]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/f2fs/super.c
block: remove the nr_sects field in struct hd_struct
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / super.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * fs/f2fs/super.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38
39 static struct kmem_cache *f2fs_inode_cachep;
40
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 [FAULT_KMALLOC] = "kmalloc",
45 [FAULT_KVMALLOC] = "kvmalloc",
46 [FAULT_PAGE_ALLOC] = "page alloc",
47 [FAULT_PAGE_GET] = "page get",
48 [FAULT_ALLOC_BIO] = "alloc bio",
49 [FAULT_ALLOC_NID] = "alloc nid",
50 [FAULT_ORPHAN] = "orphan",
51 [FAULT_BLOCK] = "no more block",
52 [FAULT_DIR_DEPTH] = "too big dir depth",
53 [FAULT_EVICT_INODE] = "evict_inode fail",
54 [FAULT_TRUNCATE] = "truncate fail",
55 [FAULT_READ_IO] = "read IO error",
56 [FAULT_CHECKPOINT] = "checkpoint error",
57 [FAULT_DISCARD] = "discard error",
58 [FAULT_WRITE_IO] = "write IO error",
59 };
60
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 unsigned int type)
63 {
64 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65
66 if (rate) {
67 atomic_set(&ffi->inject_ops, 0);
68 ffi->inject_rate = rate;
69 }
70
71 if (type)
72 ffi->inject_type = type;
73
74 if (!rate && !type)
75 memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 .scan_objects = f2fs_shrink_scan,
82 .count_objects = f2fs_shrink_count,
83 .seeks = DEFAULT_SEEKS,
84 };
85
86 enum {
87 Opt_gc_background,
88 Opt_disable_roll_forward,
89 Opt_norecovery,
90 Opt_discard,
91 Opt_nodiscard,
92 Opt_noheap,
93 Opt_heap,
94 Opt_user_xattr,
95 Opt_nouser_xattr,
96 Opt_acl,
97 Opt_noacl,
98 Opt_active_logs,
99 Opt_disable_ext_identify,
100 Opt_inline_xattr,
101 Opt_noinline_xattr,
102 Opt_inline_xattr_size,
103 Opt_inline_data,
104 Opt_inline_dentry,
105 Opt_noinline_dentry,
106 Opt_flush_merge,
107 Opt_noflush_merge,
108 Opt_nobarrier,
109 Opt_fastboot,
110 Opt_extent_cache,
111 Opt_noextent_cache,
112 Opt_noinline_data,
113 Opt_data_flush,
114 Opt_reserve_root,
115 Opt_resgid,
116 Opt_resuid,
117 Opt_mode,
118 Opt_io_size_bits,
119 Opt_fault_injection,
120 Opt_fault_type,
121 Opt_lazytime,
122 Opt_nolazytime,
123 Opt_quota,
124 Opt_noquota,
125 Opt_usrquota,
126 Opt_grpquota,
127 Opt_prjquota,
128 Opt_usrjquota,
129 Opt_grpjquota,
130 Opt_prjjquota,
131 Opt_offusrjquota,
132 Opt_offgrpjquota,
133 Opt_offprjjquota,
134 Opt_jqfmt_vfsold,
135 Opt_jqfmt_vfsv0,
136 Opt_jqfmt_vfsv1,
137 Opt_whint,
138 Opt_alloc,
139 Opt_fsync,
140 Opt_test_dummy_encryption,
141 Opt_inlinecrypt,
142 Opt_checkpoint_disable,
143 Opt_checkpoint_disable_cap,
144 Opt_checkpoint_disable_cap_perc,
145 Opt_checkpoint_enable,
146 Opt_compress_algorithm,
147 Opt_compress_log_size,
148 Opt_compress_extension,
149 Opt_atgc,
150 Opt_err,
151 };
152
153 static match_table_t f2fs_tokens = {
154 {Opt_gc_background, "background_gc=%s"},
155 {Opt_disable_roll_forward, "disable_roll_forward"},
156 {Opt_norecovery, "norecovery"},
157 {Opt_discard, "discard"},
158 {Opt_nodiscard, "nodiscard"},
159 {Opt_noheap, "no_heap"},
160 {Opt_heap, "heap"},
161 {Opt_user_xattr, "user_xattr"},
162 {Opt_nouser_xattr, "nouser_xattr"},
163 {Opt_acl, "acl"},
164 {Opt_noacl, "noacl"},
165 {Opt_active_logs, "active_logs=%u"},
166 {Opt_disable_ext_identify, "disable_ext_identify"},
167 {Opt_inline_xattr, "inline_xattr"},
168 {Opt_noinline_xattr, "noinline_xattr"},
169 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
170 {Opt_inline_data, "inline_data"},
171 {Opt_inline_dentry, "inline_dentry"},
172 {Opt_noinline_dentry, "noinline_dentry"},
173 {Opt_flush_merge, "flush_merge"},
174 {Opt_noflush_merge, "noflush_merge"},
175 {Opt_nobarrier, "nobarrier"},
176 {Opt_fastboot, "fastboot"},
177 {Opt_extent_cache, "extent_cache"},
178 {Opt_noextent_cache, "noextent_cache"},
179 {Opt_noinline_data, "noinline_data"},
180 {Opt_data_flush, "data_flush"},
181 {Opt_reserve_root, "reserve_root=%u"},
182 {Opt_resgid, "resgid=%u"},
183 {Opt_resuid, "resuid=%u"},
184 {Opt_mode, "mode=%s"},
185 {Opt_io_size_bits, "io_bits=%u"},
186 {Opt_fault_injection, "fault_injection=%u"},
187 {Opt_fault_type, "fault_type=%u"},
188 {Opt_lazytime, "lazytime"},
189 {Opt_nolazytime, "nolazytime"},
190 {Opt_quota, "quota"},
191 {Opt_noquota, "noquota"},
192 {Opt_usrquota, "usrquota"},
193 {Opt_grpquota, "grpquota"},
194 {Opt_prjquota, "prjquota"},
195 {Opt_usrjquota, "usrjquota=%s"},
196 {Opt_grpjquota, "grpjquota=%s"},
197 {Opt_prjjquota, "prjjquota=%s"},
198 {Opt_offusrjquota, "usrjquota="},
199 {Opt_offgrpjquota, "grpjquota="},
200 {Opt_offprjjquota, "prjjquota="},
201 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
202 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
203 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
204 {Opt_whint, "whint_mode=%s"},
205 {Opt_alloc, "alloc_mode=%s"},
206 {Opt_fsync, "fsync_mode=%s"},
207 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
208 {Opt_test_dummy_encryption, "test_dummy_encryption"},
209 {Opt_inlinecrypt, "inlinecrypt"},
210 {Opt_checkpoint_disable, "checkpoint=disable"},
211 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
212 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
213 {Opt_checkpoint_enable, "checkpoint=enable"},
214 {Opt_compress_algorithm, "compress_algorithm=%s"},
215 {Opt_compress_log_size, "compress_log_size=%u"},
216 {Opt_compress_extension, "compress_extension=%s"},
217 {Opt_atgc, "atgc"},
218 {Opt_err, NULL},
219 };
220
221 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
222 {
223 struct va_format vaf;
224 va_list args;
225 int level;
226
227 va_start(args, fmt);
228
229 level = printk_get_level(fmt);
230 vaf.fmt = printk_skip_level(fmt);
231 vaf.va = &args;
232 printk("%c%cF2FS-fs (%s): %pV\n",
233 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
234
235 va_end(args);
236 }
237
238 #ifdef CONFIG_UNICODE
239 static const struct f2fs_sb_encodings {
240 __u16 magic;
241 char *name;
242 char *version;
243 } f2fs_sb_encoding_map[] = {
244 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
245 };
246
247 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
248 const struct f2fs_sb_encodings **encoding,
249 __u16 *flags)
250 {
251 __u16 magic = le16_to_cpu(sb->s_encoding);
252 int i;
253
254 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
255 if (magic == f2fs_sb_encoding_map[i].magic)
256 break;
257
258 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
259 return -EINVAL;
260
261 *encoding = &f2fs_sb_encoding_map[i];
262 *flags = le16_to_cpu(sb->s_encoding_flags);
263
264 return 0;
265 }
266 #endif
267
268 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
269 {
270 block_t limit = min((sbi->user_block_count << 1) / 1000,
271 sbi->user_block_count - sbi->reserved_blocks);
272
273 /* limit is 0.2% */
274 if (test_opt(sbi, RESERVE_ROOT) &&
275 F2FS_OPTION(sbi).root_reserved_blocks > limit) {
276 F2FS_OPTION(sbi).root_reserved_blocks = limit;
277 f2fs_info(sbi, "Reduce reserved blocks for root = %u",
278 F2FS_OPTION(sbi).root_reserved_blocks);
279 }
280 if (!test_opt(sbi, RESERVE_ROOT) &&
281 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
282 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
283 !gid_eq(F2FS_OPTION(sbi).s_resgid,
284 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
285 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
286 from_kuid_munged(&init_user_ns,
287 F2FS_OPTION(sbi).s_resuid),
288 from_kgid_munged(&init_user_ns,
289 F2FS_OPTION(sbi).s_resgid));
290 }
291
292 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
293 {
294 if (!F2FS_OPTION(sbi).unusable_cap_perc)
295 return;
296
297 if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
298 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
299 else
300 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
301 F2FS_OPTION(sbi).unusable_cap_perc;
302
303 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
304 F2FS_OPTION(sbi).unusable_cap,
305 F2FS_OPTION(sbi).unusable_cap_perc);
306 }
307
308 static void init_once(void *foo)
309 {
310 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
311
312 inode_init_once(&fi->vfs_inode);
313 }
314
315 #ifdef CONFIG_QUOTA
316 static const char * const quotatypes[] = INITQFNAMES;
317 #define QTYPE2NAME(t) (quotatypes[t])
318 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
319 substring_t *args)
320 {
321 struct f2fs_sb_info *sbi = F2FS_SB(sb);
322 char *qname;
323 int ret = -EINVAL;
324
325 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
326 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
327 return -EINVAL;
328 }
329 if (f2fs_sb_has_quota_ino(sbi)) {
330 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
331 return 0;
332 }
333
334 qname = match_strdup(args);
335 if (!qname) {
336 f2fs_err(sbi, "Not enough memory for storing quotafile name");
337 return -ENOMEM;
338 }
339 if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
340 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
341 ret = 0;
342 else
343 f2fs_err(sbi, "%s quota file already specified",
344 QTYPE2NAME(qtype));
345 goto errout;
346 }
347 if (strchr(qname, '/')) {
348 f2fs_err(sbi, "quotafile must be on filesystem root");
349 goto errout;
350 }
351 F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
352 set_opt(sbi, QUOTA);
353 return 0;
354 errout:
355 kfree(qname);
356 return ret;
357 }
358
359 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
360 {
361 struct f2fs_sb_info *sbi = F2FS_SB(sb);
362
363 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
364 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
365 return -EINVAL;
366 }
367 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
368 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
369 return 0;
370 }
371
372 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
373 {
374 /*
375 * We do the test below only for project quotas. 'usrquota' and
376 * 'grpquota' mount options are allowed even without quota feature
377 * to support legacy quotas in quota files.
378 */
379 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
380 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
381 return -1;
382 }
383 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
384 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
385 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
386 if (test_opt(sbi, USRQUOTA) &&
387 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
388 clear_opt(sbi, USRQUOTA);
389
390 if (test_opt(sbi, GRPQUOTA) &&
391 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
392 clear_opt(sbi, GRPQUOTA);
393
394 if (test_opt(sbi, PRJQUOTA) &&
395 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
396 clear_opt(sbi, PRJQUOTA);
397
398 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
399 test_opt(sbi, PRJQUOTA)) {
400 f2fs_err(sbi, "old and new quota format mixing");
401 return -1;
402 }
403
404 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
405 f2fs_err(sbi, "journaled quota format not specified");
406 return -1;
407 }
408 }
409
410 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
411 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
412 F2FS_OPTION(sbi).s_jquota_fmt = 0;
413 }
414 return 0;
415 }
416 #endif
417
418 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
419 const char *opt,
420 const substring_t *arg,
421 bool is_remount)
422 {
423 struct f2fs_sb_info *sbi = F2FS_SB(sb);
424 #ifdef CONFIG_FS_ENCRYPTION
425 int err;
426
427 if (!f2fs_sb_has_encrypt(sbi)) {
428 f2fs_err(sbi, "Encrypt feature is off");
429 return -EINVAL;
430 }
431
432 /*
433 * This mount option is just for testing, and it's not worthwhile to
434 * implement the extra complexity (e.g. RCU protection) that would be
435 * needed to allow it to be set or changed during remount. We do allow
436 * it to be specified during remount, but only if there is no change.
437 */
438 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
439 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
440 return -EINVAL;
441 }
442 err = fscrypt_set_test_dummy_encryption(
443 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
444 if (err) {
445 if (err == -EEXIST)
446 f2fs_warn(sbi,
447 "Can't change test_dummy_encryption on remount");
448 else if (err == -EINVAL)
449 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
450 opt);
451 else
452 f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
453 opt, err);
454 return -EINVAL;
455 }
456 f2fs_warn(sbi, "Test dummy encryption mode enabled");
457 #else
458 f2fs_warn(sbi, "Test dummy encryption mount option ignored");
459 #endif
460 return 0;
461 }
462
463 static int parse_options(struct super_block *sb, char *options, bool is_remount)
464 {
465 struct f2fs_sb_info *sbi = F2FS_SB(sb);
466 substring_t args[MAX_OPT_ARGS];
467 #ifdef CONFIG_F2FS_FS_COMPRESSION
468 unsigned char (*ext)[F2FS_EXTENSION_LEN];
469 int ext_cnt;
470 #endif
471 char *p, *name;
472 int arg = 0;
473 kuid_t uid;
474 kgid_t gid;
475 int ret;
476
477 if (!options)
478 return 0;
479
480 while ((p = strsep(&options, ",")) != NULL) {
481 int token;
482 if (!*p)
483 continue;
484 /*
485 * Initialize args struct so we know whether arg was
486 * found; some options take optional arguments.
