]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/f2fs/super.c
Merge branches 'ib-mfd-4.19', 'ib-mfd-gpio-pinctrl-4.19', 'ib-mfd-i915-media-platform...
[mirror_ubuntu-eoan-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_KVMALLOC] = "kvmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_PAGE_GET] = "page get",
49 [FAULT_ALLOC_BIO] = "alloc bio",
50 [FAULT_ALLOC_NID] = "alloc nid",
51 [FAULT_ORPHAN] = "orphan",
52 [FAULT_BLOCK] = "no more block",
53 [FAULT_DIR_DEPTH] = "too big dir depth",
54 [FAULT_EVICT_INODE] = "evict_inode fail",
55 [FAULT_TRUNCATE] = "truncate fail",
56 [FAULT_IO] = "IO error",
57 [FAULT_CHECKPOINT] = "checkpoint error",
58 };
59
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61 unsigned int rate)
62 {
63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64
65 if (rate) {
66 atomic_set(&ffi->inject_ops, 0);
67 ffi->inject_rate = rate;
68 ffi->inject_type = (1 << FAULT_MAX) - 1;
69 } else {
70 memset(ffi, 0, sizeof(struct f2fs_fault_info));
71 }
72 }
73 #endif
74
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77 .scan_objects = f2fs_shrink_scan,
78 .count_objects = f2fs_shrink_count,
79 .seeks = DEFAULT_SEEKS,
80 };
81
82 enum {
83 Opt_gc_background,
84 Opt_disable_roll_forward,
85 Opt_norecovery,
86 Opt_discard,
87 Opt_nodiscard,
88 Opt_noheap,
89 Opt_heap,
90 Opt_user_xattr,
91 Opt_nouser_xattr,
92 Opt_acl,
93 Opt_noacl,
94 Opt_active_logs,
95 Opt_disable_ext_identify,
96 Opt_inline_xattr,
97 Opt_noinline_xattr,
98 Opt_inline_xattr_size,
99 Opt_inline_data,
100 Opt_inline_dentry,
101 Opt_noinline_dentry,
102 Opt_flush_merge,
103 Opt_noflush_merge,
104 Opt_nobarrier,
105 Opt_fastboot,
106 Opt_extent_cache,
107 Opt_noextent_cache,
108 Opt_noinline_data,
109 Opt_data_flush,
110 Opt_reserve_root,
111 Opt_resgid,
112 Opt_resuid,
113 Opt_mode,
114 Opt_io_size_bits,
115 Opt_fault_injection,
116 Opt_lazytime,
117 Opt_nolazytime,
118 Opt_quota,
119 Opt_noquota,
120 Opt_usrquota,
121 Opt_grpquota,
122 Opt_prjquota,
123 Opt_usrjquota,
124 Opt_grpjquota,
125 Opt_prjjquota,
126 Opt_offusrjquota,
127 Opt_offgrpjquota,
128 Opt_offprjjquota,
129 Opt_jqfmt_vfsold,
130 Opt_jqfmt_vfsv0,
131 Opt_jqfmt_vfsv1,
132 Opt_whint,
133 Opt_alloc,
134 Opt_fsync,
135 Opt_test_dummy_encryption,
136 Opt_err,
137 };
138
139 static match_table_t f2fs_tokens = {
140 {Opt_gc_background, "background_gc=%s"},
141 {Opt_disable_roll_forward, "disable_roll_forward"},
142 {Opt_norecovery, "norecovery"},
143 {Opt_discard, "discard"},
144 {Opt_nodiscard, "nodiscard"},
145 {Opt_noheap, "no_heap"},
146 {Opt_heap, "heap"},
147 {Opt_user_xattr, "user_xattr"},
148 {Opt_nouser_xattr, "nouser_xattr"},
149 {Opt_acl, "acl"},
150 {Opt_noacl, "noacl"},
151 {Opt_active_logs, "active_logs=%u"},
152 {Opt_disable_ext_identify, "disable_ext_identify"},
153 {Opt_inline_xattr, "inline_xattr"},
154 {Opt_noinline_xattr, "noinline_xattr"},
155 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
156 {Opt_inline_data, "inline_data"},
157 {Opt_inline_dentry, "inline_dentry"},
158 {Opt_noinline_dentry, "noinline_dentry"},
159 {Opt_flush_merge, "flush_merge"},
160 {Opt_noflush_merge, "noflush_merge"},
161 {Opt_nobarrier, "nobarrier"},
162 {Opt_fastboot, "fastboot"},
163 {Opt_extent_cache, "extent_cache"},
164 {Opt_noextent_cache, "noextent_cache"},
165 {Opt_noinline_data, "noinline_data"},
166 {Opt_data_flush, "data_flush"},
167 {Opt_reserve_root, "reserve_root=%u"},
168 {Opt_resgid, "resgid=%u"},
169 {Opt_resuid, "resuid=%u"},
170 {Opt_mode, "mode=%s"},
171 {Opt_io_size_bits, "io_bits=%u"},
172 {Opt_fault_injection, "fault_injection=%u"},
173 {Opt_lazytime, "lazytime"},
174 {Opt_nolazytime, "nolazytime"},
175 {Opt_quota, "quota"},
176 {Opt_noquota, "noquota"},
177 {Opt_usrquota, "usrquota"},
178 {Opt_grpquota, "grpquota"},
179 {Opt_prjquota, "prjquota"},
180 {Opt_usrjquota, "usrjquota=%s"},
181 {Opt_grpjquota, "grpjquota=%s"},
182 {Opt_prjjquota, "prjjquota=%s"},
183 {Opt_offusrjquota, "usrjquota="},
184 {Opt_offgrpjquota, "grpjquota="},
185 {Opt_offprjjquota, "prjjquota="},
186 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189 {Opt_whint, "whint_mode=%s"},
190 {Opt_alloc, "alloc_mode=%s"},
191 {Opt_fsync, "fsync_mode=%s"},
192 {Opt_test_dummy_encryption, "test_dummy_encryption"},
193 {Opt_err, NULL},
194 };
195
196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198 struct va_format vaf;
199 va_list args;
200
201 va_start(args, fmt);
202 vaf.fmt = fmt;
203 vaf.va = &args;
204 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205 va_end(args);
206 }
207
208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210 block_t limit = (sbi->user_block_count << 1) / 1000;
211
212 /* limit is 0.2% */
213 if (test_opt(sbi, RESERVE_ROOT) &&
214 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215 F2FS_OPTION(sbi).root_reserved_blocks = limit;
216 f2fs_msg(sbi->sb, KERN_INFO,
217 "Reduce reserved blocks for root = %u",
218 F2FS_OPTION(sbi).root_reserved_blocks);
219 }
220 if (!test_opt(sbi, RESERVE_ROOT) &&
221 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
222 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223 !gid_eq(F2FS_OPTION(sbi).s_resgid,
224 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225 f2fs_msg(sbi->sb, KERN_INFO,
226 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227 from_kuid_munged(&init_user_ns,
228 F2FS_OPTION(sbi).s_resuid),
229 from_kgid_munged(&init_user_ns,
230 F2FS_OPTION(sbi).s_resgid));
231 }
232
233 static void init_once(void *foo)
234 {
235 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236
237 inode_init_once(&fi->vfs_inode);
238 }
239
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244 substring_t *args)
245 {
246 struct f2fs_sb_info *sbi = F2FS_SB(sb);
247 char *qname;
248 int ret = -EINVAL;
249
250 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251 f2fs_msg(sb, KERN_ERR,
252 "Cannot change journaled "
253 "quota options when quota turned on");
254 return -EINVAL;
255 }
256 if (f2fs_sb_has_quota_ino(sb)) {
257 f2fs_msg(sb, KERN_INFO,
258 "QUOTA feature is enabled, so ignore qf_name");
259 return 0;
260 }
261
262 qname = match_strdup(args);
263 if (!qname) {
264 f2fs_msg(sb, KERN_ERR,
265 "Not enough memory for storing quotafile name");
266 return -EINVAL;
267 }
268 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270 ret = 0;
271 else
272 f2fs_msg(sb, KERN_ERR,
273 "%s quota file already specified",
274 QTYPE2NAME(qtype));
275 goto errout;
276 }
277 if (strchr(qname, '/')) {
278 f2fs_msg(sb, KERN_ERR,
279 "quotafile must be on filesystem root");
280 goto errout;
281 }
282 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283 set_opt(sbi, QUOTA);
284 return 0;
285 errout:
286 kfree(qname);
287 return ret;
288 }
289
290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292 struct f2fs_sb_info *sbi = F2FS_SB(sb);
293
294 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296 " when quota turned on");
297 return -EINVAL;
298 }
299 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301 return 0;
302 }
303
304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306 /*
307 * We do the test below only for project quotas. 'usrquota' and
308 * 'grpquota' mount options are allowed even without quota feature
309 * to support legacy quotas in quota files.
310 */
311 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313 "Cannot enable project quota enforcement.");
314 return -1;
315 }
316 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319 if (test_opt(sbi, USRQUOTA) &&
320 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321 clear_opt(sbi, USRQUOTA);
322
323 if (test_opt(sbi, GRPQUOTA) &&
324 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325 clear_opt(sbi, GRPQUOTA);
326
327 if (test_opt(sbi, PRJQUOTA) &&
328 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329 clear_opt(sbi, PRJQUOTA);
330
331 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332 test_opt(sbi, PRJQUOTA)) {
333 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334 "format mixing");
335 return -1;
336 }
337
338 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340 "not specified");
341 return -1;
342 }
343 }
344
345 if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346 f2fs_msg(sbi->sb, KERN_INFO,
347 "QUOTA feature is enabled, so ignore jquota_fmt");
348 F2FS_OPTION(sbi).s_jquota_fmt = 0;
349 }
350 if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351 f2fs_msg(sbi->sb, KERN_INFO,
352 "Filesystem with quota feature cannot be mounted RDWR "
353 "without CONFIG_QUOTA");
354 return -1;
355 }
356 return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362 struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 struct request_queue *q;
364 substring_t args[MAX_OPT_ARGS];
365 char *p, *name;
366 int arg = 0;
367 kuid_t uid;
368 kgid_t gid;
369 #ifdef CONFIG_QUOTA
370 int ret;
371 #endif
372
373 if (!options)
374 return 0;
375
376 while ((p = strsep(&options, ",")) != NULL) {
377 int token;
378 if (!*p)
379 continue;
380 /*
381 * Initialize args struct so we know whether arg was
382 * found; some options take optional arguments.
