]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/super.c
f2fs: avoid mark_inode_dirty
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 struct f2fs_fault_info f2fs_fault;
44
45 char *fault_name[FAULT_MAX] = {
46 [FAULT_KMALLOC] = "kmalloc",
47 [FAULT_PAGE_ALLOC] = "page alloc",
48 [FAULT_ALLOC_NID] = "alloc nid",
49 [FAULT_ORPHAN] = "orphan",
50 [FAULT_BLOCK] = "no more block",
51 [FAULT_DIR_DEPTH] = "too big dir depth",
52 [FAULT_EVICT_INODE] = "evict_inode fail",
53 };
54
55 static void f2fs_build_fault_attr(unsigned int rate)
56 {
57 if (rate) {
58 atomic_set(&f2fs_fault.inject_ops, 0);
59 f2fs_fault.inject_rate = rate;
60 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1;
61 } else {
62 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info));
63 }
64 }
65 #endif
66
67 /* f2fs-wide shrinker description */
68 static struct shrinker f2fs_shrinker_info = {
69 .scan_objects = f2fs_shrink_scan,
70 .count_objects = f2fs_shrink_count,
71 .seeks = DEFAULT_SEEKS,
72 };
73
74 enum {
75 Opt_gc_background,
76 Opt_disable_roll_forward,
77 Opt_norecovery,
78 Opt_discard,
79 Opt_nodiscard,
80 Opt_noheap,
81 Opt_user_xattr,
82 Opt_nouser_xattr,
83 Opt_acl,
84 Opt_noacl,
85 Opt_active_logs,
86 Opt_disable_ext_identify,
87 Opt_inline_xattr,
88 Opt_inline_data,
89 Opt_inline_dentry,
90 Opt_flush_merge,
91 Opt_noflush_merge,
92 Opt_nobarrier,
93 Opt_fastboot,
94 Opt_extent_cache,
95 Opt_noextent_cache,
96 Opt_noinline_data,
97 Opt_data_flush,
98 Opt_mode,
99 Opt_fault_injection,
100 Opt_lazytime,
101 Opt_nolazytime,
102 Opt_err,
103 };
104
105 static match_table_t f2fs_tokens = {
106 {Opt_gc_background, "background_gc=%s"},
107 {Opt_disable_roll_forward, "disable_roll_forward"},
108 {Opt_norecovery, "norecovery"},
109 {Opt_discard, "discard"},
110 {Opt_nodiscard, "nodiscard"},
111 {Opt_noheap, "no_heap"},
112 {Opt_user_xattr, "user_xattr"},
113 {Opt_nouser_xattr, "nouser_xattr"},
114 {Opt_acl, "acl"},
115 {Opt_noacl, "noacl"},
116 {Opt_active_logs, "active_logs=%u"},
117 {Opt_disable_ext_identify, "disable_ext_identify"},
118 {Opt_inline_xattr, "inline_xattr"},
119 {Opt_inline_data, "inline_data"},
120 {Opt_inline_dentry, "inline_dentry"},
121 {Opt_flush_merge, "flush_merge"},
122 {Opt_noflush_merge, "noflush_merge"},
123 {Opt_nobarrier, "nobarrier"},
124 {Opt_fastboot, "fastboot"},
125 {Opt_extent_cache, "extent_cache"},
126 {Opt_noextent_cache, "noextent_cache"},
127 {Opt_noinline_data, "noinline_data"},
128 {Opt_data_flush, "data_flush"},
129 {Opt_mode, "mode=%s"},
130 {Opt_fault_injection, "fault_injection=%u"},
131 {Opt_lazytime, "lazytime"},
132 {Opt_nolazytime, "nolazytime"},
133 {Opt_err, NULL},
134 };
135
136 /* Sysfs support for f2fs */
137 enum {
138 GC_THREAD, /* struct f2fs_gc_thread */
139 SM_INFO, /* struct f2fs_sm_info */
140 NM_INFO, /* struct f2fs_nm_info */
141 F2FS_SBI, /* struct f2fs_sb_info */
142 #ifdef CONFIG_F2FS_FAULT_INJECTION
143 FAULT_INFO_RATE, /* struct f2fs_fault_info */
144 FAULT_INFO_TYPE, /* struct f2fs_fault_info */
145 #endif
146 };
147
148 struct f2fs_attr {
149 struct attribute attr;
150 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
151 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
152 const char *, size_t);
153 int struct_type;
154 int offset;
155 };
156
157 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
158 {
159 if (struct_type == GC_THREAD)
160 return (unsigned char *)sbi->gc_thread;
161 else if (struct_type == SM_INFO)
162 return (unsigned char *)SM_I(sbi);
163 else if (struct_type == NM_INFO)
164 return (unsigned char *)NM_I(sbi);
165 else if (struct_type == F2FS_SBI)
166 return (unsigned char *)sbi;
167 #ifdef CONFIG_F2FS_FAULT_INJECTION
168 else if (struct_type == FAULT_INFO_RATE ||
169 struct_type == FAULT_INFO_TYPE)
170 return (unsigned char *)&f2fs_fault;
171 #endif
172 return NULL;
173 }
174
175 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
176 struct f2fs_sb_info *sbi, char *buf)
177 {
178 struct super_block *sb = sbi->sb;
179
180 if (!sb->s_bdev->bd_part)
181 return snprintf(buf, PAGE_SIZE, "0\n");
182
183 return snprintf(buf, PAGE_SIZE, "%llu\n",
184 (unsigned long long)(sbi->kbytes_written +
185 BD_PART_WRITTEN(sbi)));
186 }
187
188 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
189 struct f2fs_sb_info *sbi, char *buf)
190 {
191 unsigned char *ptr = NULL;
192 unsigned int *ui;
193
194 ptr = __struct_ptr(sbi, a->struct_type);
195 if (!ptr)
196 return -EINVAL;
197
198 ui = (unsigned int *)(ptr + a->offset);
199
200 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
201 }
202
203 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
204 struct f2fs_sb_info *sbi,
205 const char *buf, size_t count)
206 {
207 unsigned char *ptr;
208 unsigned long t;
209 unsigned int *ui;
210 ssize_t ret;
211
212 ptr = __struct_ptr(sbi, a->struct_type);
213 if (!ptr)
214 return -EINVAL;
215
216 ui = (unsigned int *)(ptr + a->offset);
217
218 ret = kstrtoul(skip_spaces(buf), 0, &t);
219 if (ret < 0)
220 return ret;
221 #ifdef CONFIG_F2FS_FAULT_INJECTION
222 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
223 return -EINVAL;
224 #endif
225 *ui = t;
226 return count;
227 }
228
229 static ssize_t f2fs_attr_show(struct kobject *kobj,
230 struct attribute *attr, char *buf)
231 {
232 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
233 s_kobj);
234 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
235
236 return a->show ? a->show(a, sbi, buf) : 0;
237 }
238
239 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
240 const char *buf, size_t len)
241 {
242 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
243 s_kobj);
244 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
245
246 return a->store ? a->store(a, sbi, buf, len) : 0;
247 }
248
249 static void f2fs_sb_release(struct kobject *kobj)
250 {
251 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
252 s_kobj);
253 complete(&sbi->s_kobj_unregister);
254 }
255
256 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
257 static struct f2fs_attr f2fs_attr_##_name = { \
258 .attr = {.name = __stringify(_name), .mode = _mode }, \
259 .show = _show, \
260 .store = _store, \
261 .struct_type = _struct_type, \
262 .offset = _offset \
263 }
264
265 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
266 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
267 f2fs_sbi_show, f2fs_sbi_store, \
268 offsetof(struct struct_name, elname))
269
270 #define F2FS_GENERAL_RO_ATTR(name) \
271 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
272
273 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
274 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
275 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
276 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
277 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
278 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
279 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
280 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
281 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
282 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
283 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
284 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
285 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
286 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
287 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
288 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
289 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
290 #ifdef CONFIG_F2FS_FAULT_INJECTION
291 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
