; i++)
663 kfree(sbi->write_io[i]);
664 kfree(sbi);
665 }
666
667 int f2fs_sync_fs(struct super_block *sb, int sync)
668 {
669 struct f2fs_sb_info *sbi = F2FS_SB(sb);
670 int err = 0;
671
672 trace_f2fs_sync_fs(sb, sync);
673
674 if (sync) {
675 struct cp_control cpc;
676
677 cpc.reason = __get_cp_reason(sbi);
678
679 mutex_lock(&sbi->gc_mutex);
680 err = write_checkpoint(sbi, &cpc);
681 mutex_unlock(&sbi->gc_mutex);
682 }
683 f2fs_trace_ios(NULL, 1);
684
685 return err;
686 }
687
688 static int f2fs_freeze(struct super_block *sb)
689 {
690 if (f2fs_readonly(sb))
691 return 0;
692
693 /* IO error happened before */
694 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
695 return -EIO;
696
697 /* must be clean, since sync_filesystem() was already called */
698 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
699 return -EINVAL;
700 return 0;
701 }
702
703 static int f2fs_unfreeze(struct super_block *sb)
704 {
705 return 0;
706 }
707
708 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
709 {
710 struct super_block *sb = dentry->d_sb;
711 struct f2fs_sb_info *sbi = F2FS_SB(sb);
712 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
713 block_t total_count, user_block_count, start_count, ovp_count;
714 u64 avail_node_count;
715
716 total_count = le64_to_cpu(sbi->raw_super->block_count);
717 user_block_count = sbi->user_block_count;
718 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
719 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
720 buf->f_type = F2FS_SUPER_MAGIC;
721 buf->f_bsize = sbi->blocksize;
722
723 buf->f_blocks = total_count - start_count;
724 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
725 buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
726 sbi->reserved_blocks;
727
728 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
729
730 if (avail_node_count > user_block_count) {
731 buf->f_files = user_block_count;
732 buf->f_ffree = buf->f_bavail;
733 } else {
734 buf->f_files = avail_node_count;
735 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
736 buf->f_bavail);
737 }
738
739 buf->f_namelen = F2FS_NAME_LEN;
740 buf->f_fsid.val[0] = (u32)id;
741 buf->f_fsid.val[1] = (u32)(id >> 32);
742
743 return 0;
744 }
745
746 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
747 {
748 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
749
750 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
751 if (test_opt(sbi, FORCE_FG_GC))
752 seq_printf(seq, ",background_gc=%s", "sync");
753 else
754 seq_printf(seq, ",background_gc=%s", "on");
755 } else {
756 seq_printf(seq, ",background_gc=%s", "off");
757 }
758 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
759 seq_puts(seq, ",disable_roll_forward");
760 if (test_opt(sbi, DISCARD))
761 seq_puts(seq, ",discard");
762 if (test_opt(sbi, NOHEAP))
763 seq_puts(seq, ",no_heap");
764 else
765 seq_puts(seq, ",heap");
766 #ifdef CONFIG_F2FS_FS_XATTR
767 if (test_opt(sbi, XATTR_USER))
768 seq_puts(seq, ",user_xattr");
769 else
770 seq_puts(seq, ",nouser_xattr");
771 if (test_opt(sbi, INLINE_XATTR))
772 seq_puts(seq, ",inline_xattr");
773 else
774 seq_puts(seq, ",noinline_xattr");
775 #endif
776 #ifdef CONFIG_F2FS_FS_POSIX_ACL
777 if (test_opt(sbi, POSIX_ACL))
778 seq_puts(seq, ",acl");
779 else
780 seq_puts(seq, ",noacl");
781 #endif
782 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
783 seq_puts(seq, ",disable_ext_identify");
784 if (test_opt(sbi, INLINE_DATA))
785 seq_puts(seq, ",inline_data");
786 else
787 seq_puts(seq, ",noinline_data");
788 if (test_opt(sbi, INLINE_DENTRY))
789 seq_puts(seq, ",inline_dentry");
790 else
791 seq_puts(seq, ",noinline_dentry");
792 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
793 seq_puts(seq, ",flush_merge");
794 if (test_opt(sbi, NOBARRIER))
795 seq_puts(seq, ",nobarrier");
796 if (test_opt(sbi, FASTBOOT))
797 seq_puts(seq, ",fastboot");
798 if (test_opt(sbi, EXTENT_CACHE))
799 seq_puts(seq, ",extent_cache");
800 else
801 seq_puts(seq, ",noextent_cache");
802 if (test_opt(sbi, DATA_FLUSH))
803 seq_puts(seq, ",data_flush");
804
805 seq_puts(seq, ",mode=");
806 if (test_opt(sbi, ADAPTIVE))
807 seq_puts(seq, "adaptive");
808 else if (test_opt(sbi, LFS))
809 seq_puts(seq, "lfs");
810 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
811 if (F2FS_IO_SIZE_BITS(sbi))
812 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
813 #ifdef CONFIG_F2FS_FAULT_INJECTION
814 if (test_opt(sbi, FAULT_INJECTION))
815 seq_printf(seq, ",fault_injection=%u",
816 sbi->fault_info.inject_rate);
817 #endif
818 #ifdef CONFIG_QUOTA
819 if (test_opt(sbi, USRQUOTA))
820 seq_puts(seq, ",usrquota");
821 if (test_opt(sbi, GRPQUOTA))
822 seq_puts(seq, ",grpquota");
823 if (test_opt(sbi, PRJQUOTA))
824 seq_puts(seq, ",prjquota");
825 #endif
826
827 return 0;
828 }
829
830 static void default_options(struct f2fs_sb_info *sbi)
831 {
832 /* init some FS parameters */
833 sbi->active_logs = NR_CURSEG_TYPE;
834
835 set_opt(sbi, BG_GC);
836 set_opt(sbi, INLINE_XATTR);
837 set_opt(sbi, INLINE_DATA);
838 set_opt(sbi, INLINE_DENTRY);
839 set_opt(sbi, EXTENT_CACHE);
840 set_opt(sbi, NOHEAP);
841 sbi->sb->s_flags |= MS_LAZYTIME;
842 set_opt(sbi, FLUSH_MERGE);
843 if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
844 set_opt_mode(sbi, F2FS_MOUNT_LFS);
845 set_opt(sbi, DISCARD);
846 } else {
847 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
848 }
849
850 #ifdef CONFIG_F2FS_FS_XATTR
851 set_opt(sbi, XATTR_USER);
852 #endif
853 #ifdef CONFIG_F2FS_FS_POSIX_ACL
854 set_opt(sbi, POSIX_ACL);
855 #endif
856
857 #ifdef CONFIG_F2FS_FAULT_INJECTION
858 f2fs_build_fault_attr(sbi, 0);
859 #endif
860 }
861
862 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
863 {
864 struct f2fs_sb_info *sbi = F2FS_SB(sb);
865 struct f2fs_mount_info org_mount_opt;
866 unsigned long old_sb_flags;
867 int err, active_logs;
868 bool need_restart_gc = false;
869 bool need_stop_gc = false;
870 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
871 #ifdef CONFIG_F2FS_FAULT_INJECTION
872 struct f2fs_fault_info ffi = sbi->fault_info;
873 #endif
874
875 /*
876 * Save the old mount options in case we
877 * need to restore them.
