]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/f2fs/super.c
3ce4d7c9a29d080558cc1058b1f8c5596c499611
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 enum {
43 Opt_gc_background,
44 Opt_disable_roll_forward,
45 Opt_norecovery,
46 Opt_discard,
47 Opt_noheap,
48 Opt_user_xattr,
49 Opt_nouser_xattr,
50 Opt_acl,
51 Opt_noacl,
52 Opt_active_logs,
53 Opt_disable_ext_identify,
54 Opt_inline_xattr,
55 Opt_inline_data,
56 Opt_inline_dentry,
57 Opt_flush_merge,
58 Opt_nobarrier,
59 Opt_fastboot,
60 Opt_extent_cache,
61 Opt_err,
62 };
63
64 static match_table_t f2fs_tokens = {
65 {Opt_gc_background, "background_gc=%s"},
66 {Opt_disable_roll_forward, "disable_roll_forward"},
67 {Opt_norecovery, "norecovery"},
68 {Opt_discard, "discard"},
69 {Opt_noheap, "no_heap"},
70 {Opt_user_xattr, "user_xattr"},
71 {Opt_nouser_xattr, "nouser_xattr"},
72 {Opt_acl, "acl"},
73 {Opt_noacl, "noacl"},
74 {Opt_active_logs, "active_logs=%u"},
75 {Opt_disable_ext_identify, "disable_ext_identify"},
76 {Opt_inline_xattr, "inline_xattr"},
77 {Opt_inline_data, "inline_data"},
78 {Opt_inline_dentry, "inline_dentry"},
79 {Opt_flush_merge, "flush_merge"},
80 {Opt_nobarrier, "nobarrier"},
81 {Opt_fastboot, "fastboot"},
82 {Opt_extent_cache, "extent_cache"},
83 {Opt_err, NULL},
84 };
85
86 /* Sysfs support for f2fs */
87 enum {
88 GC_THREAD, /* struct f2fs_gc_thread */
89 SM_INFO, /* struct f2fs_sm_info */
90 NM_INFO, /* struct f2fs_nm_info */
91 F2FS_SBI, /* struct f2fs_sb_info */
92 };
93
94 struct f2fs_attr {
95 struct attribute attr;
96 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
97 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
98 const char *, size_t);
99 int struct_type;
100 int offset;
101 };
102
103 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
104 {
105 if (struct_type == GC_THREAD)
106 return (unsigned char *)sbi->gc_thread;
107 else if (struct_type == SM_INFO)
108 return (unsigned char *)SM_I(sbi);
109 else if (struct_type == NM_INFO)
110 return (unsigned char *)NM_I(sbi);
111 else if (struct_type == F2FS_SBI)
112 return (unsigned char *)sbi;
113 return NULL;
114 }
115
116 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
117 struct f2fs_sb_info *sbi, char *buf)
118 {
119 unsigned char *ptr = NULL;
120 unsigned int *ui;
121
122 ptr = __struct_ptr(sbi, a->struct_type);
123 if (!ptr)
124 return -EINVAL;
125
126 ui = (unsigned int *)(ptr + a->offset);
127
128 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
129 }
130
131 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
132 struct f2fs_sb_info *sbi,
133 const char *buf, size_t count)
134 {
135 unsigned char *ptr;
136 unsigned long t;
137 unsigned int *ui;
138 ssize_t ret;
139
140 ptr = __struct_ptr(sbi, a->struct_type);
141 if (!ptr)
142 return -EINVAL;
143
144 ui = (unsigned int *)(ptr + a->offset);
145
146 ret = kstrtoul(skip_spaces(buf), 0, &t);
147 if (ret < 0)
148 return ret;
149 *ui = t;
150 return count;
151 }
152
153 static ssize_t f2fs_attr_show(struct kobject *kobj,
154 struct attribute *attr, char *buf)
155 {
156 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
157 s_kobj);
158 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
159
160 return a->show ? a->show(a, sbi, buf) : 0;
161 }
162
163 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
164 const char *buf, size_t len)
165 {
166 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
167 s_kobj);
168 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
169
170 return a->store ? a->store(a, sbi, buf, len) : 0;
171 }
172
173 static void f2fs_sb_release(struct kobject *kobj)
174 {
175 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
176 s_kobj);
177 complete(&sbi->s_kobj_unregister);
178 }
179
180 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
181 static struct f2fs_attr f2fs_attr_##_name = { \
182 .attr = {.name = __stringify(_name), .mode = _mode }, \
183 .show = _show, \
184 .store = _store, \
185 .struct_type = _struct_type, \
186 .offset = _offset \
187 }
188
189 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
190 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
191 f2fs_sbi_show, f2fs_sbi_store, \
192 offsetof(struct struct_name, elname))
193
194 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
195 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
196 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
197 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