292 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
293 #endif
294 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
295
296 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
297 static struct attribute *f2fs_attrs[] = {
298 ATTR_LIST(gc_min_sleep_time),
299 ATTR_LIST(gc_max_sleep_time),
300 ATTR_LIST(gc_no_gc_sleep_time),
301 ATTR_LIST(gc_idle),
302 ATTR_LIST(reclaim_segments),
303 ATTR_LIST(max_small_discards),
304 ATTR_LIST(batched_trim_sections),
305 ATTR_LIST(ipu_policy),
306 ATTR_LIST(min_ipu_util),
307 ATTR_LIST(min_fsync_blocks),
308 ATTR_LIST(max_victim_search),
309 ATTR_LIST(dir_level),
310 ATTR_LIST(ram_thresh),
311 ATTR_LIST(ra_nid_pages),
312 ATTR_LIST(dirty_nats_ratio),
313 ATTR_LIST(cp_interval),
314 ATTR_LIST(idle_interval),
315 ATTR_LIST(lifetime_write_kbytes),
316 NULL,
317 };
318
319 static const struct sysfs_ops f2fs_attr_ops = {
320 .show = f2fs_attr_show,
321 .store = f2fs_attr_store,
322 };
323
324 static struct kobj_type f2fs_ktype = {
325 .default_attrs = f2fs_attrs,
326 .sysfs_ops = &f2fs_attr_ops,
327 .release = f2fs_sb_release,
328 };
329
330 #ifdef CONFIG_F2FS_FAULT_INJECTION
331 /* sysfs for f2fs fault injection */
332 static struct kobject f2fs_fault_inject;
333
334 static struct attribute *f2fs_fault_attrs[] = {
335 ATTR_LIST(inject_rate),
336 ATTR_LIST(inject_type),
337 NULL
338 };
339
340 static struct kobj_type f2fs_fault_ktype = {
341 .default_attrs = f2fs_fault_attrs,
342 .sysfs_ops = &f2fs_attr_ops,
343 };
344 #endif
345
346 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
347 {
348 struct va_format vaf;
349 va_list args;
350
351 va_start(args, fmt);
352 vaf.fmt = fmt;
353 vaf.va = &args;
354 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
355 va_end(args);
356 }
357
358 static void init_once(void *foo)
359 {
360 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
361
362 inode_init_once(&fi->vfs_inode);
363 }
364
365 static int parse_options(struct super_block *sb, char *options)
366 {
367 struct f2fs_sb_info *sbi = F2FS_SB(sb);
368 struct request_queue *q;
369 substring_t args[MAX_OPT_ARGS];
370 char *p, *name;
371 int arg = 0;
372
373 #ifdef CONFIG_F2FS_FAULT_INJECTION
374 f2fs_build_fault_attr(0);
375 #endif
376
377 if (!options)
378 return 0;
379
380 while ((p = strsep(&options, ",")) != NULL) {
381 int token;
382 if (!*p)
383 continue;
384 /*
385 * Initialize args struct so we know whether arg was
386 * found; some options take optional arguments.
387 */
388 args[0].to = args[0].from = NULL;
389 token = match_token(p, f2fs_tokens, args);
390
391 switch (token) {
392 case Opt_gc_background:
393 name = match_strdup(&args[0]);
394
395 if (!name)
396 return -ENOMEM;
397 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
398 set_opt(sbi, BG_GC);
399 clear_opt(sbi, FORCE_FG_GC);
400 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
401 clear_opt(sbi, BG_GC);
402 clear_opt(sbi, FORCE_FG_GC);
403 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
404 set_opt(sbi, BG_GC);
405 set_opt(sbi, FORCE_FG_GC);
406 } else {
407 kfree(name);
408 return -EINVAL;
409 }
410 kfree(name);
411 break;
412 case Opt_disable_roll_forward:
413 set_opt(sbi, DISABLE_ROLL_FORWARD);
414 break;
415 case Opt_norecovery:
416 /* this option mounts f2fs with ro */
417 set_opt(sbi, DISABLE_ROLL_FORWARD);
418 if (!f2fs_readonly(sb))
419 return -EINVAL;
420 break;
421 case Opt_discard:
422 q = bdev_get_queue(sb->s_bdev);
423 if (blk_queue_discard(q)) {
424 set_opt(sbi, DISCARD);
425 } else {
426 f2fs_msg(sb, KERN_WARNING,
427 "mounting with \"discard\" option, but "
428 "the device does not support discard");
429 }
430 break;
431 case Opt_nodiscard:
432 clear_opt(sbi, DISCARD);
433 case Opt_noheap:
434 set_opt(sbi, NOHEAP);
435 break;
436 #ifdef CONFIG_F2FS_FS_XATTR
437 case Opt_user_xattr:
438 set_opt(sbi, XATTR_USER);
439 break;
440 case Opt_nouser_xattr:
441 clear_opt(sbi, XATTR_USER);
442 break;
443 case Opt_inline_xattr:
444 set_opt(sbi, INLINE_XATTR);
445 break;
446 #else
447 case Opt_user_xattr:
448 f2fs_msg(sb, KERN_INFO,
449 "user_xattr options not supported");
450 break;
451 case Opt_nouser_xattr:
452 f2fs_msg(sb, KERN_INFO,
453 "nouser_xattr options not supported");
454 break;
455 case Opt_inline_xattr:
456 f2fs_msg(sb, KERN_INFO,
457 "inline_xattr options not supported");
458 break;
459 #endif
460 #ifdef CONFIG_F2FS_FS_POSIX_ACL
461 case Opt_acl:
462 set_opt(sbi, POSIX_ACL);
463 break;
464 case Opt_noacl:
465 clear_opt(sbi, POSIX_ACL);
466 break;
467 #else
468 case Opt_acl:
469 f2fs_msg(sb, KERN_INFO, "acl options not supported");
470 break;
471 case Opt_noacl:
472 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
473 break;
474 #endif
475 case Opt_active_logs:
476 if (args->from && match_int(args, &arg))
477 return -EINVAL;
478 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
479 return -EINVAL;
480 sbi->active_logs = arg;
481 break;
482 case Opt_disable_ext_identify:
483 set_opt(sbi, DISABLE_EXT_IDENTIFY);
484 break;
485 case Opt_inline_data:
486 set_opt(sbi, INLINE_DATA);
487 break;
488 case Opt_inline_dentry:
489 set_opt(sbi, INLINE_DENTRY);
490 break;
491 case Opt_flush_merge:
492 set_opt(sbi, FLUSH_MERGE);
493 break;
494 case Opt_noflush_merge:
495 clear_opt(sbi, FLUSH_MERGE);
496 break;
497 case Opt_nobarrier:
498 set_opt(sbi, NOBARRIER);
499 break;
500 case Opt_fastboot:
501 set_opt(sbi, FASTBOOT);
502 break;
503 case Opt_extent_cache:
504 set_opt(sbi, EXTENT_CACHE);
505 break;
506 case Opt_noextent_cache:
507 clear_opt(sbi, EXTENT_CACHE);
508 break;
509 case Opt_noinline_data:
510 clear_opt(sbi, INLINE_DATA);
511 break;
512 case Opt_data_flush:
513 set_opt(sbi, DATA_FLUSH);
514 break;
515 case Opt_mode:
516 name = match_strdup(&args[0]);
517
518 if (!name)
519 return -ENOMEM;
520 if (strlen(name) == 8 &&
521 !strncmp(name, "adaptive", 8)) {
522 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
523 } else if (strlen(name) == 3 &&
524 !strncmp(name, "lfs", 3)) {
525 set_opt_mode(sbi, F2FS_MOUNT_LFS);
526 } else {
527 kfree(name);
528 return -EINVAL;
529 }
530 kfree(name);
531 break;
532 case Opt_fault_injection:
533 if (args->from && match_int(args, &arg))
534 return -EINVAL;
535 #ifdef CONFIG_F2FS_FAULT_INJECTION
536 f2fs_build_fault_attr(arg);
537 #else
538 f2fs_msg(sb, KERN_INFO,
539 "FAULT_INJECTION was not selected");
540 #endif
541 break;
542 case Opt_lazytime:
543 sb->s_flags |= MS_LAZYTIME;
544 break;
545 case Opt_nolazytime:
546 sb->s_flags &= ~MS_LAZYTIME;
547 break;
548 default:
549 f2fs_msg(sb, KERN_ERR,
550 "Unrecognized mount option \"%s\" or missing value",
551 p);
552 return -EINVAL;
553 }
554 }
555 return 0;
556 }
557
558 static struct inode *f2fs_alloc_inode(struct super_block *sb)
559 {
560 struct f2fs_inode_info *fi;
561
562 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
563 if (!fi)
564 return NULL;
565
566 init_once((void *) fi);
567
568 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) {
569 kmem_cache_free(f2fs_inode_cachep, fi);
570 return NULL;
571 }
572
573 /* Initialize f2fs-specific inode info */
574 fi->vfs_inode.i_version = 1;
575 fi->i_current_depth = 1;
576 fi->i_advise = 0;
577 init_rwsem(&fi->i_sem);
578 INIT_LIST_HEAD(&fi->dirty_list);
579 INIT_LIST_HEAD(&fi->gdirty_list);
580 INIT_LIST_HEAD(&fi->inmem_pages);
581 mutex_init(&fi->inmem_lock);
582
583 /* Will be used by directory only */
584 fi->i_dir_level = F2FS_SB(sb)->dir_level;
585 return &fi->vfs_inode;
586 }
587
588 static int f2fs_drop_inode(struct inode *inode)
589 {
590 /*
591 * This is to avoid a deadlock condition like below.