878 */
879 org_mount_opt = sbi->mount_opt;
880 old_sb_flags = sb->s_flags;
881 active_logs = sbi->active_logs;
882
883 /* recover superblocks we couldn't write due to previous RO mount */
884 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
885 err = f2fs_commit_super(sbi, false);
886 f2fs_msg(sb, KERN_INFO,
887 "Try to recover all the superblocks, ret: %d", err);
888 if (!err)
889 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
890 }
891
892 default_options(sbi);
893
894 /* parse mount options */
895 err = parse_options(sb, data);
896 if (err)
897 goto restore_opts;
898
899 /*
900 * Previous and new state of filesystem is RO,
901 * so skip checking GC and FLUSH_MERGE conditions.
902 */
903 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
904 goto skip;
905
906 if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
907 err = dquot_suspend(sb, -1);
908 if (err < 0)
909 goto restore_opts;
910 } else {
911 /* dquot_resume needs RW */
912 sb->s_flags &= ~MS_RDONLY;
913 dquot_resume(sb, -1);
914 }
915
916 /* disallow enable/disable extent_cache dynamically */
917 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
918 err = -EINVAL;
919 f2fs_msg(sbi->sb, KERN_WARNING,
920 "switch extent_cache option is not allowed");
921 goto restore_opts;
922 }
923
924 /*
925 * We stop the GC thread if FS is mounted as RO
926 * or if background_gc = off is passed in mount
927 * option. Also sync the filesystem.
928 */
929 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
930 if (sbi->gc_thread) {
931 stop_gc_thread(sbi);
932 need_restart_gc = true;
933 }
934 } else if (!sbi->gc_thread) {
935 err = start_gc_thread(sbi);
936 if (err)
937 goto restore_opts;
938 need_stop_gc = true;
939 }
940
941 if (*flags & MS_RDONLY) {
942 writeback_inodes_sb(sb, WB_REASON_SYNC);
943 sync_inodes_sb(sb);
944
945 set_sbi_flag(sbi, SBI_IS_DIRTY);
946 set_sbi_flag(sbi, SBI_IS_CLOSE);
947 f2fs_sync_fs(sb, 1);
948 clear_sbi_flag(sbi, SBI_IS_CLOSE);
949 }
950
951 /*
952 * We stop issue flush thread if FS is mounted as RO
953 * or if flush_merge is not passed in mount option.
954 */
955 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
956 clear_opt(sbi, FLUSH_MERGE);
957 destroy_flush_cmd_control(sbi, false);
958 } else {
959 err = create_flush_cmd_control(sbi);
960 if (err)
961 goto restore_gc;
962 }
963 skip:
964 /* Update the POSIXACL Flag */
965 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
966 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
967
968 return 0;
969 restore_gc:
970 if (need_restart_gc) {
971 if (start_gc_thread(sbi))
972 f2fs_msg(sbi->sb, KERN_WARNING,
973 "background gc thread has stopped");
974 } else if (need_stop_gc) {
975 stop_gc_thread(sbi);
976 }
977 restore_opts:
978 sbi->mount_opt = org_mount_opt;
979 sbi->active_logs = active_logs;
980 sb->s_flags = old_sb_flags;
981 #ifdef CONFIG_F2FS_FAULT_INJECTION
982 sbi->fault_info = ffi;
983 #endif
984 return err;
985 }
986
987 #ifdef CONFIG_QUOTA
988 /* Read data from quotafile */
989 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
990 size_t len, loff_t off)
991 {
992 struct inode *inode = sb_dqopt(sb)->files[type];
993 struct address_space *mapping = inode->i_mapping;
994 block_t blkidx = F2FS_BYTES_TO_BLK(off);
995 int offset = off & (sb->s_blocksize - 1);
996 int tocopy;
997 size_t toread;
998 loff_t i_size = i_size_read(inode);
999 struct page *page;
1000 char *kaddr;
1001
1002 if (off > i_size)
1003 return 0;
1004
1005 if (off + len > i_size)
1006 len = i_size - off;
1007 toread = len;
1008 while (toread > 0) {
1009 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1010 repeat:
1011 page = read_mapping_page(mapping, blkidx, NULL);
1012 if (IS_ERR(page))
1013 return PTR_ERR(page);
1014
1015 lock_page(page);
1016
1017 if (unlikely(page->mapping != mapping)) {
1018 f2fs_put_page(page, 1);
1019 goto repeat;
1020 }
1021 if (unlikely(!PageUptodate(page))) {
1022 f2fs_put_page(page, 1);
1023 return -EIO;
1024 }
1025
1026 kaddr = kmap_atomic(page);
1027 memcpy(data, kaddr + offset, tocopy);
1028 kunmap_atomic(kaddr);
1029 f2fs_put_page(page, 1);
1030
1031 offset = 0;
1032 toread -= tocopy;
1033 data += tocopy;
1034 blkidx++;
1035 }
1036 return len;
1037 }
1038
1039 /* Write to quotafile */
1040 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1041 const char *data, size_t len, loff_t off)
1042 {
1043 struct inode *inode = sb_dqopt(sb)->files[type];
1044 struct address_space *mapping = inode->i_mapping;
1045 const struct address_space_operations *a_ops = mapping->a_ops;
1046 int offset = off & (sb->s_blocksize - 1);
1047 size_t towrite = len;
1048 struct page *page;
1049 char *kaddr;
1050 int err = 0;
1051 int tocopy;
1052
1053 while (towrite > 0) {
1054 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1055 towrite);
1056
1057 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1058 &page, NULL);
1059 if (unlikely(err))
1060 break;
1061
1062 kaddr = kmap_atomic(page);
1063 memcpy(kaddr + offset, data, tocopy);
1064 kunmap_atomic(kaddr);
1065 flush_dcache_page(page);
1066
1067 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1068 page, NULL);
1069 offset = 0;
1070 towrite -= tocopy;
1071 off += tocopy;
1072 data += tocopy;
1073 cond_resched();
1074 }
1075
1076 if (len == towrite)
1077 return err;
1078 inode->i_version++;
1079 inode->i_mtime = inode->i_ctime = current_time(inode);
1080 f2fs_mark_inode_dirty_sync(inode, false);
1081 return len - towrite;
1082 }
1083
1084 static struct dquot **f2fs_get_dquots(struct inode *inode)
1085 {
1086 return F2FS_I(inode)->i_dquot;
1087 }
1088
1089 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1090 {
1091 return &F2FS_I(inode)->i_reserved_quota;
1092 }
1093
1094 static int f2fs_quota_sync(struct super_block *sb, int type)
1095 {
1096 struct quota_info *dqopt = sb_dqopt(sb);
1097 int cnt;
1098 int ret;
1099
1100 ret = dquot_writeback_dquots(sb, type);
1101 if (ret)
1102 return ret;
1103
1104 /*
1105 * Now when everything is written we can discard the pagecache so
1106 * that userspace sees the changes.