383 */
384 args[0].to = args[0].from = NULL;
385 token = match_token(p, f2fs_tokens, args);
386
387 switch (token) {
388 case Opt_gc_background:
389 name = match_strdup(&args[0]);
390
391 if (!name)
392 return -ENOMEM;
393 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394 set_opt(sbi, BG_GC);
395 clear_opt(sbi, FORCE_FG_GC);
396 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397 clear_opt(sbi, BG_GC);
398 clear_opt(sbi, FORCE_FG_GC);
399 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400 set_opt(sbi, BG_GC);
401 set_opt(sbi, FORCE_FG_GC);
402 } else {
403 kfree(name);
404 return -EINVAL;
405 }
406 kfree(name);
407 break;
408 case Opt_disable_roll_forward:
409 set_opt(sbi, DISABLE_ROLL_FORWARD);
410 break;
411 case Opt_norecovery:
412 /* this option mounts f2fs with ro */
413 set_opt(sbi, DISABLE_ROLL_FORWARD);
414 if (!f2fs_readonly(sb))
415 return -EINVAL;
416 break;
417 case Opt_discard:
418 q = bdev_get_queue(sb->s_bdev);
419 if (blk_queue_discard(q)) {
420 set_opt(sbi, DISCARD);
421 } else if (!f2fs_sb_has_blkzoned(sb)) {
422 f2fs_msg(sb, KERN_WARNING,
423 "mounting with \"discard\" option, but "
424 "the device does not support discard");
425 }
426 break;
427 case Opt_nodiscard:
428 if (f2fs_sb_has_blkzoned(sb)) {
429 f2fs_msg(sb, KERN_WARNING,
430 "discard is required for zoned block devices");
431 return -EINVAL;
432 }
433 clear_opt(sbi, DISCARD);
434 break;
435 case Opt_noheap:
436 set_opt(sbi, NOHEAP);
437 break;
438 case Opt_heap:
439 clear_opt(sbi, NOHEAP);
440 break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442 case Opt_user_xattr:
443 set_opt(sbi, XATTR_USER);
444 break;
445 case Opt_nouser_xattr:
446 clear_opt(sbi, XATTR_USER);
447 break;
448 case Opt_inline_xattr:
449 set_opt(sbi, INLINE_XATTR);
450 break;
451 case Opt_noinline_xattr:
452 clear_opt(sbi, INLINE_XATTR);
453 break;
454 case Opt_inline_xattr_size:
455 if (args->from && match_int(args, &arg))
456 return -EINVAL;
457 set_opt(sbi, INLINE_XATTR_SIZE);
458 F2FS_OPTION(sbi).inline_xattr_size = arg;
459 break;
460 #else
461 case Opt_user_xattr:
462 f2fs_msg(sb, KERN_INFO,
463 "user_xattr options not supported");
464 break;
465 case Opt_nouser_xattr:
466 f2fs_msg(sb, KERN_INFO,
467 "nouser_xattr options not supported");
468 break;
469 case Opt_inline_xattr:
470 f2fs_msg(sb, KERN_INFO,
471 "inline_xattr options not supported");
472 break;
473 case Opt_noinline_xattr:
474 f2fs_msg(sb, KERN_INFO,
475 "noinline_xattr options not supported");
476 break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479 case Opt_acl:
480 set_opt(sbi, POSIX_ACL);
481 break;
482 case Opt_noacl:
483 clear_opt(sbi, POSIX_ACL);
484 break;
485 #else
486 case Opt_acl:
487 f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 break;
489 case Opt_noacl:
490 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 break;
492 #endif
493 case Opt_active_logs:
494 if (args->from && match_int(args, &arg))
495 return -EINVAL;
496 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 return -EINVAL;
498 F2FS_OPTION(sbi).active_logs = arg;
499 break;
500 case Opt_disable_ext_identify:
501 set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 break;
503 case Opt_inline_data:
504 set_opt(sbi, INLINE_DATA);
505 break;
506 case Opt_inline_dentry:
507 set_opt(sbi, INLINE_DENTRY);
508 break;
509 case Opt_noinline_dentry:
510 clear_opt(sbi, INLINE_DENTRY);
511 break;
512 case Opt_flush_merge:
513 set_opt(sbi, FLUSH_MERGE);
514 break;
515 case Opt_noflush_merge:
516 clear_opt(sbi, FLUSH_MERGE);
517 break;
518 case Opt_nobarrier:
519 set_opt(sbi, NOBARRIER);
520 break;
521 case Opt_fastboot:
522 set_opt(sbi, FASTBOOT);
523 break;
524 case Opt_extent_cache:
525 set_opt(sbi, EXTENT_CACHE);
526 break;
527 case Opt_noextent_cache:
528 clear_opt(sbi, EXTENT_CACHE);
529 break;
530 case Opt_noinline_data:
531 clear_opt(sbi, INLINE_DATA);
532 break;
533 case Opt_data_flush:
534 set_opt(sbi, DATA_FLUSH);
535 break;
536 case Opt_reserve_root:
537 if (args->from && match_int(args, &arg))
538 return -EINVAL;
539 if (test_opt(sbi, RESERVE_ROOT)) {
540 f2fs_msg(sb, KERN_INFO,
541 "Preserve previous reserve_root=%u",
542 F2FS_OPTION(sbi).root_reserved_blocks);
543 } else {
544 F2FS_OPTION(sbi).root_reserved_blocks = arg;
545 set_opt(sbi, RESERVE_ROOT);
546 }
547 break;
548 case Opt_resuid:
549 if (args->from && match_int(args, &arg))
550 return -EINVAL;
551 uid = make_kuid(current_user_ns(), arg);
552 if (!uid_valid(uid)) {
553 f2fs_msg(sb, KERN_ERR,
554 "Invalid uid value %d", arg);
555 return -EINVAL;
556 }
557 F2FS_OPTION(sbi).s_resuid = uid;
558 break;
559 case Opt_resgid:
560 if (args->from && match_int(args, &arg))
561 return -EINVAL;
562 gid = make_kgid(current_user_ns(), arg);
563 if (!gid_valid(gid)) {
564 f2fs_msg(sb, KERN_ERR,
565 "Invalid gid value %d", arg);
566 return -EINVAL;
567 }
568 F2FS_OPTION(sbi).s_resgid = gid;
569 break;
570 case Opt_mode:
571 name = match_strdup(&args[0]);
572
573 if (!name)
574 return -ENOMEM;
575 if (strlen(name) == 8 &&
576 !strncmp(name, "adaptive", 8)) {
577 if (f2fs_sb_has_blkzoned(sb)) {
578 f2fs_msg(sb, KERN_WARNING,
579 "adaptive mode is not allowed with "
580 "zoned block device feature");
581 kfree(name);
582 return -EINVAL;
583 }
584 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585 } else if (strlen(name) == 3 &&
586 !strncmp(name, "lfs", 3)) {
587 set_opt_mode(sbi, F2FS_MOUNT_LFS);
588 } else {
589 kfree(name);
590 return -EINVAL;
591 }
592 kfree(name);
593 break;
594 case Opt_io_size_bits:
595 if (args->from && match_int(args, &arg))
596 return -EINVAL;
597 if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598 f2fs_msg(sb, KERN_WARNING,
599 "Not support %d, larger than %d",
600 1 << arg, BIO_MAX_PAGES);
601 return -EINVAL;
602 }
603 F2FS_OPTION(sbi).write_io_size_bits = arg;
604 break;
605 case Opt_fault_injection:
606 if (args->from && match_int(args, &arg))
607 return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609 f2fs_build_fault_attr(sbi, arg);
610 set_opt(sbi, FAULT_INJECTION);
611 #else
612 f2fs_msg(sb, KERN_INFO,
613 "FAULT_INJECTION was not selected");
614 #endif
615 break;
616 case Opt_lazytime:
617 sb->s_flags |= SB_LAZYTIME;
618 break;
619 case Opt_nolazytime:
620 sb->s_flags &= ~SB_LAZYTIME;
621 break;
622 #ifdef CONFIG_QUOTA
623 case Opt_quota:
624 case Opt_usrquota:
625 set_opt(sbi, USRQUOTA);
626 break;
627 case Opt_grpquota:
628 set_opt(sbi, GRPQUOTA);
629 break;
630 case Opt_prjquota:
631 set_opt(sbi, PRJQUOTA);
632 break;
633 case Opt_usrjquota:
634 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635 if (ret)
636 return ret;
637 break;
638 case Opt_grpjquota:
639 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640 if (ret)
641 return ret;
642 break;
643 case Opt_prjjquota:
644 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645 if (ret)
646 return ret;
647 break;
648 case Opt_offusrjquota:
649 ret = f2fs_clear_qf_name(sb, USRQUOTA);
650 if (ret)
651 return ret;
652 break;
653 case Opt_offgrpjquota:
654 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655 if (ret)
656 return ret;
657 break;
658 case Opt_offprjjquota:
659 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660 if (ret)
661 return ret;
662 break;
663 case Opt_jqfmt_vfsold:
664 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665 break;
666 case Opt_jqfmt_vfsv0:
667 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668 break;
669 case Opt_jqfmt_vfsv1:
670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671 break;
672 case Opt_noquota:
673 clear_opt(sbi, QUOTA);
674 clear_opt(sbi, USRQUOTA);
675 clear_opt(sbi, GRPQUOTA);
676 clear_opt(sbi, PRJQUOTA);
677 break;
678 #else
679 case Opt_quota:
680 case Opt_usrquota:
681 case Opt_grpquota:
682 case Opt_prjquota:
683 case Opt_usrjquota:
684 case Opt_grpjquota:
685 case Opt_prjjquota:
686 case Opt_offusrjquota:
687 case Opt_offgrpjquota:
688 case Opt_offprjjquota:
689 case Opt_jqfmt_vfsold:
690 case Opt_jqfmt_vfsv0:
691 case Opt_jqfmt_vfsv1:
692 case Opt_noquota:
693 f2fs_msg(sb, KERN_INFO,
694 "quota operations not supported");
695 break;
696 #endif
697 case Opt_whint:
698 name = match_strdup(&args[0]);
699 if (!name)
700 return -ENOMEM;
701 if (strlen(name) == 10 &&
702 !strncmp(name, "user-based", 10)) {
703 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704 } else if (strlen(name) == 3 &&
705 !strncmp(name, "off", 3)) {
706 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707 } else if (strlen(name) == 8 &&
708 !strncmp(name, "fs-based", 8)) {
709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710 } else {
711 kfree(name);
712 return -EINVAL;
713 }
714 kfree(name);
715 break;
716 case Opt_alloc:
717 name = match_strdup(&args[0]);
718 if (!name)
719 return -ENOMEM;
720
721 if (strlen(name) == 7 &&
722 !strncmp(name, "default", 7)) {
723 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724 } else if (strlen(name) == 5 &&
725 !strncmp(name, "reuse", 5)) {
726 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727 } else {
728 kfree(name);
729 return -EINVAL;
730 }
731 kfree(name);
732 break;
733 case Opt_fsync:
734 name = match_strdup(&args[0]);
735 if (!name)
736 return -ENOMEM;
737 if (strlen(name) == 5 &&
738 !strncmp(name, "posix", 5)) {
739 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740 } else if (strlen(name) == 6 &&
741 !strncmp(name, "strict", 6)) {
742 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743 } else if (strlen(name) == 9 &&
744 !strncmp(name, "nobarrier", 9)) {
745 F2FS_OPTION(sbi).fsync_mode =
746 FSYNC_MODE_NOBARRIER;
747 } else {
748 kfree(name);
749 return -EINVAL;
750 }
751 kfree(name);
752 break;
753 case Opt_test_dummy_encryption:
754 #ifdef CONFIG_F2FS_FS_ENCRYPTION
755 if (!f2fs_sb_has_encrypt(sb)) {
756 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
757 return -EINVAL;
758 }
759
760 F2FS_OPTION(sbi).test_dummy_encryption = true;
761 f2fs_msg(sb, KERN_INFO,
762 "Test dummy encryption mode enabled");
763 #else
764 f2fs_msg(sb, KERN_INFO,
765 "Test dummy encryption mount option ignored");
766 #endif
767 break;
768 default:
769 f2fs_msg(sb, KERN_ERR,
770 "Unrecognized mount option \"%s\" or missing value",
771 p);
772 return -EINVAL;
773 }
774 }
775 #ifdef CONFIG_QUOTA
776 if (f2fs_check_quota_options(sbi))
777 return -EINVAL;
778 #endif
779
780 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
781 f2fs_msg(sb, KERN_ERR,
782 "Should set mode=lfs with %uKB-sized IO",
783 F2FS_IO_SIZE_KB(sbi));
784 return -EINVAL;
785 }
786
787 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
788 if (!f2fs_sb_has_extra_attr(sb) ||
789 !f2fs_sb_has_flexible_inline_xattr(sb)) {
790 f2fs_msg(sb, KERN_ERR,
791 "extra_attr or flexible_inline_xattr "
792 "feature is off");
793 return -EINVAL;
794 }
795 if (!test_opt(sbi, INLINE_XATTR)) {
796 f2fs_msg(sb, KERN_ERR,
797 "inline_xattr_size option should be "
798 "set with inline_xattr option");
799 return -EINVAL;
800 }
801 if (!F2FS_OPTION(sbi).inline_xattr_size ||
802 F2FS_OPTION(sbi).inline_xattr_size >=
803 DEF_ADDRS_PER_INODE -
804 F2FS_TOTAL_EXTRA_ATTR_SIZE -
805 DEF_INLINE_RESERVED_SIZE -
806 DEF_MIN_INLINE_SIZE) {
807 f2fs_msg(sb, KERN_ERR,
808 "inline xattr size is out of range");
809 return -EINVAL;
810 }
811 }
812
813 /* Not pass down write hints if the number of active logs is lesser
814 * than NR_CURSEG_TYPE.
815 */
816 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
817 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
818 return 0;
819 }
820
821 static struct inode *f2fs_alloc_inode(struct super_block *sb)
822 {
823 struct f2fs_inode_info *fi;
824
825 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
826 if (!fi)
827 return NULL;
828
829 init_once((void *) fi);
830
831 /* Initialize f2fs-specific inode info */
832 atomic_set(&fi->dirty_pages, 0);
833 init_rwsem(&fi->i_sem);
834 INIT_LIST_HEAD(&fi->dirty_list);
835 INIT_LIST_HEAD(&fi->gdirty_list);
836 INIT_LIST_HEAD(&fi->inmem_ilist);
837 INIT_LIST_HEAD(&fi->inmem_pages);
838 mutex_init(&fi->inmem_lock);
839 init_rwsem(&fi->i_gc_rwsem[READ]);
840 init_rwsem(&fi->i_gc_rwsem[WRITE]);
841 init_rwsem(&fi->i_mmap_sem);
842 init_rwsem(&fi->i_xattr_sem);
843
844 /* Will be used by directory only */
845 fi->i_dir_level = F2FS_SB(sb)->dir_level;
846
847 return &fi->vfs_inode;
848 }
849
850 static int f2fs_drop_inode(struct inode *inode)
851 {
852 int ret;
853 /*
854 * This is to avoid a deadlock condition like below.