198 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
199 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
200 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
201 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
202 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
203 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
204 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
205 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
206 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
207
208 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
209 static struct attribute *f2fs_attrs[] = {
210 ATTR_LIST(gc_min_sleep_time),
211 ATTR_LIST(gc_max_sleep_time),
212 ATTR_LIST(gc_no_gc_sleep_time),
213 ATTR_LIST(gc_idle),
214 ATTR_LIST(reclaim_segments),
215 ATTR_LIST(max_small_discards),
216 ATTR_LIST(batched_trim_sections),
217 ATTR_LIST(ipu_policy),
218 ATTR_LIST(min_ipu_util),
219 ATTR_LIST(min_fsync_blocks),
220 ATTR_LIST(max_victim_search),
221 ATTR_LIST(dir_level),
222 ATTR_LIST(ram_thresh),
223 NULL,
224 };
225
226 static const struct sysfs_ops f2fs_attr_ops = {
227 .show = f2fs_attr_show,
228 .store = f2fs_attr_store,
229 };
230
231 static struct kobj_type f2fs_ktype = {
232 .default_attrs = f2fs_attrs,
233 .sysfs_ops = &f2fs_attr_ops,
234 .release = f2fs_sb_release,
235 };
236
237 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
238 {
239 struct va_format vaf;
240 va_list args;
241
242 va_start(args, fmt);
243 vaf.fmt = fmt;
244 vaf.va = &args;
245 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
246 va_end(args);
247 }
248
249 static void init_once(void *foo)
250 {
251 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
252
253 inode_init_once(&fi->vfs_inode);
254 }
255
256 static int parse_options(struct super_block *sb, char *options)
257 {
258 struct f2fs_sb_info *sbi = F2FS_SB(sb);
259 substring_t args[MAX_OPT_ARGS];
260 char *p, *name;
261 int arg = 0;
262
263 if (!options)
264 return 0;
265
266 while ((p = strsep(&options, ",")) != NULL) {
267 int token;
268 if (!*p)
269 continue;
270 /*
271 * Initialize args struct so we know whether arg was
272 * found; some options take optional arguments.
273 */
274 args[0].to = args[0].from = NULL;
275 token = match_token(p, f2fs_tokens, args);
276
277 switch (token) {
278 case Opt_gc_background:
279 name = match_strdup(&args[0]);
280
281 if (!name)
282 return -ENOMEM;
283 if (strlen(name) == 2 && !strncmp(name, "on", 2))
284 set_opt(sbi, BG_GC);
285 else if (strlen(name) == 3 && !strncmp(name, "off", 3))
286 clear_opt(sbi, BG_GC);
287 else {
288 kfree(name);
289 return -EINVAL;
290 }
291 kfree(name);
292 break;
293 case Opt_disable_roll_forward:
294 set_opt(sbi, DISABLE_ROLL_FORWARD);
295 break;
296 case Opt_norecovery:
297 /* this option mounts f2fs with ro */
298 set_opt(sbi, DISABLE_ROLL_FORWARD);
299 if (!f2fs_readonly(sb))
300 return -EINVAL;
301 break;
302 case Opt_discard:
303 set_opt(sbi, DISCARD);
304 break;
305 case Opt_noheap:
306 set_opt(sbi, NOHEAP);
307 break;
308 #ifdef CONFIG_F2FS_FS_XATTR
309 case Opt_user_xattr:
310 set_opt(sbi, XATTR_USER);
311 break;
312 case Opt_nouser_xattr:
313 clear_opt(sbi, XATTR_USER);
314 break;
315 case Opt_inline_xattr:
316 set_opt(sbi, INLINE_XATTR);
317 break;
318 #else
319 case Opt_user_xattr:
320 f2fs_msg(sb, KERN_INFO,
321 "user_xattr options not supported");
322 break;
323 case Opt_nouser_xattr:
324 f2fs_msg(sb, KERN_INFO,
325 "nouser_xattr options not supported");
326 break;
327 case Opt_inline_xattr:
328 f2fs_msg(sb, KERN_INFO,
329 "inline_xattr options not supported");
330 break;
331 #endif
332 #ifdef CONFIG_F2FS_FS_POSIX_ACL
333 case Opt_acl:
334 set_opt(sbi, POSIX_ACL);
335 break;
336 case Opt_noacl:
337 clear_opt(sbi, POSIX_ACL);
338 break;
339 #else
340 case Opt_acl:
341 f2fs_msg(sb, KERN_INFO, "acl options not supported");
342 break;
343 case Opt_noacl:
344 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
345 break;
346 #endif
347 case Opt_active_logs:
348 if (args->from && match_int(args, &arg))
349 return -EINVAL;
350 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
351 return -EINVAL;
352 sbi->active_logs = arg;
353 break;
354 case Opt_disable_ext_identify:
355 set_opt(sbi, DISABLE_EXT_IDENTIFY);
356 break;
357 case Opt_inline_data:
358 set_opt(sbi, INLINE_DATA);
359 break;
360 case Opt_inline_dentry:
361 set_opt(sbi, INLINE_DENTRY);
362 break;
363 case Opt_flush_merge:
364 set_opt(sbi, FLUSH_MERGE);