1107 */
1108 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1109 if (type != -1 && cnt != type)
1110 continue;
1111 if (!sb_has_quota_active(sb, cnt))
1112 continue;
1113
1114 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1115 if (ret)
1116 return ret;
1117
1118 inode_lock(dqopt->files[cnt]);
1119 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1120 inode_unlock(dqopt->files[cnt]);
1121 }
1122 return 0;
1123 }
1124
1125 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1126 const struct path *path)
1127 {
1128 struct inode *inode;
1129 int err;
1130
1131 err = f2fs_quota_sync(sb, -1);
1132 if (err)
1133 return err;
1134
1135 err = dquot_quota_on(sb, type, format_id, path);
1136 if (err)
1137 return err;
1138
1139 inode = d_inode(path->dentry);
1140
1141 inode_lock(inode);
1142 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1143 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1144 S_NOATIME | S_IMMUTABLE);
1145 inode_unlock(inode);
1146 f2fs_mark_inode_dirty_sync(inode, false);
1147
1148 return 0;
1149 }
1150
1151 static int f2fs_quota_off(struct super_block *sb, int type)
1152 {
1153 struct inode *inode = sb_dqopt(sb)->files[type];
1154 int err;
1155
1156 if (!inode || !igrab(inode))
1157 return dquot_quota_off(sb, type);
1158
1159 f2fs_quota_sync(sb, -1);
1160
1161 err = dquot_quota_off(sb, type);
1162 if (err)
1163 goto out_put;
1164
1165 inode_lock(inode);
1166 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1167 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1168 inode_unlock(inode);
1169 f2fs_mark_inode_dirty_sync(inode, false);
1170 out_put:
1171 iput(inode);
1172 return err;
1173 }
1174
1175 static void f2fs_quota_off_umount(struct super_block *sb)
1176 {
1177 int type;
1178
1179 for (type = 0; type < MAXQUOTAS; type++)
1180 f2fs_quota_off(sb, type);
1181 }
1182
1183 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1184 {
1185 *projid = F2FS_I(inode)->i_projid;
1186 return 0;
1187 }
1188
1189 static const struct dquot_operations f2fs_quota_operations = {
1190 .get_reserved_space = f2fs_get_reserved_space,
1191 .write_dquot = dquot_commit,
1192 .acquire_dquot = dquot_acquire,
1193 .release_dquot = dquot_release,
1194 .mark_dirty = dquot_mark_dquot_dirty,
1195 .write_info = dquot_commit_info,
1196 .alloc_dquot = dquot_alloc,
1197 .destroy_dquot = dquot_destroy,
1198 .get_projid = f2fs_get_projid,
1199 .get_next_id = dquot_get_next_id,
1200 };
1201
1202 static const struct quotactl_ops f2fs_quotactl_ops = {
1203 .quota_on = f2fs_quota_on,
1204 .quota_off = f2fs_quota_off,
1205 .quota_sync = f2fs_quota_sync,
1206 .get_state = dquot_get_state,
1207 .set_info = dquot_set_dqinfo,
1208 .get_dqblk = dquot_get_dqblk,
1209 .set_dqblk = dquot_set_dqblk,
1210 .get_nextdqblk = dquot_get_next_dqblk,
1211 };
1212 #else
1213 static inline void f2fs_quota_off_umount(struct super_block *sb)
1214 {
1215 }
1216 #endif
1217
1218 static struct super_operations f2fs_sops = {
1219 .alloc_inode = f2fs_alloc_inode,
1220 .drop_inode = f2fs_drop_inode,
1221 .destroy_inode = f2fs_destroy_inode,
1222 .write_inode = f2fs_write_inode,
1223 .dirty_inode = f2fs_dirty_inode,
1224 .show_options = f2fs_show_options,
1225 #ifdef CONFIG_QUOTA
1226 .quota_read = f2fs_quota_read,
1227 .quota_write = f2fs_quota_write,
1228 .get_dquots = f2fs_get_dquots,
1229 #endif
1230 .evict_inode = f2fs_evict_inode,
1231 .put_super = f2fs_put_super,
1232 .sync_fs = f2fs_sync_fs,
1233 .freeze_fs = f2fs_freeze,
1234 .unfreeze_fs = f2fs_unfreeze,
1235 .statfs = f2fs_statfs,
1236 .remount_fs = f2fs_remount,
1237 };
1238
1239 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1240 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1241 {
1242 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1243 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1244 ctx, len, NULL);
1245 }
1246
1247 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1248 void *fs_data)
1249 {
1250 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1251 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1252 ctx, len, fs_data, XATTR_CREATE);
1253 }
1254
1255 static unsigned f2fs_max_namelen(struct inode *inode)
1256 {
1257 return S_ISLNK(inode->i_mode) ?
1258 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1259 }
1260
1261 static const struct fscrypt_operations f2fs_cryptops = {
1262 .key_prefix = "f2fs:",
1263 .get_context = f2fs_get_context,
1264 .set_context = f2fs_set_context,
1265 .is_encrypted = f2fs_encrypted_inode,
1266 .empty_dir = f2fs_empty_dir,
1267 .max_namelen = f2fs_max_namelen,
1268 };
1269 #else
1270 static const struct fscrypt_operations f2fs_cryptops = {
1271 .is_encrypted = f2fs_encrypted_inode,
1272 };
1273 #endif
1274
1275 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1276 u64 ino, u32 generation)
1277 {
1278 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1279 struct inode *inode;
1280
1281 if (check_nid_range(sbi, ino))
1282 return ERR_PTR(-ESTALE);
1283
1284 /*
1285 * f2fs_iget isn't quite right if the inode is currently unallocated!
1286 * However f2fs_iget currently does appropriate checks to handle stale
1287 * inodes so everything is OK.