592 * writeback_single_inode(inode)
593 * - f2fs_write_data_page
594 * - f2fs_gc -> iput -> evict
595 * - inode_wait_for_writeback(inode)
596 */
597 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
598 if (!inode->i_nlink && !is_bad_inode(inode)) {
599 /* to avoid evict_inode call simultaneously */
600 atomic_inc(&inode->i_count);
601 spin_unlock(&inode->i_lock);
602
603 /* some remained atomic pages should discarded */
604 if (f2fs_is_atomic_file(inode))
605 drop_inmem_pages(inode);
606
607 /* should remain fi->extent_tree for writepage */
608 f2fs_destroy_extent_node(inode);
609
610 sb_start_intwrite(inode->i_sb);
611 f2fs_i_size_write(inode, 0);
612
613 if (F2FS_HAS_BLOCKS(inode))
614 f2fs_truncate(inode);
615
616 sb_end_intwrite(inode->i_sb);
617
618 fscrypt_put_encryption_info(inode, NULL);
619 spin_lock(&inode->i_lock);
620 atomic_dec(&inode->i_count);
621 }
622 return 0;
623 }
624
625 return generic_drop_inode(inode);
626 }
627
628 int f2fs_inode_dirtied(struct inode *inode)
629 {
630 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
631
632 spin_lock(&sbi->inode_lock[DIRTY_META]);
633 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
634 spin_unlock(&sbi->inode_lock[DIRTY_META]);
635 return 1;
636 }
637
638 set_inode_flag(inode, FI_DIRTY_INODE);
639 list_add_tail(&F2FS_I(inode)->gdirty_list,
640 &sbi->inode_list[DIRTY_META]);
641 inc_page_count(sbi, F2FS_DIRTY_IMETA);
642 stat_inc_dirty_inode(sbi, DIRTY_META);
643 spin_unlock(&sbi->inode_lock[DIRTY_META]);
644
645 return 0;
646 }
647
648 void f2fs_inode_synced(struct inode *inode)
649 {
650 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
651
652 spin_lock(&sbi->inode_lock[DIRTY_META]);
653 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
654 spin_unlock(&sbi->inode_lock[DIRTY_META]);
655 return;
656 }
657 list_del_init(&F2FS_I(inode)->gdirty_list);
658 clear_inode_flag(inode, FI_DIRTY_INODE);
659 clear_inode_flag(inode, FI_AUTO_RECOVER);
660 dec_page_count(sbi, F2FS_DIRTY_IMETA);
661 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
662 spin_unlock(&sbi->inode_lock[DIRTY_META]);
663 }
664
665 /*
666 * f2fs_dirty_inode() is called from __mark_inode_dirty()
667 *
668 * We should call set_dirty_inode to write the dirty inode through write_inode.
669 */
670 static void f2fs_dirty_inode(struct inode *inode, int flags)
671 {
672 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
673
674 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
675 inode->i_ino == F2FS_META_INO(sbi))
676 return;
677
678 if (flags == I_DIRTY_TIME)
679 return;
680
681 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
682 clear_inode_flag(inode, FI_AUTO_RECOVER);
683
684 f2fs_inode_dirtied(inode);
685 }
686
687 static void f2fs_i_callback(struct rcu_head *head)
688 {
689 struct inode *inode = container_of(head, struct inode, i_rcu);
690 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
691 }
692
693 static void f2fs_destroy_inode(struct inode *inode)
694 {
695 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages);
696 call_rcu(&inode->i_rcu, f2fs_i_callback);
697 }
698
699 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
700 {
701 int i;
702
703 for (i = 0; i < NR_COUNT_TYPE; i++)
704 percpu_counter_destroy(&sbi->nr_pages[i]);
705 percpu_counter_destroy(&sbi->alloc_valid_block_count);
706 percpu_counter_destroy(&sbi->total_valid_inode_count);
707
708 percpu_free_rwsem(&sbi->cp_rwsem);
709 }
710
711 static void f2fs_put_super(struct super_block *sb)
712 {
713 struct f2fs_sb_info *sbi = F2FS_SB(sb);
714
715 if (sbi->s_proc) {
716 remove_proc_entry("segment_info", sbi->s_proc);
717 remove_proc_entry("segment_bits", sbi->s_proc);
718 remove_proc_entry(sb->s_id, f2fs_proc_root);
719 }
720 kobject_del(&sbi->s_kobj);
721
722 stop_gc_thread(sbi);
723
724 /* prevent remaining shrinker jobs */
725 mutex_lock(&sbi->umount_mutex);
726
727 /*
728 * We don't need to do checkpoint when superblock is clean.
729 * But, the previous checkpoint was not done by umount, it needs to do
730 * clean checkpoint again.
731 */
732 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
733 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
734 struct cp_control cpc = {
735 .reason = CP_UMOUNT,
736 };
737 write_checkpoint(sbi, &cpc);
738 }
739
740 /* write_checkpoint can update stat informaion */
741 f2fs_destroy_stats(sbi);
742
743 /*
744 * normally superblock is clean, so we need to release this.
745 * In addition, EIO will skip do checkpoint, we need this as well.