365 break;
366 case Opt_nobarrier:
367 set_opt(sbi, NOBARRIER);
368 break;
369 case Opt_fastboot:
370 set_opt(sbi, FASTBOOT);
371 break;
372 case Opt_extent_cache:
373 set_opt(sbi, EXTENT_CACHE);
374 break;
375 default:
376 f2fs_msg(sb, KERN_ERR,
377 "Unrecognized mount option \"%s\" or missing value",
378 p);
379 return -EINVAL;
380 }
381 }
382 return 0;
383 }
384
385 static struct inode *f2fs_alloc_inode(struct super_block *sb)
386 {
387 struct f2fs_inode_info *fi;
388
389 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
390 if (!fi)
391 return NULL;
392
393 init_once((void *) fi);
394
395 /* Initialize f2fs-specific inode info */
396 fi->vfs_inode.i_version = 1;
397 atomic_set(&fi->dirty_pages, 0);
398 fi->i_current_depth = 1;
399 fi->i_advise = 0;
400 rwlock_init(&fi->ext_lock);
401 init_rwsem(&fi->i_sem);
402 INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
403 INIT_LIST_HEAD(&fi->inmem_pages);
404 mutex_init(&fi->inmem_lock);
405
406 set_inode_flag(fi, FI_NEW_INODE);
407
408 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
409 set_inode_flag(fi, FI_INLINE_XATTR);
410
411 /* Will be used by directory only */
412 fi->i_dir_level = F2FS_SB(sb)->dir_level;
413
414 return &fi->vfs_inode;
415 }
416
417 static int f2fs_drop_inode(struct inode *inode)
418 {
419 /*
420 * This is to avoid a deadlock condition like below.
421 * writeback_single_inode(inode)
422 * - f2fs_write_data_page
423 * - f2fs_gc -> iput -> evict
424 * - inode_wait_for_writeback(inode)
425 */
426 if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
427 return 0;
428 return generic_drop_inode(inode);
429 }
430
431 /*
432 * f2fs_dirty_inode() is called from __mark_inode_dirty()
433 *
434 * We should call set_dirty_inode to write the dirty inode through write_inode.
435 */
436 static void f2fs_dirty_inode(struct inode *inode, int flags)
437 {
438 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
439 }
440
441 static void f2fs_i_callback(struct rcu_head *head)
442 {
443 struct inode *inode = container_of(head, struct inode, i_rcu);
444 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
445 }
446
447 static void f2fs_destroy_inode(struct inode *inode)
448 {
449 call_rcu(&inode->i_rcu, f2fs_i_callback);
450 }
451
452 static void f2fs_put_super(struct super_block *sb)
453 {
454 struct f2fs_sb_info *sbi = F2FS_SB(sb);
455
456 if (sbi->s_proc) {
457 remove_proc_entry("segment_info", sbi->s_proc);
458 remove_proc_entry(sb->s_id, f2fs_proc_root);
459 }
460 kobject_del(&sbi->s_kobj);
461
462 f2fs_destroy_stats(sbi);
463 stop_gc_thread(sbi);
464
465 /*
466 * We don't need to do checkpoint when superblock is clean.
467 * But, the previous checkpoint was not done by umount, it needs to do
468 * clean checkpoint again.
469 */
470 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
471 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
472 struct cp_control cpc = {
473 .reason = CP_UMOUNT,
474 };
475 write_checkpoint(sbi, &cpc);
476 }
477
478 /*
479 * normally superblock is clean, so we need to release this.
480 * In addition, EIO will skip do checkpoint, we need this as well.
481 */
482 release_dirty_inode(sbi);
483 release_discard_addrs(sbi);
484
485 iput(sbi->node_inode);
486 iput(sbi->meta_inode);
487
488 /* destroy f2fs internal modules */
489 destroy_node_manager(sbi);
490 destroy_segment_manager(sbi);
491
492 kfree(sbi->ckpt);
493 kobject_put(&sbi->s_kobj);
494 wait_for_completion(&sbi->s_kobj_unregister);
495
496 sb->s_fs_info = NULL;
497 brelse(sbi->raw_super_buf);
498 kfree(sbi);
499 }
500
501 int f2fs_sync_fs(struct super_block *sb, int sync)
502 {
503 struct f2fs_sb_info *sbi = F2FS_SB(sb);
504
505 trace_f2fs_sync_fs(sb, sync);
506
507 if (sync) {
508 struct cp_control cpc;
509
510 cpc.reason = __get_cp_reason(sbi);
511
512 mutex_lock(&sbi->gc_mutex);
513 write_checkpoint(sbi, &cpc);
514 mutex_unlock(&sbi->gc_mutex);
515 } else {
516 f2fs_balance_fs(sbi);
517 }
518 f2fs_trace_ios(NULL, NULL, 1);
519
520 return 0;
521 }
522
523 static int f2fs_freeze(struct super_block *sb)
524 {
525 int err;
526
527 if (f2fs_readonly(sb))
528 return 0;
529
530 err = f2fs_sync_fs(sb, 1);
531 return err;
532 }
533
534 static int f2fs_unfreeze(struct super_block *sb)
535 {
536 return 0;
537 }
538
539 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
540 {
541 struct super_block *sb = dentry->d_sb;
542 struct f2fs_sb_info *sbi = F2FS_SB(sb);