1288 */
1289 inode = f2fs_iget(sb, ino);
1290 if (IS_ERR(inode))
1291 return ERR_CAST(inode);
1292 if (unlikely(generation && inode->i_generation != generation)) {
1293 /* we didn't find the right inode.. */
1294 iput(inode);
1295 return ERR_PTR(-ESTALE);
1296 }
1297 return inode;
1298 }
1299
1300 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1301 int fh_len, int fh_type)
1302 {
1303 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1304 f2fs_nfs_get_inode);
1305 }
1306
1307 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1308 int fh_len, int fh_type)
1309 {
1310 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1311 f2fs_nfs_get_inode);
1312 }
1313
1314 static const struct export_operations f2fs_export_ops = {
1315 .fh_to_dentry = f2fs_fh_to_dentry,
1316 .fh_to_parent = f2fs_fh_to_parent,
1317 .get_parent = f2fs_get_parent,
1318 };
1319
1320 static loff_t max_file_blocks(void)
1321 {
1322 loff_t result = 0;
1323 loff_t leaf_count = ADDRS_PER_BLOCK;
1324
1325 /*
1326 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1327 * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1328 * space in inode.i_addr, it will be more safe to reassign
1329 * result as zero.
1330 */
1331
1332 /* two direct node blocks */
1333 result += (leaf_count * 2);
1334
1335 /* two indirect node blocks */
1336 leaf_count *= NIDS_PER_BLOCK;
1337 result += (leaf_count * 2);
1338
1339 /* one double indirect node block */
1340 leaf_count *= NIDS_PER_BLOCK;
1341 result += leaf_count;
1342
1343 return result;
1344 }
1345
1346 static int __f2fs_commit_super(struct buffer_head *bh,
1347 struct f2fs_super_block *super)
1348 {
1349 lock_buffer(bh);
1350 if (super)
1351 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1352 set_buffer_uptodate(bh);
1353 set_buffer_dirty(bh);
1354 unlock_buffer(bh);
1355
1356 /* it's rare case, we can do fua all the time */
1357 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1358 }
1359
1360 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1361 struct buffer_head *bh)
1362 {
1363 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1364 (bh->b_data + F2FS_SUPER_OFFSET);
1365 struct super_block *sb = sbi->sb;
1366 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1367 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1368 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1369 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1370 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1371 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1372 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1373 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1374 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1375 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1376 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1377 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1378 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1379 u64 main_end_blkaddr = main_blkaddr +
1380 (segment_count_main << log_blocks_per_seg);
1381 u64 seg_end_blkaddr = segment0_blkaddr +
1382 (segment_count << log_blocks_per_seg);
1383
1384 if (segment0_blkaddr != cp_blkaddr) {
1385 f2fs_msg(sb, KERN_INFO,
1386 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1387 segment0_blkaddr, cp_blkaddr);
1388 return true;
1389 }
1390
1391 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1392 sit_blkaddr) {
1393 f2fs_msg(sb, KERN_INFO,
1394 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1395 cp_blkaddr, sit_blkaddr,
1396 segment_count_ckpt << log_blocks_per_seg);
1397 return true;
1398 }
1399
1400 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1401 nat_blkaddr) {
1402 f2fs_msg(sb, KERN_INFO,
1403 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1404 sit_blkaddr, nat_blkaddr,
1405 segment_count_sit << log_blocks_per_seg);
1406 return true;
1407 }
1408
1409 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1410 ssa_blkaddr) {
1411 f2fs_msg(sb, KERN_INFO,
1412 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1413 nat_blkaddr, ssa_blkaddr,
1414 segment_count_nat << log_blocks_per_seg);
1415 return true;
1416 }
1417
1418 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1419 main_blkaddr) {
1420 f2fs_msg(sb, KERN_INFO,
1421 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1422 ssa_blkaddr, main_blkaddr,
1423 segment_count_ssa << log_blocks_per_seg);
1424 return true;
1425 }
1426
1427 if (main_end_blkaddr > seg_end_blkaddr) {
1428 f2fs_msg(sb, KERN_INFO,
1429 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1430 main_blkaddr,
1431 segment0_blkaddr +
1432 (segment_count << log_blocks_per_seg),
1433 segment_count_main << log_blocks_per_seg);
1434 return true;
1435 } else if (main_end_blkaddr < seg_end_blkaddr) {
1436 int err = 0;
1437 char *res;
1438
1439 /* fix in-memory information all the time */
1440 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1441 segment0_blkaddr) >> log_blocks_per_seg);
1442
1443 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1444 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1445 res = "internally";
1446 } else {
1447 err = __f2fs_commit_super(bh, NULL);
1448 res = err ? "failed" : "done";
1449 }
1450 f2fs_msg(sb, KERN_INFO,
1451 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1452 res, main_blkaddr,
1453 segment0_blkaddr +
1454 (segment_count << log_blocks_per_seg),
1455 segment_count_main << log_blocks_per_seg);
1456 if (err)
1457 return true;
1458 }
1459 return false;
1460 }
1461
1462 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1463 struct buffer_head *bh)
1464 {
1465 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1466 (bh->b_data + F2FS_SUPER_OFFSET);
1467 struct super_block *sb = sbi->sb;
1468 unsigned int blocksize;
1469
1470 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1471 f2fs_msg(sb, KERN_INFO,
1472 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1473 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1474 return 1;
1475 }
1476
1477 /* Currently, support only 4KB page cache size */
1478 if (F2FS_BLKSIZE != PAGE_SIZE) {
1479 f2fs_msg(sb, KERN_INFO,
1480 "Invalid page_cache_size (%lu), supports only 4KB\n",
1481 PAGE_SIZE);
1482 return 1;
1483 }
1484
1485 /* Currently, support only 4KB block size */
1486 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1487 if (blocksize != F2FS_BLKSIZE) {
1488 f2fs_msg(sb, KERN_INFO,
1489 "Invalid blocksize (%u), supports only 4KB\n",
1490 blocksize);
1491 return 1;
1492 }
1493
1494 /* check log blocks per segment */
1495 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1496 f2fs_msg(sb, KERN_INFO,
1497 "Invalid log blocks per segment (%u)\n",
1498 le32_to_cpu(raw_super->log_blocks_per_seg));
1499 return 1;
1500 }
1501
1502 /* Currently, support 512/1024/2048/4096 bytes sector size */
1503 if (le32_to_cpu(raw_super->log_sectorsize) >
1504 F2FS_MAX_LOG_SECTOR_SIZE ||
1505 le32_to_cpu(raw_super->log_sectorsize) <