855 * writeback_single_inode(inode)
856 * - f2fs_write_data_page
857 * - f2fs_gc -> iput -> evict
858 * - inode_wait_for_writeback(inode)
859 */
860 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
861 if (!inode->i_nlink && !is_bad_inode(inode)) {
862 /* to avoid evict_inode call simultaneously */
863 atomic_inc(&inode->i_count);
864 spin_unlock(&inode->i_lock);
865
866 /* some remained atomic pages should discarded */
867 if (f2fs_is_atomic_file(inode))
868 f2fs_drop_inmem_pages(inode);
869
870 /* should remain fi->extent_tree for writepage */
871 f2fs_destroy_extent_node(inode);
872
873 sb_start_intwrite(inode->i_sb);
874 f2fs_i_size_write(inode, 0);
875
876 if (F2FS_HAS_BLOCKS(inode))
877 f2fs_truncate(inode);
878
879 sb_end_intwrite(inode->i_sb);
880
881 spin_lock(&inode->i_lock);
882 atomic_dec(&inode->i_count);
883 }
884 trace_f2fs_drop_inode(inode, 0);
885 return 0;
886 }
887 ret = generic_drop_inode(inode);
888 trace_f2fs_drop_inode(inode, ret);
889 return ret;
890 }
891
892 int f2fs_inode_dirtied(struct inode *inode, bool sync)
893 {
894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
895 int ret = 0;
896
897 spin_lock(&sbi->inode_lock[DIRTY_META]);
898 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
899 ret = 1;
900 } else {
901 set_inode_flag(inode, FI_DIRTY_INODE);
902 stat_inc_dirty_inode(sbi, DIRTY_META);
903 }
904 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
905 list_add_tail(&F2FS_I(inode)->gdirty_list,
906 &sbi->inode_list[DIRTY_META]);
907 inc_page_count(sbi, F2FS_DIRTY_IMETA);
908 }
909 spin_unlock(&sbi->inode_lock[DIRTY_META]);
910 return ret;
911 }
912
913 void f2fs_inode_synced(struct inode *inode)
914 {
915 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
916
917 spin_lock(&sbi->inode_lock[DIRTY_META]);
918 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
919 spin_unlock(&sbi->inode_lock[DIRTY_META]);
920 return;
921 }
922 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
923 list_del_init(&F2FS_I(inode)->gdirty_list);
924 dec_page_count(sbi, F2FS_DIRTY_IMETA);
925 }
926 clear_inode_flag(inode, FI_DIRTY_INODE);
927 clear_inode_flag(inode, FI_AUTO_RECOVER);
928 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
929 spin_unlock(&sbi->inode_lock[DIRTY_META]);
930 }
931
932 /*
933 * f2fs_dirty_inode() is called from __mark_inode_dirty()
934 *
935 * We should call set_dirty_inode to write the dirty inode through write_inode.
936 */
937 static void f2fs_dirty_inode(struct inode *inode, int flags)
938 {
939 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
940
941 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
942 inode->i_ino == F2FS_META_INO(sbi))
943 return;
944
945 if (flags == I_DIRTY_TIME)
946 return;
947
948 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
949 clear_inode_flag(inode, FI_AUTO_RECOVER);
950
951 f2fs_inode_dirtied(inode, false);
952 }
953
954 static void f2fs_i_callback(struct rcu_head *head)
955 {
956 struct inode *inode = container_of(head, struct inode, i_rcu);
957 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
958 }
959
960 static void f2fs_destroy_inode(struct inode *inode)
961 {
962 call_rcu(&inode->i_rcu, f2fs_i_callback);
963 }
964
965 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
966 {
967 percpu_counter_destroy(&sbi->alloc_valid_block_count);
968 percpu_counter_destroy(&sbi->total_valid_inode_count);
969 }
970
971 static void destroy_device_list(struct f2fs_sb_info *sbi)
972 {
973 int i;
974
975 for (i = 0; i < sbi->s_ndevs; i++) {
976 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
977 #ifdef CONFIG_BLK_DEV_ZONED
978 kfree(FDEV(i).blkz_type);
979 #endif
980 }
981 kfree(sbi->devs);
982 }
983
984 static void f2fs_put_super(struct super_block *sb)
985 {
986 struct f2fs_sb_info *sbi = F2FS_SB(sb);
987 int i;
988 bool dropped;
989
990 f2fs_quota_off_umount(sb);
991
992 /* prevent remaining shrinker jobs */
993 mutex_lock(&sbi->umount_mutex);
994
995 /*
996 * We don't need to do checkpoint when superblock is clean.
997 * But, the previous checkpoint was not done by umount, it needs to do
998 * clean checkpoint again.
999 */
1000 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1001 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1002 struct cp_control cpc = {
1003 .reason = CP_UMOUNT,
1004 };
1005 f2fs_write_checkpoint(sbi, &cpc);
1006 }
1007
1008 /* be sure to wait for any on-going discard commands */
1009 dropped = f2fs_wait_discard_bios(sbi);
1010
1011 if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1012 struct cp_control cpc = {
1013 .reason = CP_UMOUNT | CP_TRIMMED,
1014 };
1015 f2fs_write_checkpoint(sbi, &cpc);
1016 }
1017
1018 /* f2fs_write_checkpoint can update stat informaion */
1019 f2fs_destroy_stats(sbi);
1020
1021 /*
1022 * normally superblock is clean, so we need to release this.
1023 * In addition, EIO will skip do checkpoint, we need this as well.
1024 */
1025 f2fs_release_ino_entry(sbi, true);
1026
1027 f2fs_leave_shrinker(sbi);
1028 mutex_unlock(&sbi->umount_mutex);
1029
1030 /* our cp_error case, we can wait for any writeback page */
1031 f2fs_flush_merged_writes(sbi);
1032
1033 iput(sbi->node_inode);
1034 iput(sbi->meta_inode);
1035
1036 /* destroy f2fs internal modules */
1037 f2fs_destroy_node_manager(sbi);
1038 f2fs_destroy_segment_manager(sbi);
1039
1040 kfree(sbi->ckpt);
1041
1042 f2fs_unregister_sysfs(sbi);
1043
1044 sb->s_fs_info = NULL;
1045 if (sbi->s_chksum_driver)
1046 crypto_free_shash(sbi->s_chksum_driver);
1047 kfree(sbi->raw_super);
1048
1049 destroy_device_list(sbi);
1050 mempool_destroy(sbi->write_io_dummy);
1051 #ifdef CONFIG_QUOTA
1052 for (i = 0; i < MAXQUOTAS; i++)
1053 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1054 #endif
1055 destroy_percpu_info(sbi);
1056 for (i = 0; i < NR_PAGE_TYPE; i++)
1057 kfree(sbi->write_io[i]);
1058 kfree(sbi);
1059 }
1060
1061 int f2fs_sync_fs(struct super_block *sb, int sync)
1062 {
1063 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1064 int err = 0;
1065
1066 if (unlikely(f2fs_cp_error(sbi)))
1067 return 0;
1068
1069 trace_f2fs_sync_fs(sb, sync);
1070
1071 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1072 return -EAGAIN;
1073
1074 if (sync) {
1075 struct cp_control cpc;
1076
1077 cpc.reason = __get_cp_reason(sbi);
1078
1079 mutex_lock(&sbi->gc_mutex);
1080 err = f2fs_write_checkpoint(sbi, &cpc);
1081 mutex_unlock(&sbi->gc_mutex);
1082 }
1083 f2fs_trace_ios(NULL, 1);
1084
1085 return err;
1086 }
1087
1088 static int f2fs_freeze(struct super_block *sb)
1089 {
1090 if (f2fs_readonly(sb))
1091 return 0;
1092
1093 /* IO error happened before */
1094 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1095 return -EIO;
1096
1097 /* must be clean, since sync_filesystem() was already called */
1098 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1099 return -EINVAL;
1100 return 0;
1101 }
1102
1103 static int f2fs_unfreeze(struct super_block *sb)
1104 {
1105 return 0;
1106 }
1107
1108 #ifdef CONFIG_QUOTA
1109 static int f2fs_statfs_project(struct super_block *sb,
1110 kprojid_t projid, struct kstatfs *buf)
1111 {
1112 struct kqid qid;
1113 struct dquot *dquot;
1114 u64 limit;
1115 u64 curblock;
1116
1117 qid = make_kqid_projid(projid);
1118 dquot = dqget(sb, qid);
1119 if (IS_ERR(dquot))
1120 return PTR_ERR(dquot);
1121 spin_lock(&dq_data_lock);
1122
1123 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1124 dquot->dq_dqb.dqb_bsoftlimit :
1125 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1126 if (limit && buf->f_blocks > limit) {
1127 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1128 buf->f_blocks = limit;
1129 buf->f_bfree = buf->f_bavail =
1130 (buf->f_blocks > curblock) ?
1131 (buf->f_blocks - curblock) : 0;
1132 }
1133
1134 limit = dquot->dq_dqb.dqb_isoftlimit ?
