]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/super.c
ebe5970315e91ddc004b7abfe9137f4f459d7271
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 .scan_objects = f2fs_shrink_scan,
45 .count_objects = f2fs_shrink_count,
46 .seeks = DEFAULT_SEEKS,
47 };
48
49 enum {
50 Opt_gc_background,
51 Opt_disable_roll_forward,
52 Opt_norecovery,
53 Opt_discard,
54 Opt_noheap,
55 Opt_user_xattr,
56 Opt_nouser_xattr,
57 Opt_acl,
58 Opt_noacl,
59 Opt_active_logs,
60 Opt_disable_ext_identify,
61 Opt_inline_xattr,
62 Opt_inline_data,
63 Opt_inline_dentry,
64 Opt_flush_merge,
65 Opt_nobarrier,
66 Opt_fastboot,
67 Opt_extent_cache,
68 Opt_noextent_cache,
69 Opt_noinline_data,
70 Opt_data_flush,
71 Opt_err,
72 };
73
74 static match_table_t f2fs_tokens = {
75 {Opt_gc_background, "background_gc=%s"},
76 {Opt_disable_roll_forward, "disable_roll_forward"},
77 {Opt_norecovery, "norecovery"},
78 {Opt_discard, "discard"},
79 {Opt_noheap, "no_heap"},
80 {Opt_user_xattr, "user_xattr"},
81 {Opt_nouser_xattr, "nouser_xattr"},
82 {Opt_acl, "acl"},
83 {Opt_noacl, "noacl"},
84 {Opt_active_logs, "active_logs=%u"},
85 {Opt_disable_ext_identify, "disable_ext_identify"},
86 {Opt_inline_xattr, "inline_xattr"},
87 {Opt_inline_data, "inline_data"},
88 {Opt_inline_dentry, "inline_dentry"},
89 {Opt_flush_merge, "flush_merge"},
90 {Opt_nobarrier, "nobarrier"},
91 {Opt_fastboot, "fastboot"},
92 {Opt_extent_cache, "extent_cache"},
93 {Opt_noextent_cache, "noextent_cache"},
94 {Opt_noinline_data, "noinline_data"},
95 {Opt_data_flush, "data_flush"},
96 {Opt_err, NULL},
97 };
98
99 /* Sysfs support for f2fs */
100 enum {
101 GC_THREAD, /* struct f2fs_gc_thread */
102 SM_INFO, /* struct f2fs_sm_info */
103 NM_INFO, /* struct f2fs_nm_info */
104 F2FS_SBI, /* struct f2fs_sb_info */
105 };
106
107 struct f2fs_attr {
108 struct attribute attr;
109 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
110 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
111 const char *, size_t);
112 int struct_type;
113 int offset;
114 };
115
116 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
117 {
118 if (struct_type == GC_THREAD)
119 return (unsigned char *)sbi->gc_thread;
120 else if (struct_type == SM_INFO)
121 return (unsigned char *)SM_I(sbi);
122 else if (struct_type == NM_INFO)
123 return (unsigned char *)NM_I(sbi);
124 else if (struct_type == F2FS_SBI)
125 return (unsigned char *)sbi;
126 return NULL;
127 }
128
129 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
130 struct f2fs_sb_info *sbi, char *buf)
131 {
132 struct super_block *sb = sbi->sb;
133
134 if (!sb->s_bdev->bd_part)
135 return snprintf(buf, PAGE_SIZE, "0\n");
136
137 return snprintf(buf, PAGE_SIZE, "%llu\n",
138 (unsigned long long)(sbi->kbytes_written +
139 BD_PART_WRITTEN(sbi)));
140 }
141
142 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
143 struct f2fs_sb_info *sbi, char *buf)
144 {
145 unsigned char *ptr = NULL;
146 unsigned int *ui;
147
148 ptr = __struct_ptr(sbi, a->struct_type);
149 if (!ptr)
150 return -EINVAL;
151
152 ui = (unsigned int *)(ptr + a->offset);
153
154 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
155 }
156
157 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
158 struct f2fs_sb_info *sbi,
159 const char *buf, size_t count)
160 {
161 unsigned char *ptr;
162 unsigned long t;
163 unsigned int *ui;
164 ssize_t ret;
165
166 ptr = __struct_ptr(sbi, a->struct_type);
167 if (!ptr)
168 return -EINVAL;
169
170 ui = (unsigned int *)(ptr + a->offset);
171
172 ret = kstrtoul(skip_spaces(buf), 0, &t);
173 if (ret < 0)
174 return ret;
175 *ui = t;
176 return count;
177 }
178
179 static ssize_t f2fs_attr_show(struct kobject *kobj,
180 struct attribute *attr, char *buf)
181 {
182 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
183 s_kobj);
184 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
185
186 return a->show ? a->show(a, sbi, buf) : 0;
187 }
188
189 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
