]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/super.c
f2fs: use inode pointer for {set, clear}_inode_flag
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 };
53
54 static void f2fs_build_fault_attr(unsigned int rate)
55 {
56 if (rate) {
57 atomic_set(&f2fs_fault.inject_ops, 0);
58 f2fs_fault.inject_rate = rate;
59 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
60 } else {
61 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
62 }
63 }
64 #endif
65
66 /* f2fs-wide shrinker description */
67 static struct shrinker f2fs_shrinker_info = {
68 .scan_objects = f2fs_shrink_scan,
69 .count_objects = f2fs_shrink_count,
70 .seeks = DEFAULT_SEEKS,
71 };
72
73 enum {
74 Opt_gc_background,
75 Opt_disable_roll_forward,
76 Opt_norecovery,
77 Opt_discard,
78 Opt_noheap,
79 Opt_user_xattr,
80 Opt_nouser_xattr,
81 Opt_acl,
82 Opt_noacl,
83 Opt_active_logs,
84 Opt_disable_ext_identify,
85 Opt_inline_xattr,
86 Opt_inline_data,
87 Opt_inline_dentry,
88 Opt_flush_merge,
89 Opt_nobarrier,
90 Opt_fastboot,
91 Opt_extent_cache,
92 Opt_noextent_cache,
93 Opt_noinline_data,
94 Opt_data_flush,
95 Opt_fault_injection,
96 Opt_err,
97 };
98
99 static match_table_t f2fs_tokens = {
100 {Opt_gc_background, "background_gc=%s"},
101 {Opt_disable_roll_forward, "disable_roll_forward"},
102 {Opt_norecovery, "norecovery"},
103 {Opt_discard, "discard"},
104 {Opt_noheap, "no_heap"},
105 {Opt_user_xattr, "user_xattr"},
106 {Opt_nouser_xattr, "nouser_xattr"},
107 {Opt_acl, "acl"},
108 {Opt_noacl, "noacl"},
109 {Opt_active_logs, "active_logs=%u"},
110 {Opt_disable_ext_identify, "disable_ext_identify"},
111 {Opt_inline_xattr, "inline_xattr"},
112 {Opt_inline_data, "inline_data"},
113 {Opt_inline_dentry, "inline_dentry"},
114 {Opt_flush_merge, "flush_merge"},
115 {Opt_nobarrier, "nobarrier"},
116 {Opt_fastboot, "fastboot"},
117 {Opt_extent_cache, "extent_cache"},
118 {Opt_noextent_cache, "noextent_cache"},
119 {Opt_noinline_data, "noinline_data"},
120 {Opt_data_flush, "data_flush"},
121 {Opt_fault_injection, "fault_injection=%u"},
122 {Opt_err, NULL},
123 };
124
125 /* Sysfs support for f2fs */
126 enum {
127 GC_THREAD, /* struct f2fs_gc_thread */
128 SM_INFO, /* struct f2fs_sm_info */
129 NM_INFO, /* struct f2fs_nm_info */
130 F2FS_SBI, /* struct f2fs_sb_info */
131 #ifdef CONFIG_F2FS_FAULT_INJECTION
132 FAULT_INFO_RATE, /* struct f2fs_fault_info */
133 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
134 #endif
135 };
136
137 struct f2fs_attr {
138 struct attribute attr;
139 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
140 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
141 const char *, size_t);
142 int struct_type;
143 int offset;
144 };
145
146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
147 {
148 if (struct_type == GC_THREAD)
149 return (unsigned char *)sbi->gc_thread;
150 else if (struct_type == SM_INFO)
151 return (unsigned char *)SM_I(sbi);
152 else if (struct_type == NM_INFO)
153 return (unsigned char *)NM_I(sbi);
154 else if (struct_type == F2FS_SBI)
155 return (unsigned char *)sbi;
156 #ifdef CONFIG_F2FS_FAULT_INJECTION
157 else if (struct_type == FAULT_INFO_RATE ||
158 struct_type == FAULT_INFO_TYPE)
159 return (unsigned char *)&f2fs_fault;
160 #endif
161 return NULL;
162 }
163
164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
165 struct f2fs_sb_info *sbi, char *buf)
166 {
167 struct super_block *sb = sbi->sb;
168
169 if (!sb->s_bdev->bd_part)
170 return snprintf(buf, PAGE_SIZE, "0\n");
171
172 return snprintf(buf, PAGE_SIZE, "%llu\n",
173 (unsigned long long)(sbi->kbytes_written +
174 BD_PART_WRITTEN(sbi)));
175 }
176
177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
178 struct f2fs_sb_info *sbi, char *buf)
179 {
180 unsigned char *ptr = NULL;
181 unsigned int *ui;
182
183 ptr = __struct_ptr(sbi, a->struct_type);
184 if (!ptr)
185 return -EINVAL;
186
187 ui = (unsigned int *)(ptr + a->offset);
188
189 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
190 }
191
192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
193 struct f2fs_sb_info *sbi,
194 const char *buf, size_t count)
195 {
196 unsigned char *ptr;
197 unsigned long t;
198 unsigned int *ui;
199 ssize_t ret;
200
201 ptr = __struct_ptr(sbi, a->struct_type);
202 if (!ptr)
203 return -EINVAL;
204
205 ui = (unsigned int *)(ptr + a->offset);
206
207 ret = kstrtoul(skip_spaces(buf), 0, &t);
208 if (ret < 0)
209 return ret;
210 #ifdef CONFIG_F2FS_FAULT_INJECTION
211 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
212 return -EINVAL;
213 #endif
214 *ui = t;
215 return count;
216 }
217
218 static ssize_t f2fs_attr_show(struct kobject *kobj,
219 struct attribute *attr, char *buf)
220 {
221 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
222 s_kobj);
223 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
224
225 return a->show ? a->show(a, sbi, buf) : 0;
226 }
227
228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
229 const char *buf, size_t len)
230 {
231 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
232 s_kobj);
233 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
234
235 return a->store ? a->store(a, sbi, buf, len) : 0;
236 }
237
238 static void f2fs_sb_release(struct kobject *kobj)
239 {
240 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
241 s_kobj);
242 complete(&sbi->s_kobj_unregister);
243 }
244
245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
246 static struct f2fs_attr f2fs_attr_##_name = { \
247 .attr = {.name = __stringify(_name), .mode = _mode }, \
248 .show = _show, \
249 .store = _store, \
250 .struct_type = _struct_type, \
251 .offset = _offset \
252 }
253
254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
255 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
256 f2fs_sbi_show, f2fs_sbi_store, \
257 offsetof(struct struct_name, elname))
258
259 #define F2FS_GENERAL_RO_ATTR(name) \
260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
261
262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
279 #ifdef CONFIG_F2FS_FAULT_INJECTION
280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
282 #endif
283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
284
285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
286 static struct attribute *f2fs_attrs[] = {
287 ATTR_LIST(gc_min_sleep_time),
288 ATTR_LIST(gc_max_sleep_time),
289 ATTR_LIST(gc_no_gc_sleep_time),
290 ATTR_LIST(gc_idle),
291 ATTR_LIST(reclaim_segments),
292 ATTR_LIST(max_small_discards),