543 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
544 block_t total_count, user_block_count, start_count, ovp_count;
545
546 total_count = le64_to_cpu(sbi->raw_super->block_count);
547 user_block_count = sbi->user_block_count;
548 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
549 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
550 buf->f_type = F2FS_SUPER_MAGIC;
551 buf->f_bsize = sbi->blocksize;
552
553 buf->f_blocks = total_count - start_count;
554 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
555 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
556
557 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
558 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
559
560 buf->f_namelen = F2FS_NAME_LEN;
561 buf->f_fsid.val[0] = (u32)id;
562 buf->f_fsid.val[1] = (u32)(id >> 32);
563
564 return 0;
565 }
566
567 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
568 {
569 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
570
571 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
572 seq_printf(seq, ",background_gc=%s", "on");
573 else
574 seq_printf(seq, ",background_gc=%s", "off");
575 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
576 seq_puts(seq, ",disable_roll_forward");
577 if (test_opt(sbi, DISCARD))
578 seq_puts(seq, ",discard");
579 if (test_opt(sbi, NOHEAP))
580 seq_puts(seq, ",no_heap_alloc");
581 #ifdef CONFIG_F2FS_FS_XATTR
582 if (test_opt(sbi, XATTR_USER))
583 seq_puts(seq, ",user_xattr");
584 else
585 seq_puts(seq, ",nouser_xattr");
586 if (test_opt(sbi, INLINE_XATTR))
587 seq_puts(seq, ",inline_xattr");
588 #endif
589 #ifdef CONFIG_F2FS_FS_POSIX_ACL
590 if (test_opt(sbi, POSIX_ACL))
591 seq_puts(seq, ",acl");
592 else
593 seq_puts(seq, ",noacl");
594 #endif
595 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
596 seq_puts(seq, ",disable_ext_identify");
597 if (test_opt(sbi, INLINE_DATA))
598 seq_puts(seq, ",inline_data");
599 if (test_opt(sbi, INLINE_DENTRY))
600 seq_puts(seq, ",inline_dentry");
601 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
602 seq_puts(seq, ",flush_merge");
603 if (test_opt(sbi, NOBARRIER))
604 seq_puts(seq, ",nobarrier");
605 if (test_opt(sbi, FASTBOOT))
606 seq_puts(seq, ",fastboot");
607 if (test_opt(sbi, EXTENT_CACHE))
608 seq_puts(seq, ",extent_cache");
609 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
610
611 return 0;
612 }
613
614 static int segment_info_seq_show(struct seq_file *seq, void *offset)
615 {
616 struct super_block *sb = seq->private;
617 struct f2fs_sb_info *sbi = F2FS_SB(sb);
618 unsigned int total_segs =
619 le32_to_cpu(sbi->raw_super->segment_count_main);
620 int i;
621
622 seq_puts(seq, "format: segment_type|valid_blocks\n"
623 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
624
625 for (i = 0; i < total_segs; i++) {
626 struct seg_entry *se = get_seg_entry(sbi, i);
627
628 if ((i % 10) == 0)
629 seq_printf(seq, "%-5d", i);
630 seq_printf(seq, "%d|%-3u", se->type,
631 get_valid_blocks(sbi, i, 1));
632 if ((i % 10) == 9 || i == (total_segs - 1))
633 seq_putc(seq, '\n');
634 else
635 seq_putc(seq, ' ');
636 }
637
638 return 0;
639 }
640
641 static int segment_info_open_fs(struct inode *inode, struct file *file)
642 {
643 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
644 }
645
646 static const struct file_operations f2fs_seq_segment_info_fops = {
647 .owner = THIS_MODULE,
648 .open = segment_info_open_fs,
649 .read = seq_read,
650 .llseek = seq_lseek,
651 .release = single_release,
652 };
653
654 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
655 {
656 struct f2fs_sb_info *sbi = F2FS_SB(sb);
657 struct f2fs_mount_info org_mount_opt;
658 int err, active_logs;
659 bool need_restart_gc = false;
660 bool need_stop_gc = false;
661
662 sync_filesystem(sb);
663
664 /*
665 * Save the old mount options in case we
666 * need to restore them.
667 */
668 org_mount_opt = sbi->mount_opt;
669 active_logs = sbi->active_logs;
670
671 sbi->mount_opt.opt = 0;
672 sbi->active_logs = NR_CURSEG_TYPE;
673
674 /* parse mount options */
675 err = parse_options(sb, data);
676 if (err)
677 goto restore_opts;
678
679 /*
680 * Previous and new state of filesystem is RO,
681 * so skip checking GC and FLUSH_MERGE conditions.
682 */
683 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
684 goto skip;
685
686 /*
687 * We stop the GC thread if FS is mounted as RO
688 * or if background_gc = off is passed in mount
689 * option. Also sync the filesystem.