190 const char *buf, size_t len)
191 {
192 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
193 s_kobj);
194 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
195
196 return a->store ? a->store(a, sbi, buf, len) : 0;
197 }
198
199 static void f2fs_sb_release(struct kobject *kobj)
200 {
201 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
202 s_kobj);
203 complete(&sbi->s_kobj_unregister);
204 }
205
206 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
207 static struct f2fs_attr f2fs_attr_##_name = { \
208 .attr = {.name = __stringify(_name), .mode = _mode }, \
209 .show = _show, \
210 .store = _store, \
211 .struct_type = _struct_type, \
212 .offset = _offset \
213 }
214
215 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
216 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
217 f2fs_sbi_show, f2fs_sbi_store, \
218 offsetof(struct struct_name, elname))
219
220 #define F2FS_GENERAL_RO_ATTR(name) \
221 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
222
223 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
224 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
225 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
226 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
227 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
228 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
229 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
230 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
231 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
232 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
233 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
234 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
235 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
236 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
237 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
238 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
239 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
240 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
241
242 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
243 static struct attribute *f2fs_attrs[] = {
244 ATTR_LIST(gc_min_sleep_time),
245 ATTR_LIST(gc_max_sleep_time),
246 ATTR_LIST(gc_no_gc_sleep_time),
247 ATTR_LIST(gc_idle),
248 ATTR_LIST(reclaim_segments),
249 ATTR_LIST(max_small_discards),
250 ATTR_LIST(batched_trim_sections),
251 ATTR_LIST(ipu_policy),
252 ATTR_LIST(min_ipu_util),
253 ATTR_LIST(min_fsync_blocks),
254 ATTR_LIST(max_victim_search),
255 ATTR_LIST(dir_level),
256 ATTR_LIST(ram_thresh),
257 ATTR_LIST(ra_nid_pages),
258 ATTR_LIST(dirty_nats_ratio),
259 ATTR_LIST(cp_interval),
260 ATTR_LIST(idle_interval),
261 ATTR_LIST(lifetime_write_kbytes),
262 NULL,
263 };
264
265 static const struct sysfs_ops f2fs_attr_ops = {
266 .show = f2fs_attr_show,
267 .store = f2fs_attr_store,
268 };
269
270 static struct kobj_type f2fs_ktype = {
271 .default_attrs = f2fs_attrs,
272 .sysfs_ops = &f2fs_attr_ops,
273 .release = f2fs_sb_release,
274 };
275
276 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
277 {
278 struct va_format vaf;
279 va_list args;
280
281 va_start(args, fmt);
282 vaf.fmt = fmt;
283 vaf.va = &args;
284 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
285 va_end(args);
286 }
287
288 static void init_once(void *foo)
289 {
290 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
291
292 inode_init_once(&fi->vfs_inode);
293 }
294
295 static int parse_options(struct super_block *sb, char *options)
296 {
297 struct f2fs_sb_info *sbi = F2FS_SB(sb);
298 struct request_queue *q;
299 substring_t args[MAX_OPT_ARGS];
300 char *p, *name;
301 int arg = 0;
302
303 if (!options)
304 return 0;
305
306 while ((p = strsep(&options, ",")) != NULL) {
307 int token;
308 if (!*p)
309 continue;
310 /*
311 * Initialize args struct so we know whether arg was
312 * found; some options take optional arguments.