293 ATTR_LIST(batched_trim_sections),
294 ATTR_LIST(ipu_policy),
295 ATTR_LIST(min_ipu_util),
296 ATTR_LIST(min_fsync_blocks),
297 ATTR_LIST(max_victim_search),
298 ATTR_LIST(dir_level),
299 ATTR_LIST(ram_thresh),
300 ATTR_LIST(ra_nid_pages),
301 ATTR_LIST(dirty_nats_ratio),
302 ATTR_LIST(cp_interval),
303 ATTR_LIST(idle_interval),
304 ATTR_LIST(lifetime_write_kbytes),
305 NULL,
306 };
307
308 static const struct sysfs_ops f2fs_attr_ops = {
309 .show = f2fs_attr_show,
310 .store = f2fs_attr_store,
311 };
312
313 static struct kobj_type f2fs_ktype = {
314 .default_attrs = f2fs_attrs,
315 .sysfs_ops = &f2fs_attr_ops,
316 .release = f2fs_sb_release,
317 };
318
319 #ifdef CONFIG_F2FS_FAULT_INJECTION
320 /* sysfs for f2fs fault injection */
321 static struct kobject f2fs_fault_inject;
322
323 static struct attribute *f2fs_fault_attrs[] = {
324 ATTR_LIST(inject_rate),
325 ATTR_LIST(inject_type),
326 NULL
327 };
328
329 static struct kobj_type f2fs_fault_ktype = {
330 .default_attrs = f2fs_fault_attrs,
331 .sysfs_ops = &f2fs_attr_ops,
332 };
333 #endif
334
335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
336 {
337 struct va_format vaf;
338 va_list args;
339
340 va_start(args, fmt);
341 vaf.fmt = fmt;
342 vaf.va = &args;
343 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
344 va_end(args);
345 }
346
347 static void init_once(void *foo)
348 {
349 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
350
351 inode_init_once(&fi->vfs_inode);
352 }
353
354 static int parse_options(struct super_block *sb, char *options)
355 {
356 struct f2fs_sb_info *sbi = F2FS_SB(sb);
357 struct request_queue *q;
358 substring_t args[MAX_OPT_ARGS];
359 char *p, *name;
360 int arg = 0;
361
362 #ifdef CONFIG_F2FS_FAULT_INJECTION
363 f2fs_build_fault_attr(0);
364 #endif
365
366 if (!options)
367 return 0;
368
369 while ((p = strsep(&options, ",")) != NULL) {
370 int token;
371 if (!*p)
372 continue;
373 /*
374 * Initialize args struct so we know whether arg was
375 * found; some options take optional arguments.
376 */
377 args[0].to = args[0].from = NULL;
378 token = match_token(p, f2fs_tokens, args);
379
380 switch (token) {
381 case Opt_gc_background:
382 name = match_strdup(&args[0]);
383
384 if (!name)
385 return -ENOMEM;
386 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
387 set_opt(sbi, BG_GC);
388 clear_opt(sbi, FORCE_FG_GC);
389 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
390 clear_opt(sbi, BG_GC);
391 clear_opt(sbi, FORCE_FG_GC);
392 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
393 set_opt(sbi, BG_GC);
394 set_opt(sbi, FORCE_FG_GC);
395 } else {
396 kfree(name);
397 return -EINVAL;
398 }
399 kfree(name);
400 break;
401 case Opt_disable_roll_forward:
402 set_opt(sbi, DISABLE_ROLL_FORWARD);
403 break;
404 case Opt_norecovery:
405 /* this option mounts f2fs with ro */
406 set_opt(sbi, DISABLE_ROLL_FORWARD);
407 if (!f2fs_readonly(sb))
408 return -EINVAL;
409 break;
410 case Opt_discard:
411 q = bdev_get_queue(sb->s_bdev);
412 if (blk_queue_discard(q)) {
413 set_opt(sbi, DISCARD);
414 } else {
415 f2fs_msg(sb, KERN_WARNING,
416 "mounting with \"discard\" option, but "
417 "the device does not support discard");
418 }
419 break;
420 case Opt_noheap:
421 set_opt(sbi, NOHEAP);
422 break;
423 #ifdef CONFIG_F2FS_FS_XATTR
424 case Opt_user_xattr:
425 set_opt(sbi, XATTR_USER);
426 break;
427 case Opt_nouser_xattr:
428 clear_opt(sbi, XATTR_USER);
429 break;
430 case Opt_inline_xattr:
431 set_opt(sbi, INLINE_XATTR);
432 break;
433 #else
434 case Opt_user_xattr:
435 f2fs_msg(sb, KERN_INFO,
436 "user_xattr options not supported");
437 break;
438 case Opt_nouser_xattr:
439 f2fs_msg(sb, KERN_INFO,
440 "nouser_xattr options not supported");
441 break;
442 case Opt_inline_xattr:
443 f2fs_msg(sb, KERN_INFO,
444 "inline_xattr options not supported");
445 break;
446 #endif
447 #ifdef CONFIG_F2FS_FS_POSIX_ACL
448 case Opt_acl:
449 set_opt(sbi, POSIX_ACL);
450 break;
451 case Opt_noacl:
452 clear_opt(sbi, POSIX_ACL);
453 break;
454 #else
455 case Opt_acl:
456 f2fs_msg(sb, KERN_INFO, "acl options not supported");
457 break;
458 case Opt_noacl:
459 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
460 break;
461 #endif
462 case Opt_active_logs:
463 if (args->from && match_int(args, &arg))
464 return -EINVAL;
465 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
466 return -EINVAL;
467 sbi->active_logs = arg;
468 break;
469 case Opt_disable_ext_identify:
470 set_opt(sbi, DISABLE_EXT_IDENTIFY);
471 break;
472 case Opt_inline_data:
473 set_opt(sbi, INLINE_DATA);
474 break;
475 case Opt_inline_dentry:
476 set_opt(sbi, INLINE_DENTRY);
477 break;
478 case Opt_flush_merge:
479 set_opt(sbi, FLUSH_MERGE);
480 break;
481 case Opt_nobarrier:
482 set_opt(sbi, NOBARRIER);
483 break;
484 case Opt_fastboot:
485 set_opt(sbi, FASTBOOT);
486 break;
487 case Opt_extent_cache:
488 set_opt(sbi, EXTENT_CACHE);
489 break;
490 case Opt_noextent_cache:
491 clear_opt(sbi, EXTENT_CACHE);
492 break;
493 case Opt_noinline_data:
494 clear_opt(sbi, INLINE_DATA);
495 break;
496 case Opt_data_flush:
497 set_opt(sbi, DATA_FLUSH);
498 break;
499 case Opt_fault_injection:
500 if (args->from && match_int(args, &arg))
501 return -EINVAL;
502 #ifdef CONFIG_F2FS_FAULT_INJECTION
503 f2fs_build_fault_attr(arg);
504 #else
505 f2fs_msg(sb, KERN_INFO,
506 "FAULT_INJECTION was not selected");
507 #endif
508 break;
509 default:
510 f2fs_msg(sb, KERN_ERR,
511 "Unrecognized mount option \"%s\" or missing value",
512 p);
513 return -EINVAL;
514 }
515 }
516 return 0;
517 }
518
519 static struct inode *f2fs_alloc_inode(struct super_block *sb)
520 {
521 struct f2fs_inode_info *fi;
522
523 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
524 if (!fi)
525 return NULL;
526
527 init_once((void *) fi);
528
529 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
530 kmem_cache_free(f2fs_inode_cachep, fi);
531 return NULL;
532 }
533
534 /* Initialize f2fs-specific inode info */
535 fi->vfs_inode.i_version = 1;
536 fi->i_current_depth = 1;
537 fi->i_advise = 0;
538 init_rwsem(&fi->i_sem);
539 INIT_LIST_HEAD(&fi->dirty_list);
540 INIT_LIST_HEAD(&fi->inmem_pages);
541 mutex_init(&fi->inmem_lock);
542
543 /* Will be used by directory only */
544 fi->i_dir_level = F2FS_SB(sb)->dir_level;
545 return &fi->vfs_inode;
546 }
547
548 static int f2fs_drop_inode(struct inode *inode)
549 {
550 /*
551 * This is to avoid a deadlock condition like below.