1135 dquot->dq_dqb.dqb_isoftlimit :
1136 dquot->dq_dqb.dqb_ihardlimit;
1137 if (limit && buf->f_files > limit) {
1138 buf->f_files = limit;
1139 buf->f_ffree =
1140 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1141 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1142 }
1143
1144 spin_unlock(&dq_data_lock);
1145 dqput(dquot);
1146 return 0;
1147 }
1148 #endif
1149
1150 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1151 {
1152 struct super_block *sb = dentry->d_sb;
1153 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1154 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1155 block_t total_count, user_block_count, start_count;
1156 u64 avail_node_count;
1157
1158 total_count = le64_to_cpu(sbi->raw_super->block_count);
1159 user_block_count = sbi->user_block_count;
1160 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1161 buf->f_type = F2FS_SUPER_MAGIC;
1162 buf->f_bsize = sbi->blocksize;
1163
1164 buf->f_blocks = total_count - start_count;
1165 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1166 sbi->current_reserved_blocks;
1167 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1168 buf->f_bavail = buf->f_bfree -
1169 F2FS_OPTION(sbi).root_reserved_blocks;
1170 else
1171 buf->f_bavail = 0;
1172
1173 avail_node_count = sbi->total_node_count - sbi->nquota_files -
1174 F2FS_RESERVED_NODE_NUM;
1175
1176 if (avail_node_count > user_block_count) {
1177 buf->f_files = user_block_count;
1178 buf->f_ffree = buf->f_bavail;
1179 } else {
1180 buf->f_files = avail_node_count;
1181 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1182 buf->f_bavail);
1183 }
1184
1185 buf->f_namelen = F2FS_NAME_LEN;
1186 buf->f_fsid.val[0] = (u32)id;
1187 buf->f_fsid.val[1] = (u32)(id >> 32);
1188
1189 #ifdef CONFIG_QUOTA
1190 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1191 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1192 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1193 }
1194 #endif
1195 return 0;
1196 }
1197
1198 static inline void f2fs_show_quota_options(struct seq_file *seq,
1199 struct super_block *sb)
1200 {
1201 #ifdef CONFIG_QUOTA
1202 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1203
1204 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1205 char *fmtname = "";
1206
1207 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1208 case QFMT_VFS_OLD:
1209 fmtname = "vfsold";
1210 break;
1211 case QFMT_VFS_V0:
1212 fmtname = "vfsv0";
1213 break;
1214 case QFMT_VFS_V1:
1215 fmtname = "vfsv1";
1216 break;
1217 }
1218 seq_printf(seq, ",jqfmt=%s", fmtname);
1219 }
1220
1221 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1222 seq_show_option(seq, "usrjquota",
1223 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1224
1225 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1226 seq_show_option(seq, "grpjquota",
1227 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1228
1229 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1230 seq_show_option(seq, "prjjquota",
1231 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1232 #endif
1233 }
1234
1235 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1236 {
1237 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1238
1239 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1240 if (test_opt(sbi, FORCE_FG_GC))
1241 seq_printf(seq, ",background_gc=%s", "sync");
1242 else
1243 seq_printf(seq, ",background_gc=%s", "on");
1244 } else {
1245 seq_printf(seq, ",background_gc=%s", "off");
1246 }
1247 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1248 seq_puts(seq, ",disable_roll_forward");
1249 if (test_opt(sbi, DISCARD))
1250 seq_puts(seq, ",discard");
1251 if (test_opt(sbi, NOHEAP))
1252 seq_puts(seq, ",no_heap");
1253 else
1254 seq_puts(seq, ",heap");
1255 #ifdef CONFIG_F2FS_FS_XATTR
1256 if (test_opt(sbi, XATTR_USER))
1257 seq_puts(seq, ",user_xattr");
1258 else
1259 seq_puts(seq, ",nouser_xattr");
1260 if (test_opt(sbi, INLINE_XATTR))
1261 seq_puts(seq, ",inline_xattr");
1262 else
1263 seq_puts(seq, ",noinline_xattr");
1264 if (test_opt(sbi, INLINE_XATTR_SIZE))
1265 seq_printf(seq, ",inline_xattr_size=%u",
1266 F2FS_OPTION(sbi).inline_xattr_size);
1267 #endif
1268 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1269 if (test_opt(sbi, POSIX_ACL))
1270 seq_puts(seq, ",acl");
1271 else
1272 seq_puts(seq, ",noacl");
1273 #endif
1274 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1275 seq_puts(seq, ",disable_ext_identify");
1276 if (test_opt(sbi, INLINE_DATA))
1277 seq_puts(seq, ",inline_data");
1278 else
1279 seq_puts(seq, ",noinline_data");
1280 if (test_opt(sbi, INLINE_DENTRY))
1281 seq_puts(seq, ",inline_dentry");
1282 else
1283 seq_puts(seq, ",noinline_dentry");
1284 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1285 seq_puts(seq, ",flush_merge");
1286 if (test_opt(sbi, NOBARRIER))
1287 seq_puts(seq, ",nobarrier");
1288 if (test_opt(sbi, FASTBOOT))
1289 seq_puts(seq, ",fastboot");
1290 if (test_opt(sbi, EXTENT_CACHE))
1291 seq_puts(seq, ",extent_cache");
1292 else
1293 seq_puts(seq, ",noextent_cache");
1294 if (test_opt(sbi, DATA_FLUSH))
1295 seq_puts(seq, ",data_flush");
1296
1297 seq_puts(seq, ",mode=");
1298 if (test_opt(sbi, ADAPTIVE))
1299 seq_puts(seq, "adaptive");
1300 else if (test_opt(sbi, LFS))
1301 seq_puts(seq, "lfs");
1302 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1303 if (test_opt(sbi, RESERVE_ROOT))
1304 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1305 F2FS_OPTION(sbi).root_reserved_blocks,
1306 from_kuid_munged(&init_user_ns,
1307 F2FS_OPTION(sbi).s_resuid),
1308 from_kgid_munged(&init_user_ns,
1309 F2FS_OPTION(sbi).s_resgid));
1310 if (F2FS_IO_SIZE_BITS(sbi))
1311 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1312 #ifdef CONFIG_F2FS_FAULT_INJECTION
1313 if (test_opt(sbi, FAULT_INJECTION))
1314 seq_printf(seq, ",fault_injection=%u",
1315 F2FS_OPTION(sbi).fault_info.inject_rate);
1316 #endif
1317 #ifdef CONFIG_QUOTA
1318 if (test_opt(sbi, QUOTA))
1319 seq_puts(seq, ",quota");
1320 if (test_opt(sbi, USRQUOTA))
1321 seq_puts(seq, ",usrquota");
1322 if (test_opt(sbi, GRPQUOTA))
1323 seq_puts(seq, ",grpquota");
1324 if (test_opt(sbi, PRJQUOTA))
1325 seq_puts(seq, ",prjquota");
1326 #endif
1327 f2fs_show_quota_options(seq, sbi->sb);
1328 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1329 seq_printf(seq, ",whint_mode=%s", "user-based");
1330 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1331 seq_printf(seq, ",whint_mode=%s", "fs-based");
1332 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1333 if (F2FS_OPTION(sbi).test_dummy_encryption)
1334 seq_puts(seq, ",test_dummy_encryption");
1335 #endif
1336
1337 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1338 seq_printf(seq, ",alloc_mode=%s", "default");
1339 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1340 seq_printf(seq, ",alloc_mode=%s", "reuse");
1341
1342 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1343 seq_printf(seq, ",fsync_mode=%s", "posix");
1344 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1345 seq_printf(seq, ",fsync_mode=%s", "strict");
1346 return 0;
1347 }
1348
1349 static void default_options(struct f2fs_sb_info *sbi)
1350 {
1351 /* init some FS parameters */
1352 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1353 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1354 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1355 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1356 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1357 F2FS_OPTION(sbi).test_dummy_encryption = false;
1358 sbi->readdir_ra = 1;
1359
1360 set_opt(sbi, BG_GC);
1361 set_opt(sbi, INLINE_XATTR);
1362 set_opt(sbi, INLINE_DATA);
1363 set_opt(sbi, INLINE_DENTRY);
1364 set_opt(sbi, EXTENT_CACHE);
1365 set_opt(sbi, NOHEAP);
1366 sbi->sb->s_flags |= SB_LAZYTIME;
1367 set_opt(sbi, FLUSH_MERGE);
1368 if (f2fs_sb_has_blkzoned(sbi->sb)) {
1369 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1370 set_opt(sbi, DISCARD);
1371 } else {
1372 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1373 }
1374
1375 #ifdef CONFIG_F2FS_FS_XATTR
1376 set_opt(sbi, XATTR_USER);
1377 #endif
1378 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1379 set_opt(sbi, POSIX_ACL);
1380 #endif
1381
1382 #ifdef CONFIG_F2FS_FAULT_INJECTION
1383 f2fs_build_fault_attr(sbi, 0);
1384 #endif
1385 }
1386
1387 #ifdef CONFIG_QUOTA
1388 static int f2fs_enable_quotas(struct super_block *sb);
1389 #endif
1390 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1391 {
1392 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1393 struct f2fs_mount_info org_mount_opt;
1394 unsigned long old_sb_flags;
1395 int err;
1396 bool need_restart_gc = false;
1397 bool need_stop_gc = false;
1398 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1399 #ifdef CONFIG_QUOTA
1400 int i, j;
1401 #endif
1402
1403 /*
1404 * Save the old mount options in case we
1405 * need to restore them.
1406 */
1407 org_mount_opt = sbi->mount_opt;
1408 old_sb_flags = sb->s_flags;
1409
1410 #ifdef CONFIG_QUOTA
1411 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1412 for (i = 0; i < MAXQUOTAS; i++) {
1413 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1414 org_mount_opt.s_qf_names[i] =
1415 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1416 GFP_KERNEL);
1417 if (!org_mount_opt.s_qf_names[i]) {
1418 for (j = 0; j < i; j++)
1419 kfree(org_mount_opt.s_qf_names[j]);
1420 return -ENOMEM;
1421 }
1422 } else {
1423 org_mount_opt.s_qf_names[i] = NULL;
1424 }
1425 }
1426 #endif
1427
1428 /* recover superblocks we couldn't write due to previous RO mount */
1429 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1430 err = f2fs_commit_super(sbi, false);
1431 f2fs_msg(sb, KERN_INFO,
1432 "Try to recover all the superblocks, ret: %d", err);
1433 if (!err)
1434 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1435 }
1436
1437 default_options(sbi);
1438
1439 /* parse mount options */
1440 err = parse_options(sb, data);
1441 if (err)
1442 goto restore_opts;
1443
1444 /*
1445 * Previous and new state of filesystem is RO,
1446 * so skip checking GC and FLUSH_MERGE conditions.
1447 */
1448 if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1449 goto skip;
1450
1451 #ifdef CONFIG_QUOTA
1452 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1453 err = dquot_suspend(sb, -1);
1454 if (err < 0)
1455 goto restore_opts;
1456 } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1457 /* dquot_resume needs RW */
1458 sb->s_flags &= ~SB_RDONLY;
1459 if (sb_any_quota_suspended(sb)) {
1460 dquot_resume(sb, -1);
1461 } else if (f2fs_sb_has_quota_ino(sb)) {
1462 err = f2fs_enable_quotas(sb);
1463 if (err)
1464 goto restore_opts;
1465 }
1466 }
1467 #endif
1468 /* disallow enable/disable extent_cache dynamically */
1469 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1470 err = -EINVAL;
1471 f2fs_msg(sbi->sb, KERN_WARNING,
1472 "switch extent_cache option is not allowed");
1473 goto restore_opts;
1474 }
1475
1476 /*
1477 * We stop the GC thread if FS is mounted as RO
1478 * or if background_gc = off is passed in mount
1479 * option. Also sync the filesystem.
1480 */
1481 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1482 if (sbi->gc_thread) {
1483 f2fs_stop_gc_thread(sbi);
1484 need_restart_gc = true;
1485 }
1486 } else if (!sbi->gc_thread) {
1487 err = f2fs_start_gc_thread(sbi);
1488 if (err)
1489 goto restore_opts;
1490 need_stop_gc = true;
1491 }
1492
1493 if (*flags & SB_RDONLY ||
1494 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1495 writeback_inodes_sb(sb, WB_REASON_SYNC);
1496 sync_inodes_sb(sb);
1497
1498 set_sbi_flag(sbi, SBI_IS_DIRTY);
1499 set_sbi_flag(sbi, SBI_IS_CLOSE);
1500 f2fs_sync_fs(sb, 1);
1501 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1502 }
1503
1504 /*
1505 * We stop issue flush thread if FS is mounted as RO
1506 * or if flush_merge is not passed in mount option.