690 */
691 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
692 if (sbi->gc_thread) {
693 stop_gc_thread(sbi);
694 f2fs_sync_fs(sb, 1);
695 need_restart_gc = true;
696 }
697 } else if (!sbi->gc_thread) {
698 err = start_gc_thread(sbi);
699 if (err)
700 goto restore_opts;
701 need_stop_gc = true;
702 }
703
704 /*
705 * We stop issue flush thread if FS is mounted as RO
706 * or if flush_merge is not passed in mount option.
707 */
708 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
709 destroy_flush_cmd_control(sbi);
710 } else if (!SM_I(sbi)->cmd_control_info) {
711 err = create_flush_cmd_control(sbi);
712 if (err)
713 goto restore_gc;
714 }
715 skip:
716 /* Update the POSIXACL Flag */
717 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
718 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
719 return 0;
720 restore_gc:
721 if (need_restart_gc) {
722 if (start_gc_thread(sbi))
723 f2fs_msg(sbi->sb, KERN_WARNING,
724 "background gc thread has stopped");
725 } else if (need_stop_gc) {
726 stop_gc_thread(sbi);
727 }
728 restore_opts:
729 sbi->mount_opt = org_mount_opt;
730 sbi->active_logs = active_logs;
731 return err;
732 }
733
734 static struct super_operations f2fs_sops = {
735 .alloc_inode = f2fs_alloc_inode,
736 .drop_inode = f2fs_drop_inode,
737 .destroy_inode = f2fs_destroy_inode,
738 .write_inode = f2fs_write_inode,
739 .dirty_inode = f2fs_dirty_inode,
740 .show_options = f2fs_show_options,
741 .evict_inode = f2fs_evict_inode,
742 .put_super = f2fs_put_super,
743 .sync_fs = f2fs_sync_fs,
744 .freeze_fs = f2fs_freeze,
745 .unfreeze_fs = f2fs_unfreeze,
746 .statfs = f2fs_statfs,
747 .remount_fs = f2fs_remount,
748 };
749
750 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
751 u64 ino, u32 generation)
752 {
753 struct f2fs_sb_info *sbi = F2FS_SB(sb);
754 struct inode *inode;
755
756 if (check_nid_range(sbi, ino))
757 return ERR_PTR(-ESTALE);
758
759 /*
760 * f2fs_iget isn't quite right if the inode is currently unallocated!
761 * However f2fs_iget currently does appropriate checks to handle stale
762 * inodes so everything is OK.
763 */
764 inode = f2fs_iget(sb, ino);
765 if (IS_ERR(inode))
766 return ERR_CAST(inode);
767 if (unlikely(generation && inode->i_generation != generation)) {
768 /* we didn't find the right inode.. */
769 iput(inode);
770 return ERR_PTR(-ESTALE);
771 }
772 return inode;
773 }
774
775 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
776 int fh_len, int fh_type)
777 {
778 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
779 f2fs_nfs_get_inode);
780 }
781
782 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
783 int fh_len, int fh_type)
784 {
785 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
786 f2fs_nfs_get_inode);
787 }
788
789 static const struct export_operations f2fs_export_ops = {
790 .fh_to_dentry = f2fs_fh_to_dentry,
791 .fh_to_parent = f2fs_fh_to_parent,
792 .get_parent = f2fs_get_parent,
793 };
794
795 static loff_t max_file_size(unsigned bits)
796 {
797 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
798 loff_t leaf_count = ADDRS_PER_BLOCK;
799
800 /* two direct node blocks */
801 result += (leaf_count * 2);
802
803 /* two indirect node blocks */
804 leaf_count *= NIDS_PER_BLOCK;
805 result += (leaf_count * 2);
806
807 /* one double indirect node block */
808 leaf_count *= NIDS_PER_BLOCK;
809 result += leaf_count;
810
811 result <<= bits;
812 return result;
813 }
814
815 static int sanity_check_raw_super(struct super_block *sb,
816 struct f2fs_super_block *raw_super)
817 {
818 unsigned int blocksize;
819
820 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
821 f2fs_msg(sb, KERN_INFO,
822 "Magic Mismatch, valid(0x%x) - read(0x%x)",
823 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
824 return 1;
825 }
826
827 /* Currently, support only 4KB page cache size */
828 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
829 f2fs_msg(sb, KERN_INFO,
830 "Invalid page_cache_size (%lu), supports only 4KB\n",
831 PAGE_CACHE_SIZE);
832 return 1;
833 }
834
835 /* Currently, support only 4KB block size */
836 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
837 if (blocksize != F2FS_BLKSIZE) {
838 f2fs_msg(sb, KERN_INFO,
839 "Invalid blocksize (%u), supports only 4KB\n",
840 blocksize);
841 return 1;
842 }
843
844 /* Currently, support 512/1024/2048/4096 bytes sector size */
845 if (le32_to_cpu(raw_super->log_sectorsize) >
846 F2FS_MAX_LOG_SECTOR_SIZE ||
847 le32_to_cpu(raw_super->log_sectorsize) <
848 F2FS_MIN_LOG_SECTOR_SIZE) {
849 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
850 le32_to_cpu(raw_super->log_sectorsize));
851 return 1;
852 }