487 */
488 args[0].to = args[0].from = NULL;
489 token = match_token(p, f2fs_tokens, args);
490
491 switch (token) {
492 case Opt_gc_background:
493 name = match_strdup(&args[0]);
494
495 if (!name)
496 return -ENOMEM;
497 if (!strcmp(name, "on")) {
498 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
499 } else if (!strcmp(name, "off")) {
500 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
501 } else if (!strcmp(name, "sync")) {
502 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
503 } else {
504 kfree(name);
505 return -EINVAL;
506 }
507 kfree(name);
508 break;
509 case Opt_disable_roll_forward:
510 set_opt(sbi, DISABLE_ROLL_FORWARD);
511 break;
512 case Opt_norecovery:
513 /* this option mounts f2fs with ro */
514 set_opt(sbi, NORECOVERY);
515 if (!f2fs_readonly(sb))
516 return -EINVAL;
517 break;
518 case Opt_discard:
519 set_opt(sbi, DISCARD);
520 break;
521 case Opt_nodiscard:
522 if (f2fs_sb_has_blkzoned(sbi)) {
523 f2fs_warn(sbi, "discard is required for zoned block devices");
524 return -EINVAL;
525 }
526 clear_opt(sbi, DISCARD);
527 break;
528 case Opt_noheap:
529 set_opt(sbi, NOHEAP);
530 break;
531 case Opt_heap:
532 clear_opt(sbi, NOHEAP);
533 break;
534 #ifdef CONFIG_F2FS_FS_XATTR
535 case Opt_user_xattr:
536 set_opt(sbi, XATTR_USER);
537 break;
538 case Opt_nouser_xattr:
539 clear_opt(sbi, XATTR_USER);
540 break;
541 case Opt_inline_xattr:
542 set_opt(sbi, INLINE_XATTR);
543 break;
544 case Opt_noinline_xattr:
545 clear_opt(sbi, INLINE_XATTR);
546 break;
547 case Opt_inline_xattr_size:
548 if (args->from && match_int(args, &arg))
549 return -EINVAL;
550 set_opt(sbi, INLINE_XATTR_SIZE);
551 F2FS_OPTION(sbi).inline_xattr_size = arg;
552 break;
553 #else
554 case Opt_user_xattr:
555 f2fs_info(sbi, "user_xattr options not supported");
556 break;
557 case Opt_nouser_xattr:
558 f2fs_info(sbi, "nouser_xattr options not supported");
559 break;
560 case Opt_inline_xattr:
561 f2fs_info(sbi, "inline_xattr options not supported");
562 break;
563 case Opt_noinline_xattr:
564 f2fs_info(sbi, "noinline_xattr options not supported");
565 break;
566 #endif
567 #ifdef CONFIG_F2FS_FS_POSIX_ACL
568 case Opt_acl:
569 set_opt(sbi, POSIX_ACL);
570 break;
571 case Opt_noacl:
572 clear_opt(sbi, POSIX_ACL);
573 break;
574 #else
575 case Opt_acl:
576 f2fs_info(sbi, "acl options not supported");
577 break;
578 case Opt_noacl:
579 f2fs_info(sbi, "noacl options not supported");
580 break;
581 #endif
582 case Opt_active_logs:
583 if (args->from && match_int(args, &arg))
584 return -EINVAL;
585 if (arg != 2 && arg != 4 &&
586 arg != NR_CURSEG_PERSIST_TYPE)
587 return -EINVAL;
588 F2FS_OPTION(sbi).active_logs = arg;
589 break;
590 case Opt_disable_ext_identify:
591 set_opt(sbi, DISABLE_EXT_IDENTIFY);
592 break;
593 case Opt_inline_data:
594 set_opt(sbi, INLINE_DATA);
595 break;
596 case Opt_inline_dentry:
597 set_opt(sbi, INLINE_DENTRY);
598 break;
599 case Opt_noinline_dentry:
600 clear_opt(sbi, INLINE_DENTRY);
601 break;
602 case Opt_flush_merge:
603 set_opt(sbi, FLUSH_MERGE);
604 break;
605 case Opt_noflush_merge:
606 clear_opt(sbi, FLUSH_MERGE);
607 break;
608 case Opt_nobarrier:
609 set_opt(sbi, NOBARRIER);
610 break;
611 case Opt_fastboot:
612 set_opt(sbi, FASTBOOT);
613 break;
614 case Opt_extent_cache:
615 set_opt(sbi, EXTENT_CACHE);
616 break;
617 case Opt_noextent_cache:
618 clear_opt(sbi, EXTENT_CACHE);
619 break;
620 case Opt_noinline_data:
621 clear_opt(sbi, INLINE_DATA);
622 break;
623 case Opt_data_flush:
624 set_opt(sbi, DATA_FLUSH);
625 break;
626 case Opt_reserve_root:
627 if (args->from && match_int(args, &arg))
628 return -EINVAL;
629 if (test_opt(sbi, RESERVE_ROOT)) {
630 f2fs_info(sbi, "Preserve previous reserve_root=%u",
631 F2FS_OPTION(sbi).root_reserved_blocks);
632 } else {
633 F2FS_OPTION(sbi).root_reserved_blocks = arg;
634 set_opt(sbi, RESERVE_ROOT);
635 }
636 break;
637 case Opt_resuid:
638 if (args->from && match_int(args, &arg))
639 return -EINVAL;
640 uid = make_kuid(current_user_ns(), arg);
641 if (!uid_valid(uid)) {
642 f2fs_err(sbi, "Invalid uid value %d", arg);
643 return -EINVAL;
644 }
645 F2FS_OPTION(sbi).s_resuid = uid;
646 break;
647 case Opt_resgid:
648 if (args->from && match_int(args, &arg))
649 return -EINVAL;
650 gid = make_kgid(current_user_ns(), arg);
651 if (!gid_valid(gid)) {
652 f2fs_err(sbi, "Invalid gid value %d", arg);
653 return -EINVAL;
654 }
655 F2FS_OPTION(sbi).s_resgid = gid;
656 break;
657 case Opt_mode:
658 name = match_strdup(&args[0]);
659
660 if (!name)
661 return -ENOMEM;
662 if (!strcmp(name, "adaptive")) {
663 if (f2fs_sb_has_blkzoned(sbi)) {
664 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
665 kfree(name);
666 return -EINVAL;
667 }
668 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
669 } else if (!strcmp(name, "lfs")) {
670 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
671 } else {
672 kfree(name);
673 return -EINVAL;
674 }
675 kfree(name);
676 break;
677 case Opt_io_size_bits:
678 if (args->from && match_int(args, &arg))
679 return -EINVAL;
680 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
681 f2fs_warn(sbi, "Not support %d, larger than %d",
682 1 << arg, BIO_MAX_PAGES);
683 return -EINVAL;
684 }
685 F2FS_OPTION(sbi).write_io_size_bits = arg;
686 break;
687 #ifdef CONFIG_F2FS_FAULT_INJECTION
688 case Opt_fault_injection:
689 if (args->from && match_int(args, &arg))
690 return -EINVAL;
691 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
692 set_opt(sbi, FAULT_INJECTION);
693 break;
694
695 case Opt_fault_type:
696 if (args->from && match_int(args, &arg))
697 return -EINVAL;
698 f2fs_build_fault_attr(sbi, 0, arg);
699 set_opt(sbi, FAULT_INJECTION);
700 break;
701 #else
702 case Opt_fault_injection:
703 f2fs_info(sbi, "fault_injection options not supported");
704 break;
705
706 case Opt_fault_type:
707 f2fs_info(sbi, "fault_type options not supported");
708 break;
709 #endif
710 case Opt_lazytime:
711 sb->s_flags |= SB_LAZYTIME;
712 break;
713 case Opt_nolazytime:
714 sb->s_flags &= ~SB_LAZYTIME;
715 break;
716 #ifdef CONFIG_QUOTA
717 case Opt_quota:
718 case Opt_usrquota:
719 set_opt(sbi, USRQUOTA);
720 break;
721 case Opt_grpquota:
722 set_opt(sbi, GRPQUOTA);
723 break;
724 case Opt_prjquota:
725 set_opt(sbi, PRJQUOTA);
726 break;
727 case Opt_usrjquota:
728 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
729 if (ret)
730 return ret;
731 break;
732 case Opt_grpjquota:
733 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
734 if (ret)
735 return ret;
736 break;
737 case Opt_prjjquota:
738 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
739 if (ret)
740 return ret;
741 break;
742 case Opt_offusrjquota:
743 ret = f2fs_clear_qf_name(sb, USRQUOTA);
744 if (ret)
745 return ret;
746 break;
747 case Opt_offgrpjquota:
748 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
749 if (ret)
750 return ret;
751 break;
752 case Opt_offprjjquota:
753 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
754 if (ret)
755 return ret;
756 break;
757 case Opt_jqfmt_vfsold:
758 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
759 break;
760 case Opt_jqfmt_vfsv0:
761 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
762 break;
763 case Opt_jqfmt_vfsv1:
764 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
765 break;
766 case Opt_noquota:
767 clear_opt(sbi, QUOTA);
768 clear_opt(sbi, USRQUOTA);
769 clear_opt(sbi, GRPQUOTA);
770 clear_opt(sbi, PRJQUOTA);
771 break;
772 #else
773 case Opt_quota:
774 case Opt_usrquota:
775 case Opt_grpquota:
776 case Opt_prjquota:
777 case Opt_usrjquota:
778 case Opt_grpjquota:
779 case Opt_prjjquota:
780 case Opt_offusrjquota:
781 case Opt_offgrpjquota:
782 case Opt_offprjjquota:
783 case Opt_jqfmt_vfsold:
784 case Opt_jqfmt_vfsv0:
785 case Opt_jqfmt_vfsv1:
786 case Opt_noquota:
787 f2fs_info(sbi, "quota operations not supported");
788 break;
789 #endif
790 case Opt_whint:
791 name = match_strdup(&args[0]);
792 if (!name)
793 return -ENOMEM;
794 if (!strcmp(name, "user-based")) {
795 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
796 } else if (!strcmp(name, "off")) {
797 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
798 } else if (!strcmp(name, "fs-based")) {
799 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
800 } else {
801 kfree(name);
802 return -EINVAL;
803 }
804 kfree(name);
805 break;
806 case Opt_alloc:
807 name = match_strdup(&args[0]);
808 if (!name)
809 return -ENOMEM;
810
811 if (!strcmp(name, "default")) {
812 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
813 } else if (!strcmp(name, "reuse")) {
814 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
815 } else {
816 kfree(name);
817 return -EINVAL;
818 }
819 kfree(name);
820 break;
821 case Opt_fsync:
822 name = match_strdup(&args[0]);
823 if (!name)
824 return -ENOMEM;
825 if (!strcmp(name, "posix")) {
826 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
827 } else if (!strcmp(name, "strict")) {
828 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
829 } else if (!strcmp(name, "nobarrier")) {
830 F2FS_OPTION(sbi).fsync_mode =
831 FSYNC_MODE_NOBARRIER;
832 } else {
833 kfree(name);
834 return -EINVAL;
835 }
836 kfree(name);
837 break;
838 case Opt_test_dummy_encryption:
839 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
840 is_remount);
841 if (ret)
842 return ret;
843 break;
844 case Opt_inlinecrypt:
845 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
846 sb->s_flags |= SB_INLINECRYPT;
847 #else
848 f2fs_info(sbi, "inline encryption not supported");
849 #endif
850 break;
851 case Opt_checkpoint_disable_cap_perc:
852 if (args->from && match_int(args, &arg))
853 return -EINVAL;
854 if (arg < 0 || arg > 100)
855 return -EINVAL;
856 F2FS_OPTION(sbi).unusable_cap_perc = arg;
857 set_opt(sbi, DISABLE_CHECKPOINT);
858 break;
859 case Opt_checkpoint_disable_cap:
860 if (args->from && match_int(args, &arg))
861 return -EINVAL;
862 F2FS_OPTION(sbi).unusable_cap = arg;
863 set_opt(sbi, DISABLE_CHECKPOINT);
864 break;
865 case Opt_checkpoint_disable:
866 set_opt(sbi, DISABLE_CHECKPOINT);
867 break;
868 case Opt_checkpoint_enable:
869 clear_opt(sbi, DISABLE_CHECKPOINT);
870 break;
871 #ifdef CONFIG_F2FS_FS_COMPRESSION
872 case Opt_compress_algorithm:
873 if (!f2fs_sb_has_compression(sbi)) {
874 f2fs_info(sbi, "Image doesn't support compression");
875 break;
876 }
877 name = match_strdup(&args[0]);
878 if (!name)
879 return -ENOMEM;
880 if (!strcmp(name, "lzo")) {
881 F2FS_OPTION(sbi).compress_algorithm =
882 COMPRESS_LZO;
883 } else if (!strcmp(name, "lz4")) {
884 F2FS_OPTION(sbi).compress_algorithm =
885 COMPRESS_LZ4;
886 } else if (!strcmp(name, "zstd")) {
887 F2FS_OPTION(sbi).compress_algorithm =
888 COMPRESS_ZSTD;
889 } else if (!strcmp(name, "lzo-rle")) {
890 F2FS_OPTION(sbi).compress_algorithm =
891 COMPRESS_LZORLE;
892 } else {
893 kfree(name);
894 return -EINVAL;
895 }
896 kfree(name);
897 break;
898 case Opt_compress_log_size:
899 if (!f2fs_sb_has_compression(sbi)) {
900 f2fs_info(sbi, "Image doesn't support compression");
901 break;
902 }
903 if (args->from && match_int(args, &arg))
904 return -EINVAL;
905 if (arg < MIN_COMPRESS_LOG_SIZE ||
906 arg > MAX_COMPRESS_LOG_SIZE) {
907 f2fs_err(sbi,
908 "Compress cluster log size is out of range");
909 return -EINVAL;
910 }
911 F2FS_OPTION(sbi).compress_log_size = arg;
912 break;
913 case Opt_compress_extension:
914 if (!f2fs_sb_has_compression(sbi)) {
915 f2fs_info(sbi, "Image doesn't support compression");
916 break;
917 }
918 name = match_strdup(&args[0]);
919 if (!name)
920 return -ENOMEM;
921
922 ext = F2FS_OPTION(sbi).extensions;
923 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
924
925 if (strlen(name) >= F2FS_EXTENSION_LEN ||
926 ext_cnt >= COMPRESS_EXT_NUM) {
927 f2fs_err(sbi,
928 "invalid extension length/number");
929 kfree(name);
930 return -EINVAL;
931 }
932
933 strcpy(ext[ext_cnt], name);
934 F2FS_OPTION(sbi).compress_ext_cnt++;
935 kfree(name);
936 break;
937 #else
938 case Opt_compress_algorithm:
939 case Opt_compress_log_size:
940 case Opt_compress_extension:
941 f2fs_info(sbi, "compression options not supported");
942 break;
943 #endif
944 case Opt_atgc:
945 set_opt(sbi, ATGC);
946 break;
947 default:
948 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
949 p);
950 return -EINVAL;
951 }
952 }
953 #ifdef CONFIG_QUOTA
954 if (f2fs_check_quota_options(sbi))
955 return -EINVAL;
956 #else
957 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
958 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
959 return -EINVAL;
960 }
961 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
962 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
963 return -EINVAL;
964 }
965 #endif
966 #ifndef CONFIG_UNICODE
967 if (f2fs_sb_has_casefold(sbi)) {
968 f2fs_err(sbi,
969 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
970 return -EINVAL;
971 }
972 #endif
973 /*
974 * The BLKZONED feature indicates that the drive was formatted with
975 * zone alignment optimization. This is optional for host-aware
976 * devices, but mandatory for host-managed zoned block devices.
977 */
978 #ifndef CONFIG_BLK_DEV_ZONED
979 if (f2fs_sb_has_blkzoned(sbi)) {
980 f2fs_err(sbi, "Zoned block device support is not enabled");
981 return -EINVAL;
982 }
983 #endif
984
985 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
986 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
987 F2FS_IO_SIZE_KB(sbi));
988 return -EINVAL;
989 }
990
991 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
992 int min_size, max_size;
993
994 if (!f2fs_sb_has_extra_attr(sbi) ||
995 !f2fs_sb_has_flexible_inline_xattr(sbi)) {
996 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
997 return -EINVAL;
998 }
999 if (!test_opt(sbi, INLINE_XATTR)) {
1000 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1001 return -EINVAL;
1002 }
1003
1004 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1005 max_size = MAX_INLINE_XATTR_SIZE;
1006
1007 if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1008 F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1009 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1010 min_size, max_size);
1011 return -EINVAL;
1012 }
1013 }
1014
1015 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1016 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1017 return -EINVAL;
1018 }
1019
1020 /* Not pass down write hints if the number of active logs is lesser
1021 * than NR_CURSEG_PERSIST_TYPE.