1507 */
1508 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1509 clear_opt(sbi, FLUSH_MERGE);
1510 f2fs_destroy_flush_cmd_control(sbi, false);
1511 } else {
1512 err = f2fs_create_flush_cmd_control(sbi);
1513 if (err)
1514 goto restore_gc;
1515 }
1516 skip:
1517 #ifdef CONFIG_QUOTA
1518 /* Release old quota file names */
1519 for (i = 0; i < MAXQUOTAS; i++)
1520 kfree(org_mount_opt.s_qf_names[i]);
1521 #endif
1522 /* Update the POSIXACL Flag */
1523 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1524 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1525
1526 limit_reserve_root(sbi);
1527 return 0;
1528 restore_gc:
1529 if (need_restart_gc) {
1530 if (f2fs_start_gc_thread(sbi))
1531 f2fs_msg(sbi->sb, KERN_WARNING,
1532 "background gc thread has stopped");
1533 } else if (need_stop_gc) {
1534 f2fs_stop_gc_thread(sbi);
1535 }
1536 restore_opts:
1537 #ifdef CONFIG_QUOTA
1538 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1539 for (i = 0; i < MAXQUOTAS; i++) {
1540 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1541 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1542 }
1543 #endif
1544 sbi->mount_opt = org_mount_opt;
1545 sb->s_flags = old_sb_flags;
1546 return err;
1547 }
1548
1549 #ifdef CONFIG_QUOTA
1550 /* Read data from quotafile */
1551 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1552 size_t len, loff_t off)
1553 {
1554 struct inode *inode = sb_dqopt(sb)->files[type];
1555 struct address_space *mapping = inode->i_mapping;
1556 block_t blkidx = F2FS_BYTES_TO_BLK(off);
1557 int offset = off & (sb->s_blocksize - 1);
1558 int tocopy;
1559 size_t toread;
1560 loff_t i_size = i_size_read(inode);
1561 struct page *page;
1562 char *kaddr;
1563
1564 if (off > i_size)
1565 return 0;
1566
1567 if (off + len > i_size)
1568 len = i_size - off;
1569 toread = len;
1570 while (toread > 0) {
1571 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1572 repeat:
1573 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1574 if (IS_ERR(page)) {
1575 if (PTR_ERR(page) == -ENOMEM) {
1576 congestion_wait(BLK_RW_ASYNC, HZ/50);
1577 goto repeat;
1578 }
1579 return PTR_ERR(page);
1580 }
1581
1582 lock_page(page);
1583
1584 if (unlikely(page->mapping != mapping)) {
1585 f2fs_put_page(page, 1);
1586 goto repeat;
1587 }
1588 if (unlikely(!PageUptodate(page))) {
1589 f2fs_put_page(page, 1);
1590 return -EIO;
1591 }
1592
1593 kaddr = kmap_atomic(page);
1594 memcpy(data, kaddr + offset, tocopy);
1595 kunmap_atomic(kaddr);
1596 f2fs_put_page(page, 1);
1597
1598 offset = 0;
1599 toread -= tocopy;
1600 data += tocopy;
1601 blkidx++;
1602 }
1603 return len;
1604 }
1605
1606 /* Write to quotafile */
1607 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1608 const char *data, size_t len, loff_t off)
1609 {
1610 struct inode *inode = sb_dqopt(sb)->files[type];
1611 struct address_space *mapping = inode->i_mapping;
1612 const struct address_space_operations *a_ops = mapping->a_ops;
1613 int offset = off & (sb->s_blocksize - 1);
1614 size_t towrite = len;
1615 struct page *page;
1616 char *kaddr;
1617 int err = 0;
1618 int tocopy;
1619
1620 while (towrite > 0) {
1621 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1622 towrite);
1623 retry:
1624 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1625 &page, NULL);
1626 if (unlikely(err)) {
1627 if (err == -ENOMEM) {
1628 congestion_wait(BLK_RW_ASYNC, HZ/50);
1629 goto retry;
1630 }
1631 break;
1632 }
1633
1634 kaddr = kmap_atomic(page);
1635 memcpy(kaddr + offset, data, tocopy);
1636 kunmap_atomic(kaddr);
1637 flush_dcache_page(page);
1638
1639 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1640 page, NULL);
1641 offset = 0;
1642 towrite -= tocopy;
1643 off += tocopy;
1644 data += tocopy;
1645 cond_resched();
1646 }
1647
1648 if (len == towrite)
1649 return err;
1650 inode->i_mtime = inode->i_ctime = current_time(inode);
1651 f2fs_mark_inode_dirty_sync(inode, false);
1652 return len - towrite;
1653 }
1654
1655 static struct dquot **f2fs_get_dquots(struct inode *inode)
1656 {
1657 return F2FS_I(inode)->i_dquot;
1658 }
1659
1660 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1661 {
1662 return &F2FS_I(inode)->i_reserved_quota;
1663 }
1664
1665 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1666 {
1667 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1668 F2FS_OPTION(sbi).s_jquota_fmt, type);
1669 }
1670
1671 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1672 {
1673 int enabled = 0;
1674 int i, err;
1675
1676 if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1677 err = f2fs_enable_quotas(sbi->sb);
1678 if (err) {
1679 f2fs_msg(sbi->sb, KERN_ERR,
1680 "Cannot turn on quota_ino: %d", err);
1681 return 0;
1682 }
1683 return 1;
1684 }
1685
1686 for (i = 0; i < MAXQUOTAS; i++) {
1687 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1688 err = f2fs_quota_on_mount(sbi, i);
1689 if (!err) {
1690 enabled = 1;
1691 continue;
1692 }
1693 f2fs_msg(sbi->sb, KERN_ERR,
1694 "Cannot turn on quotas: %d on %d", err, i);
1695 }
1696 }
1697 return enabled;
1698 }
1699
1700 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1701 unsigned int flags)
1702 {
1703 struct inode *qf_inode;
1704 unsigned long qf_inum;
1705 int err;
1706
1707 BUG_ON(!f2fs_sb_has_quota_ino(sb));
1708
1709 qf_inum = f2fs_qf_ino(sb, type);
1710 if (!qf_inum)
1711 return -EPERM;
1712
1713 qf_inode = f2fs_iget(sb, qf_inum);
1714 if (IS_ERR(qf_inode)) {
1715 f2fs_msg(sb, KERN_ERR,
1716 "Bad quota inode %u:%lu", type, qf_inum);
1717 return PTR_ERR(qf_inode);
1718 }
1719
1720 /* Don't account quota for quota files to avoid recursion */
1721 qf_inode->i_flags |= S_NOQUOTA;
1722 err = dquot_enable(qf_inode, type, format_id, flags);
1723 iput(qf_inode);
1724 return err;
1725 }
1726
1727 static int f2fs_enable_quotas(struct super_block *sb)
1728 {
1729 int type, err = 0;
1730 unsigned long qf_inum;
1731 bool quota_mopt[MAXQUOTAS] = {
1732 test_opt(F2FS_SB(sb), USRQUOTA),
1733 test_opt(F2FS_SB(sb), GRPQUOTA),
1734 test_opt(F2FS_SB(sb), PRJQUOTA),
1735 };
1736
1737 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1738 for (type = 0; type < MAXQUOTAS; type++) {
1739 qf_inum = f2fs_qf_ino(sb, type);
1740 if (qf_inum) {
1741 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1742 DQUOT_USAGE_ENABLED |
1743 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1744 if (err) {
1745 f2fs_msg(sb, KERN_ERR,
1746 "Failed to enable quota tracking "
1747 "(type=%d, err=%d). Please run "
1748 "fsck to fix.", type, err);
1749 for (type--; type >= 0; type--)
1750 dquot_quota_off(sb, type);
1751 return err;
1752 }
1753 }
1754 }
1755 return 0;
1756 }
1757
1758 static int f2fs_quota_sync(struct super_block *sb, int type)
1759 {
1760 struct quota_info *dqopt = sb_dqopt(sb);
1761 int cnt;
1762 int ret;
1763
1764 ret = dquot_writeback_dquots(sb, type);
1765 if (ret)
1766 return ret;
1767
1768 /*
1769 * Now when everything is written we can discard the pagecache so
1770 * that userspace sees the changes.
1771 */
1772 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1773 if (type != -1 && cnt != type)
1774 continue;
1775 if (!sb_has_quota_active(sb, cnt))
1776 continue;
1777
1778 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1779 if (ret)
1780 return ret;
1781
1782 inode_lock(dqopt->files[cnt]);
1783 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1784 inode_unlock(dqopt->files[cnt]);
1785 }
1786 return 0;
1787 }
1788
1789 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1790 const struct path *path)
1791 {
1792 struct inode *inode;
1793 int err;
1794
1795 err = f2fs_quota_sync(sb, type);
1796 if (err)
1797 return err;
1798
1799 err = dquot_quota_on(sb, type, format_id, path);
1800 if (err)
1801 return err;
1802
1803 inode = d_inode(path->dentry);
1804
1805 inode_lock(inode);
1806 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1807 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1808 S_NOATIME | S_IMMUTABLE);
1809 inode_unlock(inode);
1810 f2fs_mark_inode_dirty_sync(inode, false);
1811
1812 return 0;
1813 }
1814
1815 static int f2fs_quota_off(struct super_block *sb, int type)
1816 {
1817 struct inode *inode = sb_dqopt(sb)->files[type];
1818 int err;
1819
1820 if (!inode || !igrab(inode))
1821 return dquot_quota_off(sb, type);
1822
1823 f2fs_quota_sync(sb, type);
1824
1825 err = dquot_quota_off(sb, type);
1826 if (err || f2fs_sb_has_quota_ino(sb))
1827 goto out_put;
1828
1829 inode_lock(inode);
1830 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
1831 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1832 inode_unlock(inode);
1833 f2fs_mark_inode_dirty_sync(inode, false);
1834 out_put:
1835 iput(inode);
1836 return err;
1837 }
1838
1839 void f2fs_quota_off_umount(struct super_block *sb)
1840 {
1841 int type;
1842
1843 for (type = 0; type < MAXQUOTAS; type++)
1844 f2fs_quota_off(sb, type);
1845 }
1846
1847 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1848 {
1849 *projid = F2FS_I(inode)->i_projid;
1850 return 0;
1851 }
1852
1853 static const struct dquot_operations f2fs_quota_operations = {
1854 .get_reserved_space = f2fs_get_reserved_space,
1855 .write_dquot = dquot_commit,
1856 .acquire_dquot = dquot_acquire,
1857 .release_dquot = dquot_release,
1858 .mark_dirty = dquot_mark_dquot_dirty,
1859 .write_info = dquot_commit_info,
1860 .alloc_dquot = dquot_alloc,
1861 .destroy_dquot = dquot_destroy,
1862 .get_projid = f2fs_get_projid,
1863 .get_next_id = dquot_get_next_id,
1864 };
1865
1866 static const struct quotactl_ops f2fs_quotactl_ops = {
1867 .quota_on = f2fs_quota_on,
1868 .quota_off = f2fs_quota_off,
1869 .quota_sync = f2fs_quota_sync,
1870 .get_state = dquot_get_state,
1871 .set_info = dquot_set_dqinfo,
1872 .get_dqblk = dquot_get_dqblk,
1873 .set_dqblk = dquot_set_dqblk,
1874 .get_nextdqblk = dquot_get_next_dqblk,
1875 };
1876 #else
1877 void f2fs_quota_off_umount(struct super_block *sb)
1878 {
1879 }
1880 #endif
1881
1882 static const struct super_operations f2fs_sops = {
1883 .alloc_inode = f2fs_alloc_inode,
1884 .drop_inode = f2fs_drop_inode,
1885 .destroy_inode = f2fs_destroy_inode,
1886 .write_inode = f2fs_write_inode,
1887 .dirty_inode = f2fs_dirty_inode,
1888 .show_options = f2fs_show_options,
1889 #ifdef CONFIG_QUOTA
1890 .quota_read = f2fs_quota_read,
1891 .quota_write = f2fs_quota_write,
1892 .get_dquots = f2fs_get_dquots,
1893 #endif
1894 .evict_inode = f2fs_evict_inode,
1895 .put_super = f2fs_put_super,
1896 .sync_fs = f2fs_sync_fs,
1897 .freeze_fs = f2fs_freeze,
1898 .unfreeze_fs = f2fs_unfreeze,
1899 .statfs = f2fs_statfs,
1900 .remount_fs = f2fs_remount,
1901 };
1902
1903 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1904 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1905 {
1906 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1907 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1908 ctx, len, NULL);
1909 }
1910
1911 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1912 void *fs_data)
1913 {
1914 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1915
1916 /*
1917 * Encrypting the root directory is not allowed because fsck
1918 * expects lost+found directory to exist and remain unencrypted
1919 * if LOST_FOUND feature is enabled.
1920 *
1921 */
1922 if (f2fs_sb_has_lost_found(sbi->sb) &&
1923 inode->i_ino == F2FS_ROOT_INO(sbi))
1924 return -EPERM;
1925
1926 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1927 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1928 ctx, len, fs_data, XATTR_CREATE);
1929 }
1930
1931 static bool f2fs_dummy_context(struct inode *inode)
1932 {
1933 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1934 }
1935
1936 static const struct fscrypt_operations f2fs_cryptops = {
1937 .key_prefix = "f2fs:",
1938 .get_context = f2fs_get_context,
1939 .set_context = f2fs_set_context,
1940 .dummy_context = f2fs_dummy_context,
1941 .empty_dir = f2fs_empty_dir,
1942 .max_namelen = F2FS_NAME_LEN,
1943 };
1944 #endif
1945
1946 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1947 u64 ino, u32 generation)
1948 {
1949 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1950 struct inode *inode;
1951
1952 if (f2fs_check_nid_range(sbi, ino))
1953 return ERR_PTR(-ESTALE);
1954
1955 /*
1956 * f2fs_iget isn't quite right if the inode is currently unallocated!
1957 * However f2fs_iget currently does appropriate checks to handle stale
1958 * inodes so everything is OK.
1959 */
1960 inode = f2fs_iget(sb, ino);
1961 if (IS_ERR(inode))
1962 return ERR_CAST(inode);
1963 if (unlikely(generation && inode->i_generation != generation)) {
1964 /* we didn't find the right inode.. */
1965 iput(inode);
1966 return ERR_PTR(-ESTALE);
1967 }
1968 return inode;
1969 }
1970
1971 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1972 int fh_len, int fh_type)
1973 {
1974 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1975 f2fs_nfs_get_inode);
1976 }
1977
1978 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1979 int fh_len, int fh_type)
1980 {
1981 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1982 f2fs_nfs_get_inode);
1983 }
1984
1985 static const struct export_operations f2fs_export_ops = {
1986 .fh_to_dentry = f2fs_fh_to_dentry,
1987 .fh_to_parent = f2fs_fh_to_parent,
1988 .get_parent = f2fs_get_parent,
1989 };
1990
1991 static loff_t max_file_blocks(void)
1992 {
1993 loff_t result = 0;
1994 loff_t leaf_count = ADDRS_PER_BLOCK;
1995
1996 /*
1997 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1998 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1999 * space in inode.i_addr, it will be more safe to reassign
2000 * result as zero.