746 */
747 release_ino_entry(sbi, true);
748 release_discard_addrs(sbi);
749
750 f2fs_leave_shrinker(sbi);
751 mutex_unlock(&sbi->umount_mutex);
752
753 /* our cp_error case, we can wait for any writeback page */
754 f2fs_flush_merged_bios(sbi);
755
756 iput(sbi->node_inode);
757 iput(sbi->meta_inode);
758
759 /* destroy f2fs internal modules */
760 destroy_node_manager(sbi);
761 destroy_segment_manager(sbi);
762
763 kfree(sbi->ckpt);
764 kobject_put(&sbi->s_kobj);
765 wait_for_completion(&sbi->s_kobj_unregister);
766
767 sb->s_fs_info = NULL;
768 if (sbi->s_chksum_driver)
769 crypto_free_shash(sbi->s_chksum_driver);
770 kfree(sbi->raw_super);
771
772 destroy_percpu_info(sbi);
773 kfree(sbi);
774 }
775
776 int f2fs_sync_fs(struct super_block *sb, int sync)
777 {
778 struct f2fs_sb_info *sbi = F2FS_SB(sb);
779 int err = 0;
780
781 trace_f2fs_sync_fs(sb, sync);
782
783 if (sync) {
784 struct cp_control cpc;
785
786 cpc.reason = __get_cp_reason(sbi);
787
788 mutex_lock(&sbi->gc_mutex);
789 err = write_checkpoint(sbi, &cpc);
790 mutex_unlock(&sbi->gc_mutex);
791 }
792 f2fs_trace_ios(NULL, 1);
793
794 return err;
795 }
796
797 static int f2fs_freeze(struct super_block *sb)
798 {
799 int err;
800
801 if (f2fs_readonly(sb))
802 return 0;
803
804 err = f2fs_sync_fs(sb, 1);
805 return err;
806 }
807
808 static int f2fs_unfreeze(struct super_block *sb)
809 {
810 return 0;
811 }
812
813 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
814 {
815 struct super_block *sb = dentry->d_sb;
816 struct f2fs_sb_info *sbi = F2FS_SB(sb);
817 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
818 block_t total_count, user_block_count, start_count, ovp_count;
819
820 total_count = le64_to_cpu(sbi->raw_super->block_count);
821 user_block_count = sbi->user_block_count;
822 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
823 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
824 buf->f_type = F2FS_SUPER_MAGIC;
825 buf->f_bsize = sbi->blocksize;
826
827 buf->f_blocks = total_count - start_count;
828 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
829 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
830
831 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
832 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
833
834 buf->f_namelen = F2FS_NAME_LEN;
835 buf->f_fsid.val[0] = (u32)id;
836 buf->f_fsid.val[1] = (u32)(id >> 32);
837
838 return 0;
839 }
840
841 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
842 {
843 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
844
845 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
846 if (test_opt(sbi, FORCE_FG_GC))
847 seq_printf(seq, ",background_gc=%s", "sync");
848 else
849 seq_printf(seq, ",background_gc=%s", "on");
850 } else {
851 seq_printf(seq, ",background_gc=%s", "off");
852 }
853 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
854 seq_puts(seq, ",disable_roll_forward");
855 if (test_opt(sbi, DISCARD))
856 seq_puts(seq, ",discard");
857 if (test_opt(sbi, NOHEAP))
858 seq_puts(seq, ",no_heap_alloc");
859 #ifdef CONFIG_F2FS_FS_XATTR
860 if (test_opt(sbi, XATTR_USER))
861 seq_puts(seq, ",user_xattr");
862 else
863 seq_puts(seq, ",nouser_xattr");
864 if (test_opt(sbi, INLINE_XATTR))
865 seq_puts(seq, ",inline_xattr");
866 #endif
867 #ifdef CONFIG_F2FS_FS_POSIX_ACL
868 if (test_opt(sbi, POSIX_ACL))
869 seq_puts(seq, ",acl");
870 else
871 seq_puts(seq, ",noacl");
872 #endif
873 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
874 seq_puts(seq, ",disable_ext_identify");
875 if (test_opt(sbi, INLINE_DATA))
876 seq_puts(seq, ",inline_data");
877 else
878 seq_puts(seq, ",noinline_data");
879 if (test_opt(sbi, INLINE_DENTRY))
880 seq_puts(seq, ",inline_dentry");
881 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
882 seq_puts(seq, ",flush_merge");
883 if (test_opt(sbi, NOBARRIER))
884 seq_puts(seq, ",nobarrier");
885 if (test_opt(sbi, FASTBOOT))
886 seq_puts(seq, ",fastboot");
887 if (test_opt(sbi, EXTENT_CACHE))
888 seq_puts(seq, ",extent_cache");
889 else
890 seq_puts(seq, ",noextent_cache");
891 if (test_opt(sbi, DATA_FLUSH))
892 seq_puts(seq, ",data_flush");
893
894 seq_puts(seq, ",mode=");
895 if (test_opt(sbi, ADAPTIVE))
896 seq_puts(seq, "adaptive");
897 else if (test_opt(sbi, LFS))
898 seq_puts(seq, "lfs");
899 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
900
901 return 0;
902 }
903
904 static int segment_info_seq_show(struct seq_file *seq, void *offset)
905 {
906 struct super_block *sb = seq->private;
907 struct f2fs_sb_info *sbi = F2FS_SB(sb);
908 unsigned int total_segs =
909 le32_to_cpu(sbi->raw_super->segment_count_main);
910 int i;
911
912 seq_puts(seq, "format: segment_type|valid_blocks\n"
913 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
914
915 for (i = 0; i < total_segs; i++) {
916 struct seg_entry *se = get_seg_entry(sbi, i);
917
918 if ((i % 10) == 0)
919 seq_printf(seq, "%-10d", i);
920 seq_printf(seq, "%d|%-3u", se->type,
921 get_valid_blocks(sbi, i, 1));
922 if ((i % 10) == 9 || i == (total_segs - 1))
923 seq_putc(seq, '\n');
924 else
925 seq_putc(seq, ' ');
926 }
927
928 return 0;
929 }
930
931 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
932 {
933 struct super_block *sb = seq->private;
934 struct f2fs_sb_info *sbi = F2FS_SB(sb);
935 unsigned int total_segs =
936 le32_to_cpu(sbi->raw_super->segment_count_main);
937 int i, j;
938
939 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
940 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
941
942 for (i = 0; i < total_segs; i++) {
943 struct seg_entry *se = get_seg_entry(sbi, i);
944
945 seq_printf(seq, "%-10d", i);
946 seq_printf(seq, "%d|%-3u|", se->type,
947 get_valid_blocks(sbi, i, 1));
948 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
949 seq_printf(seq, "%x ", se->cur_valid_map[j]);
950 seq_putc(seq, '\n');
951 }
952 return 0;
953 }
954
955 #define F2FS_PROC_FILE_DEF(_name) \
956 static int _name##_open_fs(struct inode *inode, struct file *file) \
957 { \
958 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \
959 } \
960 \
961 static const struct file_operations f2fs_seq_##_name##_fops = { \
962 .owner = THIS_MODULE, \
963 .open = _name##_open_fs, \
964 .read = seq_read, \
965 .llseek = seq_lseek, \
966 .release = single_release, \
967 };
968
969 F2FS_PROC_FILE_DEF(segment_info);
970 F2FS_PROC_FILE_DEF(segment_bits);
971
972 static void default_options(struct f2fs_sb_info *sbi)
973 {
974 /* init some FS parameters */
975 sbi->active_logs = NR_CURSEG_TYPE;
976
977 set_opt(sbi, BG_GC);
978 set_opt(sbi, INLINE_DATA);
979 set_opt(sbi, EXTENT_CACHE);
980 sbi->sb->s_flags |= MS_LAZYTIME;
981 set_opt(sbi, FLUSH_MERGE);
982 if (f2fs_sb_mounted_hmsmr(sbi->sb)) {
983 set_opt_mode(sbi, F2FS_MOUNT_LFS);
984 set_opt(sbi, DISCARD);
985 } else {
986 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
987 }
988
989 #ifdef CONFIG_F2FS_FS_XATTR
990 set_opt(sbi, XATTR_USER);
991 #endif
992 #ifdef CONFIG_F2FS_FS_POSIX_ACL
993 set_opt(sbi, POSIX_ACL);
994 #endif
995 }
996
997 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
998 {
999 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1000 struct f2fs_mount_info org_mount_opt;
1001 int err, active_logs;
1002 bool need_restart_gc = false;
1003 bool need_stop_gc = false;
1004 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1005
1006 /*
1007 * Save the old mount options in case we
1008 * need to restore them.
1009 */
1010 org_mount_opt = sbi->mount_opt;
1011 active_logs = sbi->active_logs;
1012
1013 /* recover superblocks we couldn't write due to previous RO mount */
1014 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1015 err = f2fs_commit_super(sbi, false);
1016 f2fs_msg(sb, KERN_INFO,
1017 "Try to recover all the superblocks, ret: %d", err);
1018 if (!err)
1019 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1020 }
1021
1022 sbi->mount_opt.opt = 0;
1023 default_options(sbi);
1024
1025 /* parse mount options */
1026 err = parse_options(sb, data);
1027 if (err)
1028 goto restore_opts;
1029
1030 /*
1031 * Previous and new state of filesystem is RO,
1032 * so skip checking GC and FLUSH_MERGE conditions.