1022 */
1023 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1024 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1025 return 0;
1026 }
1027
1028 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1029 {
1030 struct f2fs_inode_info *fi;
1031
1032 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1033 if (!fi)
1034 return NULL;
1035
1036 init_once((void *) fi);
1037
1038 /* Initialize f2fs-specific inode info */
1039 atomic_set(&fi->dirty_pages, 0);
1040 atomic_set(&fi->i_compr_blocks, 0);
1041 init_rwsem(&fi->i_sem);
1042 spin_lock_init(&fi->i_size_lock);
1043 INIT_LIST_HEAD(&fi->dirty_list);
1044 INIT_LIST_HEAD(&fi->gdirty_list);
1045 INIT_LIST_HEAD(&fi->inmem_ilist);
1046 INIT_LIST_HEAD(&fi->inmem_pages);
1047 mutex_init(&fi->inmem_lock);
1048 init_rwsem(&fi->i_gc_rwsem[READ]);
1049 init_rwsem(&fi->i_gc_rwsem[WRITE]);
1050 init_rwsem(&fi->i_mmap_sem);
1051 init_rwsem(&fi->i_xattr_sem);
1052
1053 /* Will be used by directory only */
1054 fi->i_dir_level = F2FS_SB(sb)->dir_level;
1055
1056 fi->ra_offset = -1;
1057
1058 return &fi->vfs_inode;
1059 }
1060
1061 static int f2fs_drop_inode(struct inode *inode)
1062 {
1063 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1064 int ret;
1065
1066 /*
1067 * during filesystem shutdown, if checkpoint is disabled,
1068 * drop useless meta/node dirty pages.
1069 */
1070 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1071 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1072 inode->i_ino == F2FS_META_INO(sbi)) {
1073 trace_f2fs_drop_inode(inode, 1);
1074 return 1;
1075 }
1076 }
1077
1078 /*
1079 * This is to avoid a deadlock condition like below.
1080 * writeback_single_inode(inode)
1081 * - f2fs_write_data_page
1082 * - f2fs_gc -> iput -> evict
1083 * - inode_wait_for_writeback(inode)
1084 */
1085 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1086 if (!inode->i_nlink && !is_bad_inode(inode)) {
1087 /* to avoid evict_inode call simultaneously */
1088 atomic_inc(&inode->i_count);
1089 spin_unlock(&inode->i_lock);
1090
1091 /* some remained atomic pages should discarded */
1092 if (f2fs_is_atomic_file(inode))
1093 f2fs_drop_inmem_pages(inode);
1094
1095 /* should remain fi->extent_tree for writepage */
1096 f2fs_destroy_extent_node(inode);
1097
1098 sb_start_intwrite(inode->i_sb);
1099 f2fs_i_size_write(inode, 0);
1100
1101 f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1102 inode, NULL, 0, DATA);
1103 truncate_inode_pages_final(inode->i_mapping);
1104
1105 if (F2FS_HAS_BLOCKS(inode))
1106 f2fs_truncate(inode);
1107
1108 sb_end_intwrite(inode->i_sb);
1109
1110 spin_lock(&inode->i_lock);
1111 atomic_dec(&inode->i_count);
1112 }
1113 trace_f2fs_drop_inode(inode, 0);
1114 return 0;
1115 }
1116 ret = generic_drop_inode(inode);
1117 if (!ret)
1118 ret = fscrypt_drop_inode(inode);
1119 trace_f2fs_drop_inode(inode, ret);
1120 return ret;
1121 }
1122
1123 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1124 {
1125 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1126 int ret = 0;
1127
1128 spin_lock(&sbi->inode_lock[DIRTY_META]);
1129 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1130 ret = 1;
1131 } else {
1132 set_inode_flag(inode, FI_DIRTY_INODE);
1133 stat_inc_dirty_inode(sbi, DIRTY_META);
1134 }
1135 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1136 list_add_tail(&F2FS_I(inode)->gdirty_list,
1137 &sbi->inode_list[DIRTY_META]);
1138 inc_page_count(sbi, F2FS_DIRTY_IMETA);
1139 }
1140 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1141 return ret;
1142 }
1143
1144 void f2fs_inode_synced(struct inode *inode)
1145 {
1146 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1147
1148 spin_lock(&sbi->inode_lock[DIRTY_META]);
1149 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1150 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1151 return;
1152 }
1153 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1154 list_del_init(&F2FS_I(inode)->gdirty_list);
1155 dec_page_count(sbi, F2FS_DIRTY_IMETA);
1156 }
1157 clear_inode_flag(inode, FI_DIRTY_INODE);
1158 clear_inode_flag(inode, FI_AUTO_RECOVER);
1159 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1160 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1161 }
1162
1163 /*
1164 * f2fs_dirty_inode() is called from __mark_inode_dirty()
1165 *
1166 * We should call set_dirty_inode to write the dirty inode through write_inode.
1167 */
1168 static void f2fs_dirty_inode(struct inode *inode, int flags)
1169 {
1170 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1171
1172 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1173 inode->i_ino == F2FS_META_INO(sbi))
1174 return;
1175
1176 if (flags == I_DIRTY_TIME)
1177 return;
1178
1179 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1180 clear_inode_flag(inode, FI_AUTO_RECOVER);
1181
1182 f2fs_inode_dirtied(inode, false);
1183 }
1184
1185 static void f2fs_free_inode(struct inode *inode)
1186 {
1187 fscrypt_free_inode(inode);
1188 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1189 }
1190
1191 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1192 {
1193 percpu_counter_destroy(&sbi->alloc_valid_block_count);
1194 percpu_counter_destroy(&sbi->total_valid_inode_count);
1195 }
1196
1197 static void destroy_device_list(struct f2fs_sb_info *sbi)
1198 {
1199 int i;
1200
1201 for (i = 0; i < sbi->s_ndevs; i++) {
1202 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1203 #ifdef CONFIG_BLK_DEV_ZONED
1204 kvfree(FDEV(i).blkz_seq);
1205 kfree(FDEV(i).zone_capacity_blocks);
1206 #endif
1207 }
1208 kvfree(sbi->devs);
1209 }
1210
1211 static void f2fs_put_super(struct super_block *sb)
1212 {
1213 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1214 int i;
1215 bool dropped;
1216
1217 /* unregister procfs/sysfs entries in advance to avoid race case */
1218 f2fs_unregister_sysfs(sbi);
1219
1220 f2fs_quota_off_umount(sb);
1221
1222 /* prevent remaining shrinker jobs */
1223 mutex_lock(&sbi->umount_mutex);
1224
1225 /*
1226 * We don't need to do checkpoint when superblock is clean.
1227 * But, the previous checkpoint was not done by umount, it needs to do
1228 * clean checkpoint again.
1229 */
1230 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1231 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1232 struct cp_control cpc = {
1233 .reason = CP_UMOUNT,
1234 };
1235 f2fs_write_checkpoint(sbi, &cpc);
1236 }
1237
1238 /* be sure to wait for any on-going discard commands */
1239 dropped = f2fs_issue_discard_timeout(sbi);
1240
1241 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1242 !sbi->discard_blks && !dropped) {
1243 struct cp_control cpc = {
1244 .reason = CP_UMOUNT | CP_TRIMMED,
1245 };
1246 f2fs_write_checkpoint(sbi, &cpc);
1247 }
1248
1249 /*
1250 * normally superblock is clean, so we need to release this.
1251 * In addition, EIO will skip do checkpoint, we need this as well.
1252 */
1253 f2fs_release_ino_entry(sbi, true);
1254
1255 f2fs_leave_shrinker(sbi);
1256 mutex_unlock(&sbi->umount_mutex);
1257
1258 /* our cp_error case, we can wait for any writeback page */
1259 f2fs_flush_merged_writes(sbi);
1260
1261 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1262
1263 f2fs_bug_on(sbi, sbi->fsync_node_num);
1264
1265 iput(sbi->node_inode);
1266 sbi->node_inode = NULL;
1267
1268 iput(sbi->meta_inode);
1269 sbi->meta_inode = NULL;
1270
1271 /*
1272 * iput() can update stat information, if f2fs_write_checkpoint()
1273 * above failed with error.
1274 */
1275 f2fs_destroy_stats(sbi);
1276
1277 /* destroy f2fs internal modules */
1278 f2fs_destroy_node_manager(sbi);
1279 f2fs_destroy_segment_manager(sbi);
1280
1281 f2fs_destroy_post_read_wq(sbi);
1282
1283 kvfree(sbi->ckpt);
1284
1285 sb->s_fs_info = NULL;
1286 if (sbi->s_chksum_driver)
1287 crypto_free_shash(sbi->s_chksum_driver);
1288 kfree(sbi->raw_super);
1289
1290 destroy_device_list(sbi);
1291 f2fs_destroy_page_array_cache(sbi);
1292 f2fs_destroy_xattr_caches(sbi);
1293 mempool_destroy(sbi->write_io_dummy);
1294 #ifdef CONFIG_QUOTA
1295 for (i = 0; i < MAXQUOTAS; i++)
1296 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1297 #endif
1298 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1299 destroy_percpu_info(sbi);
1300 for (i = 0; i < NR_PAGE_TYPE; i++)
1301 kvfree(sbi->write_io[i]);
1302 #ifdef CONFIG_UNICODE
1303 utf8_unload(sb->s_encoding);
1304 #endif
1305 kfree(sbi);
1306 }
1307
1308 int f2fs_sync_fs(struct super_block *sb, int sync)
1309 {
1310 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1311 int err = 0;
1312
1313 if (unlikely(f2fs_cp_error(sbi)))
1314 return 0;
1315 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1316 return 0;
1317
1318 trace_f2fs_sync_fs(sb, sync);
1319
1320 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1321 return -EAGAIN;
1322
1323 if (sync) {
1324 struct cp_control cpc;
1325
1326 cpc.reason = __get_cp_reason(sbi);
1327
1328 down_write(&sbi->gc_lock);
1329 err = f2fs_write_checkpoint(sbi, &cpc);
1330 up_write(&sbi->gc_lock);
1331 }
1332 f2fs_trace_ios(NULL, 1);
1333
1334 return err;
1335 }
1336
1337 static int f2fs_freeze(struct super_block *sb)
1338 {
1339 if (f2fs_readonly(sb))
1340 return 0;
1341
1342 /* IO error happened before */
1343 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1344 return -EIO;
1345
1346 /* must be clean, since sync_filesystem() was already called */
1347 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1348 return -EINVAL;
1349 return 0;
1350 }
1351
1352 static int f2fs_unfreeze(struct super_block *sb)
1353 {
1354 return 0;
1355 }
1356
1357 #ifdef CONFIG_QUOTA
1358 static int f2fs_statfs_project(struct super_block *sb,
1359 kprojid_t projid, struct kstatfs *buf)
1360 {
1361 struct kqid qid;
1362 struct dquot *dquot;
1363 u64 limit;
1364 u64 curblock;
1365
1366 qid = make_kqid_projid(projid);
1367 dquot = dqget(sb, qid);
1368 if (IS_ERR(dquot))
1369 return PTR_ERR(dquot);
1370 spin_lock(&dquot->dq_dqb_lock);
1371
1372 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1373 dquot->dq_dqb.dqb_bhardlimit);
1374 if (limit)
1375 limit >>= sb->s_blocksize_bits;
1376
1377 if (limit && buf->f_blocks > limit) {
1378 curblock = (dquot->dq_dqb.dqb_curspace +
1379 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1380 buf->f_blocks = limit;
1381 buf->f_bfree = buf->f_bavail =
1382 (buf->f_blocks > curblock) ?
1383 (buf->f_blocks - curblock) : 0;
1384 }
1385
1386 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1387 dquot->dq_dqb.dqb_ihardlimit);
1388
1389 if (limit && buf->f_files > limit) {
1390 buf->f_files = limit;
1391 buf->f_ffree =
1392 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1393 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1394 }
1395
1396 spin_unlock(&dquot->dq_dqb_lock);
1397 dqput(dquot);
1398 return 0;
1399 }
1400 #endif
1401
1402 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1403 {
1404 struct super_block *sb = dentry->d_sb;
1405 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1406 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1407 block_t total_count, user_block_count, start_count;
1408 u64 avail_node_count;
1409
1410 total_count = le64_to_cpu(sbi->raw_super->block_count);
1411 user_block_count = sbi->user_block_count;
1412 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1413 buf->f_type = F2FS_SUPER_MAGIC;
1414 buf->f_bsize = sbi->blocksize;
1415
1416 buf->f_blocks = total_count - start_count;
1417 buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1418 sbi->current_reserved_blocks;
1419
1420 spin_lock(&sbi->stat_lock);
1421 if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1422 buf->f_bfree = 0;
1423 else
1424 buf->f_bfree -= sbi->unusable_block_count;
1425 spin_unlock(&sbi->stat_lock);
1426
1427 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1428 buf->f_bavail = buf->f_bfree -
1429 F2FS_OPTION(sbi).root_reserved_blocks;
1430 else
1431 buf->f_bavail = 0;
1432
1433 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1434
1435 if (avail_node_count > user_block_count) {
1436 buf->f_files = user_block_count;
1437 buf->f_ffree = buf->f_bavail;
1438 } else {
1439 buf->f_files = avail_node_count;
1440 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1441 buf->f_bavail);
1442 }
1443
1444 buf->f_namelen = F2FS_NAME_LEN;
1445 buf->f_fsid = u64_to_fsid(id);
1446
1447 #ifdef CONFIG_QUOTA
1448 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1449 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1450 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1451 }
1452 #endif
1453 return 0;
1454 }
1455
1456 static inline void f2fs_show_quota_options(struct seq_file *seq,
1457 struct super_block *sb)
1458 {
1459 #ifdef CONFIG_QUOTA
1460 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1461
1462 if (F2FS_OPTION(sbi).s_jquota_fmt) {
1463 char *fmtname = "";
1464
1465 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1466 case QFMT_VFS_OLD:
1467 fmtname = "vfsold";
1468 break;
1469 case QFMT_VFS_V0:
1470 fmtname = "vfsv0";
1471 break;
1472 case QFMT_VFS_V1:
1473 fmtname = "vfsv1";
1474 break;
1475 }
1476 seq_printf(seq, ",jqfmt=%s", fmtname);
1477 }
1478
1479 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1480 seq_show_option(seq, "usrjquota",
1481 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1482
1483 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1484 seq_show_option(seq, "grpjquota",
1485 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1486
1487 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1488 seq_show_option(seq, "prjjquota",