552 * writeback_single_inode(inode)
553 * - f2fs_write_data_page
554 * - f2fs_gc -> iput -> evict
555 * - inode_wait_for_writeback(inode)
556 */
557 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
558 if (!inode->i_nlink && !is_bad_inode(inode)) {
559 /* to avoid evict_inode call simultaneously */
560 atomic_inc(&inode->i_count);
561 spin_unlock(&inode->i_lock);
562
563 /* some remained atomic pages should discarded */
564 if (f2fs_is_atomic_file(inode))
565 drop_inmem_pages(inode);
566
567 /* should remain fi->extent_tree for writepage */
568 f2fs_destroy_extent_node(inode);
569
570 sb_start_intwrite(inode->i_sb);
571 i_size_write(inode, 0);
572
573 if (F2FS_HAS_BLOCKS(inode))
574 f2fs_truncate(inode, true);
575
576 sb_end_intwrite(inode->i_sb);
577
578 fscrypt_put_encryption_info(inode, NULL);
579 spin_lock(&inode->i_lock);
580 atomic_dec(&inode->i_count);
581 }
582 return 0;
583 }
584 return generic_drop_inode(inode);
585 }
586
587 /*
588 * f2fs_dirty_inode() is called from __mark_inode_dirty()
589 *
590 * We should call set_dirty_inode to write the dirty inode through write_inode.
591 */
592 static void f2fs_dirty_inode(struct inode *inode, int flags)
593 {
594 set_inode_flag(inode, FI_DIRTY_INODE);
595 }
596
597 static void f2fs_i_callback(struct rcu_head *head)
598 {
599 struct inode *inode = container_of(head, struct inode, i_rcu);
600 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
601 }
602
603 static void f2fs_destroy_inode(struct inode *inode)
604 {
605 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
606 call_rcu(&inode->i_rcu, f2fs_i_callback);
607 }
608
609 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
610 {
611 int i;
612
613 for (i = 0; i < NR_COUNT_TYPE; i++)
614 percpu_counter_destroy(&sbi->nr_pages[i]);
615 percpu_counter_destroy(&sbi->alloc_valid_block_count);
616 percpu_counter_destroy(&sbi->total_valid_inode_count);
617 }
618
619 static void f2fs_put_super(struct super_block *sb)
620 {
621 struct f2fs_sb_info *sbi = F2FS_SB(sb);
622
623 if (sbi->s_proc) {
624 remove_proc_entry("segment_info", sbi->s_proc);
625 remove_proc_entry("segment_bits", sbi->s_proc);
626 remove_proc_entry(sb->s_id, f2fs_proc_root);
627 }
628 kobject_del(&sbi->s_kobj);
629
630 stop_gc_thread(sbi);
631
632 /* prevent remaining shrinker jobs */
633 mutex_lock(&sbi->umount_mutex);
634
635 /*
636 * We don't need to do checkpoint when superblock is clean.
637 * But, the previous checkpoint was not done by umount, it needs to do
638 * clean checkpoint again.
639 */
640 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
641 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
642 struct cp_control cpc = {
643 .reason = CP_UMOUNT,
644 };
645 write_checkpoint(sbi, &cpc);
646 }
647
648 /* write_checkpoint can update stat informaion */
649 f2fs_destroy_stats(sbi);
650
651 /*
652 * normally superblock is clean, so we need to release this.
653 * In addition, EIO will skip do checkpoint, we need this as well.
654 */
655 release_ino_entry(sbi, true);
656 release_discard_addrs(sbi);
657
658 f2fs_leave_shrinker(sbi);
659 mutex_unlock(&sbi->umount_mutex);
660
661 /* our cp_error case, we can wait for any writeback page */
662 f2fs_flush_merged_bios(sbi);
663
664 iput(sbi->node_inode);
665 iput(sbi->meta_inode);
666
667 /* destroy f2fs internal modules */
668 destroy_node_manager(sbi);
669 destroy_segment_manager(sbi);
670
671 kfree(sbi->ckpt);
672 kobject_put(&sbi->s_kobj);
673 wait_for_completion(&sbi->s_kobj_unregister);
674
675 sb->s_fs_info = NULL;
676 if (sbi->s_chksum_driver)
677 crypto_free_shash(sbi->s_chksum_driver);
678 kfree(sbi->raw_super);
679
680 destroy_percpu_info(sbi);
681 kfree(sbi);
682 }
683
684 int f2fs_sync_fs(struct super_block *sb, int sync)
685 {
686 struct f2fs_sb_info *sbi = F2FS_SB(sb);
687 int err = 0;
688
689 trace_f2fs_sync_fs(sb, sync);
690
691 if (sync) {
692 struct cp_control cpc;
693
694 cpc.reason = __get_cp_reason(sbi);
695
696 mutex_lock(&sbi->gc_mutex);
697 err = write_checkpoint(sbi, &cpc);
698 mutex_unlock(&sbi->gc_mutex);
699 }
700 f2fs_trace_ios(NULL, 1);
701
702 return err;
703 }
704
705 static int f2fs_freeze(struct super_block *sb)
706 {
707 int err;
708
709 if (f2fs_readonly(sb))
710 return 0;
711
712 err = f2fs_sync_fs(sb, 1);
713 return err;
714 }
715
716 static int f2fs_unfreeze(struct super_block *sb)
717 {
718 return 0;
719 }
720
721 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
722 {
723 struct super_block *sb = dentry->d_sb;
724 struct f2fs_sb_info *sbi = F2FS_SB(sb);
725 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
726 block_t total_count, user_block_count, start_count, ovp_count;
727
728 total_count = le64_to_cpu(sbi->raw_super->block_count);
729 user_block_count = sbi->user_block_count;
730 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
731 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
732 buf->f_type = F2FS_SUPER_MAGIC;
733 buf->f_bsize = sbi->blocksize;
734
735 buf->f_blocks = total_count - start_count;
736 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
737 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
738
739 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
740 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
741
742 buf->f_namelen = F2FS_NAME_LEN;
743 buf->f_fsid.val[0] = (u32)id;
744 buf->f_fsid.val[1] = (u32)(id >> 32);
745
746 return 0;
747 }
748
749 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
750 {
751 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
752
753 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
754 if (test_opt(sbi, FORCE_FG_GC))
755 seq_printf(seq, ",background_gc=%s", "sync");
756 else
757 seq_printf(seq, ",background_gc=%s", "on");
758 } else {
759 seq_printf(seq, ",background_gc=%s", "off");
760 }
761 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
762 seq_puts(seq, ",disable_roll_forward");