1033 */
1034 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1035 goto skip;
1036
1037 /* disallow enable/disable extent_cache dynamically */
1038 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1039 err = -EINVAL;
1040 f2fs_msg(sbi->sb, KERN_WARNING,
1041 "switch extent_cache option is not allowed");
1042 goto restore_opts;
1043 }
1044
1045 /*
1046 * We stop the GC thread if FS is mounted as RO
1047 * or if background_gc = off is passed in mount
1048 * option. Also sync the filesystem.
1049 */
1050 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1051 if (sbi->gc_thread) {
1052 stop_gc_thread(sbi);
1053 need_restart_gc = true;
1054 }
1055 } else if (!sbi->gc_thread) {
1056 err = start_gc_thread(sbi);
1057 if (err)
1058 goto restore_opts;
1059 need_stop_gc = true;
1060 }
1061
1062 if (*flags & MS_RDONLY) {
1063 writeback_inodes_sb(sb, WB_REASON_SYNC);
1064 sync_inodes_sb(sb);
1065
1066 set_sbi_flag(sbi, SBI_IS_DIRTY);
1067 set_sbi_flag(sbi, SBI_IS_CLOSE);
1068 f2fs_sync_fs(sb, 1);
1069 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1070 }
1071
1072 /*
1073 * We stop issue flush thread if FS is mounted as RO
1074 * or if flush_merge is not passed in mount option.
1075 */
1076 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1077 destroy_flush_cmd_control(sbi);
1078 } else if (!SM_I(sbi)->cmd_control_info) {
1079 err = create_flush_cmd_control(sbi);
1080 if (err)
1081 goto restore_gc;
1082 }
1083 skip:
1084 /* Update the POSIXACL Flag */
1085 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1086 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1087
1088 return 0;
1089 restore_gc:
1090 if (need_restart_gc) {
1091 if (start_gc_thread(sbi))
1092 f2fs_msg(sbi->sb, KERN_WARNING,
1093 "background gc thread has stopped");
1094 } else if (need_stop_gc) {
1095 stop_gc_thread(sbi);
1096 }
1097 restore_opts:
1098 sbi->mount_opt = org_mount_opt;
1099 sbi->active_logs = active_logs;
1100 return err;
1101 }
1102
1103 static struct super_operations f2fs_sops = {
1104 .alloc_inode = f2fs_alloc_inode,
1105 .drop_inode = f2fs_drop_inode,
1106 .destroy_inode = f2fs_destroy_inode,
1107 .write_inode = f2fs_write_inode,
1108 .dirty_inode = f2fs_dirty_inode,
1109 .show_options = f2fs_show_options,
1110 .evict_inode = f2fs_evict_inode,
1111 .put_super = f2fs_put_super,
1112 .sync_fs = f2fs_sync_fs,
1113 .freeze_fs = f2fs_freeze,
1114 .unfreeze_fs = f2fs_unfreeze,
1115 .statfs = f2fs_statfs,
1116 .remount_fs = f2fs_remount,
1117 };
1118
1119 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1120 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1121 {
1122 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1123 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1124 ctx, len, NULL);
1125 }
1126
1127 static int f2fs_key_prefix(struct inode *inode, u8 **key)
1128 {
1129 *key = F2FS_I_SB(inode)->key_prefix;
1130 return F2FS_I_SB(inode)->key_prefix_size;
1131 }
1132
1133 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1134 void *fs_data)
1135 {
1136 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1137 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1138 ctx, len, fs_data, XATTR_CREATE);
1139 }
1140
1141 static unsigned f2fs_max_namelen(struct inode *inode)
1142 {
1143 return S_ISLNK(inode->i_mode) ?
1144 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1145 }
1146
1147 static struct fscrypt_operations f2fs_cryptops = {
1148 .get_context = f2fs_get_context,
1149 .key_prefix = f2fs_key_prefix,
1150 .set_context = f2fs_set_context,
1151 .is_encrypted = f2fs_encrypted_inode,
1152 .empty_dir = f2fs_empty_dir,
1153 .max_namelen = f2fs_max_namelen,
1154 };
1155 #else
1156 static struct fscrypt_operations f2fs_cryptops = {
1157 .is_encrypted = f2fs_encrypted_inode,
1158 };
1159 #endif
1160
1161 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1162 u64 ino, u32 generation)
1163 {
1164 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1165 struct inode *inode;
1166
1167 if (check_nid_range(sbi, ino))
1168 return ERR_PTR(-ESTALE);
1169
1170 /*
1171 * f2fs_iget isn't quite right if the inode is currently unallocated!
1172 * However f2fs_iget currently does appropriate checks to handle stale
1173 * inodes so everything is OK.
1174 */
1175 inode = f2fs_iget(sb, ino);
1176 if (IS_ERR(inode))
1177 return ERR_CAST(inode);
1178 if (unlikely(generation && inode->i_generation != generation)) {
1179 /* we didn't find the right inode.. */
1180 iput(inode);
1181 return ERR_PTR(-ESTALE);
1182 }
1183 return inode;
1184 }
1185
1186 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1187 int fh_len, int fh_type)
1188 {
1189 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1190 f2fs_nfs_get_inode);
1191 }
1192
1193 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1194 int fh_len, int fh_type)
1195 {
1196 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1197 f2fs_nfs_get_inode);
1198 }
1199
1200 static const struct export_operations f2fs_export_ops = {
1201 .fh_to_dentry = f2fs_fh_to_dentry,
1202 .fh_to_parent = f2fs_fh_to_parent,
1203 .get_parent = f2fs_get_parent,
1204 };
1205
1206 static loff_t max_file_blocks(void)
1207 {
1208 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1209 loff_t leaf_count = ADDRS_PER_BLOCK;
1210
1211 /* two direct node blocks */
1212 result += (leaf_count * 2);
1213
1214 /* two indirect node blocks */
1215 leaf_count *= NIDS_PER_BLOCK;
1216 result += (leaf_count * 2);
1217
1218 /* one double indirect node block */
1219 leaf_count *= NIDS_PER_BLOCK;
1220 result += leaf_count;
1221
1222 return result;
1223 }
1224
1225 static int __f2fs_commit_super(struct buffer_head *bh,
1226 struct f2fs_super_block *super)
1227 {
1228 lock_buffer(bh);
1229 if (super)
1230 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1231 set_buffer_uptodate(bh);
1232 set_buffer_dirty(bh);
1233 unlock_buffer(bh);
1234
1235 /* it's rare case, we can do fua all the time */
1236 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1237 }
1238
1239 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1240 struct buffer_head *bh)
1241 {
1242 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1243 (bh->b_data + F2FS_SUPER_OFFSET);
1244 struct super_block *sb = sbi->sb;
1245 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1246 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1247 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1248 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1249 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1250 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1251 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1252 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1253 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1254 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1255 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1256 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1257 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1258 u64 main_end_blkaddr = main_blkaddr +
1259 (segment_count_main << log_blocks_per_seg);
1260 u64 seg_end_blkaddr = segment0_blkaddr +
1261 (segment_count << log_blocks_per_seg);
1262
1263 if (segment0_blkaddr != cp_blkaddr) {
1264 f2fs_msg(sb, KERN_INFO,
1265 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1266 segment0_blkaddr, cp_blkaddr);
1267 return true;
1268 }
1269
1270 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1271 sit_blkaddr) {
1272 f2fs_msg(sb, KERN_INFO,
1273 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1274 cp_blkaddr, sit_blkaddr,
1275 segment_count_ckpt << log_blocks_per_seg);