2001 */
2002
2003 /* two direct node blocks */
2004 result += (leaf_count * 2);
2005
2006 /* two indirect node blocks */
2007 leaf_count *= NIDS_PER_BLOCK;
2008 result += (leaf_count * 2);
2009
2010 /* one double indirect node block */
2011 leaf_count *= NIDS_PER_BLOCK;
2012 result += leaf_count;
2013
2014 return result;
2015 }
2016
2017 static int __f2fs_commit_super(struct buffer_head *bh,
2018 struct f2fs_super_block *super)
2019 {
2020 lock_buffer(bh);
2021 if (super)
2022 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2023 set_buffer_dirty(bh);
2024 unlock_buffer(bh);
2025
2026 /* it's rare case, we can do fua all the time */
2027 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2028 }
2029
2030 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2031 struct buffer_head *bh)
2032 {
2033 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2034 (bh->b_data + F2FS_SUPER_OFFSET);
2035 struct super_block *sb = sbi->sb;
2036 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2037 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2038 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2039 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2040 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2041 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2042 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2043 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2044 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2045 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2046 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2047 u32 segment_count = le32_to_cpu(raw_super->segment_count);
2048 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2049 u64 main_end_blkaddr = main_blkaddr +
2050 (segment_count_main << log_blocks_per_seg);
2051 u64 seg_end_blkaddr = segment0_blkaddr +
2052 (segment_count << log_blocks_per_seg);
2053
2054 if (segment0_blkaddr != cp_blkaddr) {
2055 f2fs_msg(sb, KERN_INFO,
2056 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2057 segment0_blkaddr, cp_blkaddr);
2058 return true;
2059 }
2060
2061 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2062 sit_blkaddr) {
2063 f2fs_msg(sb, KERN_INFO,
2064 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2065 cp_blkaddr, sit_blkaddr,
2066 segment_count_ckpt << log_blocks_per_seg);
2067 return true;
2068 }
2069
2070 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2071 nat_blkaddr) {
2072 f2fs_msg(sb, KERN_INFO,
2073 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2074 sit_blkaddr, nat_blkaddr,
2075 segment_count_sit << log_blocks_per_seg);
2076 return true;
2077 }
2078
2079 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2080 ssa_blkaddr) {
2081 f2fs_msg(sb, KERN_INFO,
2082 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2083 nat_blkaddr, ssa_blkaddr,
2084 segment_count_nat << log_blocks_per_seg);
2085 return true;
2086 }
2087
2088 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2089 main_blkaddr) {
2090 f2fs_msg(sb, KERN_INFO,
2091 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2092 ssa_blkaddr, main_blkaddr,
2093 segment_count_ssa << log_blocks_per_seg);
2094 return true;
2095 }
2096
2097 if (main_end_blkaddr > seg_end_blkaddr) {
2098 f2fs_msg(sb, KERN_INFO,
2099 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2100 main_blkaddr,
2101 segment0_blkaddr +
2102 (segment_count << log_blocks_per_seg),
2103 segment_count_main << log_blocks_per_seg);
2104 return true;
2105 } else if (main_end_blkaddr < seg_end_blkaddr) {
2106 int err = 0;
2107 char *res;
2108
2109 /* fix in-memory information all the time */
2110 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2111 segment0_blkaddr) >> log_blocks_per_seg);
2112
2113 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2114 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2115 res = "internally";
2116 } else {
2117 err = __f2fs_commit_super(bh, NULL);
2118 res = err ? "failed" : "done";
2119 }
2120 f2fs_msg(sb, KERN_INFO,
2121 "Fix alignment : %s, start(%u) end(%u) block(%u)",
2122 res, main_blkaddr,
2123 segment0_blkaddr +
2124 (segment_count << log_blocks_per_seg),
2125 segment_count_main << log_blocks_per_seg);
2126 if (err)
2127 return true;
2128 }
2129 return false;
2130 }
2131
2132 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2133 struct buffer_head *bh)
2134 {
2135 block_t segment_count, segs_per_sec, secs_per_zone;
2136 block_t total_sections, blocks_per_seg;
2137 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2138 (bh->b_data + F2FS_SUPER_OFFSET);
2139 struct super_block *sb = sbi->sb;
2140 unsigned int blocksize;
2141
2142 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2143 f2fs_msg(sb, KERN_INFO,
2144 "Magic Mismatch, valid(0x%x) - read(0x%x)",
2145 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2146 return 1;
2147 }
2148
2149 /* Currently, support only 4KB page cache size */
2150 if (F2FS_BLKSIZE != PAGE_SIZE) {
2151 f2fs_msg(sb, KERN_INFO,
2152 "Invalid page_cache_size (%lu), supports only 4KB\n",
2153 PAGE_SIZE);
2154 return 1;
2155 }
2156
2157 /* Currently, support only 4KB block size */
2158 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2159 if (blocksize != F2FS_BLKSIZE) {
2160 f2fs_msg(sb, KERN_INFO,
2161 "Invalid blocksize (%u), supports only 4KB\n",
2162 blocksize);
2163 return 1;
2164 }
2165
2166 /* check log blocks per segment */
2167 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2168 f2fs_msg(sb, KERN_INFO,
2169 "Invalid log blocks per segment (%u)\n",
2170 le32_to_cpu(raw_super->log_blocks_per_seg));
2171 return 1;
2172 }
2173
2174 /* Currently, support 512/1024/2048/4096 bytes sector size */
2175 if (le32_to_cpu(raw_super->log_sectorsize) >
2176 F2FS_MAX_LOG_SECTOR_SIZE ||
2177 le32_to_cpu(raw_super->log_sectorsize) <
2178 F2FS_MIN_LOG_SECTOR_SIZE) {
2179 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2180 le32_to_cpu(raw_super->log_sectorsize));
2181 return 1;
2182 }
2183 if (le32_to_cpu(raw_super->log_sectors_per_block) +
2184 le32_to_cpu(raw_super->log_sectorsize) !=
2185 F2FS_MAX_LOG_SECTOR_SIZE) {
2186 f2fs_msg(sb, KERN_INFO,
2187 "Invalid log sectors per block(%u) log sectorsize(%u)",
2188 le32_to_cpu(raw_super->log_sectors_per_block),
2189 le32_to_cpu(raw_super->log_sectorsize));
2190 return 1;
2191 }
2192
2193 segment_count = le32_to_cpu(raw_super->segment_count);
2194 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2195 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2196 total_sections = le32_to_cpu(raw_super->section_count);
2197
2198 /* blocks_per_seg should be 512, given the above check */
2199 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2200
2201 if (segment_count > F2FS_MAX_SEGMENT ||
2202 segment_count < F2FS_MIN_SEGMENTS) {
2203 f2fs_msg(sb, KERN_INFO,
2204 "Invalid segment count (%u)",
2205 segment_count);
2206 return 1;
2207 }
2208
2209 if (total_sections > segment_count ||
2210 total_sections < F2FS_MIN_SEGMENTS ||
2211 segs_per_sec > segment_count || !segs_per_sec) {
2212 f2fs_msg(sb, KERN_INFO,
2213 "Invalid segment/section count (%u, %u x %u)",
2214 segment_count, total_sections, segs_per_sec);
2215 return 1;
2216 }
2217
2218 if ((segment_count / segs_per_sec) < total_sections) {
2219 f2fs_msg(sb, KERN_INFO,
2220 "Small segment_count (%u < %u * %u)",
2221 segment_count, segs_per_sec, total_sections);
2222 return 1;
2223 }
2224
2225 if (segment_count > (le32_to_cpu(raw_super->block_count) >> 9)) {
2226 f2fs_msg(sb, KERN_INFO,
2227 "Wrong segment_count / block_count (%u > %u)",
2228 segment_count, le32_to_cpu(raw_super->block_count));
2229 return 1;
2230 }
2231
2232 if (secs_per_zone > total_sections) {
2233 f2fs_msg(sb, KERN_INFO,
2234 "Wrong secs_per_zone (%u > %u)",
2235 secs_per_zone, total_sections);
2236 return 1;
2237 }
2238 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2239 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2240 (le32_to_cpu(raw_super->extension_count) +
2241 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2242 f2fs_msg(sb, KERN_INFO,
2243 "Corrupted extension count (%u + %u > %u)",
2244 le32_to_cpu(raw_super->extension_count),
2245 raw_super->hot_ext_count,
2246 F2FS_MAX_EXTENSION);
2247 return 1;
2248 }
2249
2250 if (le32_to_cpu(raw_super->cp_payload) >
2251 (blocks_per_seg - F2FS_CP_PACKS)) {
2252 f2fs_msg(sb, KERN_INFO,
2253 "Insane cp_payload (%u > %u)",
2254 le32_to_cpu(raw_super->cp_payload),
2255 blocks_per_seg - F2FS_CP_PACKS);
2256 return 1;
2257 }
2258
2259 /* check reserved ino info */
2260 if (le32_to_cpu(raw_super->node_ino) != 1 ||
2261 le32_to_cpu(raw_super->meta_ino) != 2 ||
2262 le32_to_cpu(raw_super->root_ino) != 3) {
2263 f2fs_msg(sb, KERN_INFO,
2264 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2265 le32_to_cpu(raw_super->node_ino),
2266 le32_to_cpu(raw_super->meta_ino),
2267 le32_to_cpu(raw_super->root_ino));
2268 return 1;
2269 }
2270
2271 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2272 if (sanity_check_area_boundary(sbi, bh))
2273 return 1;
2274
2275 return 0;
2276 }
2277
2278 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2279 {
2280 unsigned int total, fsmeta;
2281 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2282 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2283 unsigned int ovp_segments, reserved_segments;
2284 unsigned int main_segs, blocks_per_seg;
2285 int i;
2286
2287 total = le32_to_cpu(raw_super->segment_count);
2288 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2289 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2290 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2291 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2292 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2293
2294 if (unlikely(fsmeta >= total))
2295 return 1;
2296
2297 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2298 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2299
2300 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2301 ovp_segments == 0 || reserved_segments == 0)) {
2302 f2fs_msg(sbi->sb, KERN_ERR,
2303 "Wrong layout: check mkfs.f2fs version");
2304 return 1;
2305 }
2306
2307 main_segs = le32_to_cpu(raw_super->segment_count_main);
2308 blocks_per_seg = sbi->blocks_per_seg;
2309
2310 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2311 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2312 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2313 return 1;
2314 }
2315 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2316 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2317 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2318 return 1;
2319 }
2320
2321 if (unlikely(f2fs_cp_error(sbi))) {
2322 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2323 return 1;
2324 }
2325 return 0;
2326 }
2327
2328 static void init_sb_info(struct f2fs_sb_info *sbi)
2329 {
2330 struct f2fs_super_block *raw_super = sbi->raw_super;
2331 int i, j;
2332
2333 sbi->log_sectors_per_block =
2334 le32_to_cpu(raw_super->log_sectors_per_block);
2335 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2336 sbi->blocksize = 1 << sbi->log_blocksize;
2337 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2338 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2339 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2340 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2341 sbi->total_sections = le32_to_cpu(raw_super->section_count);
2342 sbi->total_node_count =
2343 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2344 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2345 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2346 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2347 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2348 sbi->cur_victim_sec = NULL_SECNO;
2349 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2350
2351 sbi->dir_level = DEF_DIR_LEVEL;
2352 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2353 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2354 clear_sbi_flag(sbi, SBI_NEED_FSCK);
2355
2356 for (i = 0; i < NR_COUNT_TYPE; i++)
2357 atomic_set(&sbi->nr_pages[i], 0);
2358
2359 for (i = 0; i < META; i++)
2360 atomic_set(&sbi->wb_sync_req[i], 0);
2361
2362 INIT_LIST_HEAD(&sbi->s_list);
2363 mutex_init(&sbi->umount_mutex);
2364 for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2365 for (j = HOT; j < NR_TEMP_TYPE; j++)
2366 mutex_init(&sbi->wio_mutex[i][j]);
2367 init_rwsem(&sbi->io_order_lock);
2368 spin_lock_init(&sbi->cp_lock);
2369
2370 sbi->dirty_device = 0;
2371 spin_lock_init(&sbi->dev_lock);
2372
2373 init_rwsem(&sbi->sb_lock);
2374 }
2375
2376 static int init_percpu_info(struct f2fs_sb_info *sbi)
2377 {
2378 int err;
2379
2380 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2381 if (err)
2382 return err;
2383
2384 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2385 GFP_KERNEL);
2386 }
2387
2388 #ifdef CONFIG_BLK_DEV_ZONED
2389 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2390 {
2391 struct block_device *bdev = FDEV(devi).bdev;
2392 sector_t nr_sectors = bdev->bd_part->nr_sects;
2393 sector_t sector = 0;
2394 struct blk_zone *zones;
2395 unsigned int i, nr_zones;
2396 unsigned int n = 0;
2397 int err = -EIO;
2398
2399 if (!f2fs_sb_has_blkzoned(sbi->sb))
2400 return 0;
2401
2402 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2403 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2404 return -EINVAL;
2405 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2406 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2407 __ilog2_u32(sbi->blocks_per_blkz))
2408 return -EINVAL;
2409 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2410 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2411 sbi->log_blocks_per_blkz;
2412 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2413 FDEV(devi).nr_blkz++;
2414
2415 FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2416 GFP_KERNEL);
2417 if (!FDEV(devi).blkz_type)
2418 return -ENOMEM;
2419
2420 #define F2FS_REPORT_NR_ZONES 4096
2421
2422 zones = f2fs_kzalloc(sbi,
2423 array_size(F2FS_REPORT_NR_ZONES,
2424 sizeof(struct blk_zone)),
2425 GFP_KERNEL);
2426 if (!zones)
2427 return -ENOMEM;
2428
2429 /* Get block zones type */
2430 while (zones && sector < nr_sectors) {
2431
2432 nr_zones = F2FS_REPORT_NR_ZONES;
2433 err = blkdev_report_zones(bdev, sector,
2434 zones, &nr_zones,
2435 GFP_KERNEL);
2436 if (err)
2437 break;
2438 if (!nr_zones) {
2439 err = -EIO;
2440 break;
2441 }
2442
2443 for (i = 0; i < nr_zones; i++) {
2444 FDEV(devi).blkz_type[n] = zones[i].type;
2445 sector += zones[i].len;
2446 n++;
2447 }
2448 }
2449
2450 kfree(zones);
2451
2452 return err;
2453 }
2454 #endif
2455
2456 /*
2457 * Read f2fs raw super block.