1506 F2FS_MIN_LOG_SECTOR_SIZE) {
1507 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1508 le32_to_cpu(raw_super->log_sectorsize));
1509 return 1;
1510 }
1511 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1512 le32_to_cpu(raw_super->log_sectorsize) !=
1513 F2FS_MAX_LOG_SECTOR_SIZE) {
1514 f2fs_msg(sb, KERN_INFO,
1515 "Invalid log sectors per block(%u) log sectorsize(%u)",
1516 le32_to_cpu(raw_super->log_sectors_per_block),
1517 le32_to_cpu(raw_super->log_sectorsize));
1518 return 1;
1519 }
1520
1521 /* check reserved ino info */
1522 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1523 le32_to_cpu(raw_super->meta_ino) != 2 ||
1524 le32_to_cpu(raw_super->root_ino) != 3) {
1525 f2fs_msg(sb, KERN_INFO,
1526 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1527 le32_to_cpu(raw_super->node_ino),
1528 le32_to_cpu(raw_super->meta_ino),
1529 le32_to_cpu(raw_super->root_ino));
1530 return 1;
1531 }
1532
1533 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1534 f2fs_msg(sb, KERN_INFO,
1535 "Invalid segment count (%u)",
1536 le32_to_cpu(raw_super->segment_count));
1537 return 1;
1538 }
1539
1540 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1541 if (sanity_check_area_boundary(sbi, bh))
1542 return 1;
1543
1544 return 0;
1545 }
1546
1547 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1548 {
1549 unsigned int total, fsmeta;
1550 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1551 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1552 unsigned int ovp_segments, reserved_segments;
1553 unsigned int main_segs, blocks_per_seg;
1554 int i;
1555
1556 total = le32_to_cpu(raw_super->segment_count);
1557 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1558 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1559 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1560 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1561 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1562
1563 if (unlikely(fsmeta >= total))
1564 return 1;
1565
1566 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1567 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1568
1569 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1570 ovp_segments == 0 || reserved_segments == 0)) {
1571 f2fs_msg(sbi->sb, KERN_ERR,
1572 "Wrong layout: check mkfs.f2fs version");
1573 return 1;
1574 }
1575
1576 main_segs = le32_to_cpu(raw_super->segment_count_main);
1577 blocks_per_seg = sbi->blocks_per_seg;
1578
1579 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1580 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
1581 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
1582 return 1;
1583 }
1584 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1585 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
1586 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
1587 return 1;
1588 }
1589
1590 if (unlikely(f2fs_cp_error(sbi))) {
1591 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1592 return 1;
1593 }
1594 return 0;
1595 }
1596
1597 static void init_sb_info(struct f2fs_sb_info *sbi)
1598 {
1599 struct f2fs_super_block *raw_super = sbi->raw_super;
1600 int i, j;
1601
1602 sbi->log_sectors_per_block =
1603 le32_to_cpu(raw_super->log_sectors_per_block);
1604 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1605 sbi->blocksize = 1 << sbi->log_blocksize;
1606 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1607 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1608 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1609 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1610 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1611 sbi->total_node_count =
1612 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1613 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1614 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1615 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1616 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1617 sbi->cur_victim_sec = NULL_SECNO;
1618 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1619
1620 sbi->dir_level = DEF_DIR_LEVEL;
1621 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1622 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1623 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1624
1625 for (i = 0; i < NR_COUNT_TYPE; i++)
1626 atomic_set(&sbi->nr_pages[i], 0);
1627
1628 atomic_set(&sbi->wb_sync_req, 0);
1629
1630 INIT_LIST_HEAD(&sbi->s_list);
1631 mutex_init(&sbi->umount_mutex);
1632 for (i = 0; i < NR_PAGE_TYPE - 1; i++)
1633 for (j = HOT; j < NR_TEMP_TYPE; j++)
1634 mutex_init(&sbi->wio_mutex[i][j]);
1635 spin_lock_init(&sbi->cp_lock);
1636 }
1637
1638 static int init_percpu_info(struct f2fs_sb_info *sbi)
1639 {
1640 int err;
1641
1642 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1643 if (err)
1644 return err;
1645
1646 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1647 GFP_KERNEL);
1648 }
1649
1650 #ifdef CONFIG_BLK_DEV_ZONED
1651 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1652 {
1653 struct block_device *bdev = FDEV(devi).bdev;
1654 sector_t nr_sectors = bdev->bd_part->nr_sects;
1655 sector_t sector = 0;
1656 struct blk_zone *zones;
1657 unsigned int i, nr_zones;
1658 unsigned int n = 0;
1659 int err = -EIO;
1660
1661 if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1662 return 0;
1663
1664 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1665 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1666 return -EINVAL;
1667 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1668 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1669 __ilog2_u32(sbi->blocks_per_blkz))
1670 return -EINVAL;
1671 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1672 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1673 sbi->log_blocks_per_blkz;
1674 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1675 FDEV(devi).nr_blkz++;
1676
1677 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1678 if (!FDEV(devi).blkz_type)
1679 return -ENOMEM;
1680
1681 #define F2FS_REPORT_NR_ZONES 4096
1682
1683 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1684 GFP_KERNEL);
1685 if (!zones)
1686 return -ENOMEM;
1687
1688 /* Get block zones type */
1689 while (zones && sector < nr_sectors) {
1690
1691 nr_zones = F2FS_REPORT_NR_ZONES;
1692 err = blkdev_report_zones(bdev, sector,
1693 zones, &nr_zones,
1694 GFP_KERNEL);
1695 if (err)
1696 break;
1697 if (!nr_zones) {
1698 err = -EIO;
1699 break;
1700 }
1701
1702 for (i = 0; i < nr_zones; i++) {
1703 FDEV(devi).blkz_type[n] = zones[i].type;
1704 sector += zones[i].len;
1705 n++;
1706 }
1707 }
1708
1709 kfree(zones);
1710
1711 return err;
1712 }
1713 #endif
1714
1715 /*
1716 * Read f2fs raw super block.
1717 * Because we have two copies of super block, so read both of them
1718 * to get the first valid one. If any one of them is broken, we pass
1719 * them recovery flag back to the caller.