1276 return true;
1277 }
1278
1279 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1280 nat_blkaddr) {
1281 f2fs_msg(sb, KERN_INFO,
1282 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1283 sit_blkaddr, nat_blkaddr,
1284 segment_count_sit << log_blocks_per_seg);
1285 return true;
1286 }
1287
1288 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1289 ssa_blkaddr) {
1290 f2fs_msg(sb, KERN_INFO,
1291 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1292 nat_blkaddr, ssa_blkaddr,
1293 segment_count_nat << log_blocks_per_seg);
1294 return true;
1295 }
1296
1297 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1298 main_blkaddr) {
1299 f2fs_msg(sb, KERN_INFO,
1300 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1301 ssa_blkaddr, main_blkaddr,
1302 segment_count_ssa << log_blocks_per_seg);
1303 return true;
1304 }
1305
1306 if (main_end_blkaddr > seg_end_blkaddr) {
1307 f2fs_msg(sb, KERN_INFO,
1308 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1309 main_blkaddr,
1310 segment0_blkaddr +
1311 (segment_count << log_blocks_per_seg),
1312 segment_count_main << log_blocks_per_seg);
1313 return true;
1314 } else if (main_end_blkaddr < seg_end_blkaddr) {
1315 int err = 0;
1316 char *res;
1317
1318 /* fix in-memory information all the time */
1319 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1320 segment0_blkaddr) >> log_blocks_per_seg);
1321
1322 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1323 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1324 res = "internally";
1325 } else {
1326 err = __f2fs_commit_super(bh, NULL);
1327 res = err ? "failed" : "done";
1328 }
1329 f2fs_msg(sb, KERN_INFO,
1330 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1331 res, main_blkaddr,
1332 segment0_blkaddr +
1333 (segment_count << log_blocks_per_seg),
1334 segment_count_main << log_blocks_per_seg);
1335 if (err)
1336 return true;
1337 }
1338 return false;
1339 }
1340
1341 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1342 struct buffer_head *bh)
1343 {
1344 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1345 (bh->b_data + F2FS_SUPER_OFFSET);
1346 struct super_block *sb = sbi->sb;
1347 unsigned int blocksize;
1348
1349 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1350 f2fs_msg(sb, KERN_INFO,
1351 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1352 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1353 return 1;
1354 }
1355
1356 /* Currently, support only 4KB page cache size */
1357 if (F2FS_BLKSIZE != PAGE_SIZE) {
1358 f2fs_msg(sb, KERN_INFO,
1359 "Invalid page_cache_size (%lu), supports only 4KB\n",
1360 PAGE_SIZE);
1361 return 1;
1362 }
1363
1364 /* Currently, support only 4KB block size */
1365 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1366 if (blocksize != F2FS_BLKSIZE) {
1367 f2fs_msg(sb, KERN_INFO,
1368 "Invalid blocksize (%u), supports only 4KB\n",
1369 blocksize);
1370 return 1;
1371 }
1372
1373 /* check log blocks per segment */
1374 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1375 f2fs_msg(sb, KERN_INFO,
1376 "Invalid log blocks per segment (%u)\n",
1377 le32_to_cpu(raw_super->log_blocks_per_seg));
1378 return 1;
1379 }
1380
1381 /* Currently, support 512/1024/2048/4096 bytes sector size */
1382 if (le32_to_cpu(raw_super->log_sectorsize) >
1383 F2FS_MAX_LOG_SECTOR_SIZE ||
1384 le32_to_cpu(raw_super->log_sectorsize) <
1385 F2FS_MIN_LOG_SECTOR_SIZE) {
1386 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1387 le32_to_cpu(raw_super->log_sectorsize));
1388 return 1;
1389 }
1390 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1391 le32_to_cpu(raw_super->log_sectorsize) !=
1392 F2FS_MAX_LOG_SECTOR_SIZE) {
1393 f2fs_msg(sb, KERN_INFO,
1394 "Invalid log sectors per block(%u) log sectorsize(%u)",
1395 le32_to_cpu(raw_super->log_sectors_per_block),
1396 le32_to_cpu(raw_super->log_sectorsize));
1397 return 1;
1398 }
1399
1400 /* check reserved ino info */
1401 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1402 le32_to_cpu(raw_super->meta_ino) != 2 ||
1403 le32_to_cpu(raw_super->root_ino) != 3) {
1404 f2fs_msg(sb, KERN_INFO,
1405 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1406 le32_to_cpu(raw_super->node_ino),
1407 le32_to_cpu(raw_super->meta_ino),
1408 le32_to_cpu(raw_super->root_ino));
1409 return 1;
1410 }
1411
1412 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1413 if (sanity_check_area_boundary(sbi, bh))
1414 return 1;
1415
1416 return 0;
1417 }
1418
1419 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1420 {
1421 unsigned int total, fsmeta;
1422 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1423 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1424
1425 total = le32_to_cpu(raw_super->segment_count);
1426 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1427 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1428 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1429 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1430 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1431
1432 if (unlikely(fsmeta >= total))
1433 return 1;
1434
1435 if (unlikely(f2fs_cp_error(sbi))) {
1436 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1437 return 1;
1438 }
1439 return 0;
1440 }
1441
1442 static void init_sb_info(struct f2fs_sb_info *sbi)
1443 {
1444 struct f2fs_super_block *raw_super = sbi->raw_super;
1445
1446 sbi->log_sectors_per_block =
1447 le32_to_cpu(raw_super->log_sectors_per_block);
1448 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1449 sbi->blocksize = 1 << sbi->log_blocksize;
1450 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1451 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1452 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1453 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1454 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1455 sbi->total_node_count =
1456 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1457 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1458 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1459 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1460 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1461 sbi->cur_victim_sec = NULL_SECNO;
1462 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1463
1464 sbi->dir_level = DEF_DIR_LEVEL;
1465 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1466 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1467 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1468
1469 INIT_LIST_HEAD(&sbi->s_list);
1470 mutex_init(&sbi->umount_mutex);
1471 mutex_init(&sbi->wio_mutex[NODE]);
1472 mutex_init(&sbi->wio_mutex[DATA]);
1473
1474 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1475 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1476 F2FS_KEY_DESC_PREFIX_SIZE);
1477 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1478 #endif
1479 }
1480
1481 static int init_percpu_info(struct f2fs_sb_info *sbi)
1482 {
1483 int i, err;
1484
1485 if (percpu_init_rwsem(&sbi->cp_rwsem))
1486 return -ENOMEM;
1487
1488 for (i = 0; i < NR_COUNT_TYPE; i++) {
1489 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL);
1490 if (err)
1491 return err;
1492 }
1493
1494 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1495 if (err)
1496 return err;
1497
1498 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1499 GFP_KERNEL);
1500 }
1501
1502 /*
1503 * Read f2fs raw super block.
1504 * Because we have two copies of super block, so read both of them
1505 * to get the first valid one. If any one of them is broken, we pass
1506 * them recovery flag back to the caller.