763 if (test_opt(sbi, DISCARD))
764 seq_puts(seq, ",discard");
765 if (test_opt(sbi, NOHEAP))
766 seq_puts(seq, ",no_heap_alloc");
767 #ifdef CONFIG_F2FS_FS_XATTR
768 if (test_opt(sbi, XATTR_USER))
769 seq_puts(seq, ",user_xattr");
770 else
771 seq_puts(seq, ",nouser_xattr");
772 if (test_opt(sbi, INLINE_XATTR))
773 seq_puts(seq, ",inline_xattr");
774 #endif
775 #ifdef CONFIG_F2FS_FS_POSIX_ACL
776 if (test_opt(sbi, POSIX_ACL))
777 seq_puts(seq, ",acl");
778 else
779 seq_puts(seq, ",noacl");
780 #endif
781 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
782 seq_puts(seq, ",disable_ext_identify");
783 if (test_opt(sbi, INLINE_DATA))
784 seq_puts(seq, ",inline_data");
785 else
786 seq_puts(seq, ",noinline_data");
787 if (test_opt(sbi, INLINE_DENTRY))
788 seq_puts(seq, ",inline_dentry");
789 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
790 seq_puts(seq, ",flush_merge");
791 if (test_opt(sbi, NOBARRIER))
792 seq_puts(seq, ",nobarrier");
793 if (test_opt(sbi, FASTBOOT))
794 seq_puts(seq, ",fastboot");
795 if (test_opt(sbi, EXTENT_CACHE))
796 seq_puts(seq, ",extent_cache");
797 else
798 seq_puts(seq, ",noextent_cache");
799 if (test_opt(sbi, DATA_FLUSH))
800 seq_puts(seq, ",data_flush");
801 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
802
803 return 0;
804 }
805
806 static int segment_info_seq_show(struct seq_file *seq, void *offset)
807 {
808 struct super_block *sb = seq->private;
809 struct f2fs_sb_info *sbi = F2FS_SB(sb);
810 unsigned int total_segs =
811 le32_to_cpu(sbi->raw_super->segment_count_main);
812 int i;
813
814 seq_puts(seq, "format: segment_type|valid_blocks\n"
815 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
816
817 for (i = 0; i < total_segs; i++) {
818 struct seg_entry *se = get_seg_entry(sbi, i);
819
820 if ((i % 10) == 0)
821 seq_printf(seq, "%-10d", i);
822 seq_printf(seq, "%d|%-3u", se->type,
823 get_valid_blocks(sbi, i, 1));
824 if ((i % 10) == 9 || i == (total_segs - 1))
825 seq_putc(seq, '\n');
826 else
827 seq_putc(seq, ' ');
828 }
829
830 return 0;
831 }
832
833 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
834 {
835 struct super_block *sb = seq->private;
836 struct f2fs_sb_info *sbi = F2FS_SB(sb);
837 unsigned int total_segs =
838 le32_to_cpu(sbi->raw_super->segment_count_main);
839 int i, j;
840
841 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
842 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
843
844 for (i = 0; i < total_segs; i++) {
845 struct seg_entry *se = get_seg_entry(sbi, i);
846
847 seq_printf(seq, "%-10d", i);
848 seq_printf(seq, "%d|%-3u|", se->type,
849 get_valid_blocks(sbi, i, 1));
850 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
851 seq_printf(seq, "%x ", se->cur_valid_map[j]);
852 seq_putc(seq, '\n');
853 }
854 return 0;
855 }
856
857 #define F2FS_PROC_FILE_DEF(_name) \
858 static int _name##_open_fs(struct inode *inode, struct file *file) \
859 { \
860 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
861 } \
862 \
863 static const struct file_operations f2fs_seq_##_name##_fops = { \
864 .owner = THIS_MODULE, \
865 .open = _name##_open_fs, \
866 .read = seq_read, \
867 .llseek = seq_lseek, \
868 .release = single_release, \
869 };
870
871 F2FS_PROC_FILE_DEF(segment_info);
872 F2FS_PROC_FILE_DEF(segment_bits);
873
874 static void default_options(struct f2fs_sb_info *sbi)
875 {
876 /* init some FS parameters */
877 sbi->active_logs = NR_CURSEG_TYPE;
878
879 set_opt(sbi, BG_GC);
880 set_opt(sbi, INLINE_DATA);
881 set_opt(sbi, EXTENT_CACHE);
882
883 #ifdef CONFIG_F2FS_FS_XATTR
884 set_opt(sbi, XATTR_USER);
885 #endif
886 #ifdef CONFIG_F2FS_FS_POSIX_ACL
887 set_opt(sbi, POSIX_ACL);
888 #endif
889 }
890
891 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
892 {
893 struct f2fs_sb_info *sbi = F2FS_SB(sb);
894 struct f2fs_mount_info org_mount_opt;
895 int err, active_logs;
896 bool need_restart_gc = false;
897 bool need_stop_gc = false;
898 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
899
900 /*
901 * Save the old mount options in case we
902 * need to restore them.
903 */
904 org_mount_opt = sbi->mount_opt;
905 active_logs = sbi->active_logs;
906
907 /* recover superblocks we couldn't write due to previous RO mount */
908 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
909 err = f2fs_commit_super(sbi, false);
910 f2fs_msg(sb, KERN_INFO,
911 "Try to recover all the superblocks, ret: %d", err);
912 if (!err)
913 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
914 }
915
916 sbi->mount_opt.opt = 0;
917 default_options(sbi);
918
919 /* parse mount options */
920 err = parse_options(sb, data);
921 if (err)
922 goto restore_opts;
923
924 /*
925 * Previous and new state of filesystem is RO,
926 * so skip checking GC and FLUSH_MERGE conditions.
927 */
928 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
929 goto skip;
930
931 /* disallow enable/disable extent_cache dynamically */
932 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
933 err = -EINVAL;
934 f2fs_msg(sbi->sb, KERN_WARNING,
935 "switch extent_cache option is not allowed");
936 goto restore_opts;
937 }
938
939 /*
940 * We stop the GC thread if FS is mounted as RO
941 * or if background_gc = off is passed in mount
942 * option. Also sync the filesystem.
943 */
944 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
945 if (sbi->gc_thread) {
946 stop_gc_thread(sbi);
947 need_restart_gc = true;
948 }
949 } else if (!sbi->gc_thread) {
950 err = start_gc_thread(sbi);
951 if (err)
952 goto restore_opts;
953 need_stop_gc = true;
954 }
955
956 if (*flags & MS_RDONLY) {
957 writeback_inodes_sb(sb, WB_REASON_SYNC);
958 sync_inodes_sb(sb);
959
960 set_sbi_flag(sbi, SBI_IS_DIRTY);
961 set_sbi_flag(sbi, SBI_IS_CLOSE);
962 f2fs_sync_fs(sb, 1);
963 clear_sbi_flag(sbi, SBI_IS_CLOSE);
964 }
965
966 /*
967 * We stop issue flush thread if FS is mounted as RO
968 * or if flush_merge is not passed in mount option.