2458 * Because we have two copies of super block, so read both of them
2459 * to get the first valid one. If any one of them is broken, we pass
2460 * them recovery flag back to the caller.
2461 */
2462 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2463 struct f2fs_super_block **raw_super,
2464 int *valid_super_block, int *recovery)
2465 {
2466 struct super_block *sb = sbi->sb;
2467 int block;
2468 struct buffer_head *bh;
2469 struct f2fs_super_block *super;
2470 int err = 0;
2471
2472 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2473 if (!super)
2474 return -ENOMEM;
2475
2476 for (block = 0; block < 2; block++) {
2477 bh = sb_bread(sb, block);
2478 if (!bh) {
2479 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2480 block + 1);
2481 err = -EIO;
2482 continue;
2483 }
2484
2485 /* sanity checking of raw super */
2486 if (sanity_check_raw_super(sbi, bh)) {
2487 f2fs_msg(sb, KERN_ERR,
2488 "Can't find valid F2FS filesystem in %dth superblock",
2489 block + 1);
2490 err = -EINVAL;
2491 brelse(bh);
2492 continue;
2493 }
2494
2495 if (!*raw_super) {
2496 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2497 sizeof(*super));
2498 *valid_super_block = block;
2499 *raw_super = super;
2500 }
2501 brelse(bh);
2502 }
2503
2504 /* Fail to read any one of the superblocks*/
2505 if (err < 0)
2506 *recovery = 1;
2507
2508 /* No valid superblock */
2509 if (!*raw_super)
2510 kfree(super);
2511 else
2512 err = 0;
2513
2514 return err;
2515 }
2516
2517 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2518 {
2519 struct buffer_head *bh;
2520 int err;
2521
2522 if ((recover && f2fs_readonly(sbi->sb)) ||
2523 bdev_read_only(sbi->sb->s_bdev)) {
2524 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2525 return -EROFS;
2526 }
2527
2528 /* write back-up superblock first */
2529 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2530 if (!bh)
2531 return -EIO;
2532 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2533 brelse(bh);
2534
2535 /* if we are in recovery path, skip writing valid superblock */
2536 if (recover || err)
2537 return err;
2538
2539 /* write current valid superblock */
2540 bh = sb_bread(sbi->sb, sbi->valid_super_block);
2541 if (!bh)
2542 return -EIO;
2543 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2544 brelse(bh);
2545 return err;
2546 }
2547
2548 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2549 {
2550 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2551 unsigned int max_devices = MAX_DEVICES;
2552 int i;
2553
2554 /* Initialize single device information */
2555 if (!RDEV(0).path[0]) {
2556 if (!bdev_is_zoned(sbi->sb->s_bdev))
2557 return 0;
2558 max_devices = 1;
2559 }
2560
2561 /*
2562 * Initialize multiple devices information, or single
2563 * zoned block device information.
2564 */
2565 sbi->devs = f2fs_kzalloc(sbi,
2566 array_size(max_devices,
2567 sizeof(struct f2fs_dev_info)),
2568 GFP_KERNEL);
2569 if (!sbi->devs)
2570 return -ENOMEM;
2571
2572 for (i = 0; i < max_devices; i++) {
2573
2574 if (i > 0 && !RDEV(i).path[0])
2575 break;
2576
2577 if (max_devices == 1) {
2578 /* Single zoned block device mount */
2579 FDEV(0).bdev =
2580 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2581 sbi->sb->s_mode, sbi->sb->s_type);
2582 } else {
2583 /* Multi-device mount */
2584 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2585 FDEV(i).total_segments =
2586 le32_to_cpu(RDEV(i).total_segments);
2587 if (i == 0) {
2588 FDEV(i).start_blk = 0;
2589 FDEV(i).end_blk = FDEV(i).start_blk +
2590 (FDEV(i).total_segments <<
2591 sbi->log_blocks_per_seg) - 1 +
2592 le32_to_cpu(raw_super->segment0_blkaddr);
2593 } else {
2594 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2595 FDEV(i).end_blk = FDEV(i).start_blk +
2596 (FDEV(i).total_segments <<
2597 sbi->log_blocks_per_seg) - 1;
2598 }
2599 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2600 sbi->sb->s_mode, sbi->sb->s_type);
2601 }
2602 if (IS_ERR(FDEV(i).bdev))
2603 return PTR_ERR(FDEV(i).bdev);
2604
2605 /* to release errored devices */
2606 sbi->s_ndevs = i + 1;
2607
2608 #ifdef CONFIG_BLK_DEV_ZONED
2609 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2610 !f2fs_sb_has_blkzoned(sbi->sb)) {
2611 f2fs_msg(sbi->sb, KERN_ERR,
2612 "Zoned block device feature not enabled\n");
2613 return -EINVAL;
2614 }
2615 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2616 if (init_blkz_info(sbi, i)) {
2617 f2fs_msg(sbi->sb, KERN_ERR,
2618 "Failed to initialize F2FS blkzone information");
2619 return -EINVAL;
2620 }
2621 if (max_devices == 1)
2622 break;
2623 f2fs_msg(sbi->sb, KERN_INFO,
2624 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2625 i, FDEV(i).path,
2626 FDEV(i).total_segments,
2627 FDEV(i).start_blk, FDEV(i).end_blk,
2628 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2629 "Host-aware" : "Host-managed");
2630 continue;
2631 }
2632 #endif
2633 f2fs_msg(sbi->sb, KERN_INFO,
2634 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2635 i, FDEV(i).path,
2636 FDEV(i).total_segments,
2637 FDEV(i).start_blk, FDEV(i).end_blk);
2638 }
2639 f2fs_msg(sbi->sb, KERN_INFO,
2640 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2641 return 0;
2642 }
2643
2644 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2645 {
2646 struct f2fs_sm_info *sm_i = SM_I(sbi);
2647
2648 /* adjust parameters according to the volume size */
2649 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2650 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2651 sm_i->dcc_info->discard_granularity = 1;
2652 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2653 }
2654 }
2655
2656 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2657 {
2658 struct f2fs_sb_info *sbi;
2659 struct f2fs_super_block *raw_super;
2660 struct inode *root;
2661 int err;
2662 bool retry = true, need_fsck = false;
2663 char *options = NULL;
2664 int recovery, i, valid_super_block;
2665 struct curseg_info *seg_i;
2666
2667 try_onemore:
2668 err = -EINVAL;
2669 raw_super = NULL;
2670 valid_super_block = -1;
2671 recovery = 0;
2672
2673 /* allocate memory for f2fs-specific super block info */
2674 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2675 if (!sbi)
2676 return -ENOMEM;
2677
2678 sbi->sb = sb;
2679
2680 /* Load the checksum driver */
2681 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2682 if (IS_ERR(sbi->s_chksum_driver)) {
2683 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2684 err = PTR_ERR(sbi->s_chksum_driver);
2685 sbi->s_chksum_driver = NULL;
2686 goto free_sbi;
2687 }
2688
2689 /* set a block size */
2690 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2691 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2692 goto free_sbi;
2693 }
2694
2695 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2696 &recovery);
2697 if (err)
2698 goto free_sbi;
2699
2700 sb->s_fs_info = sbi;
2701 sbi->raw_super = raw_super;
2702
2703 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2704 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2705
2706 /* precompute checksum seed for metadata */
2707 if (f2fs_sb_has_inode_chksum(sb))
2708 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2709 sizeof(raw_super->uuid));
2710
2711 /*
2712 * The BLKZONED feature indicates that the drive was formatted with
2713 * zone alignment optimization. This is optional for host-aware
2714 * devices, but mandatory for host-managed zoned block devices.
2715 */
2716 #ifndef CONFIG_BLK_DEV_ZONED
2717 if (f2fs_sb_has_blkzoned(sb)) {
2718 f2fs_msg(sb, KERN_ERR,
2719 "Zoned block device support is not enabled\n");
2720 err = -EOPNOTSUPP;
2721 goto free_sb_buf;
2722 }
2723 #endif
2724 default_options(sbi);
2725 /* parse mount options */
2726 options = kstrdup((const char *)data, GFP_KERNEL);
2727 if (data && !options) {
2728 err = -ENOMEM;
2729 goto free_sb_buf;
2730 }
2731
2732 err = parse_options(sb, options);
2733 if (err)
2734 goto free_options;
2735
2736 sbi->max_file_blocks = max_file_blocks();
2737 sb->s_maxbytes = sbi->max_file_blocks <<
2738 le32_to_cpu(raw_super->log_blocksize);
2739 sb->s_max_links = F2FS_LINK_MAX;
2740 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2741
2742 #ifdef CONFIG_QUOTA
2743 sb->dq_op = &f2fs_quota_operations;
2744 if (f2fs_sb_has_quota_ino(sb))
2745 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2746 else
2747 sb->s_qcop = &f2fs_quotactl_ops;
2748 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2749
2750 if (f2fs_sb_has_quota_ino(sbi->sb)) {
2751 for (i = 0; i < MAXQUOTAS; i++) {
2752 if (f2fs_qf_ino(sbi->sb, i))
2753 sbi->nquota_files++;
2754 }
2755 }
2756 #endif
2757
2758 sb->s_op = &f2fs_sops;
2759 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2760 sb->s_cop = &f2fs_cryptops;
2761 #endif
2762 sb->s_xattr = f2fs_xattr_handlers;
2763 sb->s_export_op = &f2fs_export_ops;
2764 sb->s_magic = F2FS_SUPER_MAGIC;
2765 sb->s_time_gran = 1;
2766 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2767 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2768 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2769 sb->s_iflags |= SB_I_CGROUPWB;
2770
2771 /* init f2fs-specific super block info */
2772 sbi->valid_super_block = valid_super_block;
2773 mutex_init(&sbi->gc_mutex);
2774 mutex_init(&sbi->cp_mutex);
2775 init_rwsem(&sbi->node_write);
2776 init_rwsem(&sbi->node_change);
2777
2778 /* disallow all the data/node/meta page writes */
2779 set_sbi_flag(sbi, SBI_POR_DOING);
2780 spin_lock_init(&sbi->stat_lock);
2781
2782 /* init iostat info */
2783 spin_lock_init(&sbi->iostat_lock);
2784 sbi->iostat_enable = false;
2785
2786 for (i = 0; i < NR_PAGE_TYPE; i++) {
2787 int n = (i == META) ? 1: NR_TEMP_TYPE;
2788 int j;
2789
2790 sbi->write_io[i] =
2791 f2fs_kmalloc(sbi,
2792 array_size(n,
2793 sizeof(struct f2fs_bio_info)),
2794 GFP_KERNEL);
2795 if (!sbi->write_io[i]) {
2796 err = -ENOMEM;
2797 goto free_options;
2798 }
2799
2800 for (j = HOT; j < n; j++) {
2801 init_rwsem(&sbi->write_io[i][j].io_rwsem);
2802 sbi->write_io[i][j].sbi = sbi;
2803 sbi->write_io[i][j].bio = NULL;
2804 spin_lock_init(&sbi->write_io[i][j].io_lock);
2805 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2806 }
2807 }
2808
2809 init_rwsem(&sbi->cp_rwsem);
2810 init_waitqueue_head(&sbi->cp_wait);
2811 init_sb_info(sbi);
2812
2813 err = init_percpu_info(sbi);
2814 if (err)
2815 goto free_bio_info;
2816
2817 if (F2FS_IO_SIZE(sbi) > 1) {
2818 sbi->write_io_dummy =
2819 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2820 if (!sbi->write_io_dummy) {
2821 err = -ENOMEM;
2822 goto free_percpu;
2823 }
2824 }
2825
2826 /* get an inode for meta space */
2827 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2828 if (IS_ERR(sbi->meta_inode)) {
2829 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2830 err = PTR_ERR(sbi->meta_inode);
2831 goto free_io_dummy;
2832 }
2833
2834 err = f2fs_get_valid_checkpoint(sbi);
2835 if (err) {
2836 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2837 goto free_meta_inode;
2838 }
2839
2840 /* Initialize device list */
2841 err = f2fs_scan_devices(sbi);
2842 if (err) {
2843 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2844 goto free_devices;
2845 }
2846
2847 sbi->total_valid_node_count =
2848 le32_to_cpu(sbi->ckpt->valid_node_count);
2849 percpu_counter_set(&sbi->total_valid_inode_count,
2850 le32_to_cpu(sbi->ckpt->valid_inode_count));
2851 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2852 sbi->total_valid_block_count =
2853 le64_to_cpu(sbi->ckpt->valid_block_count);
2854 sbi->last_valid_block_count = sbi->total_valid_block_count;
2855 sbi->reserved_blocks = 0;
2856 sbi->current_reserved_blocks = 0;
2857 limit_reserve_root(sbi);
2858
2859 for (i = 0; i < NR_INODE_TYPE; i++) {
2860 INIT_LIST_HEAD(&sbi->inode_list[i]);
2861 spin_lock_init(&sbi->inode_lock[i]);
2862 }
2863
2864 f2fs_init_extent_cache_info(sbi);
2865
2866 f2fs_init_ino_entry_info(sbi);
2867
2868 /* setup f2fs internal modules */
2869 err = f2fs_build_segment_manager(sbi);
2870 if (err) {
2871 f2fs_msg(sb, KERN_ERR,
2872 "Failed to initialize F2FS segment manager");
2873 goto free_sm;
2874 }
2875 err = f2fs_build_node_manager(sbi);
2876 if (err) {
2877 f2fs_msg(sb, KERN_ERR,
2878 "Failed to initialize F2FS node manager");
2879 goto free_nm;
2880 }
2881
2882 /* For write statistics */
2883 if (sb->s_bdev->bd_part)
2884 sbi->sectors_written_start =
2885 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2886
2887 /* Read accumulated write IO statistics if exists */
2888 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2889 if (__exist_node_summaries(sbi))
2890 sbi->kbytes_written =
2891 le64_to_cpu(seg_i->journal->info.kbytes_written);
2892
2893 f2fs_build_gc_manager(sbi);
2894
2895 /* get an inode for node space */
2896 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2897 if (IS_ERR(sbi->node_inode)) {
2898 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2899 err = PTR_ERR(sbi->node_inode);
2900 goto free_nm;
2901 }
2902
2903 err = f2fs_build_stats(sbi);
2904 if (err)
2905 goto free_node_inode;
2906
2907 /* read root inode and dentry */
2908 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2909 if (IS_ERR(root)) {
2910 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2911 err = PTR_ERR(root);
2912 goto free_stats;
2913 }
2914 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2915 iput(root);
2916 err = -EINVAL;
2917 goto free_node_inode;
2918 }
2919
2920 sb->s_root = d_make_root(root); /* allocate root dentry */
2921 if (!sb->s_root) {
2922 err = -ENOMEM;
2923 goto free_root_inode;
2924 }
2925
2926 err = f2fs_register_sysfs(sbi);
2927 if (err)
2928 goto free_root_inode;
2929
2930 #ifdef CONFIG_QUOTA
2931 /*
2932 * Turn on quotas which were not enabled for read-only mounts if
2933 * filesystem has quota feature, so that they are updated correctly.