1507 */
1508 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1509 struct f2fs_super_block **raw_super,
1510 int *valid_super_block, int *recovery)
1511 {
1512 struct super_block *sb = sbi->sb;
1513 int block;
1514 struct buffer_head *bh;
1515 struct f2fs_super_block *super;
1516 int err = 0;
1517
1518 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1519 if (!super)
1520 return -ENOMEM;
1521
1522 for (block = 0; block < 2; block++) {
1523 bh = sb_bread(sb, block);
1524 if (!bh) {
1525 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1526 block + 1);
1527 err = -EIO;
1528 continue;
1529 }
1530
1531 /* sanity checking of raw super */
1532 if (sanity_check_raw_super(sbi, bh)) {
1533 f2fs_msg(sb, KERN_ERR,
1534 "Can't find valid F2FS filesystem in %dth superblock",
1535 block + 1);
1536 err = -EINVAL;
1537 brelse(bh);
1538 continue;
1539 }
1540
1541 if (!*raw_super) {
1542 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1543 sizeof(*super));
1544 *valid_super_block = block;
1545 *raw_super = super;
1546 }
1547 brelse(bh);
1548 }
1549
1550 /* Fail to read any one of the superblocks*/
1551 if (err < 0)
1552 *recovery = 1;
1553
1554 /* No valid superblock */
1555 if (!*raw_super)
1556 kfree(super);
1557 else
1558 err = 0;
1559
1560 return err;
1561 }
1562
1563 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1564 {
1565 struct buffer_head *bh;
1566 int err;
1567
1568 if ((recover && f2fs_readonly(sbi->sb)) ||
1569 bdev_read_only(sbi->sb->s_bdev)) {
1570 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1571 return -EROFS;
1572 }
1573
1574 /* write back-up superblock first */
1575 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1576 if (!bh)
1577 return -EIO;
1578 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1579 brelse(bh);
1580
1581 /* if we are in recovery path, skip writing valid superblock */
1582 if (recover || err)
1583 return err;
1584
1585 /* write current valid superblock */
1586 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1587 if (!bh)
1588 return -EIO;
1589 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1590 brelse(bh);
1591 return err;
1592 }
1593
1594 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1595 {
1596 struct f2fs_sb_info *sbi;
1597 struct f2fs_super_block *raw_super;
1598 struct inode *root;
1599 int err;
1600 bool retry = true, need_fsck = false;
1601 char *options = NULL;
1602 int recovery, i, valid_super_block;
1603 struct curseg_info *seg_i;
1604
1605 try_onemore:
1606 err = -EINVAL;
1607 raw_super = NULL;
1608 valid_super_block = -1;
1609 recovery = 0;
1610
1611 /* allocate memory for f2fs-specific super block info */
1612 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1613 if (!sbi)
1614 return -ENOMEM;
1615
1616 sbi->sb = sb;
1617
1618 /* Load the checksum driver */
1619 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1620 if (IS_ERR(sbi->s_chksum_driver)) {
1621 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1622 err = PTR_ERR(sbi->s_chksum_driver);
1623 sbi->s_chksum_driver = NULL;
1624 goto free_sbi;
1625 }
1626
1627 /* set a block size */
1628 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1629 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1630 goto free_sbi;
1631 }
1632
1633 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1634 &recovery);
1635 if (err)
1636 goto free_sbi;
1637
1638 sb->s_fs_info = sbi;
1639 sbi->raw_super = raw_super;
1640
1641 default_options(sbi);
1642 /* parse mount options */
1643 options = kstrdup((const char *)data, GFP_KERNEL);
1644 if (data && !options) {
1645 err = -ENOMEM;
1646 goto free_sb_buf;
1647 }
1648
1649 err = parse_options(sb, options);
1650 if (err)
1651 goto free_options;
1652
1653 sbi->max_file_blocks = max_file_blocks();
1654 sb->s_maxbytes = sbi->max_file_blocks <<
1655 le32_to_cpu(raw_super->log_blocksize);
1656 sb->s_max_links = F2FS_LINK_MAX;
1657 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1658
1659 sb->s_op = &f2fs_sops;
1660 sb->s_cop = &f2fs_cryptops;
1661 sb->s_xattr = f2fs_xattr_handlers;
1662 sb->s_export_op = &f2fs_export_ops;
1663 sb->s_magic = F2FS_SUPER_MAGIC;
1664 sb->s_time_gran = 1;
1665 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1666 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1667 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1668
1669 /* init f2fs-specific super block info */
1670 sbi->valid_super_block = valid_super_block;
1671 mutex_init(&sbi->gc_mutex);
1672 mutex_init(&sbi->cp_mutex);
1673 init_rwsem(&sbi->node_write);
1674
1675 /* disallow all the data/node/meta page writes */
1676 set_sbi_flag(sbi, SBI_POR_DOING);
1677 spin_lock_init(&sbi->stat_lock);
1678
1679 init_rwsem(&sbi->read_io.io_rwsem);
1680 sbi->read_io.sbi = sbi;
1681 sbi->read_io.bio = NULL;
1682 for (i = 0; i < NR_PAGE_TYPE; i++) {
1683 init_rwsem(&sbi->write_io[i].io_rwsem);
1684 sbi->write_io[i].sbi = sbi;
1685 sbi->write_io[i].bio = NULL;
1686 }
1687
1688 init_waitqueue_head(&sbi->cp_wait);
1689 init_sb_info(sbi);
1690
1691 err = init_percpu_info(sbi);
1692 if (err)
1693 goto free_options;
1694
1695 /* get an inode for meta space */
1696 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1697 if (IS_ERR(sbi->meta_inode)) {
1698 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1699 err = PTR_ERR(sbi->meta_inode);
1700 goto free_options;
1701 }
1702
1703 err = get_valid_checkpoint(sbi);
1704 if (err) {
1705 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1706 goto free_meta_inode;
1707 }
1708
1709 sbi->total_valid_node_count =
1710 le32_to_cpu(sbi->ckpt->valid_node_count);
1711 percpu_counter_set(&sbi->total_valid_inode_count,
1712 le32_to_cpu(sbi->ckpt->valid_inode_count));
1713 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1714 sbi->total_valid_block_count =
1715 le64_to_cpu(sbi->ckpt->valid_block_count);
1716 sbi->last_valid_block_count = sbi->total_valid_block_count;
1717
1718 for (i = 0; i < NR_INODE_TYPE; i++) {
1719 INIT_LIST_HEAD(&sbi->inode_list[i]);
1720 spin_lock_init(&sbi->inode_lock[i]);
1721 }
1722
1723 init_extent_cache_info(sbi);
1724
1725 init_ino_entry_info(sbi);
1726
1727 /* setup f2fs internal modules */
1728 err = build_segment_manager(sbi);
1729 if (err) {
1730 f2fs_msg(sb, KERN_ERR,
1731 "Failed to initialize F2FS segment manager");
1732 goto free_sm;
1733 }
1734 err = build_node_manager(sbi);
1735 if (err) {
1736 f2fs_msg(sb, KERN_ERR,
1737 "Failed to initialize F2FS node manager");
1738 goto free_nm;
1739 }
1740
1741 /* For write statistics */
1742 if (sb->s_bdev->bd_part)
1743 sbi->sectors_written_start =
1744 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1745
1746 /* Read accumulated write IO statistics if exists */
1747 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1748 if (__exist_node_summaries(sbi))
1749 sbi->kbytes_written =
1750 le64_to_cpu(seg_i->journal->info.kbytes_written);
1751
1752 build_gc_manager(sbi);
1753
1754 /* get an inode for node space */
1755 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1756 if (IS_ERR(sbi->node_inode)) {
1757 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1758 err = PTR_ERR(sbi->node_inode);
1759 goto free_nm;
1760 }
1761
1762 f2fs_join_shrinker(sbi);
1763
1764 /* if there are nt orphan nodes free them */
1765 err = recover_orphan_inodes(sbi);
1766 if (err)
1767 goto free_node_inode;
1768
1769 /* read root inode and dentry */
1770 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1771 if (IS_ERR(root)) {
1772 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1773 err = PTR_ERR(root);
1774 goto free_node_inode;
1775 }
1776 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1777 iput(root);
1778 err = -EINVAL;
1779 goto free_node_inode;
1780 }
1781
1782 sb->s_root = d_make_root(root); /* allocate root dentry */
1783 if (!sb->s_root) {
1784 err = -ENOMEM;
1785 goto free_root_inode;
1786 }
1787
1788 err = f2fs_build_stats(sbi);
1789 if (err)
1790 goto free_root_inode;
1791
1792 if (f2fs_proc_root)
1793 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1794
1795 if (sbi->s_proc) {
1796 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1797 &f2fs_seq_segment_info_fops, sb);
1798 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
1799 &f2fs_seq_segment_bits_fops, sb);
1800 }
1801
1802 sbi->s_kobj.kset = f2fs_kset;
1803 init_completion(&sbi->s_kobj_unregister);
1804 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1805 "%s", sb->s_id);
1806 if (err)
1807 goto free_proc;
1808
1809 /* recover fsynced data */
1810 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1811 /*
1812 * mount should be failed, when device has readonly mode, and
1813 * previous checkpoint was not done by clean system shutdown.