1489 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1490 #endif
1491 }
1492
1493 static inline void f2fs_show_compress_options(struct seq_file *seq,
1494 struct super_block *sb)
1495 {
1496 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1497 char *algtype = "";
1498 int i;
1499
1500 if (!f2fs_sb_has_compression(sbi))
1501 return;
1502
1503 switch (F2FS_OPTION(sbi).compress_algorithm) {
1504 case COMPRESS_LZO:
1505 algtype = "lzo";
1506 break;
1507 case COMPRESS_LZ4:
1508 algtype = "lz4";
1509 break;
1510 case COMPRESS_ZSTD:
1511 algtype = "zstd";
1512 break;
1513 case COMPRESS_LZORLE:
1514 algtype = "lzo-rle";
1515 break;
1516 }
1517 seq_printf(seq, ",compress_algorithm=%s", algtype);
1518
1519 seq_printf(seq, ",compress_log_size=%u",
1520 F2FS_OPTION(sbi).compress_log_size);
1521
1522 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1523 seq_printf(seq, ",compress_extension=%s",
1524 F2FS_OPTION(sbi).extensions[i]);
1525 }
1526 }
1527
1528 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1529 {
1530 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1531
1532 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1533 seq_printf(seq, ",background_gc=%s", "sync");
1534 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1535 seq_printf(seq, ",background_gc=%s", "on");
1536 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1537 seq_printf(seq, ",background_gc=%s", "off");
1538
1539 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1540 seq_puts(seq, ",disable_roll_forward");
1541 if (test_opt(sbi, NORECOVERY))
1542 seq_puts(seq, ",norecovery");
1543 if (test_opt(sbi, DISCARD))
1544 seq_puts(seq, ",discard");
1545 else
1546 seq_puts(seq, ",nodiscard");
1547 if (test_opt(sbi, NOHEAP))
1548 seq_puts(seq, ",no_heap");
1549 else
1550 seq_puts(seq, ",heap");
1551 #ifdef CONFIG_F2FS_FS_XATTR
1552 if (test_opt(sbi, XATTR_USER))
1553 seq_puts(seq, ",user_xattr");
1554 else
1555 seq_puts(seq, ",nouser_xattr");
1556 if (test_opt(sbi, INLINE_XATTR))
1557 seq_puts(seq, ",inline_xattr");
1558 else
1559 seq_puts(seq, ",noinline_xattr");
1560 if (test_opt(sbi, INLINE_XATTR_SIZE))
1561 seq_printf(seq, ",inline_xattr_size=%u",
1562 F2FS_OPTION(sbi).inline_xattr_size);
1563 #endif
1564 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1565 if (test_opt(sbi, POSIX_ACL))
1566 seq_puts(seq, ",acl");
1567 else
1568 seq_puts(seq, ",noacl");
1569 #endif
1570 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1571 seq_puts(seq, ",disable_ext_identify");
1572 if (test_opt(sbi, INLINE_DATA))
1573 seq_puts(seq, ",inline_data");
1574 else
1575 seq_puts(seq, ",noinline_data");
1576 if (test_opt(sbi, INLINE_DENTRY))
1577 seq_puts(seq, ",inline_dentry");
1578 else
1579 seq_puts(seq, ",noinline_dentry");
1580 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1581 seq_puts(seq, ",flush_merge");
1582 if (test_opt(sbi, NOBARRIER))
1583 seq_puts(seq, ",nobarrier");
1584 if (test_opt(sbi, FASTBOOT))
1585 seq_puts(seq, ",fastboot");
1586 if (test_opt(sbi, EXTENT_CACHE))
1587 seq_puts(seq, ",extent_cache");
1588 else
1589 seq_puts(seq, ",noextent_cache");
1590 if (test_opt(sbi, DATA_FLUSH))
1591 seq_puts(seq, ",data_flush");
1592
1593 seq_puts(seq, ",mode=");
1594 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1595 seq_puts(seq, "adaptive");
1596 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1597 seq_puts(seq, "lfs");
1598 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1599 if (test_opt(sbi, RESERVE_ROOT))
1600 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1601 F2FS_OPTION(sbi).root_reserved_blocks,
1602 from_kuid_munged(&init_user_ns,
1603 F2FS_OPTION(sbi).s_resuid),
1604 from_kgid_munged(&init_user_ns,
1605 F2FS_OPTION(sbi).s_resgid));
1606 if (F2FS_IO_SIZE_BITS(sbi))
1607 seq_printf(seq, ",io_bits=%u",
1608 F2FS_OPTION(sbi).write_io_size_bits);
1609 #ifdef CONFIG_F2FS_FAULT_INJECTION
1610 if (test_opt(sbi, FAULT_INJECTION)) {
1611 seq_printf(seq, ",fault_injection=%u",
1612 F2FS_OPTION(sbi).fault_info.inject_rate);
1613 seq_printf(seq, ",fault_type=%u",
1614 F2FS_OPTION(sbi).fault_info.inject_type);
1615 }
1616 #endif
1617 #ifdef CONFIG_QUOTA
1618 if (test_opt(sbi, QUOTA))
1619 seq_puts(seq, ",quota");
1620 if (test_opt(sbi, USRQUOTA))
1621 seq_puts(seq, ",usrquota");
1622 if (test_opt(sbi, GRPQUOTA))
1623 seq_puts(seq, ",grpquota");
1624 if (test_opt(sbi, PRJQUOTA))
1625 seq_puts(seq, ",prjquota");
1626 #endif
1627 f2fs_show_quota_options(seq, sbi->sb);
1628 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1629 seq_printf(seq, ",whint_mode=%s", "user-based");
1630 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1631 seq_printf(seq, ",whint_mode=%s", "fs-based");
1632
1633 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1634
1635 if (sbi->sb->s_flags & SB_INLINECRYPT)
1636 seq_puts(seq, ",inlinecrypt");
1637
1638 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1639 seq_printf(seq, ",alloc_mode=%s", "default");
1640 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1641 seq_printf(seq, ",alloc_mode=%s", "reuse");
1642
1643 if (test_opt(sbi, DISABLE_CHECKPOINT))
1644 seq_printf(seq, ",checkpoint=disable:%u",
1645 F2FS_OPTION(sbi).unusable_cap);
1646 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1647 seq_printf(seq, ",fsync_mode=%s", "posix");
1648 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1649 seq_printf(seq, ",fsync_mode=%s", "strict");
1650 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1651 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1652
1653 #ifdef CONFIG_F2FS_FS_COMPRESSION
1654 f2fs_show_compress_options(seq, sbi->sb);
1655 #endif
1656
1657 if (test_opt(sbi, ATGC))
1658 seq_puts(seq, ",atgc");
1659 return 0;
1660 }
1661
1662 static void default_options(struct f2fs_sb_info *sbi)
1663 {
1664 /* init some FS parameters */
1665 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1666 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1667 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1668 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1669 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1670 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1671 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1672 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1673 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1674 F2FS_OPTION(sbi).compress_ext_cnt = 0;
1675 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1676
1677 sbi->sb->s_flags &= ~SB_INLINECRYPT;
1678
1679 set_opt(sbi, INLINE_XATTR);
1680 set_opt(sbi, INLINE_DATA);
1681 set_opt(sbi, INLINE_DENTRY);
1682 set_opt(sbi, EXTENT_CACHE);
1683 set_opt(sbi, NOHEAP);
1684 clear_opt(sbi, DISABLE_CHECKPOINT);
1685 F2FS_OPTION(sbi).unusable_cap = 0;
1686 sbi->sb->s_flags |= SB_LAZYTIME;
1687 set_opt(sbi, FLUSH_MERGE);
1688 set_opt(sbi, DISCARD);
1689 if (f2fs_sb_has_blkzoned(sbi))
1690 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1691 else
1692 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1693
1694 #ifdef CONFIG_F2FS_FS_XATTR
1695 set_opt(sbi, XATTR_USER);
1696 #endif
1697 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1698 set_opt(sbi, POSIX_ACL);
1699 #endif
1700
1701 f2fs_build_fault_attr(sbi, 0, 0);
1702 }
1703
1704 #ifdef CONFIG_QUOTA
1705 static int f2fs_enable_quotas(struct super_block *sb);
1706 #endif
1707
1708 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1709 {
1710 unsigned int s_flags = sbi->sb->s_flags;
1711 struct cp_control cpc;
1712 int err = 0;
1713 int ret;
1714 block_t unusable;
1715
1716 if (s_flags & SB_RDONLY) {
1717 f2fs_err(sbi, "checkpoint=disable on readonly fs");
1718 return -EINVAL;
1719 }
1720 sbi->sb->s_flags |= SB_ACTIVE;
1721
1722 f2fs_update_time(sbi, DISABLE_TIME);
1723
1724 while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1725 down_write(&sbi->gc_lock);
1726 err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1727 if (err == -ENODATA) {
1728 err = 0;
1729 break;
1730 }
1731 if (err && err != -EAGAIN)
1732 break;
1733 }
1734
1735 ret = sync_filesystem(sbi->sb);
1736 if (ret || err) {
1737 err = ret ? ret: err;
1738 goto restore_flag;
1739 }
1740
1741 unusable = f2fs_get_unusable_blocks(sbi);
1742 if (f2fs_disable_cp_again(sbi, unusable)) {
1743 err = -EAGAIN;
1744 goto restore_flag;
1745 }
1746
1747 down_write(&sbi->gc_lock);
1748 cpc.reason = CP_PAUSE;
1749 set_sbi_flag(sbi, SBI_CP_DISABLED);
1750 err = f2fs_write_checkpoint(sbi, &cpc);
1751 if (err)
1752 goto out_unlock;
1753
1754 spin_lock(&sbi->stat_lock);
1755 sbi->unusable_block_count = unusable;
1756 spin_unlock(&sbi->stat_lock);
1757
1758 out_unlock:
1759 up_write(&sbi->gc_lock);
1760 restore_flag:
1761 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
1762 return err;
1763 }
1764
1765 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1766 {
1767 down_write(&sbi->gc_lock);
1768 f2fs_dirty_to_prefree(sbi);
1769
1770 clear_sbi_flag(sbi, SBI_CP_DISABLED);
1771 set_sbi_flag(sbi, SBI_IS_DIRTY);
1772 up_write(&sbi->gc_lock);
1773
1774 f2fs_sync_fs(sbi->sb, 1);
1775 }
1776
1777 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1778 {
1779 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1780 struct f2fs_mount_info org_mount_opt;
1781 unsigned long old_sb_flags;
1782 int err;
1783 bool need_restart_gc = false;
1784 bool need_stop_gc = false;
1785 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1786 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1787 bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1788 bool no_atgc = !test_opt(sbi, ATGC);
1789 bool checkpoint_changed;
1790 #ifdef CONFIG_QUOTA
1791 int i, j;
1792 #endif
1793
1794 /*
1795 * Save the old mount options in case we
1796 * need to restore them.
1797 */
1798 org_mount_opt = sbi->mount_opt;
1799 old_sb_flags = sb->s_flags;
1800
1801 #ifdef CONFIG_QUOTA
1802 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1803 for (i = 0; i < MAXQUOTAS; i++) {
1804 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1805 org_mount_opt.s_qf_names[i] =
1806 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1807 GFP_KERNEL);
1808 if (!org_mount_opt.s_qf_names[i]) {
1809 for (j = 0; j < i; j++)
1810 kfree(org_mount_opt.s_qf_names[j]);
1811 return -ENOMEM;
1812 }
1813 } else {
1814 org_mount_opt.s_qf_names[i] = NULL;
1815 }
1816 }
1817 #endif
1818
1819 /* recover superblocks we couldn't write due to previous RO mount */
1820 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1821 err = f2fs_commit_super(sbi, false);
1822 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1823 err);
1824 if (!err)
1825 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1826 }
1827
1828 default_options(sbi);
1829
1830 /* parse mount options */
1831 err = parse_options(sb, data, true);
1832 if (err)
1833 goto restore_opts;
1834 checkpoint_changed =
1835 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1836
1837 /*
1838 * Previous and new state of filesystem is RO,
1839 * so skip checking GC and FLUSH_MERGE conditions.
1840 */
1841 if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1842 goto skip;
1843
1844 #ifdef CONFIG_QUOTA
1845 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1846 err = dquot_suspend(sb, -1);
1847 if (err < 0)
1848 goto restore_opts;
1849 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1850 /* dquot_resume needs RW */
1851 sb->s_flags &= ~SB_RDONLY;
1852 if (sb_any_quota_suspended(sb)) {
1853 dquot_resume(sb, -1);
1854 } else if (f2fs_sb_has_quota_ino(sbi)) {
1855 err = f2fs_enable_quotas(sb);
1856 if (err)
1857 goto restore_opts;
1858 }
1859 }
1860 #endif
1861 /* disallow enable atgc dynamically */
1862 if (no_atgc == !!test_opt(sbi, ATGC)) {
1863 err = -EINVAL;
1864 f2fs_warn(sbi, "switch atgc option is not allowed");
1865 goto restore_opts;
1866 }
1867
1868 /* disallow enable/disable extent_cache dynamically */
1869 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1870 err = -EINVAL;
1871 f2fs_warn(sbi, "switch extent_cache option is not allowed");
1872 goto restore_opts;
1873 }
1874
1875 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1876 err = -EINVAL;
1877 f2fs_warn(sbi, "switch io_bits option is not allowed");
1878 goto restore_opts;
1879 }
1880
1881 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1882 err = -EINVAL;
1883 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1884 goto restore_opts;
1885 }
1886
1887 /*
1888 * We stop the GC thread if FS is mounted as RO
1889 * or if background_gc = off is passed in mount
1890 * option. Also sync the filesystem.
1891 */
1892 if ((*flags & SB_RDONLY) ||
1893 F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1894 if (sbi->gc_thread) {
1895 f2fs_stop_gc_thread(sbi);
1896 need_restart_gc = true;
1897 }
1898 } else if (!sbi->gc_thread) {
1899 err = f2fs_start_gc_thread(sbi);
1900 if (err)
1901 goto restore_opts;
1902 need_stop_gc = true;
1903 }
1904
1905 if (*flags & SB_RDONLY ||
1906 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1907 writeback_inodes_sb(sb, WB_REASON_SYNC);
1908 sync_inodes_sb(sb);
1909
1910 set_sbi_flag(sbi, SBI_IS_DIRTY);
1911 set_sbi_flag(sbi, SBI_IS_CLOSE);
1912 f2fs_sync_fs(sb, 1);
1913 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1914 }
1915
1916 if (checkpoint_changed) {
1917 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1918 err = f2fs_disable_checkpoint(sbi);
1919 if (err)
1920 goto restore_gc;
1921 } else {
1922 f2fs_enable_checkpoint(sbi);
1923 }
1924 }
1925
1926 /*
1927 * We stop issue flush thread if FS is mounted as RO
1928 * or if flush_merge is not passed in mount option.