853 if (le32_to_cpu(raw_super->log_sectors_per_block) +
854 le32_to_cpu(raw_super->log_sectorsize) !=
855 F2FS_MAX_LOG_SECTOR_SIZE) {
856 f2fs_msg(sb, KERN_INFO,
857 "Invalid log sectors per block(%u) log sectorsize(%u)",
858 le32_to_cpu(raw_super->log_sectors_per_block),
859 le32_to_cpu(raw_super->log_sectorsize));
860 return 1;
861 }
862 return 0;
863 }
864
865 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
866 {
867 unsigned int total, fsmeta;
868 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
869 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
870
871 total = le32_to_cpu(raw_super->segment_count);
872 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
873 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
874 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
875 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
876 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
877
878 if (unlikely(fsmeta >= total))
879 return 1;
880
881 if (unlikely(f2fs_cp_error(sbi))) {
882 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
883 return 1;
884 }
885 return 0;
886 }
887
888 static void init_sb_info(struct f2fs_sb_info *sbi)
889 {
890 struct f2fs_super_block *raw_super = sbi->raw_super;
891 int i;
892
893 sbi->log_sectors_per_block =
894 le32_to_cpu(raw_super->log_sectors_per_block);
895 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
896 sbi->blocksize = 1 << sbi->log_blocksize;
897 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
898 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
899 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
900 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
901 sbi->total_sections = le32_to_cpu(raw_super->section_count);
902 sbi->total_node_count =
903 (le32_to_cpu(raw_super->segment_count_nat) / 2)
904 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
905 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
906 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
907 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
908 sbi->cur_victim_sec = NULL_SECNO;
909 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
910
911 for (i = 0; i < NR_COUNT_TYPE; i++)
912 atomic_set(&sbi->nr_pages[i], 0);
913
914 sbi->dir_level = DEF_DIR_LEVEL;
915 clear_sbi_flag(sbi, SBI_NEED_FSCK);
916 }
917
918 /*
919 * Read f2fs raw super block.
920 * Because we have two copies of super block, so read the first one at first,
921 * if the first one is invalid, move to read the second one.
922 */
923 static int read_raw_super_block(struct super_block *sb,
924 struct f2fs_super_block **raw_super,
925 struct buffer_head **raw_super_buf)
926 {
927 int block = 0;
928
929 retry:
930 *raw_super_buf = sb_bread(sb, block);
931 if (!*raw_super_buf) {
932 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
933 block + 1);
934 if (block == 0) {
935 block++;
936 goto retry;
937 } else {
938 return -EIO;
939 }
940 }
941
942 *raw_super = (struct f2fs_super_block *)
943 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
944
945 /* sanity checking of raw super */
946 if (sanity_check_raw_super(sb, *raw_super)) {
947 brelse(*raw_super_buf);
948 f2fs_msg(sb, KERN_ERR,
949 "Can't find valid F2FS filesystem in %dth superblock",
950 block + 1);
951 if (block == 0) {
952 block++;
953 goto retry;
954 } else {
955 return -EINVAL;
956 }
957 }
958
959 return 0;
960 }
961
962 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
963 {
964 struct f2fs_sb_info *sbi;
965 struct f2fs_super_block *raw_super = NULL;
966 struct buffer_head *raw_super_buf;
967 struct inode *root;
968 long err = -EINVAL;
969 bool retry = true;
970 char *options = NULL;
971 int i;
972
973 try_onemore:
974 /* allocate memory for f2fs-specific super block info */
975 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
976 if (!sbi)
977 return -ENOMEM;
978
979 /* set a block size */
980 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
981 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
982 goto free_sbi;
983 }
984
985 err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
986 if (err)
987 goto free_sbi;
988
989 sb->s_fs_info = sbi;
990 /* init some FS parameters */
991 sbi->active_logs = NR_CURSEG_TYPE;
992
993 set_opt(sbi, BG_GC);
994
995 #ifdef CONFIG_F2FS_FS_XATTR
996 set_opt(sbi, XATTR_USER);
997 #endif
998 #ifdef CONFIG_F2FS_FS_POSIX_ACL
999 set_opt(sbi, POSIX_ACL);
1000 #endif
1001 /* parse mount options */
1002 options = kstrdup((const char *)data, GFP_KERNEL);
1003 if (data && !options) {
1004 err = -ENOMEM;
1005 goto free_sb_buf;
1006 }
1007
1008 err = parse_options(sb, options);
1009 if (err)
1010 goto free_options;
1011