969 */
970 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
971 destroy_flush_cmd_control(sbi);
972 } else if (!SM_I(sbi)->cmd_control_info) {
973 err = create_flush_cmd_control(sbi);
974 if (err)
975 goto restore_gc;
976 }
977 skip:
978 /* Update the POSIXACL Flag */
979 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
980 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
981
982 return 0;
983 restore_gc:
984 if (need_restart_gc) {
985 if (start_gc_thread(sbi))
986 f2fs_msg(sbi->sb, KERN_WARNING,
987 "background gc thread has stopped");
988 } else if (need_stop_gc) {
989 stop_gc_thread(sbi);
990 }
991 restore_opts:
992 sbi->mount_opt = org_mount_opt;
993 sbi->active_logs = active_logs;
994 return err;
995 }
996
997 static struct super_operations f2fs_sops = {
998 .alloc_inode = f2fs_alloc_inode,
999 .drop_inode = f2fs_drop_inode,
1000 .destroy_inode = f2fs_destroy_inode,
1001 .write_inode = f2fs_write_inode,
1002 .dirty_inode = f2fs_dirty_inode,
1003 .show_options = f2fs_show_options,
1004 .evict_inode = f2fs_evict_inode,
1005 .put_super = f2fs_put_super,
1006 .sync_fs = f2fs_sync_fs,
1007 .freeze_fs = f2fs_freeze,
1008 .unfreeze_fs = f2fs_unfreeze,
1009 .statfs = f2fs_statfs,
1010 .remount_fs = f2fs_remount,
1011 };
1012
1013 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1014 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1015 {
1016 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1017 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1018 ctx, len, NULL);
1019 }
1020
1021 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1022 {
1023 *key = F2FS_I_SB(inode)->key_prefix;
1024 return F2FS_I_SB(inode)->key_prefix_size;
1025 }
1026
1027 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1028 void *fs_data)
1029 {
1030 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1031 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1032 ctx, len, fs_data, XATTR_CREATE);
1033 }
1034
1035 static unsigned f2fs_max_namelen(struct inode *inode)
1036 {
1037 return S_ISLNK(inode->i_mode) ?
1038 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1039 }
1040
1041 static struct fscrypt_operations f2fs_cryptops = {
1042 .get_context = f2fs_get_context,
1043 .key_prefix = f2fs_key_prefix,
1044 .set_context = f2fs_set_context,
1045 .is_encrypted = f2fs_encrypted_inode,
1046 .empty_dir = f2fs_empty_dir,
1047 .max_namelen = f2fs_max_namelen,
1048 };
1049 #else
1050 static struct fscrypt_operations f2fs_cryptops = {
1051 .is_encrypted = f2fs_encrypted_inode,
1052 };
1053 #endif
1054
1055 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1056 u64 ino, u32 generation)
1057 {
1058 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1059 struct inode *inode;
1060
1061 if (check_nid_range(sbi, ino))
1062 return ERR_PTR(-ESTALE);
1063
1064 /*
1065 * f2fs_iget isn't quite right if the inode is currently unallocated!
1066 * However f2fs_iget currently does appropriate checks to handle stale
1067 * inodes so everything is OK.
1068 */
1069 inode = f2fs_iget(sb, ino);
1070 if (IS_ERR(inode))
1071 return ERR_CAST(inode);
1072 if (unlikely(generation && inode->i_generation != generation)) {
1073 /* we didn't find the right inode.. */
1074 iput(inode);
1075 return ERR_PTR(-ESTALE);
1076 }
1077 return inode;
1078 }
1079
1080 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1081 int fh_len, int fh_type)
1082 {
1083 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1084 f2fs_nfs_get_inode);
1085 }
1086
1087 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1088 int fh_len, int fh_type)
1089 {
1090 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1091 f2fs_nfs_get_inode);
1092 }
1093
1094 static const struct export_operations f2fs_export_ops = {
1095 .fh_to_dentry = f2fs_fh_to_dentry,
1096 .fh_to_parent = f2fs_fh_to_parent,
1097 .get_parent = f2fs_get_parent,
1098 };
1099
1100 static loff_t max_file_blocks(void)
1101 {
1102 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1103 loff_t leaf_count = ADDRS_PER_BLOCK;
1104
1105 /* two direct node blocks */
1106 result += (leaf_count * 2);
1107
1108 /* two indirect node blocks */
1109 leaf_count *= NIDS_PER_BLOCK;
1110 result += (leaf_count * 2);
1111
1112 /* one double indirect node block */
1113 leaf_count *= NIDS_PER_BLOCK;
1114 result += leaf_count;
1115
1116 return result;
1117 }
1118
1119 static int __f2fs_commit_super(struct buffer_head *bh,
1120 struct f2fs_super_block *super)
1121 {
1122 lock_buffer(bh);
1123 if (super)
1124 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1125 set_buffer_uptodate(bh);
1126 set_buffer_dirty(bh);
1127 unlock_buffer(bh);
1128
1129 /* it's rare case, we can do fua all the time */
1130 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1131 }
1132
1133 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1134 struct buffer_head *bh)
1135 {
1136 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1137 (bh->b_data + F2FS_SUPER_OFFSET);
1138 struct super_block *sb = sbi->sb;
1139 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1140 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1141 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1142 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1143 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1144 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1145 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1146 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1147 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1148 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1149 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1150 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1151 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1152 u64 main_end_blkaddr = main_blkaddr +
1153 (segment_count_main << log_blocks_per_seg);
1154 u64 seg_end_blkaddr = segment0_blkaddr +
1155 (segment_count << log_blocks_per_seg);
1156
1157 if (segment0_blkaddr != cp_blkaddr) {
1158 f2fs_msg(sb, KERN_INFO,
1159 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1160 segment0_blkaddr, cp_blkaddr);
1161 return true;
1162 }
1163
1164 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1165 sit_blkaddr) {
1166 f2fs_msg(sb, KERN_INFO,
1167 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1168 cp_blkaddr, sit_blkaddr,
1169 segment_count_ckpt << log_blocks_per_seg);
1170 return true;
1171 }
1172
1173 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1174 nat_blkaddr) {
1175 f2fs_msg(sb, KERN_INFO,
1176 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1177 sit_blkaddr, nat_blkaddr,
1178 segment_count_sit << log_blocks_per_seg);
1179 return true;
1180 }
1181
1182 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1183 ssa_blkaddr) {
1184 f2fs_msg(sb, KERN_INFO,
1185 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1186 nat_blkaddr, ssa_blkaddr,
1187 segment_count_nat << log_blocks_per_seg);
1188 return true;
1189 }
1190
1191 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1192 main_blkaddr) {
1193 f2fs_msg(sb, KERN_INFO,
1194 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1195 ssa_blkaddr, main_blkaddr,
1196 segment_count_ssa << log_blocks_per_seg);
1197 return true;
1198 }
1199
1200 if (main_end_blkaddr > seg_end_blkaddr) {
1201 f2fs_msg(sb, KERN_INFO,
1202 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1203 main_blkaddr,
1204 segment0_blkaddr +
1205 (segment_count << log_blocks_per_seg),
1206 segment_count_main << log_blocks_per_seg);
1207 return true;
1208 } else if (main_end_blkaddr < seg_end_blkaddr) {
1209 int err = 0;
1210 char *res;
1211
1212 /* fix in-memory information all the time */
1213 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1214 segment0_blkaddr) >> log_blocks_per_seg);
1215