313 */
314 args[0].to = args[0].from = NULL;
315 token = match_token(p, f2fs_tokens, args);
316
317 switch (token) {
318 case Opt_gc_background:
319 name = match_strdup(&args[0]);
320
321 if (!name)
322 return -ENOMEM;
323 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
324 set_opt(sbi, BG_GC);
325 clear_opt(sbi, FORCE_FG_GC);
326 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
327 clear_opt(sbi, BG_GC);
328 clear_opt(sbi, FORCE_FG_GC);
329 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
330 set_opt(sbi, BG_GC);
331 set_opt(sbi, FORCE_FG_GC);
332 } else {
333 kfree(name);
334 return -EINVAL;
335 }
336 kfree(name);
337 break;
338 case Opt_disable_roll_forward:
339 set_opt(sbi, DISABLE_ROLL_FORWARD);
340 break;
341 case Opt_norecovery:
342 /* this option mounts f2fs with ro */
343 set_opt(sbi, DISABLE_ROLL_FORWARD);
344 if (!f2fs_readonly(sb))
345 return -EINVAL;
346 break;
347 case Opt_discard:
348 q = bdev_get_queue(sb->s_bdev);
349 if (blk_queue_discard(q)) {
350 set_opt(sbi, DISCARD);
351 } else {
352 f2fs_msg(sb, KERN_WARNING,
353 "mounting with \"discard\" option, but "
354 "the device does not support discard");
355 }
356 break;
357 case Opt_noheap:
358 set_opt(sbi, NOHEAP);
359 break;
360 #ifdef CONFIG_F2FS_FS_XATTR
361 case Opt_user_xattr:
362 set_opt(sbi, XATTR_USER);
363 break;
364 case Opt_nouser_xattr:
365 clear_opt(sbi, XATTR_USER);
366 break;
367 case Opt_inline_xattr:
368 set_opt(sbi, INLINE_XATTR);
369 break;
370 #else
371 case Opt_user_xattr:
372 f2fs_msg(sb, KERN_INFO,
373 "user_xattr options not supported");
374 break;
375 case Opt_nouser_xattr:
376 f2fs_msg(sb, KERN_INFO,
377 "nouser_xattr options not supported");
378 break;
379 case Opt_inline_xattr:
380 f2fs_msg(sb, KERN_INFO,
381 "inline_xattr options not supported");
382 break;
383 #endif
384 #ifdef CONFIG_F2FS_FS_POSIX_ACL
385 case Opt_acl:
386 set_opt(sbi, POSIX_ACL);
387 break;
388 case Opt_noacl:
389 clear_opt(sbi, POSIX_ACL);
390 break;
391 #else
392 case Opt_acl:
393 f2fs_msg(sb, KERN_INFO, "acl options not supported");
394 break;
395 case Opt_noacl:
396 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
397 break;
398 #endif
399 case Opt_active_logs:
400 if (args->from && match_int(args, &arg))
401 return -EINVAL;
402 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
403 return -EINVAL;
404 sbi->active_logs = arg;
405 break;
406 case Opt_disable_ext_identify:
407 set_opt(sbi, DISABLE_EXT_IDENTIFY);
408 break;
409 case Opt_inline_data:
410 set_opt(sbi, INLINE_DATA);
411 break;
412 case Opt_inline_dentry:
413 set_opt(sbi, INLINE_DENTRY);
414 break;
415 case Opt_flush_merge:
416 set_opt(sbi, FLUSH_MERGE);
417 break;
418 case Opt_nobarrier:
419 set_opt(sbi, NOBARRIER);
420 break;