1814 */
1815 if (bdev_read_only(sb->s_bdev) &&
1816 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1817 err = -EROFS;
1818 goto free_kobj;
1819 }
1820
1821 if (need_fsck)
1822 set_sbi_flag(sbi, SBI_NEED_FSCK);
1823
1824 err = recover_fsync_data(sbi, false);
1825 if (err < 0) {
1826 need_fsck = true;
1827 f2fs_msg(sb, KERN_ERR,
1828 "Cannot recover all fsync data errno=%d", err);
1829 goto free_kobj;
1830 }
1831 } else {
1832 err = recover_fsync_data(sbi, true);
1833
1834 if (!f2fs_readonly(sb) && err > 0) {
1835 err = -EINVAL;
1836 f2fs_msg(sb, KERN_ERR,
1837 "Need to recover fsync data");
1838 goto free_kobj;
1839 }
1840 }
1841
1842 /* recover_fsync_data() cleared this already */
1843 clear_sbi_flag(sbi, SBI_POR_DOING);
1844
1845 /*
1846 * If filesystem is not mounted as read-only then
1847 * do start the gc_thread.
1848 */
1849 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1850 /* After POR, we can run background GC thread.*/
1851 err = start_gc_thread(sbi);
1852 if (err)
1853 goto free_kobj;
1854 }
1855 kfree(options);
1856
1857 /* recover broken superblock */
1858 if (recovery) {
1859 err = f2fs_commit_super(sbi, true);
1860 f2fs_msg(sb, KERN_INFO,
1861 "Try to recover %dth superblock, ret: %d",
1862 sbi->valid_super_block ? 1 : 2, err);
1863 }
1864
1865 f2fs_update_time(sbi, CP_TIME);
1866 f2fs_update_time(sbi, REQ_TIME);
1867 return 0;
1868
1869 free_kobj:
1870 f2fs_sync_inode_meta(sbi);
1871 kobject_del(&sbi->s_kobj);
1872 kobject_put(&sbi->s_kobj);
1873 wait_for_completion(&sbi->s_kobj_unregister);
1874 free_proc:
1875 if (sbi->s_proc) {
1876 remove_proc_entry("segment_info", sbi->s_proc);
1877 remove_proc_entry("segment_bits", sbi->s_proc);
1878 remove_proc_entry(sb->s_id, f2fs_proc_root);
1879 }
1880 f2fs_destroy_stats(sbi);
1881 free_root_inode:
1882 dput(sb->s_root);
1883 sb->s_root = NULL;
1884 free_node_inode:
1885 mutex_lock(&sbi->umount_mutex);
1886 f2fs_leave_shrinker(sbi);
1887 iput(sbi->node_inode);
1888 mutex_unlock(&sbi->umount_mutex);
1889 free_nm:
1890 destroy_node_manager(sbi);
1891 free_sm:
1892 destroy_segment_manager(sbi);
1893 kfree(sbi->ckpt);
1894 free_meta_inode:
1895 make_bad_inode(sbi->meta_inode);
1896 iput(sbi->meta_inode);
1897 free_options:
1898 destroy_percpu_info(sbi);
1899 kfree(options);
1900 free_sb_buf:
1901 kfree(raw_super);
1902 free_sbi:
1903 if (sbi->s_chksum_driver)
1904 crypto_free_shash(sbi->s_chksum_driver);
1905 kfree(sbi);
1906
1907 /* give only one another chance */
1908 if (retry) {
1909 retry = false;
1910 shrink_dcache_sb(sb);
1911 goto try_onemore;
1912 }
1913 return err;
1914 }
1915
1916 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1917 const char *dev_name, void *data)
1918 {
1919 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1920 }
1921
1922 static void kill_f2fs_super(struct super_block *sb)
1923 {
1924 if (sb->s_root)
1925 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1926 kill_block_super(sb);
1927 }
1928
1929 static struct file_system_type f2fs_fs_type = {
1930 .owner = THIS_MODULE,
1931 .name = "f2fs",
1932 .mount = f2fs_mount,
1933 .kill_sb = kill_f2fs_super,
1934 .fs_flags = FS_REQUIRES_DEV,
1935 };
1936 MODULE_ALIAS_FS("f2fs");
1937
1938 static int __init init_inodecache(void)
1939 {
1940 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1941 sizeof(struct f2fs_inode_info), 0,
1942 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1943 if (!f2fs_inode_cachep)
1944 return -ENOMEM;
1945 return 0;
1946 }
1947
1948 static void destroy_inodecache(void)
1949 {
1950 /*
1951 * Make sure all delayed rcu free inodes are flushed before we
1952 * destroy cache.
1953 */
1954 rcu_barrier();
1955 kmem_cache_destroy(f2fs_inode_cachep);
1956 }
1957
1958 static int __init init_f2fs_fs(void)
1959 {
1960 int err;
1961
1962 f2fs_build_trace_ios();
1963
1964 err = init_inodecache();
1965 if (err)
1966 goto fail;
1967 err = create_node_manager_caches();
1968 if (err)
1969 goto free_inodecache;
1970 err = create_segment_manager_caches();
1971 if (err)
1972 goto free_node_manager_caches;
1973 err = create_checkpoint_caches();
1974 if (err)
1975 goto free_segment_manager_caches;
1976 err = create_extent_cache();
1977 if (err)
1978 goto free_checkpoint_caches;
1979 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1980 if (!f2fs_kset) {
1981 err = -ENOMEM;
1982 goto free_extent_cache;
1983 }
1984 #ifdef CONFIG_F2FS_FAULT_INJECTION
1985 f2fs_fault_inject.kset = f2fs_kset;
1986 f2fs_build_fault_attr(0);
1987 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype,
1988 NULL, "fault_injection");
1989 if (err) {
1990 f2fs_fault_inject.kset = NULL;
1991 goto free_kset;
1992 }
1993 #endif
1994 err = register_shrinker(&f2fs_shrinker_info);
1995 if (err)
1996 goto free_kset;
1997
1998 err = register_filesystem(&f2fs_fs_type);
1999 if (err)
2000 goto free_shrinker;
2001 err = f2fs_create_root_stats();
2002 if (err)
2003 goto free_filesystem;
2004 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2005 return 0;
2006
2007 free_filesystem:
2008 unregister_filesystem(&f2fs_fs_type);
2009 free_shrinker:
2010 unregister_shrinker(&f2fs_shrinker_info);
2011 free_kset:
2012 #ifdef CONFIG_F2FS_FAULT_INJECTION
2013 if (f2fs_fault_inject.kset)
2014 kobject_put(&f2fs_fault_inject);
2015 #endif
2016 kset_unregister(f2fs_kset);
2017 free_extent_cache:
2018 destroy_extent_cache();
2019 free_checkpoint_caches:
2020 destroy_checkpoint_caches();
2021 free_segment_manager_caches:
2022 destroy_segment_manager_caches();
2023 free_node_manager_caches:
2024 destroy_node_manager_caches();
2025 free_inodecache:
2026 destroy_inodecache();
2027 fail:
2028 return err;
2029 }
2030
2031 static void __exit exit_f2fs_fs(void)
2032 {
2033 remove_proc_entry("fs/f2fs", NULL);
2034 f2fs_destroy_root_stats();
2035 unregister_filesystem(&f2fs_fs_type);
2036 unregister_shrinker(&f2fs_shrinker_info);
2037 #ifdef CONFIG_F2FS_FAULT_INJECTION
2038 kobject_put(&f2fs_fault_inject);
2039 #endif
2040 kset_unregister(f2fs_kset);
2041 destroy_extent_cache();
2042 destroy_checkpoint_caches();
2043 destroy_segment_manager_caches();
2044 destroy_node_manager_caches();
2045 destroy_inodecache();
2046 f2fs_destroy_trace_ios();
2047 }
2048
2049 module_init(init_f2fs_fs)
2050 module_exit(exit_f2fs_fs)
2051
2052 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2053 MODULE_DESCRIPTION("Flash Friendly File System");
2054 MODULE_LICENSE("GPL");