1216 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1217 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1218 res = "internally";
1219 } else {
1220 err = __f2fs_commit_super(bh, NULL);
1221 res = err ? "failed" : "done";
1222 }
1223 f2fs_msg(sb, KERN_INFO,
1224 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1225 res, main_blkaddr,
1226 segment0_blkaddr +
1227 (segment_count << log_blocks_per_seg),
1228 segment_count_main << log_blocks_per_seg);
1229 if (err)
1230 return true;
1231 }
1232 return false;
1233 }
1234
1235 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1236 struct buffer_head *bh)
1237 {
1238 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1239 (bh->b_data + F2FS_SUPER_OFFSET);
1240 struct super_block *sb = sbi->sb;
1241 unsigned int blocksize;
1242
1243 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1244 f2fs_msg(sb, KERN_INFO,
1245 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1246 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1247 return 1;
1248 }
1249
1250 /* Currently, support only 4KB page cache size */
1251 if (F2FS_BLKSIZE != PAGE_SIZE) {
1252 f2fs_msg(sb, KERN_INFO,
1253 "Invalid page_cache_size (%lu), supports only 4KB\n",
1254 PAGE_SIZE);
1255 return 1;
1256 }
1257
1258 /* Currently, support only 4KB block size */
1259 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1260 if (blocksize != F2FS_BLKSIZE) {
1261 f2fs_msg(sb, KERN_INFO,
1262 "Invalid blocksize (%u), supports only 4KB\n",
1263 blocksize);
1264 return 1;
1265 }
1266
1267 /* check log blocks per segment */
1268 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1269 f2fs_msg(sb, KERN_INFO,
1270 "Invalid log blocks per segment (%u)\n",
1271 le32_to_cpu(raw_super->log_blocks_per_seg));
1272 return 1;
1273 }
1274
1275 /* Currently, support 512/1024/2048/4096 bytes sector size */
1276 if (le32_to_cpu(raw_super->log_sectorsize) >
1277 F2FS_MAX_LOG_SECTOR_SIZE ||
1278 le32_to_cpu(raw_super->log_sectorsize) <
1279 F2FS_MIN_LOG_SECTOR_SIZE) {
1280 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1281 le32_to_cpu(raw_super->log_sectorsize));
1282 return 1;
1283 }
1284 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1285 le32_to_cpu(raw_super->log_sectorsize) !=
1286 F2FS_MAX_LOG_SECTOR_SIZE) {
1287 f2fs_msg(sb, KERN_INFO,
1288 "Invalid log sectors per block(%u) log sectorsize(%u)",
1289 le32_to_cpu(raw_super->log_sectors_per_block),
1290 le32_to_cpu(raw_super->log_sectorsize));
1291 return 1;
1292 }
1293
1294 /* check reserved ino info */
1295 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1296 le32_to_cpu(raw_super->meta_ino) != 2 ||
1297 le32_to_cpu(raw_super->root_ino) != 3) {
1298 f2fs_msg(sb, KERN_INFO,
1299 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1300 le32_to_cpu(raw_super->node_ino),
1301 le32_to_cpu(raw_super->meta_ino),
1302 le32_to_cpu(raw_super->root_ino));
1303 return 1;
1304 }
1305
1306 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1307 if (sanity_check_area_boundary(sbi, bh))
1308 return 1;
1309
1310 return 0;
1311 }
1312
1313 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1314 {
1315 unsigned int total, fsmeta;
1316 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1318
1319 total = le32_to_cpu(raw_super->segment_count);
1320 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1321 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1322 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1323 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1324 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1325
1326 if (unlikely(fsmeta >= total))
1327 return 1;
1328
1329 if (unlikely(f2fs_cp_error(sbi))) {
1330 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1331 return 1;
1332 }
1333 return 0;
1334 }
1335
1336 static void init_sb_info(struct f2fs_sb_info *sbi)
1337 {
1338 struct f2fs_super_block *raw_super = sbi->raw_super;
1339
1340 sbi->log_sectors_per_block =
1341 le32_to_cpu(raw_super->log_sectors_per_block);
1342 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1343 sbi->blocksize = 1 << sbi->log_blocksize;
1344 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1345 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1346 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1347 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1348 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1349 sbi->total_node_count =
1350 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1351 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1352 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1353 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1354 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1355 sbi->cur_victim_sec = NULL_SECNO;
1356 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1357
1358 sbi->dir_level = DEF_DIR_LEVEL;
1359 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1360 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1361 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1362
1363 INIT_LIST_HEAD(&sbi->s_list);
1364 mutex_init(&sbi->umount_mutex);
1365
1366 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1367 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1368 F2FS_KEY_DESC_PREFIX_SIZE);
1369 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1370 #endif
1371 }
1372
1373 static int init_percpu_info(struct f2fs_sb_info *sbi)
1374 {
1375 int i, err;
1376
1377 for (i = 0; i < NR_COUNT_TYPE; i++) {
1378 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1379 if (err)
1380 return err;
1381 }
1382
1383 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1384 if (err)
1385 return err;
1386
1387 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1388 GFP_KERNEL);
1389 }
1390
1391 /*
1392 * Read f2fs raw super block.
1393 * Because we have two copies of super block, so read both of them
1394 * to get the first valid one. If any one of them is broken, we pass
1395 * them recovery flag back to the caller.
1396 */
1397 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1398 struct f2fs_super_block **raw_super,
1399 int *valid_super_block, int *recovery)
1400 {
1401 struct super_block *sb = sbi->sb;
1402 int block;
1403 struct buffer_head *bh;
1404 struct f2fs_super_block *super;
1405 int err = 0;
1406
1407 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1408 if (!super)
1409 return -ENOMEM;
1410
1411 for (block = 0; block < 2; block++) {
1412 bh = sb_bread(sb, block);
1413 if (!bh) {
1414 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1415 block + 1);
1416 err = -EIO;
1417 continue;
1418 }
1419
1420 /* sanity checking of raw super */
1421 if (sanity_check_raw_super(sbi, bh)) {
1422 f2fs_msg(sb, KERN_ERR,
1423 "Can't find valid F2FS filesystem in %dth superblock",
1424 block + 1);
1425 err = -EINVAL;
1426 brelse(bh);
1427 continue;
1428 }
1429
1430 if (!*raw_super) {
1431 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1432 sizeof(*super));
1433 *valid_super_block = block;
1434 *raw_super = super;
1435 }
1436 brelse(bh);
1437 }
1438
1439 /* Fail to read any one of the superblocks*/
1440 if (err < 0)
1441 *recovery = 1;
1442
1443 /* No valid superblock */
1444 if (!*raw_super)
1445 kfree(super);
1446 else
1447 err = 0;
1448
1449 return err;
1450 }
1451
1452 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1453 {
1454 struct buffer_head *bh;
1455 int err;
1456
1457 if ((recover && f2fs_readonly(sbi->sb)) ||
1458 bdev_read_only(sbi->sb->s_bdev)) {
1459 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1460 return -EROFS;
1461 }
1462
1463 /* write back-up superblock first */
1464 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1465 if (!bh)
1466 return -EIO;
1467 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1468 brelse(bh);
1469