1929 */
1930 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1931 clear_opt(sbi, FLUSH_MERGE);
1932 f2fs_destroy_flush_cmd_control(sbi, false);
1933 } else {
1934 err = f2fs_create_flush_cmd_control(sbi);
1935 if (err)
1936 goto restore_gc;
1937 }
1938 skip:
1939 #ifdef CONFIG_QUOTA
1940 /* Release old quota file names */
1941 for (i = 0; i < MAXQUOTAS; i++)
1942 kfree(org_mount_opt.s_qf_names[i]);
1943 #endif
1944 /* Update the POSIXACL Flag */
1945 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1946 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1947
1948 limit_reserve_root(sbi);
1949 adjust_unusable_cap_perc(sbi);
1950 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1951 return 0;
1952 restore_gc:
1953 if (need_restart_gc) {
1954 if (f2fs_start_gc_thread(sbi))
1955 f2fs_warn(sbi, "background gc thread has stopped");
1956 } else if (need_stop_gc) {
1957 f2fs_stop_gc_thread(sbi);
1958 }
1959 restore_opts:
1960 #ifdef CONFIG_QUOTA
1961 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1962 for (i = 0; i < MAXQUOTAS; i++) {
1963 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1964 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1965 }
1966 #endif
1967 sbi->mount_opt = org_mount_opt;
1968 sb->s_flags = old_sb_flags;
1969 return err;
1970 }
1971
1972 #ifdef CONFIG_QUOTA
1973 /* Read data from quotafile */
1974 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1975 size_t len, loff_t off)
1976 {
1977 struct inode *inode = sb_dqopt(sb)->files[type];
1978 struct address_space *mapping = inode->i_mapping;
1979 block_t blkidx = F2FS_BYTES_TO_BLK(off);
1980 int offset = off & (sb->s_blocksize - 1);
1981 int tocopy;
1982 size_t toread;
1983 loff_t i_size = i_size_read(inode);
1984 struct page *page;
1985 char *kaddr;
1986
1987 if (off > i_size)
1988 return 0;
1989
1990 if (off + len > i_size)
1991 len = i_size - off;
1992 toread = len;
1993 while (toread > 0) {
1994 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1995 repeat:
1996 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1997 if (IS_ERR(page)) {
1998 if (PTR_ERR(page) == -ENOMEM) {
1999 congestion_wait(BLK_RW_ASYNC,
2000 DEFAULT_IO_TIMEOUT);
2001 goto repeat;
2002 }
2003 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2004 return PTR_ERR(page);
2005 }
2006
2007 lock_page(page);
2008
2009 if (unlikely(page->mapping != mapping)) {
2010 f2fs_put_page(page, 1);
2011 goto repeat;
2012 }
2013 if (unlikely(!PageUptodate(page))) {
2014 f2fs_put_page(page, 1);
2015 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2016 return -EIO;
2017 }
2018
2019 kaddr = kmap_atomic(page);
2020 memcpy(data, kaddr + offset, tocopy);
2021 kunmap_atomic(kaddr);
2022 f2fs_put_page(page, 1);
2023
2024 offset = 0;
2025 toread -= tocopy;
2026 data += tocopy;
2027 blkidx++;
2028 }
2029 return len;
2030 }
2031
2032 /* Write to quotafile */
2033 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2034 const char *data, size_t len, loff_t off)
2035 {
2036 struct inode *inode = sb_dqopt(sb)->files[type];
2037 struct address_space *mapping = inode->i_mapping;
2038 const struct address_space_operations *a_ops = mapping->a_ops;
2039 int offset = off & (sb->s_blocksize - 1);
2040 size_t towrite = len;
2041 struct page *page;
2042 void *fsdata = NULL;
2043 char *kaddr;
2044 int err = 0;
2045 int tocopy;
2046
2047 while (towrite > 0) {
2048 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2049 towrite);
2050 retry:
2051 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2052 &page, &fsdata);
2053 if (unlikely(err)) {
2054 if (err == -ENOMEM) {
2055 congestion_wait(BLK_RW_ASYNC,
2056 DEFAULT_IO_TIMEOUT);
2057 goto retry;
2058 }
2059 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2060 break;
2061 }
2062
2063 kaddr = kmap_atomic(page);
2064 memcpy(kaddr + offset, data, tocopy);
2065 kunmap_atomic(kaddr);
2066 flush_dcache_page(page);
2067
2068 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2069 page, fsdata);
2070 offset = 0;
2071 towrite -= tocopy;
2072 off += tocopy;
2073 data += tocopy;
2074 cond_resched();
2075 }
2076
2077 if (len == towrite)
2078 return err;
2079 inode->i_mtime = inode->i_ctime = current_time(inode);
2080 f2fs_mark_inode_dirty_sync(inode, false);
2081 return len - towrite;
2082 }
2083
2084 static struct dquot **f2fs_get_dquots(struct inode *inode)
2085 {
2086 return F2FS_I(inode)->i_dquot;
2087 }
2088
2089 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2090 {
2091 return &F2FS_I(inode)->i_reserved_quota;
2092 }
2093
2094 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2095 {
2096 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2097 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2098 return 0;
2099 }
2100
2101 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2102 F2FS_OPTION(sbi).s_jquota_fmt, type);
2103 }
2104
2105 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2106 {
2107 int enabled = 0;
2108 int i, err;
2109
2110 if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2111 err = f2fs_enable_quotas(sbi->sb);
2112 if (err) {
2113 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2114 return 0;
2115 }
2116 return 1;
2117 }
2118
2119 for (i = 0; i < MAXQUOTAS; i++) {
2120 if (F2FS_OPTION(sbi).s_qf_names[i]) {
2121 err = f2fs_quota_on_mount(sbi, i);
2122 if (!err) {
2123 enabled = 1;
2124 continue;
2125 }
2126 f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2127 err, i);
2128 }
2129 }
2130 return enabled;
2131 }
2132
2133 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2134 unsigned int flags)
2135 {
2136 struct inode *qf_inode;
2137 unsigned long qf_inum;
2138 int err;
2139
2140 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2141
2142 qf_inum = f2fs_qf_ino(sb, type);
2143 if (!qf_inum)
2144 return -EPERM;
2145
2146 qf_inode = f2fs_iget(sb, qf_inum);
2147 if (IS_ERR(qf_inode)) {
2148 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2149 return PTR_ERR(qf_inode);
2150 }
2151
2152 /* Don't account quota for quota files to avoid recursion */
2153 qf_inode->i_flags |= S_NOQUOTA;
2154 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2155 iput(qf_inode);
2156 return err;
2157 }
2158
2159 static int f2fs_enable_quotas(struct super_block *sb)
2160 {
2161 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2162 int type, err = 0;
2163 unsigned long qf_inum;
2164 bool quota_mopt[MAXQUOTAS] = {
2165 test_opt(sbi, USRQUOTA),
2166 test_opt(sbi, GRPQUOTA),
2167 test_opt(sbi, PRJQUOTA),
2168 };
2169
2170 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2171 f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2172 return 0;
2173 }
2174
2175 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2176
2177 for (type = 0; type < MAXQUOTAS; type++) {
2178 qf_inum = f2fs_qf_ino(sb, type);
2179 if (qf_inum) {
2180 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2181 DQUOT_USAGE_ENABLED |
2182 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2183 if (err) {
2184 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2185 type, err);
2186 for (type--; type >= 0; type--)
2187 dquot_quota_off(sb, type);
2188 set_sbi_flag(F2FS_SB(sb),
2189 SBI_QUOTA_NEED_REPAIR);
2190 return err;
2191 }
2192 }
2193 }
2194 return 0;
2195 }
2196
2197 int f2fs_quota_sync(struct super_block *sb, int type)
2198 {
2199 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2200 struct quota_info *dqopt = sb_dqopt(sb);
2201 int cnt;
2202 int ret;
2203
2204 /*
2205 * do_quotactl
2206 * f2fs_quota_sync
2207 * down_read(quota_sem)
2208 * dquot_writeback_dquots()
2209 * f2fs_dquot_commit
2210 * block_operation
2211 * down_read(quota_sem)
2212 */
2213 f2fs_lock_op(sbi);
2214
2215 down_read(&sbi->quota_sem);
2216 ret = dquot_writeback_dquots(sb, type);
2217 if (ret)
2218 goto out;
2219
2220 /*
2221 * Now when everything is written we can discard the pagecache so
2222 * that userspace sees the changes.
2223 */
2224 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2225 struct address_space *mapping;
2226
2227 if (type != -1 && cnt != type)
2228 continue;
2229 if (!sb_has_quota_active(sb, cnt))
2230 continue;
2231
2232 mapping = dqopt->files[cnt]->i_mapping;
2233
2234 ret = filemap_fdatawrite(mapping);
2235 if (ret)
2236 goto out;
2237
2238 /* if we are using journalled quota */
2239 if (is_journalled_quota(sbi))
2240 continue;
2241
2242 ret = filemap_fdatawait(mapping);
2243 if (ret)
2244 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2245
2246 inode_lock(dqopt->files[cnt]);
2247 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2248 inode_unlock(dqopt->files[cnt]);
2249 }
2250 out:
2251 if (ret)
2252 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2253 up_read(&sbi->quota_sem);
2254 f2fs_unlock_op(sbi);
2255 return ret;
2256 }
2257
2258 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2259 const struct path *path)
2260 {
2261 struct inode *inode;
2262 int err;
2263
2264 /* if quota sysfile exists, deny enabling quota with specific file */
2265 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2266 f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2267 return -EBUSY;
2268 }
2269
2270 err = f2fs_quota_sync(sb, type);
2271 if (err)
2272 return err;
2273
2274 err = dquot_quota_on(sb, type, format_id, path);
2275 if (err)
2276 return err;
2277
2278 inode = d_inode(path->dentry);
2279
2280 inode_lock(inode);
2281 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2282 f2fs_set_inode_flags(inode);
2283 inode_unlock(inode);
2284 f2fs_mark_inode_dirty_sync(inode, false);
2285
2286 return 0;
2287 }
2288
2289 static int __f2fs_quota_off(struct super_block *sb, int type)
2290 {
2291 struct inode *inode = sb_dqopt(sb)->files[type];
2292 int err;
2293
2294 if (!inode || !igrab(inode))
2295 return dquot_quota_off(sb, type);
2296
2297 err = f2fs_quota_sync(sb, type);
2298 if (err)
2299 goto out_put;
2300
2301 err = dquot_quota_off(sb, type);
2302 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2303 goto out_put;
2304
2305 inode_lock(inode);
2306 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2307 f2fs_set_inode_flags(inode);
2308 inode_unlock(inode);
2309 f2fs_mark_inode_dirty_sync(inode, false);
2310 out_put:
2311 iput(inode);
2312 return err;
2313 }
2314
2315 static int f2fs_quota_off(struct super_block *sb, int type)
2316 {
2317 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2318 int err;
2319
2320 err = __f2fs_quota_off(sb, type);
2321
2322 /*
2323 * quotactl can shutdown journalled quota, result in inconsistence
2324 * between quota record and fs data by following updates, tag the
2325 * flag to let fsck be aware of it.
2326 */
2327 if (is_journalled_quota(sbi))
2328 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2329 return err;
2330 }
2331
2332 void f2fs_quota_off_umount(struct super_block *sb)
2333 {
2334 int type;
2335 int err;
2336
2337 for (type = 0; type < MAXQUOTAS; type++) {
2338 err = __f2fs_quota_off(sb, type);
2339 if (err) {
2340 int ret = dquot_quota_off(sb, type);
2341
2342 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2343 type, err, ret);
2344 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2345 }
2346 }
2347 /*
2348 * In case of checkpoint=disable, we must flush quota blocks.
2349 * This can cause NULL exception for node_inode in end_io, since
2350 * put_super already dropped it.
2351 */
2352 sync_filesystem(sb);
2353 }
2354
2355 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2356 {
2357 struct quota_info *dqopt = sb_dqopt(sb);
2358 int type;
2359
2360 for (type = 0; type < MAXQUOTAS; type++) {
2361 if (!dqopt->files[type])
2362 continue;
2363 f2fs_inode_synced(dqopt->files[type]);
2364 }
2365 }
2366
2367 static int f2fs_dquot_commit(struct dquot *dquot)
2368 {
2369 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2370 int ret;
2371
2372 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2373 ret = dquot_commit(dquot);
2374 if (ret < 0)
2375 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2376 up_read(&sbi->quota_sem);
2377 return ret;
2378 }
2379
2380 static int f2fs_dquot_acquire(struct dquot *dquot)
2381 {
2382 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2383 int ret;
2384
2385 down_read(&sbi->quota_sem);
2386 ret = dquot_acquire(dquot);
2387 if (ret < 0)
2388 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2389 up_read(&sbi->quota_sem);
2390 return ret;
2391 }
2392
2393 static int f2fs_dquot_release(struct dquot *dquot)
2394 {
2395 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2396 int ret = dquot_release(dquot);
2397
2398 if (ret < 0)
2399 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2400 return ret;
2401 }
2402
2403 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2404 {
2405 struct super_block *sb = dquot->dq_sb;
2406 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2407 int ret = dquot_mark_dquot_dirty(dquot);
2408
2409 /* if we are using journalled quota */
2410 if (is_journalled_quota(sbi))
2411 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2412
2413 return ret;
2414 }
2415
2416 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2417 {
2418 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2419 int ret = dquot_commit_info(sb, type);
2420
2421 if (ret < 0)
2422 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2423 return ret;
2424 }
2425
2426 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2427 {
2428 *projid = F2FS_I(inode)->i_projid;
2429 return 0;
2430 }
2431
2432 static const struct dquot_operations f2fs_quota_operations = {
2433 .get_reserved_space = f2fs_get_reserved_space,
2434 .write_dquot = f2fs_dquot_commit,
2435 .acquire_dquot = f2fs_dquot_acquire,
2436 .release_dquot = f2fs_dquot_release,
2437 .mark_dirty = f2fs_dquot_mark_dquot_dirty,
2438 .write_info = f2fs_dquot_commit_info,
2439 .alloc_dquot = dquot_alloc,
2440 .destroy_dquot = dquot_destroy,
2441 .get_projid = f2fs_get_projid,
2442 .get_next_id = dquot_get_next_id,
2443 };
2444
2445 static const struct quotactl_ops f2fs_quotactl_ops = {
2446 .quota_on = f2fs_quota_on,
2447 .quota_off = f2fs_quota_off,
2448 .quota_sync = f2fs_quota_sync,
2449 .get_state = dquot_get_state,
2450 .set_info = dquot_set_dqinfo,
2451 .get_dqblk = dquot_get_dqblk,
2452 .set_dqblk = dquot_set_dqblk,
2453 .get_nextdqblk = dquot_get_next_dqblk,
2454 };
2455 #else
2456 int f2fs_quota_sync(struct super_block *sb, int type)
2457 {
2458 return 0;
2459 }
2460
2461 void f2fs_quota_off_umount(struct super_block *sb)
2462 {
2463 }
2464 #endif
2465
2466 static const struct super_operations f2fs_sops = {
2467 .alloc_inode = f2fs_alloc_inode,
2468 .free_inode = f2fs_free_inode,
2469 .drop_inode = f2fs_drop_inode,
2470 .write_inode = f2fs_write_inode,
2471 .dirty_inode = f2fs_dirty_inode,
2472 .show_options = f2fs_show_options,
2473 #ifdef CONFIG_QUOTA
2474 .quota_read = f2fs_quota_read,
2475 .quota_write = f2fs_quota_write,
2476 .get_dquots = f2fs_get_dquots,
2477 #endif
2478 .evict_inode = f2fs_evict_inode,
2479 .put_super = f2fs_put_super,
2480 .sync_fs = f2fs_sync_fs,
2481 .freeze_fs = f2fs_freeze,
2482 .unfreeze_fs = f2fs_unfreeze,
2483 .statfs = f2fs_statfs,
2484 .remount_fs = f2fs_remount,
2485 };
2486
2487 #ifdef CONFIG_FS_ENCRYPTION
2488 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2489 {
2490 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2491 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2492 ctx, len, NULL);
2493 }
2494
2495 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2496 void *fs_data)
2497 {
2498 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2499
2500 /*
2501 * Encrypting the root directory is not allowed because fsck
2502 * expects lost+found directory to exist and remain unencrypted
2503 * if LOST_FOUND feature is enabled.
2504 *
2505 */
2506 if (f2fs_sb_has_lost_found(sbi) &&
2507 inode->i_ino == F2FS_ROOT_INO(sbi))
2508 return -EPERM;
2509
2510 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2511 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2512 ctx, len, fs_data, XATTR_CREATE);
2513 }
2514
2515 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2516 {
2517 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2518 }
2519
2520 static bool f2fs_has_stable_inodes(struct super_block *sb)
2521 {
2522 return true;
2523 }
2524
2525 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2526 int *ino_bits_ret, int *lblk_bits_ret)
2527 {
2528 *ino_bits_ret = 8 * sizeof(nid_t);
2529 *lblk_bits_ret = 8 * sizeof(block_t);
2530 }
2531
2532 static int f2fs_get_num_devices(struct super_block *sb)
2533 {
2534 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2535
2536 if (f2fs_is_multi_device(sbi))
2537 return sbi->s_ndevs;
2538 return 1;
2539 }
2540
2541 static void f2fs_get_devices(struct super_block *sb,
2542 struct request_queue **devs)
2543 {
2544 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2545 int i;
2546
2547 for (i = 0; i < sbi->s_ndevs; i++)
2548 devs[i] = bdev_get_queue(FDEV(i).bdev);
2549 }
2550
2551 static const struct fscrypt_operations f2fs_cryptops = {
2552 .key_prefix = "f2fs:",
2553 .get_context = f2fs_get_context,
2554 .set_context = f2fs_set_context,
2555 .get_dummy_policy = f2fs_get_dummy_policy,
2556 .empty_dir = f2fs_empty_dir,
2557 .max_namelen = F2FS_NAME_LEN,
2558 .has_stable_inodes = f2fs_has_stable_inodes,
2559 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits,
2560 .get_num_devices = f2fs_get_num_devices,
2561 .get_devices = f2fs_get_devices,
2562 };
2563 #endif
2564
2565 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2566 u64 ino, u32 generation)
2567 {
2568 struct f2fs_sb_info *sbi = F2FS_SB(sb);
2569 struct inode *inode;
2570
2571 if (f2fs_check_nid_range(sbi, ino))
2572 return ERR_PTR(-ESTALE);
2573
2574 /*
2575 * f2fs_iget isn't quite right if the inode is currently unallocated!
2576 * However f2fs_iget currently does appropriate checks to handle stale
2577 * inodes so everything is OK.