1012 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1013 sb->s_max_links = F2FS_LINK_MAX;
1014 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1015
1016 sb->s_op = &f2fs_sops;
1017 sb->s_xattr = f2fs_xattr_handlers;
1018 sb->s_export_op = &f2fs_export_ops;
1019 sb->s_magic = F2FS_SUPER_MAGIC;
1020 sb->s_time_gran = 1;
1021 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1022 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1023 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1024
1025 /* init f2fs-specific super block info */
1026 sbi->sb = sb;
1027 sbi->raw_super = raw_super;
1028 sbi->raw_super_buf = raw_super_buf;
1029 mutex_init(&sbi->gc_mutex);
1030 mutex_init(&sbi->writepages);
1031 mutex_init(&sbi->cp_mutex);
1032 init_rwsem(&sbi->node_write);
1033 clear_sbi_flag(sbi, SBI_POR_DOING);
1034 spin_lock_init(&sbi->stat_lock);
1035
1036 init_rwsem(&sbi->read_io.io_rwsem);
1037 sbi->read_io.sbi = sbi;
1038 sbi->read_io.bio = NULL;
1039 for (i = 0; i < NR_PAGE_TYPE; i++) {
1040 init_rwsem(&sbi->write_io[i].io_rwsem);
1041 sbi->write_io[i].sbi = sbi;
1042 sbi->write_io[i].bio = NULL;
1043 }
1044
1045 init_rwsem(&sbi->cp_rwsem);
1046 init_waitqueue_head(&sbi->cp_wait);
1047 init_sb_info(sbi);
1048
1049 /* get an inode for meta space */
1050 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1051 if (IS_ERR(sbi->meta_inode)) {
1052 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1053 err = PTR_ERR(sbi->meta_inode);
1054 goto free_options;
1055 }
1056
1057 err = get_valid_checkpoint(sbi);
1058 if (err) {
1059 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1060 goto free_meta_inode;
1061 }
1062
1063 /* sanity checking of checkpoint */
1064 err = -EINVAL;
1065 if (sanity_check_ckpt(sbi)) {
1066 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1067 goto free_cp;
1068 }
1069
1070 sbi->total_valid_node_count =
1071 le32_to_cpu(sbi->ckpt->valid_node_count);
1072 sbi->total_valid_inode_count =
1073 le32_to_cpu(sbi->ckpt->valid_inode_count);
1074 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1075 sbi->total_valid_block_count =
1076 le64_to_cpu(sbi->ckpt->valid_block_count);
1077 sbi->last_valid_block_count = sbi->total_valid_block_count;
1078 sbi->alloc_valid_block_count = 0;
1079 INIT_LIST_HEAD(&sbi->dir_inode_list);
1080 spin_lock_init(&sbi->dir_inode_lock);
1081
1082 init_ino_entry_info(sbi);
1083
1084 /* setup f2fs internal modules */
1085 err = build_segment_manager(sbi);
1086 if (err) {
1087 f2fs_msg(sb, KERN_ERR,
1088 "Failed to initialize F2FS segment manager");
1089 goto free_sm;
1090 }
1091 err = build_node_manager(sbi);
1092 if (err) {
1093 f2fs_msg(sb, KERN_ERR,
1094 "Failed to initialize F2FS node manager");
1095 goto free_nm;
1096 }
1097
1098 build_gc_manager(sbi);
1099
1100 /* get an inode for node space */
1101 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1102 if (IS_ERR(sbi->node_inode)) {
1103 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1104 err = PTR_ERR(sbi->node_inode);
1105 goto free_nm;
1106 }
1107
1108 /* if there are nt orphan nodes free them */
1109 recover_orphan_inodes(sbi);
1110
1111 /* read root inode and dentry */
1112 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1113 if (IS_ERR(root)) {
1114 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1115 err = PTR_ERR(root);
1116 goto free_node_inode;
1117 }
1118 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1119 iput(root);
1120 err = -EINVAL;
1121 goto free_node_inode;
1122 }
1123
1124 sb->s_root = d_make_root(root); /* allocate root dentry */
1125 if (!sb->s_root) {
1126 err = -ENOMEM;
1127 goto free_root_inode;
1128 }
1129
1130 err = f2fs_build_stats(sbi);
1131 if (err)
1132 goto free_root_inode;
1133
1134 if (f2fs_proc_root)
1135 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1136
1137 if (sbi->s_proc)
1138 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1139 &f2fs_seq_segment_info_fops, sb);
1140
1141 if (test_opt(sbi, DISCARD)) {
1142 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1143 if (!blk_queue_discard(q))
1144 f2fs_msg(sb, KERN_WARNING,
1145 "mounting with \"discard\" option, but "
1146 "the device does not support discard");
1147 }
1148
1149 sbi->s_kobj.kset = f2fs_kset;
1150 init_completion(&sbi->s_kobj_unregister);
1151 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1152 "%s", sb->s_id);
1153 if (err)
1154 goto free_proc;
1155
1156 if (!retry)
1157 set_sbi_flag(sbi, SBI_NEED_FSCK);
1158
1159 /* recover fsynced data */
1160 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1161 /*
1162 * mount should be failed, when device has readonly mode, and
1163 * previous checkpoint was not done by clean system shutdown.