1720 */
1721 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1722 struct f2fs_super_block **raw_super,
1723 int *valid_super_block, int *recovery)
1724 {
1725 struct super_block *sb = sbi->sb;
1726 int block;
1727 struct buffer_head *bh;
1728 struct f2fs_super_block *super;
1729 int err = 0;
1730
1731 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1732 if (!super)
1733 return -ENOMEM;
1734
1735 for (block = 0; block < 2; block++) {
1736 bh = sb_bread(sb, block);
1737 if (!bh) {
1738 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1739 block + 1);
1740 err = -EIO;
1741 continue;
1742 }
1743
1744 /* sanity checking of raw super */
1745 if (sanity_check_raw_super(sbi, bh)) {
1746 f2fs_msg(sb, KERN_ERR,
1747 "Can't find valid F2FS filesystem in %dth superblock",
1748 block + 1);
1749 err = -EINVAL;
1750 brelse(bh);
1751 continue;
1752 }
1753
1754 if (!*raw_super) {
1755 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1756 sizeof(*super));
1757 *valid_super_block = block;
1758 *raw_super = super;
1759 }
1760 brelse(bh);
1761 }
1762
1763 /* Fail to read any one of the superblocks*/
1764 if (err < 0)
1765 *recovery = 1;
1766
1767 /* No valid superblock */
1768 if (!*raw_super)
1769 kfree(super);
1770 else
1771 err = 0;
1772
1773 return err;
1774 }
1775
1776 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1777 {
1778 struct buffer_head *bh;
1779 int err;
1780
1781 if ((recover && f2fs_readonly(sbi->sb)) ||
1782 bdev_read_only(sbi->sb->s_bdev)) {
1783 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1784 return -EROFS;
1785 }
1786
1787 /* write back-up superblock first */
1788 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1789 if (!bh)
1790 return -EIO;
1791 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1792 brelse(bh);
1793
1794 /* if we are in recovery path, skip writing valid superblock */
1795 if (recover || err)
1796 return err;
1797
1798 /* write current valid superblock */
1799 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1800 if (!bh)
1801 return -EIO;
1802 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1803 brelse(bh);
1804 return err;
1805 }
1806
1807 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1808 {
1809 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1810 unsigned int max_devices = MAX_DEVICES;
1811 int i;
1812
1813 /* Initialize single device information */
1814 if (!RDEV(0).path[0]) {
1815 if (!bdev_is_zoned(sbi->sb->s_bdev))
1816 return 0;
1817 max_devices = 1;
1818 }
1819
1820 /*
1821 * Initialize multiple devices information, or single
1822 * zoned block device information.
1823 */
1824 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1825 GFP_KERNEL);
1826 if (!sbi->devs)
1827 return -ENOMEM;
1828
1829 for (i = 0; i < max_devices; i++) {
1830
1831 if (i > 0 && !RDEV(i).path[0])
1832 break;
1833
1834 if (max_devices == 1) {
1835 /* Single zoned block device mount */
1836 FDEV(0).bdev =
1837 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1838 sbi->sb->s_mode, sbi->sb->s_type);
1839 } else {
1840 /* Multi-device mount */
1841 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1842 FDEV(i).total_segments =
1843 le32_to_cpu(RDEV(i).total_segments);
1844 if (i == 0) {
1845 FDEV(i).start_blk = 0;
1846 FDEV(i).end_blk = FDEV(i).start_blk +
1847 (FDEV(i).total_segments <<
1848 sbi->log_blocks_per_seg) - 1 +
1849 le32_to_cpu(raw_super->segment0_blkaddr);
1850 } else {
1851 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1852 FDEV(i).end_blk = FDEV(i).start_blk +
1853 (FDEV(i).total_segments <<
1854 sbi->log_blocks_per_seg) - 1;
1855 }
1856 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1857 sbi->sb->s_mode, sbi->sb->s_type);
1858 }
1859 if (IS_ERR(FDEV(i).bdev))
1860 return PTR_ERR(FDEV(i).bdev);
1861
1862 /* to release errored devices */
1863 sbi->s_ndevs = i + 1;
1864
1865 #ifdef CONFIG_BLK_DEV_ZONED
1866 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1867 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
1868 f2fs_msg(sbi->sb, KERN_ERR,
1869 "Zoned block device feature not enabled\n");
1870 return -EINVAL;
1871 }
1872 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1873 if (init_blkz_info(sbi, i)) {
1874 f2fs_msg(sbi->sb, KERN_ERR,
1875 "Failed to initialize F2FS blkzone information");
1876 return -EINVAL;
1877 }
1878 if (max_devices == 1)
1879 break;
1880 f2fs_msg(sbi->sb, KERN_INFO,
1881 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1882 i, FDEV(i).path,
1883 FDEV(i).total_segments,
1884 FDEV(i).start_blk, FDEV(i).end_blk,
1885 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1886 "Host-aware" : "Host-managed");
1887 continue;
1888 }
1889 #endif
1890 f2fs_msg(sbi->sb, KERN_INFO,
1891 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
1892 i, FDEV(i).path,
1893 FDEV(i).total_segments,
1894 FDEV(i).start_blk, FDEV(i).end_blk);
1895 }
1896 f2fs_msg(sbi->sb, KERN_INFO,
1897 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
1898 return 0;
1899 }
1900
1901 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1902 {
1903 struct f2fs_sb_info *sbi;
1904 struct f2fs_super_block *raw_super;
1905 struct inode *root;
1906 int err;
1907 bool retry = true, need_fsck = false;
1908 char *options = NULL;
1909 int recovery, i, valid_super_block;
1910 struct curseg_info *seg_i;
1911
1912 try_onemore:
1913 err = -EINVAL;
1914 raw_super = NULL;
1915 valid_super_block = -1;
1916 recovery = 0;
1917
1918 /* allocate memory for f2fs-specific super block info */
1919 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1920 if (!sbi)
1921 return -ENOMEM;
1922
1923 sbi->sb = sb;
1924
1925 /* Load the checksum driver */
1926 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1927 if (IS_ERR(sbi->s_chksum_driver)) {
1928 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1929 err = PTR_ERR(sbi->s_chksum_driver);
1930 sbi->s_chksum_driver = NULL;
1931 goto free_sbi;
1932 }
1933
1934 /* set a block size */
1935 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1936 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1937 goto free_sbi;
1938 }
1939
1940 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1941 &recovery);
1942 if (err)
1943 goto free_sbi;
1944
1945 sb->s_fs_info = sbi;
1946 sbi->raw_super = raw_super;
1947
1948 /*
1949 * The BLKZONED feature indicates that the drive was formatted with
1950 * zone alignment optimization. This is optional for host-aware
1951 * devices, but mandatory for host-managed zoned block devices.