2578 */
2579 inode = f2fs_iget(sb, ino);
2580 if (IS_ERR(inode))
2581 return ERR_CAST(inode);
2582 if (unlikely(generation && inode->i_generation != generation)) {
2583 /* we didn't find the right inode.. */
2584 iput(inode);
2585 return ERR_PTR(-ESTALE);
2586 }
2587 return inode;
2588 }
2589
2590 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2591 int fh_len, int fh_type)
2592 {
2593 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2594 f2fs_nfs_get_inode);
2595 }
2596
2597 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2598 int fh_len, int fh_type)
2599 {
2600 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2601 f2fs_nfs_get_inode);
2602 }
2603
2604 static const struct export_operations f2fs_export_ops = {
2605 .fh_to_dentry = f2fs_fh_to_dentry,
2606 .fh_to_parent = f2fs_fh_to_parent,
2607 .get_parent = f2fs_get_parent,
2608 };
2609
2610 static loff_t max_file_blocks(void)
2611 {
2612 loff_t result = 0;
2613 loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2614
2615 /*
2616 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2617 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2618 * space in inode.i_addr, it will be more safe to reassign
2619 * result as zero.
2620 */
2621
2622 /* two direct node blocks */
2623 result += (leaf_count * 2);
2624
2625 /* two indirect node blocks */
2626 leaf_count *= NIDS_PER_BLOCK;
2627 result += (leaf_count * 2);
2628
2629 /* one double indirect node block */
2630 leaf_count *= NIDS_PER_BLOCK;
2631 result += leaf_count;
2632
2633 return result;
2634 }
2635
2636 static int __f2fs_commit_super(struct buffer_head *bh,
2637 struct f2fs_super_block *super)
2638 {
2639 lock_buffer(bh);
2640 if (super)
2641 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2642 set_buffer_dirty(bh);
2643 unlock_buffer(bh);
2644
2645 /* it's rare case, we can do fua all the time */
2646 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2647 }
2648
2649 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2650 struct buffer_head *bh)
2651 {
2652 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2653 (bh->b_data + F2FS_SUPER_OFFSET);
2654 struct super_block *sb = sbi->sb;
2655 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2656 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2657 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2658 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2659 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2660 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2661 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2662 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2663 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2664 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2665 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2666 u32 segment_count = le32_to_cpu(raw_super->segment_count);
2667 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2668 u64 main_end_blkaddr = main_blkaddr +
2669 (segment_count_main << log_blocks_per_seg);
2670 u64 seg_end_blkaddr = segment0_blkaddr +
2671 (segment_count << log_blocks_per_seg);
2672
2673 if (segment0_blkaddr != cp_blkaddr) {
2674 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2675 segment0_blkaddr, cp_blkaddr);
2676 return true;
2677 }
2678
2679 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2680 sit_blkaddr) {
2681 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2682 cp_blkaddr, sit_blkaddr,
2683 segment_count_ckpt << log_blocks_per_seg);
2684 return true;
2685 }
2686
2687 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2688 nat_blkaddr) {
2689 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2690 sit_blkaddr, nat_blkaddr,
2691 segment_count_sit << log_blocks_per_seg);
2692 return true;
2693 }
2694
2695 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2696 ssa_blkaddr) {
2697 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2698 nat_blkaddr, ssa_blkaddr,
2699 segment_count_nat << log_blocks_per_seg);
2700 return true;
2701 }
2702
2703 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2704 main_blkaddr) {
2705 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2706 ssa_blkaddr, main_blkaddr,
2707 segment_count_ssa << log_blocks_per_seg);
2708 return true;
2709 }
2710
2711 if (main_end_blkaddr > seg_end_blkaddr) {
2712 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2713 main_blkaddr, seg_end_blkaddr,
2714 segment_count_main << log_blocks_per_seg);
2715 return true;
2716 } else if (main_end_blkaddr < seg_end_blkaddr) {
2717 int err = 0;
2718 char *res;
2719
2720 /* fix in-memory information all the time */
2721 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2722 segment0_blkaddr) >> log_blocks_per_seg);
2723
2724 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2725 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2726 res = "internally";
2727 } else {
2728 err = __f2fs_commit_super(bh, NULL);
2729 res = err ? "failed" : "done";
2730 }
2731 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2732 res, main_blkaddr, seg_end_blkaddr,
2733 segment_count_main << log_blocks_per_seg);
2734 if (err)
2735 return true;
2736 }
2737 return false;
2738 }
2739
2740 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2741 struct buffer_head *bh)
2742 {
2743 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2744 block_t total_sections, blocks_per_seg;
2745 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2746 (bh->b_data + F2FS_SUPER_OFFSET);
2747 unsigned int blocksize;
2748 size_t crc_offset = 0;
2749 __u32 crc = 0;
2750
2751 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2752 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2753 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2754 return -EINVAL;
2755 }
2756
2757 /* Check checksum_offset and crc in superblock */
2758 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2759 crc_offset = le32_to_cpu(raw_super->checksum_offset);
2760 if (crc_offset !=
2761 offsetof(struct f2fs_super_block, crc)) {
2762 f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2763 crc_offset);
2764 return -EFSCORRUPTED;
2765 }
2766 crc = le32_to_cpu(raw_super->crc);
2767 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2768 f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2769 return -EFSCORRUPTED;
2770 }
2771 }
2772
2773 /* Currently, support only 4KB page cache size */
2774 if (F2FS_BLKSIZE != PAGE_SIZE) {
2775 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2776 PAGE_SIZE);
2777 return -EFSCORRUPTED;
2778 }
2779
2780 /* Currently, support only 4KB block size */
2781 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2782 if (blocksize != F2FS_BLKSIZE) {
2783 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2784 blocksize);
2785 return -EFSCORRUPTED;
2786 }
2787
2788 /* check log blocks per segment */
2789 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2790 f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2791 le32_to_cpu(raw_super->log_blocks_per_seg));
2792 return -EFSCORRUPTED;
2793 }
2794
2795 /* Currently, support 512/1024/2048/4096 bytes sector size */
2796 if (le32_to_cpu(raw_super->log_sectorsize) >
2797 F2FS_MAX_LOG_SECTOR_SIZE ||
2798 le32_to_cpu(raw_super->log_sectorsize) <
2799 F2FS_MIN_LOG_SECTOR_SIZE) {
2800 f2fs_info(sbi, "Invalid log sectorsize (%u)",
2801 le32_to_cpu(raw_super->log_sectorsize));
2802 return -EFSCORRUPTED;
2803 }
2804 if (le32_to_cpu(raw_super->log_sectors_per_block) +
2805 le32_to_cpu(raw_super->log_sectorsize) !=
2806 F2FS_MAX_LOG_SECTOR_SIZE) {
2807 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2808 le32_to_cpu(raw_super->log_sectors_per_block),
2809 le32_to_cpu(raw_super->log_sectorsize));
2810 return -EFSCORRUPTED;
2811 }
2812
2813 segment_count = le32_to_cpu(raw_super->segment_count);
2814 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2815 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2816 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2817 total_sections = le32_to_cpu(raw_super->section_count);
2818
2819 /* blocks_per_seg should be 512, given the above check */
2820 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2821
2822 if (segment_count > F2FS_MAX_SEGMENT ||
2823 segment_count < F2FS_MIN_SEGMENTS) {
2824 f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2825 return -EFSCORRUPTED;
2826 }
2827
2828 if (total_sections > segment_count_main || total_sections < 1 ||
2829 segs_per_sec > segment_count || !segs_per_sec) {
2830 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2831 segment_count, total_sections, segs_per_sec);
2832 return -EFSCORRUPTED;
2833 }
2834
2835 if (segment_count_main != total_sections * segs_per_sec) {
2836 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2837 segment_count_main, total_sections, segs_per_sec);
2838 return -EFSCORRUPTED;
2839 }
2840
2841 if ((segment_count / segs_per_sec) < total_sections) {
2842 f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2843 segment_count, segs_per_sec, total_sections);
2844 return -EFSCORRUPTED;
2845 }
2846
2847 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2848 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2849 segment_count, le64_to_cpu(raw_super->block_count));
2850 return -EFSCORRUPTED;
2851 }
2852
2853 if (RDEV(0).path[0]) {
2854 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2855 int i = 1;
2856
2857 while (i < MAX_DEVICES && RDEV(i).path[0]) {
2858 dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2859 i++;
2860 }
2861 if (segment_count != dev_seg_count) {
2862 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2863 segment_count, dev_seg_count);
2864 return -EFSCORRUPTED;
2865 }
2866 } else {
2867 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
2868 !bdev_is_zoned(sbi->sb->s_bdev)) {
2869 f2fs_info(sbi, "Zoned block device path is missing");
2870 return -EFSCORRUPTED;
2871 }
2872 }
2873
2874 if (secs_per_zone > total_sections || !secs_per_zone) {
2875 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2876 secs_per_zone, total_sections);
2877 return -EFSCORRUPTED;
2878 }
2879 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2880 raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2881 (le32_to_cpu(raw_super->extension_count) +
2882 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2883 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2884 le32_to_cpu(raw_super->extension_count),
2885 raw_super->hot_ext_count,
2886 F2FS_MAX_EXTENSION);
2887 return -EFSCORRUPTED;
2888 }
2889
2890 if (le32_to_cpu(raw_super->cp_payload) >
2891 (blocks_per_seg - F2FS_CP_PACKS)) {
2892 f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2893 le32_to_cpu(raw_super->cp_payload),
2894 blocks_per_seg - F2FS_CP_PACKS);
2895 return -EFSCORRUPTED;
2896 }
2897
2898 /* check reserved ino info */
2899 if (le32_to_cpu(raw_super->node_ino) != 1 ||
2900 le32_to_cpu(raw_super->meta_ino) != 2 ||
2901 le32_to_cpu(raw_super->root_ino) != 3) {
2902 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2903 le32_to_cpu(raw_super->node_ino),
2904 le32_to_cpu(raw_super->meta_ino),
2905 le32_to_cpu(raw_super->root_ino));
2906 return -EFSCORRUPTED;
2907 }
2908
2909 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2910 if (sanity_check_area_boundary(sbi, bh))
2911 return -EFSCORRUPTED;
2912
2913 return 0;
2914 }
2915
2916 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2917 {
2918 unsigned int total, fsmeta;
2919 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2920 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2921 unsigned int ovp_segments, reserved_segments;
2922 unsigned int main_segs, blocks_per_seg;
2923 unsigned int sit_segs, nat_segs;
2924 unsigned int sit_bitmap_size, nat_bitmap_size;
2925 unsigned int log_blocks_per_seg;
2926 unsigned int segment_count_main;
2927 unsigned int cp_pack_start_sum, cp_payload;
2928 block_t user_block_count, valid_user_blocks;
2929 block_t avail_node_count, valid_node_count;
2930 int i, j;
2931
2932 total = le32_to_cpu(raw_super->segment_count);
2933 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2934 sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2935 fsmeta += sit_segs;
2936 nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2937 fsmeta += nat_segs;
2938 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2939 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2940
2941 if (unlikely(fsmeta >= total))
2942 return 1;
2943
2944 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2945 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2946
2947 if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
2948 ovp_segments == 0 || reserved_segments == 0)) {
2949 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2950 return 1;
2951 }
2952
2953 user_block_count = le64_to_cpu(ckpt->user_block_count);
2954 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2955 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2956 if (!user_block_count || user_block_count >=
2957 segment_count_main << log_blocks_per_seg) {
2958 f2fs_err(sbi, "Wrong user_block_count: %u",
2959 user_block_count);
2960 return 1;
2961 }
2962
2963 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2964 if (valid_user_blocks > user_block_count) {
2965 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2966 valid_user_blocks, user_block_count);
2967 return 1;
2968 }
2969
2970 valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2971 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2972 if (valid_node_count > avail_node_count) {
2973 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2974 valid_node_count, avail_node_count);
2975 return 1;
2976 }
2977
2978 main_segs = le32_to_cpu(raw_super->segment_count_main);
2979 blocks_per_seg = sbi->blocks_per_seg;
2980
2981 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2982 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2983 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2984 return 1;
2985 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2986 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2987 le32_to_cpu(ckpt->cur_node_segno[j])) {
2988 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2989 i, j,
2990 le32_to_cpu(ckpt->cur_node_segno[i]));
2991 return 1;
2992 }
2993 }
2994 }
2995 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2996 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2997 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2998 return 1;
2999 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3000 if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3001 le32_to_cpu(ckpt->cur_data_segno[j])) {
3002 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3003 i, j,
3004 le32_to_cpu(ckpt->cur_data_segno[i]));
3005 return 1;
3006 }
3007 }
3008 }
3009 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3010 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3011 if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3012 le32_to_cpu(ckpt->cur_data_segno[j])) {
3013 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3014 i, j,
3015 le32_to_cpu(ckpt->cur_node_segno[i]));
3016 return 1;
3017 }
3018 }
3019 }
3020
3021 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3022 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3023
3024 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3025 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3026 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3027 sit_bitmap_size, nat_bitmap_size);
3028 return 1;
3029 }
3030
3031 cp_pack_start_sum = __start_sum_addr(sbi);
3032 cp_payload = __cp_payload(sbi);
3033 if (cp_pack_start_sum < cp_payload + 1 ||
3034 cp_pack_start_sum > blocks_per_seg - 1 -
3035 NR_CURSEG_PERSIST_TYPE) {
3036 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3037 cp_pack_start_sum);
3038 return 1;
3039 }
3040
3041 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3042 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3043 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3044 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3045 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3046 le32_to_cpu(ckpt->checksum_offset));
3047 return 1;
3048 }
3049
3050 if (unlikely(f2fs_cp_error(sbi))) {
3051 f2fs_err(sbi, "A bug case: need to run fsck");
3052 return 1;
3053 }
3054 return 0;
3055 }
3056
3057 static void init_sb_info(struct f2fs_sb_info *sbi)
3058 {
3059 struct f2fs_super_block *raw_super = sbi->raw_super;
3060 int i;
3061
3062 sbi->log_sectors_per_block =
3063 le32_to_cpu(raw_super->log_sectors_per_block);
3064 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3065 sbi->blocksize = 1 << sbi->log_blocksize;
3066 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3067 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3068 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3069 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3070 sbi->total_sections = le32_to_cpu(raw_super->section_count);
3071 sbi->total_node_count =
3072 (le32_to_cpu(raw_super->segment_count_nat) / 2)
3073 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3074 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3075 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3076 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3077 sbi->cur_victim_sec = NULL_SECNO;
3078 sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3079 sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3080 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3081 sbi->migration_granularity = sbi->segs_per_sec;
3082
3083 sbi->dir_level = DEF_DIR_LEVEL;
3084 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3085 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3086 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3087 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3088 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3089 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3090 DEF_UMOUNT_DISCARD_TIMEOUT;
3091 clear_sbi_flag(sbi, SBI_NEED_FSCK);
3092
3093 for (i = 0; i < NR_COUNT_TYPE; i++)
3094 atomic_set(&sbi->nr_pages[i], 0);
3095
3096 for (i = 0; i < META; i++)
3097 atomic_set(&sbi->wb_sync_req[i], 0);
3098
3099 INIT_LIST_HEAD(&sbi->s_list);
3100 mutex_init(&sbi->umount_mutex);
3101 init_rwsem(&sbi->io_order_lock);
3102 spin_lock_init(&sbi->cp_lock);
3103
3104 sbi->dirty_device = 0;
3105 spin_lock_init(&sbi->dev_lock);
3106
3107 init_rwsem(&sbi->sb_lock);
3108 init_rwsem(&sbi->pin_sem);
3109 }
3110
3111 static int init_percpu_info(struct f2fs_sb_info *sbi)
3112 {
3113 int err;
3114
3115 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3116 if (err)
3117 return err;
3118
3119 err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3120 GFP_KERNEL);
3121 if (err)
3122 percpu_counter_destroy(&sbi->alloc_valid_block_count);
3123
3124 return err;
3125 }
3126
3127 #ifdef CONFIG_BLK_DEV_ZONED
3128
3129 struct f2fs_report_zones_args {
3130 struct f2fs_dev_info *dev;
3131 bool zone_cap_mismatch;
3132 };
3133
3134 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3135 void *data)
3136 {
3137 struct f2fs_report_zones_args *rz_args = data;
3138
3139 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3140 return 0;
3141
3142 set_bit(idx, rz_args->dev->blkz_seq);
3143 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3144 F2FS_LOG_SECTORS_PER_BLOCK;
3145 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3146 rz_args->zone_cap_mismatch = true;
3147
3148 return 0;
3149 }
3150
3151 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3152 {
3153 struct block_device *bdev = FDEV(devi).bdev;
3154 sector_t nr_sectors = bdev_nr_sectors(bdev);
3155 struct f2fs_report_zones_args rep_zone_arg;
3156 int ret;
3157
3158 if (!f2fs_sb_has_blkzoned(sbi))
3159 return 0;
3160
3161 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3162 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3163 return -EINVAL;
3164 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3165 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3166 __ilog2_u32(sbi->blocks_per_blkz))
3167 return -EINVAL;
3168 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3169 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3170 sbi->log_blocks_per_blkz;
3171 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3172 FDEV(devi).nr_blkz++;
3173
3174 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3175 BITS_TO_LONGS(FDEV(devi).nr_blkz)
3176 * sizeof(unsigned long),
3177 GFP_KERNEL);
3178 if (!FDEV(devi).blkz_seq)
3179 return -ENOMEM;
3180
3181 /* Get block zones type and zone-capacity */
3182 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3183 FDEV(devi).nr_blkz * sizeof(block_t),
3184 GFP_KERNEL);
3185 if (!FDEV(devi).zone_capacity_blocks)
3186 return -ENOMEM;
3187
3188 rep_zone_arg.dev = &FDEV(devi);
3189 rep_zone_arg.zone_cap_mismatch = false;
3190
3191 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3192 &rep_zone_arg);
3193 if (ret < 0)
3194 return ret;
3195
3196 if (!rep_zone_arg.zone_cap_mismatch) {
3197 kfree(FDEV(devi).zone_capacity_blocks);
3198 FDEV(devi).zone_capacity_blocks = NULL;
3199 }
3200
3201 return 0;
3202 }
3203 #endif
3204
3205 /*
3206 * Read f2fs raw super block.