1164 */
1165 if (bdev_read_only(sb->s_bdev) &&
1166 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1167 err = -EROFS;
1168 goto free_kobj;
1169 }
1170 err = recover_fsync_data(sbi);
1171 if (err) {
1172 f2fs_msg(sb, KERN_ERR,
1173 "Cannot recover all fsync data errno=%ld", err);
1174 goto free_kobj;
1175 }
1176 }
1177
1178 /*
1179 * If filesystem is not mounted as read-only then
1180 * do start the gc_thread.
1181 */
1182 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1183 /* After POR, we can run background GC thread.*/
1184 err = start_gc_thread(sbi);
1185 if (err)
1186 goto free_kobj;
1187 }
1188 kfree(options);
1189 return 0;
1190
1191 free_kobj:
1192 kobject_del(&sbi->s_kobj);
1193 free_proc:
1194 if (sbi->s_proc) {
1195 remove_proc_entry("segment_info", sbi->s_proc);
1196 remove_proc_entry(sb->s_id, f2fs_proc_root);
1197 }
1198 f2fs_destroy_stats(sbi);
1199 free_root_inode:
1200 dput(sb->s_root);
1201 sb->s_root = NULL;
1202 free_node_inode:
1203 iput(sbi->node_inode);
1204 free_nm:
1205 destroy_node_manager(sbi);
1206 free_sm:
1207 destroy_segment_manager(sbi);
1208 free_cp:
1209 kfree(sbi->ckpt);
1210 free_meta_inode:
1211 make_bad_inode(sbi->meta_inode);
1212 iput(sbi->meta_inode);
1213 free_options:
1214 kfree(options);
1215 free_sb_buf:
1216 brelse(raw_super_buf);
1217 free_sbi:
1218 kfree(sbi);
1219
1220 /* give only one another chance */
1221 if (retry) {
1222 retry = 0;
1223 shrink_dcache_sb(sb);
1224 goto try_onemore;
1225 }
1226 return err;
1227 }
1228
1229 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1230 const char *dev_name, void *data)
1231 {
1232 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1233 }
1234
1235 static void kill_f2fs_super(struct super_block *sb)
1236 {
1237 if (sb->s_root)
1238 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1239 kill_block_super(sb);
1240 }
1241
1242 static struct file_system_type f2fs_fs_type = {
1243 .owner = THIS_MODULE,
1244 .name = "f2fs",
1245 .mount = f2fs_mount,
1246 .kill_sb = kill_f2fs_super,
1247 .fs_flags = FS_REQUIRES_DEV,
1248 };
1249 MODULE_ALIAS_FS("f2fs");
1250
1251 static int __init init_inodecache(void)
1252 {
1253 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1254 sizeof(struct f2fs_inode_info));
1255 if (!f2fs_inode_cachep)
1256 return -ENOMEM;
1257 return 0;
1258 }
1259
1260 static void destroy_inodecache(void)
1261 {
1262 /*
1263 * Make sure all delayed rcu free inodes are flushed before we
1264 * destroy cache.
1265 */
1266 rcu_barrier();
1267 kmem_cache_destroy(f2fs_inode_cachep);
1268 }
1269
1270 static int __init init_f2fs_fs(void)
1271 {
1272 int err;
1273
1274 f2fs_build_trace_ios();
1275
1276 err = init_inodecache();
1277 if (err)
1278 goto fail;
1279 err = create_node_manager_caches();
1280 if (err)
1281 goto free_inodecache;
1282 err = create_segment_manager_caches();
1283 if (err)
1284 goto free_node_manager_caches;
1285 err = create_checkpoint_caches();
1286 if (err)
1287 goto free_segment_manager_caches;
1288 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1289 if (!f2fs_kset) {
1290 err = -ENOMEM;
1291 goto free_checkpoint_caches;
1292 }
1293 err = register_filesystem(&f2fs_fs_type);
1294 if (err)
1295 goto free_kset;
1296 f2fs_create_root_stats();
1297 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1298 return 0;
1299
1300 free_kset:
1301 kset_unregister(f2fs_kset);
1302 free_checkpoint_caches:
1303 destroy_checkpoint_caches();
1304 free_segment_manager_caches:
1305 destroy_segment_manager_caches();
1306 free_node_manager_caches:
1307 destroy_node_manager_caches();
1308 free_inodecache:
1309 destroy_inodecache();
1310 fail:
1311 return err;
1312 }
1313
1314 static void __exit exit_f2fs_fs(void)
1315 {
1316 remove_proc_entry("fs/f2fs", NULL);
1317 f2fs_destroy_root_stats();
1318 unregister_filesystem(&f2fs_fs_type);
1319 destroy_checkpoint_caches();
1320 destroy_segment_manager_caches();
1321 destroy_node_manager_caches();
1322 destroy_inodecache();
1323 kset_unregister(f2fs_kset);
1324 f2fs_destroy_trace_ios();
1325 }
1326
1327 module_init(init_f2fs_fs)
1328 module_exit(exit_f2fs_fs)
1329
1330 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1331 MODULE_DESCRIPTION("Flash Friendly File System");
1332 MODULE_LICENSE("GPL");