2934 */
2935 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2936 err = f2fs_enable_quotas(sb);
2937 if (err) {
2938 f2fs_msg(sb, KERN_ERR,
2939 "Cannot turn on quotas: error %d", err);
2940 goto free_sysfs;
2941 }
2942 }
2943 #endif
2944 /* if there are nt orphan nodes free them */
2945 err = f2fs_recover_orphan_inodes(sbi);
2946 if (err)
2947 goto free_meta;
2948
2949 /* recover fsynced data */
2950 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2951 /*
2952 * mount should be failed, when device has readonly mode, and
2953 * previous checkpoint was not done by clean system shutdown.
2954 */
2955 if (bdev_read_only(sb->s_bdev) &&
2956 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2957 err = -EROFS;
2958 goto free_meta;
2959 }
2960
2961 if (need_fsck)
2962 set_sbi_flag(sbi, SBI_NEED_FSCK);
2963
2964 if (!retry)
2965 goto skip_recovery;
2966
2967 err = f2fs_recover_fsync_data(sbi, false);
2968 if (err < 0) {
2969 need_fsck = true;
2970 f2fs_msg(sb, KERN_ERR,
2971 "Cannot recover all fsync data errno=%d", err);
2972 goto free_meta;
2973 }
2974 } else {
2975 err = f2fs_recover_fsync_data(sbi, true);
2976
2977 if (!f2fs_readonly(sb) && err > 0) {
2978 err = -EINVAL;
2979 f2fs_msg(sb, KERN_ERR,
2980 "Need to recover fsync data");
2981 goto free_meta;
2982 }
2983 }
2984 skip_recovery:
2985 /* f2fs_recover_fsync_data() cleared this already */
2986 clear_sbi_flag(sbi, SBI_POR_DOING);
2987
2988 /*
2989 * If filesystem is not mounted as read-only then
2990 * do start the gc_thread.
2991 */
2992 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2993 /* After POR, we can run background GC thread.*/
2994 err = f2fs_start_gc_thread(sbi);
2995 if (err)
2996 goto free_meta;
2997 }
2998 kfree(options);
2999
3000 /* recover broken superblock */
3001 if (recovery) {
3002 err = f2fs_commit_super(sbi, true);
3003 f2fs_msg(sb, KERN_INFO,
3004 "Try to recover %dth superblock, ret: %d",
3005 sbi->valid_super_block ? 1 : 2, err);
3006 }
3007
3008 f2fs_join_shrinker(sbi);
3009
3010 f2fs_tuning_parameters(sbi);
3011
3012 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3013 cur_cp_version(F2FS_CKPT(sbi)));
3014 f2fs_update_time(sbi, CP_TIME);
3015 f2fs_update_time(sbi, REQ_TIME);
3016 return 0;
3017
3018 free_meta:
3019 #ifdef CONFIG_QUOTA
3020 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3021 f2fs_quota_off_umount(sbi->sb);
3022 #endif
3023 f2fs_sync_inode_meta(sbi);
3024 /*
3025 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3026 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3027 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3028 * falls into an infinite loop in f2fs_sync_meta_pages().
3029 */
3030 truncate_inode_pages_final(META_MAPPING(sbi));
3031 #ifdef CONFIG_QUOTA
3032 free_sysfs:
3033 #endif
3034 f2fs_unregister_sysfs(sbi);
3035 free_root_inode:
3036 dput(sb->s_root);
3037 sb->s_root = NULL;
3038 free_stats:
3039 f2fs_destroy_stats(sbi);
3040 free_node_inode:
3041 f2fs_release_ino_entry(sbi, true);
3042 truncate_inode_pages_final(NODE_MAPPING(sbi));
3043 iput(sbi->node_inode);
3044 free_nm:
3045 f2fs_destroy_node_manager(sbi);
3046 free_sm:
3047 f2fs_destroy_segment_manager(sbi);
3048 free_devices:
3049 destroy_device_list(sbi);
3050 kfree(sbi->ckpt);
3051 free_meta_inode:
3052 make_bad_inode(sbi->meta_inode);
3053 iput(sbi->meta_inode);
3054 free_io_dummy:
3055 mempool_destroy(sbi->write_io_dummy);
3056 free_percpu:
3057 destroy_percpu_info(sbi);
3058 free_bio_info:
3059 for (i = 0; i < NR_PAGE_TYPE; i++)
3060 kfree(sbi->write_io[i]);
3061 free_options:
3062 #ifdef CONFIG_QUOTA
3063 for (i = 0; i < MAXQUOTAS; i++)
3064 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3065 #endif
3066 kfree(options);
3067 free_sb_buf:
3068 kfree(raw_super);
3069 free_sbi:
3070 if (sbi->s_chksum_driver)
3071 crypto_free_shash(sbi->s_chksum_driver);
3072 kfree(sbi);
3073
3074 /* give only one another chance */
3075 if (retry) {
3076 retry = false;
3077 shrink_dcache_sb(sb);
3078 goto try_onemore;
3079 }
3080 return err;
3081 }
3082
3083 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3084 const char *dev_name, void *data)
3085 {
3086 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3087 }
3088
3089 static void kill_f2fs_super(struct super_block *sb)
3090 {
3091 if (sb->s_root) {
3092 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3093 f2fs_stop_gc_thread(F2FS_SB(sb));
3094 f2fs_stop_discard_thread(F2FS_SB(sb));
3095 }
3096 kill_block_super(sb);
3097 }
3098
3099 static struct file_system_type f2fs_fs_type = {
3100 .owner = THIS_MODULE,
3101 .name = "f2fs",
3102 .mount = f2fs_mount,
3103 .kill_sb = kill_f2fs_super,
3104 .fs_flags = FS_REQUIRES_DEV,
3105 };
3106 MODULE_ALIAS_FS("f2fs");
3107
3108 static int __init init_inodecache(void)
3109 {
3110 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3111 sizeof(struct f2fs_inode_info), 0,
3112 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3113 if (!f2fs_inode_cachep)
3114 return -ENOMEM;
3115 return 0;
3116 }
3117
3118 static void destroy_inodecache(void)
3119 {
3120 /*
3121 * Make sure all delayed rcu free inodes are flushed before we
3122 * destroy cache.
3123 */
3124 rcu_barrier();
3125 kmem_cache_destroy(f2fs_inode_cachep);
3126 }
3127
3128 static int __init init_f2fs_fs(void)
3129 {
3130 int err;
3131
3132 if (PAGE_SIZE != F2FS_BLKSIZE) {
3133 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3134 PAGE_SIZE, F2FS_BLKSIZE);
3135 return -EINVAL;
3136 }
3137
3138 f2fs_build_trace_ios();
3139
3140 err = init_inodecache();
3141 if (err)
3142 goto fail;
3143 err = f2fs_create_node_manager_caches();
3144 if (err)
3145 goto free_inodecache;
3146 err = f2fs_create_segment_manager_caches();
3147 if (err)
3148 goto free_node_manager_caches;
3149 err = f2fs_create_checkpoint_caches();
3150 if (err)
3151 goto free_segment_manager_caches;
3152 err = f2fs_create_extent_cache();
3153 if (err)
3154 goto free_checkpoint_caches;
3155 err = f2fs_init_sysfs();
3156 if (err)
3157 goto free_extent_cache;
3158 err = register_shrinker(&f2fs_shrinker_info);
3159 if (err)
3160 goto free_sysfs;
3161 err = register_filesystem(&f2fs_fs_type);
3162 if (err)
3163 goto free_shrinker;
3164 err = f2fs_create_root_stats();
3165 if (err)
3166 goto free_filesystem;
3167 err = f2fs_init_post_read_processing();
3168 if (err)
3169 goto free_root_stats;
3170 return 0;
3171
3172 free_root_stats:
3173 f2fs_destroy_root_stats();
3174 free_filesystem:
3175 unregister_filesystem(&f2fs_fs_type);
3176 free_shrinker:
3177 unregister_shrinker(&f2fs_shrinker_info);
3178 free_sysfs:
3179 f2fs_exit_sysfs();
3180 free_extent_cache:
3181 f2fs_destroy_extent_cache();
3182 free_checkpoint_caches:
3183 f2fs_destroy_checkpoint_caches();
3184 free_segment_manager_caches:
3185 f2fs_destroy_segment_manager_caches();
3186 free_node_manager_caches:
3187 f2fs_destroy_node_manager_caches();
3188 free_inodecache:
3189 destroy_inodecache();
3190 fail:
3191 return err;
3192 }
3193
3194 static void __exit exit_f2fs_fs(void)
3195 {
3196 f2fs_destroy_post_read_processing();
3197 f2fs_destroy_root_stats();
3198 unregister_filesystem(&f2fs_fs_type);
3199 unregister_shrinker(&f2fs_shrinker_info);
3200 f2fs_exit_sysfs();
3201 f2fs_destroy_extent_cache();
3202 f2fs_destroy_checkpoint_caches();
3203 f2fs_destroy_segment_manager_caches();
3204 f2fs_destroy_node_manager_caches();
3205 destroy_inodecache();
3206 f2fs_destroy_trace_ios();
3207 }
3208
3209 module_init(init_f2fs_fs)
3210 module_exit(exit_f2fs_fs)
3211
3212 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3213 MODULE_DESCRIPTION("Flash Friendly File System");
3214 MODULE_LICENSE("GPL");
3215