1470 /* if we are in recovery path, skip writing valid superblock */
1471 if (recover || err)
1472 return err;
1473
1474 /* write current valid superblock */
1475 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1476 if (!bh)
1477 return -EIO;
1478 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1479 brelse(bh);
1480 return err;
1481 }
1482
1483 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1484 {
1485 struct f2fs_sb_info *sbi;
1486 struct f2fs_super_block *raw_super;
1487 struct inode *root;
1488 int err;
1489 bool retry = true, need_fsck = false;
1490 char *options = NULL;
1491 int recovery, i, valid_super_block;
1492 struct curseg_info *seg_i;
1493
1494 try_onemore:
1495 err = -EINVAL;
1496 raw_super = NULL;
1497 valid_super_block = -1;
1498 recovery = 0;
1499
1500 /* allocate memory for f2fs-specific super block info */
1501 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1502 if (!sbi)
1503 return -ENOMEM;
1504
1505 sbi->sb = sb;
1506
1507 /* Load the checksum driver */
1508 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1509 if (IS_ERR(sbi->s_chksum_driver)) {
1510 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1511 err = PTR_ERR(sbi->s_chksum_driver);
1512 sbi->s_chksum_driver = NULL;
1513 goto free_sbi;
1514 }
1515
1516 /* set a block size */
1517 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1518 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1519 goto free_sbi;
1520 }
1521
1522 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1523 &recovery);
1524 if (err)
1525 goto free_sbi;
1526
1527 sb->s_fs_info = sbi;
1528 default_options(sbi);
1529 /* parse mount options */
1530 options = kstrdup((const char *)data, GFP_KERNEL);
1531 if (data && !options) {
1532 err = -ENOMEM;
1533 goto free_sb_buf;
1534 }
1535
1536 err = parse_options(sb, options);
1537 if (err)
1538 goto free_options;
1539
1540 sbi->max_file_blocks = max_file_blocks();
1541 sb->s_maxbytes = sbi->max_file_blocks <<
1542 le32_to_cpu(raw_super->log_blocksize);
1543 sb->s_max_links = F2FS_LINK_MAX;
1544 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1545
1546 sb->s_op = &f2fs_sops;
1547 sb->s_cop = &f2fs_cryptops;
1548 sb->s_xattr = f2fs_xattr_handlers;
1549 sb->s_export_op = &f2fs_export_ops;
1550 sb->s_magic = F2FS_SUPER_MAGIC;
1551 sb->s_time_gran = 1;
1552 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1553 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1554 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1555
1556 /* init f2fs-specific super block info */
1557 sbi->raw_super = raw_super;
1558 sbi->valid_super_block = valid_super_block;
1559 mutex_init(&sbi->gc_mutex);
1560 mutex_init(&sbi->writepages);
1561 mutex_init(&sbi->cp_mutex);
1562 init_rwsem(&sbi->node_write);
1563
1564 /* disallow all the data/node/meta page writes */
1565 set_sbi_flag(sbi, SBI_POR_DOING);
1566 spin_lock_init(&sbi->stat_lock);
1567
1568 init_rwsem(&sbi->read_io.io_rwsem);
1569 sbi->read_io.sbi = sbi;
1570 sbi->read_io.bio = NULL;
1571 for (i = 0; i < NR_PAGE_TYPE; i++) {
1572 init_rwsem(&sbi->write_io[i].io_rwsem);
1573 sbi->write_io[i].sbi = sbi;
1574 sbi->write_io[i].bio = NULL;
1575 }
1576
1577 init_rwsem(&sbi->cp_rwsem);
1578 init_waitqueue_head(&sbi->cp_wait);
1579 init_sb_info(sbi);
1580
1581 err = init_percpu_info(sbi);
1582 if (err)
1583 goto free_options;
1584
1585 /* get an inode for meta space */
1586 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1587 if (IS_ERR(sbi->meta_inode)) {
1588 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1589 err = PTR_ERR(sbi->meta_inode);
1590 goto free_options;
1591 }
1592
1593 err = get_valid_checkpoint(sbi);
1594 if (err) {
1595 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1596 goto free_meta_inode;
1597 }
1598
1599 sbi->total_valid_node_count =
1600 le32_to_cpu(sbi->ckpt->valid_node_count);
1601 percpu_counter_set(&sbi->total_valid_inode_count,
1602 le32_to_cpu(sbi->ckpt->valid_inode_count));
1603 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1604 sbi->total_valid_block_count =
1605 le64_to_cpu(sbi->ckpt->valid_block_count);
1606 sbi->last_valid_block_count = sbi->total_valid_block_count;
1607
1608 for (i = 0; i < NR_INODE_TYPE; i++) {
1609 INIT_LIST_HEAD(&sbi->inode_list[i]);
1610 spin_lock_init(&sbi->inode_lock[i]);
1611 }
1612
1613 init_extent_cache_info(sbi);
1614
1615 init_ino_entry_info(sbi);
1616
1617 /* setup f2fs internal modules */
1618 err = build_segment_manager(sbi);
1619 if (err) {
1620 f2fs_msg(sb, KERN_ERR,
1621 "Failed to initialize F2FS segment manager");
1622 goto free_sm;
1623 }
1624 err = build_node_manager(sbi);
1625 if (err) {
1626 f2fs_msg(sb, KERN_ERR,
1627 "Failed to initialize F2FS node manager");
1628 goto free_nm;
1629 }
1630
1631 /* For write statistics */
1632 if (sb->s_bdev->bd_part)
1633 sbi->sectors_written_start =
1634 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1635
1636 /* Read accumulated write IO statistics if exists */
1637 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1638 if (__exist_node_summaries(sbi))
1639 sbi->kbytes_written =
1640 le64_to_cpu(seg_i->journal->info.kbytes_written);
1641
1642 build_gc_manager(sbi);
1643
1644 /* get an inode for node space */
1645 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1646 if (IS_ERR(sbi->node_inode)) {
1647 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1648 err = PTR_ERR(sbi->node_inode);
1649 goto free_nm;
1650 }
1651
1652 f2fs_join_shrinker(sbi);
1653
1654 /* if there are nt orphan nodes free them */
1655 err = recover_orphan_inodes(sbi);
1656 if (err)
1657 goto free_node_inode;
1658
1659 /* read root inode and dentry */
1660 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1661 if (IS_ERR(root)) {
1662 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1663 err = PTR_ERR(root);
1664 goto free_node_inode;
1665 }
1666 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1667 iput(root);
1668 err = -EINVAL;
1669 goto free_node_inode;
1670 }
1671
1672 sb->s_root = d_make_root(root); /* allocate root dentry */
1673 if (!sb->s_root) {
1674 err = -ENOMEM;
1675 goto free_root_inode;
1676 }
1677
1678 err = f2fs_build_stats(sbi);
1679 if (err)
1680 goto free_root_inode;
1681
1682 if (f2fs_proc_root)
1683 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1684
1685 if (sbi->s_proc) {
1686 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1687 &f2fs_seq_segment_info_fops, sb);
1688 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1689 &f2fs_seq_segment_bits_fops, sb);
1690 }
1691
1692 sbi->s_kobj.kset = f2fs_kset;
1693 init_completion(&sbi->s_kobj_unregister);
1694 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1695 "%s", sb->s_id);
1696 if (err)
1697 goto free_proc;
1698
1699 /* recover fsynced data */
1700 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1701 /*
1702 * mount should be failed, when device has readonly mode, and
1703 * previous checkpoint was not done by clean system shutdown.
1704 */
1705 if (bdev_read_only(sb->s_bdev) &&
1706 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1707 err = -EROFS;
1708 goto free_kobj;
1709 }
1710
1711 if (need_fsck)
1712 set_sbi_flag(sbi, SBI_NEED_FSCK);
1713
1714 err = recover_fsync_data(sbi, false);
1715 if (err < 0) {
1716 need_fsck = true;
1717 f2fs_msg(sb, KERN_ERR,
1718 "Cannot recover all fsync data errno=%d", err);
1719 goto free_kobj;
1720 }
1721 } else {
1722 err = recover_fsync_data(sbi, true);
1723
1724 if (!f2fs_readonly(sb) && err > 0) {
1725 err = -EINVAL;
1726 f2fs_msg(sb, KERN_ERR,
1727 "Need to recover fsync data");
1728 goto free_kobj;
1729 }
1730 }
1731
1732 /* recover_fsync_data() cleared this already */
1733 clear_sbi_flag(sbi, SBI_POR_DOING);
1734
1735 /*
1736 * If filesystem is not mounted as read-only then
1737 * do start the gc_thread.