1952 */
1953 #ifndef CONFIG_BLK_DEV_ZONED
1954 if (f2fs_sb_mounted_blkzoned(sb)) {
1955 f2fs_msg(sb, KERN_ERR,
1956 "Zoned block device support is not enabled\n");
1957 err = -EOPNOTSUPP;
1958 goto free_sb_buf;
1959 }
1960 #endif
1961 default_options(sbi);
1962 /* parse mount options */
1963 options = kstrdup((const char *)data, GFP_KERNEL);
1964 if (data && !options) {
1965 err = -ENOMEM;
1966 goto free_sb_buf;
1967 }
1968
1969 err = parse_options(sb, options);
1970 if (err)
1971 goto free_options;
1972
1973 sbi->max_file_blocks = max_file_blocks();
1974 sb->s_maxbytes = sbi->max_file_blocks <<
1975 le32_to_cpu(raw_super->log_blocksize);
1976 sb->s_max_links = F2FS_LINK_MAX;
1977 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1978
1979 #ifdef CONFIG_QUOTA
1980 sb->dq_op = &f2fs_quota_operations;
1981 sb->s_qcop = &f2fs_quotactl_ops;
1982 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
1983 #endif
1984
1985 sb->s_op = &f2fs_sops;
1986 sb->s_cop = &f2fs_cryptops;
1987 sb->s_xattr = f2fs_xattr_handlers;
1988 sb->s_export_op = &f2fs_export_ops;
1989 sb->s_magic = F2FS_SUPER_MAGIC;
1990 sb->s_time_gran = 1;
1991 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1992 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1993 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1994
1995 /* init f2fs-specific super block info */
1996 sbi->valid_super_block = valid_super_block;
1997 mutex_init(&sbi->gc_mutex);
1998 mutex_init(&sbi->cp_mutex);
1999 init_rwsem(&sbi->node_write);
2000 init_rwsem(&sbi->node_change);
2001
2002 /* disallow all the data/node/meta page writes */
2003 set_sbi_flag(sbi, SBI_POR_DOING);
2004 spin_lock_init(&sbi->stat_lock);
2005
2006 for (i = 0; i < NR_PAGE_TYPE; i++) {
2007 int n = (i == META) ? 1: NR_TEMP_TYPE;
2008 int j;
2009
2010 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2011 GFP_KERNEL);
2012 if (!sbi->write_io[i]) {
2013 err = -ENOMEM;
2014 goto free_options;
2015 }
2016
2017 for (j = HOT; j < n; j++) {
2018 init_rwsem(&sbi->write_io[i][j].io_rwsem);
2019 sbi->write_io[i][j].sbi = sbi;
2020 sbi->write_io[i][j].bio = NULL;
2021 spin_lock_init(&sbi->write_io[i][j].io_lock);
2022 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2023 }
2024 }
2025
2026 init_rwsem(&sbi->cp_rwsem);
2027 init_waitqueue_head(&sbi->cp_wait);
2028 init_sb_info(sbi);
2029
2030 err = init_percpu_info(sbi);
2031 if (err)
2032 goto free_options;
2033
2034 if (F2FS_IO_SIZE(sbi) > 1) {
2035 sbi->write_io_dummy =
2036 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2037 if (!sbi->write_io_dummy) {
2038 err = -ENOMEM;
2039 goto free_options;
2040 }
2041 }
2042
2043 /* get an inode for meta space */
2044 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2045 if (IS_ERR(sbi->meta_inode)) {
2046 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2047 err = PTR_ERR(sbi->meta_inode);
2048 goto free_io_dummy;
2049 }
2050
2051 err = get_valid_checkpoint(sbi);
2052 if (err) {
2053 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2054 goto free_meta_inode;
2055 }
2056
2057 /* Initialize device list */
2058 err = f2fs_scan_devices(sbi);
2059 if (err) {
2060 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2061 goto free_devices;
2062 }
2063
2064 sbi->total_valid_node_count =
2065 le32_to_cpu(sbi->ckpt->valid_node_count);
2066 percpu_counter_set(&sbi->total_valid_inode_count,
2067 le32_to_cpu(sbi->ckpt->valid_inode_count));
2068 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2069 sbi->total_valid_block_count =
2070 le64_to_cpu(sbi->ckpt->valid_block_count);
2071 sbi->last_valid_block_count = sbi->total_valid_block_count;
2072 sbi->reserved_blocks = 0;
2073
2074 for (i = 0; i < NR_INODE_TYPE; i++) {
2075 INIT_LIST_HEAD(&sbi->inode_list[i]);
2076 spin_lock_init(&sbi->inode_lock[i]);
2077 }
2078
2079 init_extent_cache_info(sbi);
2080
2081 init_ino_entry_info(sbi);
2082
2083 /* setup f2fs internal modules */
2084 err = build_segment_manager(sbi);
2085 if (err) {
2086 f2fs_msg(sb, KERN_ERR,
2087 "Failed to initialize F2FS segment manager");
2088 goto free_sm;
2089 }
2090 err = build_node_manager(sbi);
2091 if (err) {
2092 f2fs_msg(sb, KERN_ERR,
2093 "Failed to initialize F2FS node manager");
2094 goto free_nm;
2095 }
2096
2097 /* For write statistics */
2098 if (sb->s_bdev->bd_part)
2099 sbi->sectors_written_start =
2100 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2101
2102 /* Read accumulated write IO statistics if exists */
2103 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2104 if (__exist_node_summaries(sbi))
2105 sbi->kbytes_written =
2106 le64_to_cpu(seg_i->journal->info.kbytes_written);
2107
2108 build_gc_manager(sbi);
2109
2110 /* get an inode for node space */
2111 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2112 if (IS_ERR(sbi->node_inode)) {
2113 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2114 err = PTR_ERR(sbi->node_inode);
2115 goto free_nm;
2116 }
2117
2118 f2fs_join_shrinker(sbi);
2119
2120 err = f2fs_build_stats(sbi);
2121 if (err)
2122 goto free_nm;
2123
2124 /* if there are nt orphan nodes free them */
2125 err = recover_orphan_inodes(sbi);
2126 if (err)
2127 goto free_node_inode;
2128
2129 /* read root inode and dentry */
2130 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2131 if (IS_ERR(root)) {
2132 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2133 err = PTR_ERR(root);
2134 goto free_node_inode;
2135 }
2136 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2137 iput(root);
2138 err = -EINVAL;
2139 goto free_node_inode;
2140 }
2141
2142 sb->s_root = d_make_root(root); /* allocate root dentry */
2143 if (!sb->s_root) {
2144 err = -ENOMEM;
2145 goto free_root_inode;
2146 }
2147
2148 err = f2fs_init_sysfs(sbi);
2149 if (err)
2150 goto free_root_inode;
2151
2152 /* recover fsynced data */
2153 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2154 /*
2155 * mount should be failed, when device has readonly mode, and
2156 * previous checkpoint was not done by clean system shutdown.
2157 */
2158 if (bdev_read_only(sb->s_bdev) &&
2159 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2160 err = -EROFS;
2161 goto free_sysfs;
2162 }
2163
2164 if (need_fsck)
2165 set_sbi_flag(sbi, SBI_NEED_FSCK);
2166
2167 if (!retry)
2168 goto skip_recovery;
2169
2170 err = recover_fsync_data(sbi, false);
2171 if (err < 0) {
2172 need_fsck = true;
2173 f2fs_msg(sb, KERN_ERR,
2174 "Cannot recover all fsync data errno=%d", err);
2175 goto free_sysfs;
2176 }
2177 } else {
2178 err = recover_fsync_data(sbi, true);
2179
2180 if (!f2fs_readonly(sb) && err > 0) {
2181 err = -EINVAL;
2182 f2fs_msg(sb, KERN_ERR,
2183 "Need to recover fsync data");
2184 goto free_sysfs;
2185 }
2186 }
2187 skip_recovery:
2188 /* recover_fsync_data() cleared this already */
2189 clear_sbi_flag(sbi, SBI_POR_DOING);
2190
2191 /*
2192 * If filesystem is not mounted as read-only then
2193 * do start the gc_thread.