3207 * Because we have two copies of super block, so read both of them
3208 * to get the first valid one. If any one of them is broken, we pass
3209 * them recovery flag back to the caller.
3210 */
3211 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3212 struct f2fs_super_block **raw_super,
3213 int *valid_super_block, int *recovery)
3214 {
3215 struct super_block *sb = sbi->sb;
3216 int block;
3217 struct buffer_head *bh;
3218 struct f2fs_super_block *super;
3219 int err = 0;
3220
3221 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3222 if (!super)
3223 return -ENOMEM;
3224
3225 for (block = 0; block < 2; block++) {
3226 bh = sb_bread(sb, block);
3227 if (!bh) {
3228 f2fs_err(sbi, "Unable to read %dth superblock",
3229 block + 1);
3230 err = -EIO;
3231 *recovery = 1;
3232 continue;
3233 }
3234
3235 /* sanity checking of raw super */
3236 err = sanity_check_raw_super(sbi, bh);
3237 if (err) {
3238 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3239 block + 1);
3240 brelse(bh);
3241 *recovery = 1;
3242 continue;
3243 }
3244
3245 if (!*raw_super) {
3246 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3247 sizeof(*super));
3248 *valid_super_block = block;
3249 *raw_super = super;
3250 }
3251 brelse(bh);
3252 }
3253
3254 /* No valid superblock */
3255 if (!*raw_super)
3256 kfree(super);
3257 else
3258 err = 0;
3259
3260 return err;
3261 }
3262
3263 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3264 {
3265 struct buffer_head *bh;
3266 __u32 crc = 0;
3267 int err;
3268
3269 if ((recover && f2fs_readonly(sbi->sb)) ||
3270 bdev_read_only(sbi->sb->s_bdev)) {
3271 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3272 return -EROFS;
3273 }
3274
3275 /* we should update superblock crc here */
3276 if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3277 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3278 offsetof(struct f2fs_super_block, crc));
3279 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3280 }
3281
3282 /* write back-up superblock first */
3283 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3284 if (!bh)
3285 return -EIO;
3286 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3287 brelse(bh);
3288
3289 /* if we are in recovery path, skip writing valid superblock */
3290 if (recover || err)
3291 return err;
3292
3293 /* write current valid superblock */
3294 bh = sb_bread(sbi->sb, sbi->valid_super_block);
3295 if (!bh)
3296 return -EIO;
3297 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3298 brelse(bh);
3299 return err;
3300 }
3301
3302 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3303 {
3304 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3305 unsigned int max_devices = MAX_DEVICES;
3306 int i;
3307
3308 /* Initialize single device information */
3309 if (!RDEV(0).path[0]) {
3310 if (!bdev_is_zoned(sbi->sb->s_bdev))
3311 return 0;
3312 max_devices = 1;
3313 }
3314
3315 /*
3316 * Initialize multiple devices information, or single
3317 * zoned block device information.
3318 */
3319 sbi->devs = f2fs_kzalloc(sbi,
3320 array_size(max_devices,
3321 sizeof(struct f2fs_dev_info)),
3322 GFP_KERNEL);
3323 if (!sbi->devs)
3324 return -ENOMEM;
3325
3326 for (i = 0; i < max_devices; i++) {
3327
3328 if (i > 0 && !RDEV(i).path[0])
3329 break;
3330
3331 if (max_devices == 1) {
3332 /* Single zoned block device mount */
3333 FDEV(0).bdev =
3334 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3335 sbi->sb->s_mode, sbi->sb->s_type);
3336 } else {
3337 /* Multi-device mount */
3338 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3339 FDEV(i).total_segments =
3340 le32_to_cpu(RDEV(i).total_segments);
3341 if (i == 0) {
3342 FDEV(i).start_blk = 0;
3343 FDEV(i).end_blk = FDEV(i).start_blk +
3344 (FDEV(i).total_segments <<
3345 sbi->log_blocks_per_seg) - 1 +
3346 le32_to_cpu(raw_super->segment0_blkaddr);
3347 } else {
3348 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3349 FDEV(i).end_blk = FDEV(i).start_blk +
3350 (FDEV(i).total_segments <<
3351 sbi->log_blocks_per_seg) - 1;
3352 }
3353 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3354 sbi->sb->s_mode, sbi->sb->s_type);
3355 }
3356 if (IS_ERR(FDEV(i).bdev))
3357 return PTR_ERR(FDEV(i).bdev);
3358
3359 /* to release errored devices */
3360 sbi->s_ndevs = i + 1;
3361
3362 #ifdef CONFIG_BLK_DEV_ZONED
3363 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3364 !f2fs_sb_has_blkzoned(sbi)) {
3365 f2fs_err(sbi, "Zoned block device feature not enabled\n");
3366 return -EINVAL;
3367 }
3368 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3369 if (init_blkz_info(sbi, i)) {
3370 f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3371 return -EINVAL;
3372 }
3373 if (max_devices == 1)
3374 break;
3375 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3376 i, FDEV(i).path,
3377 FDEV(i).total_segments,
3378 FDEV(i).start_blk, FDEV(i).end_blk,
3379 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3380 "Host-aware" : "Host-managed");
3381 continue;
3382 }
3383 #endif
3384 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3385 i, FDEV(i).path,
3386 FDEV(i).total_segments,
3387 FDEV(i).start_blk, FDEV(i).end_blk);
3388 }
3389 f2fs_info(sbi,
3390 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3391 return 0;
3392 }
3393
3394 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3395 {
3396 #ifdef CONFIG_UNICODE
3397 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3398 const struct f2fs_sb_encodings *encoding_info;
3399 struct unicode_map *encoding;
3400 __u16 encoding_flags;
3401
3402 if (f2fs_sb_has_encrypt(sbi)) {
3403 f2fs_err(sbi,
3404 "Can't mount with encoding and encryption");
3405 return -EINVAL;
3406 }
3407
3408 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3409 &encoding_flags)) {
3410 f2fs_err(sbi,
3411 "Encoding requested by superblock is unknown");
3412 return -EINVAL;
3413 }
3414
3415 encoding = utf8_load(encoding_info->version);
3416 if (IS_ERR(encoding)) {
3417 f2fs_err(sbi,
3418 "can't mount with superblock charset: %s-%s "
3419 "not supported by the kernel. flags: 0x%x.",
3420 encoding_info->name, encoding_info->version,
3421 encoding_flags);
3422 return PTR_ERR(encoding);
3423 }
3424 f2fs_info(sbi, "Using encoding defined by superblock: "
3425 "%s-%s with flags 0x%hx", encoding_info->name,
3426 encoding_info->version?:"\b", encoding_flags);
3427
3428 sbi->sb->s_encoding = encoding;
3429 sbi->sb->s_encoding_flags = encoding_flags;
3430 sbi->sb->s_d_op = &f2fs_dentry_ops;
3431 }
3432 #else
3433 if (f2fs_sb_has_casefold(sbi)) {
3434 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3435 return -EINVAL;
3436 }
3437 #endif
3438 return 0;
3439 }
3440
3441 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3442 {
3443 struct f2fs_sm_info *sm_i = SM_I(sbi);
3444
3445 /* adjust parameters according to the volume size */
3446 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3447 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3448 sm_i->dcc_info->discard_granularity = 1;
3449 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3450 }
3451
3452 sbi->readdir_ra = 1;
3453 }
3454
3455 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3456 {
3457 struct f2fs_sb_info *sbi;
3458 struct f2fs_super_block *raw_super;
3459 struct inode *root;
3460 int err;
3461 bool skip_recovery = false, need_fsck = false;
3462 char *options = NULL;
3463 int recovery, i, valid_super_block;
3464 struct curseg_info *seg_i;
3465 int retry_cnt = 1;
3466
3467 try_onemore:
3468 err = -EINVAL;
3469 raw_super = NULL;
3470 valid_super_block = -1;
3471 recovery = 0;
3472
3473 /* allocate memory for f2fs-specific super block info */
3474 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3475 if (!sbi)
3476 return -ENOMEM;
3477
3478 sbi->sb = sb;
3479
3480 /* Load the checksum driver */
3481 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3482 if (IS_ERR(sbi->s_chksum_driver)) {
3483 f2fs_err(sbi, "Cannot load crc32 driver.");
3484 err = PTR_ERR(sbi->s_chksum_driver);
3485 sbi->s_chksum_driver = NULL;
3486 goto free_sbi;
3487 }
3488
3489 /* set a block size */
3490 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3491 f2fs_err(sbi, "unable to set blocksize");
3492 goto free_sbi;
3493 }
3494
3495 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3496 &recovery);
3497 if (err)
3498 goto free_sbi;
3499
3500 sb->s_fs_info = sbi;
3501 sbi->raw_super = raw_super;
3502
3503 /* precompute checksum seed for metadata */
3504 if (f2fs_sb_has_inode_chksum(sbi))
3505 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3506 sizeof(raw_super->uuid));
3507
3508 default_options(sbi);
3509 /* parse mount options */
3510 options = kstrdup((const char *)data, GFP_KERNEL);
3511 if (data && !options) {
3512 err = -ENOMEM;
3513 goto free_sb_buf;
3514 }
3515
3516 err = parse_options(sb, options, false);
3517 if (err)
3518 goto free_options;
3519
3520 sbi->max_file_blocks = max_file_blocks();
3521 sb->s_maxbytes = sbi->max_file_blocks <<
3522 le32_to_cpu(raw_super->log_blocksize);
3523 sb->s_max_links = F2FS_LINK_MAX;
3524
3525 err = f2fs_setup_casefold(sbi);
3526 if (err)
3527 goto free_options;
3528
3529 #ifdef CONFIG_QUOTA
3530 sb->dq_op = &f2fs_quota_operations;
3531 sb->s_qcop = &f2fs_quotactl_ops;
3532 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3533
3534 if (f2fs_sb_has_quota_ino(sbi)) {
3535 for (i = 0; i < MAXQUOTAS; i++) {
3536 if (f2fs_qf_ino(sbi->sb, i))
3537 sbi->nquota_files++;
3538 }
3539 }
3540 #endif
3541
3542 sb->s_op = &f2fs_sops;
3543 #ifdef CONFIG_FS_ENCRYPTION
3544 sb->s_cop = &f2fs_cryptops;
3545 #endif
3546 #ifdef CONFIG_FS_VERITY
3547 sb->s_vop = &f2fs_verityops;
3548 #endif
3549 sb->s_xattr = f2fs_xattr_handlers;
3550 sb->s_export_op = &f2fs_export_ops;
3551 sb->s_magic = F2FS_SUPER_MAGIC;
3552 sb->s_time_gran = 1;
3553 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3554 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3555 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3556 sb->s_iflags |= SB_I_CGROUPWB;
3557
3558 /* init f2fs-specific super block info */
3559 sbi->valid_super_block = valid_super_block;
3560 init_rwsem(&sbi->gc_lock);
3561 mutex_init(&sbi->writepages);
3562 mutex_init(&sbi->cp_mutex);
3563 init_rwsem(&sbi->node_write);
3564 init_rwsem(&sbi->node_change);
3565
3566 /* disallow all the data/node/meta page writes */
3567 set_sbi_flag(sbi, SBI_POR_DOING);
3568 spin_lock_init(&sbi->stat_lock);
3569
3570 /* init iostat info */
3571 spin_lock_init(&sbi->iostat_lock);
3572 sbi->iostat_enable = false;
3573 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3574
3575 for (i = 0; i < NR_PAGE_TYPE; i++) {
3576 int n = (i == META) ? 1: NR_TEMP_TYPE;
3577 int j;
3578
3579 sbi->write_io[i] =
3580 f2fs_kmalloc(sbi,
3581 array_size(n,
3582 sizeof(struct f2fs_bio_info)),
3583 GFP_KERNEL);
3584 if (!sbi->write_io[i]) {
3585 err = -ENOMEM;
3586 goto free_bio_info;
3587 }
3588
3589 for (j = HOT; j < n; j++) {
3590 init_rwsem(&sbi->write_io[i][j].io_rwsem);
3591 sbi->write_io[i][j].sbi = sbi;
3592 sbi->write_io[i][j].bio = NULL;
3593 spin_lock_init(&sbi->write_io[i][j].io_lock);
3594 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3595 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3596 init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3597 }
3598 }
3599
3600 init_rwsem(&sbi->cp_rwsem);
3601 init_rwsem(&sbi->quota_sem);
3602 init_waitqueue_head(&sbi->cp_wait);
3603 init_sb_info(sbi);
3604
3605 err = init_percpu_info(sbi);
3606 if (err)
3607 goto free_bio_info;
3608
3609 if (F2FS_IO_ALIGNED(sbi)) {
3610 sbi->write_io_dummy =
3611 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3612 if (!sbi->write_io_dummy) {
3613 err = -ENOMEM;
3614 goto free_percpu;
3615 }
3616 }
3617
3618 /* init per sbi slab cache */
3619 err = f2fs_init_xattr_caches(sbi);
3620 if (err)
3621 goto free_io_dummy;
3622 err = f2fs_init_page_array_cache(sbi);
3623 if (err)
3624 goto free_xattr_cache;
3625
3626 /* get an inode for meta space */
3627 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3628 if (IS_ERR(sbi->meta_inode)) {
3629 f2fs_err(sbi, "Failed to read F2FS meta data inode");
3630 err = PTR_ERR(sbi->meta_inode);
3631 goto free_page_array_cache;
3632 }
3633
3634 err = f2fs_get_valid_checkpoint(sbi);
3635 if (err) {
3636 f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3637 goto free_meta_inode;
3638 }
3639
3640 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3641 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3642 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3643 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3644 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3645 }
3646
3647 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3648 set_sbi_flag(sbi, SBI_NEED_FSCK);
3649
3650 /* Initialize device list */
3651 err = f2fs_scan_devices(sbi);
3652 if (err) {
3653 f2fs_err(sbi, "Failed to find devices");
3654 goto free_devices;
3655 }
3656
3657 err = f2fs_init_post_read_wq(sbi);
3658 if (err) {
3659 f2fs_err(sbi, "Failed to initialize post read workqueue");
3660 goto free_devices;
3661 }
3662
3663 sbi->total_valid_node_count =
3664 le32_to_cpu(sbi->ckpt->valid_node_count);
3665 percpu_counter_set(&sbi->total_valid_inode_count,
3666 le32_to_cpu(sbi->ckpt->valid_inode_count));
3667 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3668 sbi->total_valid_block_count =
3669 le64_to_cpu(sbi->ckpt->valid_block_count);
3670 sbi->last_valid_block_count = sbi->total_valid_block_count;
3671 sbi->reserved_blocks = 0;
3672 sbi->current_reserved_blocks = 0;
3673 limit_reserve_root(sbi);
3674 adjust_unusable_cap_perc(sbi);
3675
3676 for (i = 0; i < NR_INODE_TYPE; i++) {
3677 INIT_LIST_HEAD(&sbi->inode_list[i]);
3678 spin_lock_init(&sbi->inode_lock[i]);
3679 }
3680 mutex_init(&sbi->flush_lock);
3681
3682 f2fs_init_extent_cache_info(sbi);
3683
3684 f2fs_init_ino_entry_info(sbi);
3685
3686 f2fs_init_fsync_node_info(sbi);
3687
3688 /* setup f2fs internal modules */
3689 err = f2fs_build_segment_manager(sbi);
3690 if (err) {
3691 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3692 err);
3693 goto free_sm;
3694 }
3695 err = f2fs_build_node_manager(sbi);
3696 if (err) {
3697 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3698 err);
3699 goto free_nm;
3700 }
3701
3702 /* For write statistics */
3703 if (sb->s_bdev->bd_part)
3704 sbi->sectors_written_start =
3705 (u64)part_stat_read(sb->s_bdev->bd_part,
3706 sectors[STAT_WRITE]);
3707
3708 /* Read accumulated write IO statistics if exists */
3709 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3710 if (__exist_node_summaries(sbi))
3711 sbi->kbytes_written =
3712 le64_to_cpu(seg_i->journal->info.kbytes_written);
3713
3714 f2fs_build_gc_manager(sbi);
3715
3716 err = f2fs_build_stats(sbi);
3717 if (err)
3718 goto free_nm;
3719
3720 /* get an inode for node space */
3721 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3722 if (IS_ERR(sbi->node_inode)) {
3723 f2fs_err(sbi, "Failed to read node inode");
3724 err = PTR_ERR(sbi->node_inode);
3725 goto free_stats;
3726 }
3727
3728 /* read root inode and dentry */
3729 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3730 if (IS_ERR(root)) {
3731 f2fs_err(sbi, "Failed to read root inode");
3732 err = PTR_ERR(root);
3733 goto free_node_inode;
3734 }
3735 if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3736 !root->i_size || !root->i_nlink) {
3737 iput(root);
3738 err = -EINVAL;
3739 goto free_node_inode;
3740 }
3741
3742 sb->s_root = d_make_root(root); /* allocate root dentry */
3743 if (!sb->s_root) {
3744 err = -ENOMEM;
3745 goto free_node_inode;
3746 }
3747
3748 err = f2fs_register_sysfs(sbi);
3749 if (err)
3750 goto free_root_inode;
3751
3752 #ifdef CONFIG_QUOTA
3753 /* Enable quota usage during mount */
3754 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3755 err = f2fs_enable_quotas(sb);
3756 if (err)
3757 f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3758 }
3759 #endif
3760 /* if there are any orphan inodes, free them */
3761 err = f2fs_recover_orphan_inodes(sbi);
3762 if (err)
3763 goto free_meta;
3764
3765 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3766 goto reset_checkpoint;
3767
3768 /* recover fsynced data */
3769 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3770 !test_opt(sbi, NORECOVERY)) {
3771 /*
3772 * mount should be failed, when device has readonly mode, and
3773 * previous checkpoint was not done by clean system shutdown.