1738 */
1739 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1740 /* After POR, we can run background GC thread.*/
1741 err = start_gc_thread(sbi);
1742 if (err)
1743 goto free_kobj;
1744 }
1745 kfree(options);
1746
1747 /* recover broken superblock */
1748 if (recovery) {
1749 err = f2fs_commit_super(sbi, true);
1750 f2fs_msg(sb, KERN_INFO,
1751 "Try to recover %dth superblock, ret: %d",
1752 sbi->valid_super_block ? 1 : 2, err);
1753 }
1754
1755 f2fs_update_time(sbi, CP_TIME);
1756 f2fs_update_time(sbi, REQ_TIME);
1757 return 0;
1758
1759 free_kobj:
1760 kobject_del(&sbi->s_kobj);
1761 kobject_put(&sbi->s_kobj);
1762 wait_for_completion(&sbi->s_kobj_unregister);
1763 free_proc:
1764 if (sbi->s_proc) {
1765 remove_proc_entry("segment_info", sbi->s_proc);
1766 remove_proc_entry("segment_bits", sbi->s_proc);
1767 remove_proc_entry(sb->s_id, f2fs_proc_root);
1768 }
1769 f2fs_destroy_stats(sbi);
1770 free_root_inode:
1771 dput(sb->s_root);
1772 sb->s_root = NULL;
1773 free_node_inode:
1774 mutex_lock(&sbi->umount_mutex);
1775 f2fs_leave_shrinker(sbi);
1776 iput(sbi->node_inode);
1777 mutex_unlock(&sbi->umount_mutex);
1778 free_nm:
1779 destroy_node_manager(sbi);
1780 free_sm:
1781 destroy_segment_manager(sbi);
1782 kfree(sbi->ckpt);
1783 free_meta_inode:
1784 make_bad_inode(sbi->meta_inode);
1785 iput(sbi->meta_inode);
1786 free_options:
1787 destroy_percpu_info(sbi);
1788 kfree(options);
1789 free_sb_buf:
1790 kfree(raw_super);
1791 free_sbi:
1792 if (sbi->s_chksum_driver)
1793 crypto_free_shash(sbi->s_chksum_driver);
1794 kfree(sbi);
1795
1796 /* give only one another chance */
1797 if (retry) {
1798 retry = false;
1799 shrink_dcache_sb(sb);
1800 goto try_onemore;
1801 }
1802 return err;
1803 }
1804
1805 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1806 const char *dev_name, void *data)
1807 {
1808 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1809 }
1810
1811 static void kill_f2fs_super(struct super_block *sb)
1812 {
1813 if (sb->s_root)
1814 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1815 kill_block_super(sb);
1816 }
1817
1818 static struct file_system_type f2fs_fs_type = {
1819 .owner = THIS_MODULE,
1820 .name = "f2fs",
1821 .mount = f2fs_mount,
1822 .kill_sb = kill_f2fs_super,
1823 .fs_flags = FS_REQUIRES_DEV,
1824 };
1825 MODULE_ALIAS_FS("f2fs");
1826
1827 static int __init init_inodecache(void)
1828 {
1829 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1830 sizeof(struct f2fs_inode_info), 0,
1831 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1832 if (!f2fs_inode_cachep)
1833 return -ENOMEM;
1834 return 0;
1835 }
1836
1837 static void destroy_inodecache(void)
1838 {
1839 /*
1840 * Make sure all delayed rcu free inodes are flushed before we
1841 * destroy cache.
1842 */
1843 rcu_barrier();
1844 kmem_cache_destroy(f2fs_inode_cachep);
1845 }
1846
1847 static int __init init_f2fs_fs(void)
1848 {
1849 int err;
1850
1851 f2fs_build_trace_ios();
1852
1853 err = init_inodecache();
1854 if (err)
1855 goto fail;
1856 err = create_node_manager_caches();
1857 if (err)
1858 goto free_inodecache;
1859 err = create_segment_manager_caches();
1860 if (err)
1861 goto free_node_manager_caches;
1862 err = create_checkpoint_caches();
1863 if (err)
1864 goto free_segment_manager_caches;
1865 err = create_extent_cache();
1866 if (err)
1867 goto free_checkpoint_caches;
1868 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1869 if (!f2fs_kset) {
1870 err = -ENOMEM;
1871 goto free_extent_cache;
1872 }
1873 #ifdef CONFIG_F2FS_FAULT_INJECTION
1874 f2fs_fault_inject.kset = f2fs_kset;
1875 f2fs_build_fault_attr(0);
1876 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1877 NULL, "fault_injection");
1878 if (err) {
1879 f2fs_fault_inject.kset = NULL;
1880 goto free_kset;
1881 }
1882 #endif
1883 err = register_shrinker(&f2fs_shrinker_info);
1884 if (err)
1885 goto free_kset;
1886
1887 err = register_filesystem(&f2fs_fs_type);
1888 if (err)
1889 goto free_shrinker;
1890 err = f2fs_create_root_stats();
1891 if (err)
1892 goto free_filesystem;
1893 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1894 return 0;
1895
1896 free_filesystem:
1897 unregister_filesystem(&f2fs_fs_type);
1898 free_shrinker:
1899 unregister_shrinker(&f2fs_shrinker_info);
1900 free_kset:
1901 #ifdef CONFIG_F2FS_FAULT_INJECTION
1902 if (f2fs_fault_inject.kset)
1903 kobject_put(&f2fs_fault_inject);
1904 #endif
1905 kset_unregister(f2fs_kset);
1906 free_extent_cache:
1907 destroy_extent_cache();
1908 free_checkpoint_caches:
1909 destroy_checkpoint_caches();
1910 free_segment_manager_caches:
1911 destroy_segment_manager_caches();
1912 free_node_manager_caches:
1913 destroy_node_manager_caches();
1914 free_inodecache:
1915 destroy_inodecache();
1916 fail:
1917 return err;
1918 }
1919
1920 static void __exit exit_f2fs_fs(void)
1921 {
1922 remove_proc_entry("fs/f2fs", NULL);
1923 f2fs_destroy_root_stats();
1924 unregister_filesystem(&f2fs_fs_type);
1925 unregister_shrinker(&f2fs_shrinker_info);
1926 #ifdef CONFIG_F2FS_FAULT_INJECTION
1927 kobject_put(&f2fs_fault_inject);
1928 #endif
1929 kset_unregister(f2fs_kset);
1930 destroy_extent_cache();
1931 destroy_checkpoint_caches();
1932 destroy_segment_manager_caches();
1933 destroy_node_manager_caches();
1934 destroy_inodecache();
1935 f2fs_destroy_trace_ios();
1936 }
1937
1938 module_init(init_f2fs_fs)
1939 module_exit(exit_f2fs_fs)
1940
1941 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1942 MODULE_DESCRIPTION("Flash Friendly File System");
1943 MODULE_LICENSE("GPL");