421 case Opt_fastboot:
422 set_opt(sbi, FASTBOOT);
423 break;
424 case Opt_extent_cache:
425 set_opt(sbi, EXTENT_CACHE);
426 break;
427 case Opt_noextent_cache:
428 clear_opt(sbi, EXTENT_CACHE);
429 break;
430 case Opt_noinline_data:
431 clear_opt(sbi, INLINE_DATA);
432 break;
433 case Opt_data_flush:
434 set_opt(sbi, DATA_FLUSH);
435 break;
436 default:
437 f2fs_msg(sb, KERN_ERR,
438 "Unrecognized mount option \"%s\" or missing value",
439 p);
440 return -EINVAL;
441 }
442 }
443 return 0;
444 }
445
446 static struct inode *f2fs_alloc_inode(struct super_block *sb)
447 {
448 struct f2fs_inode_info *fi;
449
450 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
451 if (!fi)
452 return NULL;
453
454 init_once((void *) fi);
455
456 /* Initialize f2fs-specific inode info */
457 fi->vfs_inode.i_version = 1;
458 atomic_set(&fi->dirty_pages, 0);
459 fi->i_current_depth = 1;
460 fi->i_advise = 0;
461 init_rwsem(&fi->i_sem);
462 INIT_LIST_HEAD(&fi->dirty_list);
463 INIT_LIST_HEAD(&fi->inmem_pages);
464 mutex_init(&fi->inmem_lock);
465
466 set_inode_flag(fi, FI_NEW_INODE);
467
468 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
469 set_inode_flag(fi, FI_INLINE_XATTR);
470
471 /* Will be used by directory only */
472 fi->i_dir_level = F2FS_SB(sb)->dir_level;
473
474 #ifdef CONFIG_F2FS_FS_ENCRYPTION
475 fi->i_crypt_info = NULL;
476 #endif
477 return &fi->vfs_inode;
478 }
479
480 static int f2fs_drop_inode(struct inode *inode)
481 {
482 /*
483 * This is to avoid a deadlock condition like below.
484 * writeback_single_inode(inode)
485 * - f2fs_write_data_page
486 * - f2fs_gc -> iput -> evict
487 * - inode_wait_for_writeback(inode)
488 */
489 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
490 if (!inode->i_nlink && !is_bad_inode(inode)) {
491 /* to avoid evict_inode call simultaneously */
492 atomic_inc(&inode->i_count);
493 spin_unlock(&inode->i_lock);
494
495 /* some remained atomic pages should discarded */
496 if (f2fs_is_atomic_file(inode))
497 drop_inmem_pages(inode);
498
499 /* should remain fi->extent_tree for writepage */
500 f2fs_destroy_extent_node(inode);
501
502 sb_start_intwrite(inode->i_sb);
503 i_size_write(inode, 0);
504
505 if (F2FS_HAS_BLOCKS(inode))
506 f2fs_truncate(inode, true);
507
508 sb_end_intwrite(inode->i_sb);
509
510 #ifdef CONFIG_F2FS_FS_ENCRYPTION
511 if (F2FS_I(inode)->i_crypt_info)
512 f2fs_free_encryption_info(inode,
513 F2FS_I(inode)->i_crypt_info);
514 #endif
515 spin_lock(&inode->i_lock);
516 atomic_dec(&inode->i_count);
517 }
518 return 0;
519 }
520 return generic_drop_inode(inode);
521 }
522
523 /*
524 * f2fs_dirty_inode() is called from __mark_inode_dirty()
525 *
526 * We should call set_dirty_inode to write the dirty inode through write_inode.