3774 */
3775 if (f2fs_hw_is_readonly(sbi)) {
3776 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3777 err = -EROFS;
3778 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3779 goto free_meta;
3780 }
3781 f2fs_info(sbi, "write access unavailable, skipping recovery");
3782 goto reset_checkpoint;
3783 }
3784
3785 if (need_fsck)
3786 set_sbi_flag(sbi, SBI_NEED_FSCK);
3787
3788 if (skip_recovery)
3789 goto reset_checkpoint;
3790
3791 err = f2fs_recover_fsync_data(sbi, false);
3792 if (err < 0) {
3793 if (err != -ENOMEM)
3794 skip_recovery = true;
3795 need_fsck = true;
3796 f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3797 err);
3798 goto free_meta;
3799 }
3800 } else {
3801 err = f2fs_recover_fsync_data(sbi, true);
3802
3803 if (!f2fs_readonly(sb) && err > 0) {
3804 err = -EINVAL;
3805 f2fs_err(sbi, "Need to recover fsync data");
3806 goto free_meta;
3807 }
3808 }
3809
3810 /*
3811 * If the f2fs is not readonly and fsync data recovery succeeds,
3812 * check zoned block devices' write pointer consistency.
3813 */
3814 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3815 err = f2fs_check_write_pointer(sbi);
3816 if (err)
3817 goto free_meta;
3818 }
3819
3820 reset_checkpoint:
3821 f2fs_init_inmem_curseg(sbi);
3822
3823 /* f2fs_recover_fsync_data() cleared this already */
3824 clear_sbi_flag(sbi, SBI_POR_DOING);
3825
3826 if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3827 err = f2fs_disable_checkpoint(sbi);
3828 if (err)
3829 goto sync_free_meta;
3830 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3831 f2fs_enable_checkpoint(sbi);
3832 }
3833
3834 /*
3835 * If filesystem is not mounted as read-only then
3836 * do start the gc_thread.
3837 */
3838 if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3839 /* After POR, we can run background GC thread.*/
3840 err = f2fs_start_gc_thread(sbi);
3841 if (err)
3842 goto sync_free_meta;
3843 }
3844 kvfree(options);
3845
3846 /* recover broken superblock */
3847 if (recovery) {
3848 err = f2fs_commit_super(sbi, true);
3849 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3850 sbi->valid_super_block ? 1 : 2, err);
3851 }
3852
3853 f2fs_join_shrinker(sbi);
3854
3855 f2fs_tuning_parameters(sbi);
3856
3857 f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3858 cur_cp_version(F2FS_CKPT(sbi)));
3859 f2fs_update_time(sbi, CP_TIME);
3860 f2fs_update_time(sbi, REQ_TIME);
3861 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3862 return 0;
3863
3864 sync_free_meta:
3865 /* safe to flush all the data */
3866 sync_filesystem(sbi->sb);
3867 retry_cnt = 0;
3868
3869 free_meta:
3870 #ifdef CONFIG_QUOTA
3871 f2fs_truncate_quota_inode_pages(sb);
3872 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3873 f2fs_quota_off_umount(sbi->sb);
3874 #endif
3875 /*
3876 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3877 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3878 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3879 * falls into an infinite loop in f2fs_sync_meta_pages().
3880 */
3881 truncate_inode_pages_final(META_MAPPING(sbi));
3882 /* evict some inodes being cached by GC */
3883 evict_inodes(sb);
3884 f2fs_unregister_sysfs(sbi);
3885 free_root_inode:
3886 dput(sb->s_root);
3887 sb->s_root = NULL;
3888 free_node_inode:
3889 f2fs_release_ino_entry(sbi, true);
3890 truncate_inode_pages_final(NODE_MAPPING(sbi));
3891 iput(sbi->node_inode);
3892 sbi->node_inode = NULL;
3893 free_stats:
3894 f2fs_destroy_stats(sbi);
3895 free_nm:
3896 f2fs_destroy_node_manager(sbi);
3897 free_sm:
3898 f2fs_destroy_segment_manager(sbi);
3899 f2fs_destroy_post_read_wq(sbi);
3900 free_devices:
3901 destroy_device_list(sbi);
3902 kvfree(sbi->ckpt);
3903 free_meta_inode:
3904 make_bad_inode(sbi->meta_inode);
3905 iput(sbi->meta_inode);
3906 sbi->meta_inode = NULL;
3907 free_page_array_cache:
3908 f2fs_destroy_page_array_cache(sbi);
3909 free_xattr_cache:
3910 f2fs_destroy_xattr_caches(sbi);
3911 free_io_dummy:
3912 mempool_destroy(sbi->write_io_dummy);
3913 free_percpu:
3914 destroy_percpu_info(sbi);
3915 free_bio_info:
3916 for (i = 0; i < NR_PAGE_TYPE; i++)
3917 kvfree(sbi->write_io[i]);
3918
3919 #ifdef CONFIG_UNICODE
3920 utf8_unload(sb->s_encoding);
3921 #endif
3922 free_options:
3923 #ifdef CONFIG_QUOTA
3924 for (i = 0; i < MAXQUOTAS; i++)
3925 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3926 #endif
3927 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
3928 kvfree(options);
3929 free_sb_buf:
3930 kfree(raw_super);
3931 free_sbi:
3932 if (sbi->s_chksum_driver)
3933 crypto_free_shash(sbi->s_chksum_driver);
3934 kfree(sbi);
3935
3936 /* give only one another chance */
3937 if (retry_cnt > 0 && skip_recovery) {
3938 retry_cnt--;
3939 shrink_dcache_sb(sb);
3940 goto try_onemore;
3941 }
3942 return err;
3943 }
3944
3945 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3946 const char *dev_name, void *data)
3947 {
3948 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3949 }
3950
3951 static void kill_f2fs_super(struct super_block *sb)
3952 {
3953 if (sb->s_root) {
3954 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3955
3956 set_sbi_flag(sbi, SBI_IS_CLOSE);
3957 f2fs_stop_gc_thread(sbi);
3958 f2fs_stop_discard_thread(sbi);
3959
3960 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3961 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3962 struct cp_control cpc = {
3963 .reason = CP_UMOUNT,
3964 };
3965 f2fs_write_checkpoint(sbi, &cpc);
3966 }
3967
3968 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3969 sb->s_flags &= ~SB_RDONLY;
3970 }
3971 kill_block_super(sb);
3972 }
3973
3974 static struct file_system_type f2fs_fs_type = {
3975 .owner = THIS_MODULE,
3976 .name = "f2fs",
3977 .mount = f2fs_mount,
3978 .kill_sb = kill_f2fs_super,
3979 .fs_flags = FS_REQUIRES_DEV,
3980 };
3981 MODULE_ALIAS_FS("f2fs");
3982
3983 static int __init init_inodecache(void)
3984 {
3985 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3986 sizeof(struct f2fs_inode_info), 0,
3987 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3988 if (!f2fs_inode_cachep)
3989 return -ENOMEM;
3990 return 0;
3991 }
3992
3993 static void destroy_inodecache(void)
3994 {
3995 /*
3996 * Make sure all delayed rcu free inodes are flushed before we
3997 * destroy cache.
3998 */
3999 rcu_barrier();
4000 kmem_cache_destroy(f2fs_inode_cachep);
4001 }
4002
4003 static int __init init_f2fs_fs(void)
4004 {
4005 int err;
4006
4007 if (PAGE_SIZE != F2FS_BLKSIZE) {
4008 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4009 PAGE_SIZE, F2FS_BLKSIZE);
4010 return -EINVAL;
4011 }
4012
4013 f2fs_build_trace_ios();
4014
4015 err = init_inodecache();
4016 if (err)
4017 goto fail;
4018 err = f2fs_create_node_manager_caches();
4019 if (err)
4020 goto free_inodecache;
4021 err = f2fs_create_segment_manager_caches();
4022 if (err)
4023 goto free_node_manager_caches;
4024 err = f2fs_create_checkpoint_caches();
4025 if (err)
4026 goto free_segment_manager_caches;
4027 err = f2fs_create_extent_cache();
4028 if (err)
4029 goto free_checkpoint_caches;
4030 err = f2fs_create_garbage_collection_cache();
4031 if (err)
4032 goto free_extent_cache;
4033 err = f2fs_init_sysfs();
4034 if (err)
4035 goto free_garbage_collection_cache;
4036 err = register_shrinker(&f2fs_shrinker_info);
4037 if (err)
4038 goto free_sysfs;
4039 err = register_filesystem(&f2fs_fs_type);
4040 if (err)
4041 goto free_shrinker;
4042 f2fs_create_root_stats();
4043 err = f2fs_init_post_read_processing();
4044 if (err)
4045 goto free_root_stats;
4046 err = f2fs_init_bio_entry_cache();
4047 if (err)
4048 goto free_post_read;
4049 err = f2fs_init_bioset();
4050 if (err)
4051 goto free_bio_enrty_cache;
4052 err = f2fs_init_compress_mempool();
4053 if (err)
4054 goto free_bioset;
4055 err = f2fs_init_compress_cache();
4056 if (err)
4057 goto free_compress_mempool;
4058 return 0;
4059 free_compress_mempool:
4060 f2fs_destroy_compress_mempool();
4061 free_bioset:
4062 f2fs_destroy_bioset();
4063 free_bio_enrty_cache:
4064 f2fs_destroy_bio_entry_cache();
4065 free_post_read:
4066 f2fs_destroy_post_read_processing();
4067 free_root_stats:
4068 f2fs_destroy_root_stats();
4069 unregister_filesystem(&f2fs_fs_type);
4070 free_shrinker:
4071 unregister_shrinker(&f2fs_shrinker_info);
4072 free_sysfs:
4073 f2fs_exit_sysfs();
4074 free_garbage_collection_cache:
4075 f2fs_destroy_garbage_collection_cache();
4076 free_extent_cache:
4077 f2fs_destroy_extent_cache();
4078 free_checkpoint_caches:
4079 f2fs_destroy_checkpoint_caches();
4080 free_segment_manager_caches:
4081 f2fs_destroy_segment_manager_caches();
4082 free_node_manager_caches:
4083 f2fs_destroy_node_manager_caches();
4084 free_inodecache:
4085 destroy_inodecache();
4086 fail:
4087 return err;
4088 }
4089
4090 static void __exit exit_f2fs_fs(void)
4091 {
4092 f2fs_destroy_compress_cache();
4093 f2fs_destroy_compress_mempool();
4094 f2fs_destroy_bioset();
4095 f2fs_destroy_bio_entry_cache();
4096 f2fs_destroy_post_read_processing();
4097 f2fs_destroy_root_stats();
4098 unregister_filesystem(&f2fs_fs_type);
4099 unregister_shrinker(&f2fs_shrinker_info);
4100 f2fs_exit_sysfs();
4101 f2fs_destroy_garbage_collection_cache();
4102 f2fs_destroy_extent_cache();
4103 f2fs_destroy_checkpoint_caches();
4104 f2fs_destroy_segment_manager_caches();
4105 f2fs_destroy_node_manager_caches();
4106 destroy_inodecache();
4107 f2fs_destroy_trace_ios();
4108 }
4109
4110 module_init(init_f2fs_fs)
4111 module_exit(exit_f2fs_fs)
4112
4113 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4114 MODULE_DESCRIPTION("Flash Friendly File System");
4115 MODULE_LICENSE("GPL");
4116