2194 */
2195 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2196 /* After POR, we can run background GC thread.*/
2197 err = start_gc_thread(sbi);
2198 if (err)
2199 goto free_sysfs;
2200 }
2201 kfree(options);
2202
2203 /* recover broken superblock */
2204 if (recovery) {
2205 err = f2fs_commit_super(sbi, true);
2206 f2fs_msg(sb, KERN_INFO,
2207 "Try to recover %dth superblock, ret: %d",
2208 sbi->valid_super_block ? 1 : 2, err);
2209 }
2210
2211 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2212 cur_cp_version(F2FS_CKPT(sbi)));
2213 f2fs_update_time(sbi, CP_TIME);
2214 f2fs_update_time(sbi, REQ_TIME);
2215 return 0;
2216
2217 free_sysfs:
2218 f2fs_sync_inode_meta(sbi);
2219 f2fs_exit_sysfs(sbi);
2220 free_root_inode:
2221 dput(sb->s_root);
2222 sb->s_root = NULL;
2223 free_node_inode:
2224 truncate_inode_pages_final(NODE_MAPPING(sbi));
2225 mutex_lock(&sbi->umount_mutex);
2226 release_ino_entry(sbi, true);
2227 f2fs_leave_shrinker(sbi);
2228 /*
2229 * Some dirty meta pages can be produced by recover_orphan_inodes()
2230 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2231 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2232 * falls into an infinite loop in sync_meta_pages().
2233 */
2234 truncate_inode_pages_final(META_MAPPING(sbi));
2235 iput(sbi->node_inode);
2236 mutex_unlock(&sbi->umount_mutex);
2237 f2fs_destroy_stats(sbi);
2238 free_nm:
2239 destroy_node_manager(sbi);
2240 free_sm:
2241 destroy_segment_manager(sbi);
2242 free_devices:
2243 destroy_device_list(sbi);
2244 kfree(sbi->ckpt);
2245 free_meta_inode:
2246 make_bad_inode(sbi->meta_inode);
2247 iput(sbi->meta_inode);
2248 free_io_dummy:
2249 mempool_destroy(sbi->write_io_dummy);
2250 free_options:
2251 for (i = 0; i < NR_PAGE_TYPE; i++)
2252 kfree(sbi->write_io[i]);
2253 destroy_percpu_info(sbi);
2254 kfree(options);
2255 free_sb_buf:
2256 kfree(raw_super);
2257 free_sbi:
2258 if (sbi->s_chksum_driver)
2259 crypto_free_shash(sbi->s_chksum_driver);
2260 kfree(sbi);
2261
2262 /* give only one another chance */
2263 if (retry) {
2264 retry = false;
2265 shrink_dcache_sb(sb);
2266 goto try_onemore;
2267 }
2268 return err;
2269 }
2270
2271 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2272 const char *dev_name, void *data)
2273 {
2274 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2275 }
2276
2277 static void kill_f2fs_super(struct super_block *sb)
2278 {
2279 if (sb->s_root) {
2280 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2281 stop_gc_thread(F2FS_SB(sb));
2282 stop_discard_thread(F2FS_SB(sb));
2283 }
2284 kill_block_super(sb);
2285 }
2286
2287 static struct file_system_type f2fs_fs_type = {
2288 .owner = THIS_MODULE,
2289 .name = "f2fs",
2290 .mount = f2fs_mount,
2291 .kill_sb = kill_f2fs_super,
2292 .fs_flags = FS_REQUIRES_DEV,
2293 };
2294 MODULE_ALIAS_FS("f2fs");
2295
2296 static int __init init_inodecache(void)
2297 {
2298 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2299 sizeof(struct f2fs_inode_info), 0,
2300 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2301 if (!f2fs_inode_cachep)
2302 return -ENOMEM;
2303 return 0;
2304 }
2305
2306 static void destroy_inodecache(void)
2307 {
2308 /*
2309 * Make sure all delayed rcu free inodes are flushed before we
2310 * destroy cache.
2311 */
2312 rcu_barrier();
2313 kmem_cache_destroy(f2fs_inode_cachep);
2314 }
2315
2316 static int __init init_f2fs_fs(void)
2317 {
2318 int err;
2319
2320 f2fs_build_trace_ios();
2321
2322 err = init_inodecache();
2323 if (err)
2324 goto fail;
2325 err = create_node_manager_caches();
2326 if (err)
2327 goto free_inodecache;
2328 err = create_segment_manager_caches();
2329 if (err)
2330 goto free_node_manager_caches;
2331 err = create_checkpoint_caches();
2332 if (err)
2333 goto free_segment_manager_caches;
2334 err = create_extent_cache();
2335 if (err)
2336 goto free_checkpoint_caches;
2337 err = f2fs_register_sysfs();
2338 if (err)
2339 goto free_extent_cache;
2340 err = register_shrinker(&f2fs_shrinker_info);
2341 if (err)
2342 goto free_sysfs;
2343 err = register_filesystem(&f2fs_fs_type);
2344 if (err)
2345 goto free_shrinker;
2346 err = f2fs_create_root_stats();
2347 if (err)
2348 goto free_filesystem;
2349 return 0;
2350
2351 free_filesystem:
2352 unregister_filesystem(&f2fs_fs_type);
2353 free_shrinker:
2354 unregister_shrinker(&f2fs_shrinker_info);
2355 free_sysfs:
2356 f2fs_unregister_sysfs();
2357 free_extent_cache:
2358 destroy_extent_cache();
2359 free_checkpoint_caches:
2360 destroy_checkpoint_caches();
2361 free_segment_manager_caches:
2362 destroy_segment_manager_caches();
2363 free_node_manager_caches:
2364 destroy_node_manager_caches();
2365 free_inodecache:
2366 destroy_inodecache();
2367 fail:
2368 return err;
2369 }
2370
2371 static void __exit exit_f2fs_fs(void)
2372 {
2373 f2fs_destroy_root_stats();
2374 unregister_filesystem(&f2fs_fs_type);
2375 unregister_shrinker(&f2fs_shrinker_info);
2376 f2fs_unregister_sysfs();
2377 destroy_extent_cache();
2378 destroy_checkpoint_caches();
2379 destroy_segment_manager_caches();
2380 destroy_node_manager_caches();
2381 destroy_inodecache();
2382 f2fs_destroy_trace_ios();
2383 }
2384
2385 module_init(init_f2fs_fs)
2386 module_exit(exit_f2fs_fs)
2387
2388 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2389 MODULE_DESCRIPTION("Flash Friendly File System");
2390 MODULE_LICENSE("GPL");
2391