527 */
528 static void f2fs_dirty_inode(struct inode *inode, int flags)
529 {
530 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
531 }
532
533 static void f2fs_i_callback(struct rcu_head *head)
534 {
535 struct inode *inode = container_of(head, struct inode, i_rcu);
536 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
537 }
538
539 static void f2fs_destroy_inode(struct inode *inode)
540 {
541 call_rcu(&inode->i_rcu, f2fs_i_callback);
542 }
543
544 static void f2fs_put_super(struct super_block *sb)
545 {
546 struct f2fs_sb_info *sbi = F2FS_SB(sb);
547
548 if (sbi->s_proc) {
549 remove_proc_entry("segment_info", sbi->s_proc);
550 remove_proc_entry(sb->s_id, f2fs_proc_root);
551 }
552 kobject_del(&sbi->s_kobj);
553
554 stop_gc_thread(sbi);
555
556 /* prevent remaining shrinker jobs */
557 mutex_lock(&sbi->umount_mutex);
558
559 /*
560 * We don't need to do checkpoint when superblock is clean.
561 * But, the previous checkpoint was not done by umount, it needs to do
562 * clean checkpoint again.
563 */
564 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
565 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
566 struct cp_control cpc = {
567 .reason = CP_UMOUNT,
568 };
569 write_checkpoint(sbi, &cpc);
570 }
571
572 /* write_checkpoint can update stat informaion */
573 f2fs_destroy_stats(sbi);
574
575 /*
576 * normally superblock is clean, so we need to release this.
577 * In addition, EIO will skip do checkpoint, we need this as well.
578 */
579 release_ino_entry(sbi);
580 release_discard_addrs(sbi);
581
582 f2fs_leave_shrinker(sbi);
583 mutex_unlock(&sbi->umount_mutex);
584
585 /* our cp_error case, we can wait for any writeback page */
586 if (get_pages(sbi, F2FS_WRITEBACK)) {
587 f2fs_submit_merged_bio(sbi, DATA, WRITE);
588 f2fs_submit_merged_bio(sbi, NODE, WRITE);
589 f2fs_submit_merged_bio(sbi, META, WRITE);
590 }
591
592 iput(sbi->node_inode);
593 iput(sbi->meta_inode);
594
595 /* destroy f2fs internal modules */
596 destroy_node_manager(sbi);
597 destroy_segment_manager(sbi);
598
599 kfree(sbi->ckpt);
600 kobject_put(&sbi->s_kobj);
601 wait_for_completion(&sbi->s_kobj_unregister);
602
603 sb->s_fs_info = NULL;
604 kfree(sbi->raw_super);
605 kfree(sbi);
606 }
607
608 int f2fs_sync_fs(struct super_block *sb, int sync)
609 {
610 struct f2fs_sb_info *sbi = F2FS_SB(sb);
611 int err = 0;
612
613 trace_f2fs_sync_fs(sb, sync);
614
615 if (sync) {
616 struct cp_control cpc;
617
618 cpc.reason = __get_cp_reason(sbi);
619
620 mutex_lock(&sbi->gc_mutex);
621 err = write_checkpoint(sbi, &cpc);
622 mutex_unlock(&sbi->gc_mutex);
623 }
624 f2fs_trace_ios(NULL, 1);
625
626 return err;
627 }
628
629 static int f2fs_freeze(struct super_block *sb)
630 {
631 int err;
632
633 if (f2fs_readonly(sb))
634 return 0;
635
636 err = f2fs_sync_fs(sb, 1);
637 return err;
638 }
639
640 static int f2fs_unfreeze(struct super_block *sb)
641 {
642 return 0;
643 }
644
645 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
646 {
647 struct super_block *sb = dentry->d_sb;
648 struct f2fs_sb_info *sbi = F2FS_SB(sb);
649 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
650 block_t total_count, user_block_count, start_count, ovp_count;
651
652 total_count = le64_to_cpu(sbi->raw_super->block_count);
653 user_block_count = sbi->user_block_count;
654 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
655 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
656 buf->f_type = F2FS_SUPER_MAGIC;
657 buf->f_bsize = sbi->blocksize;
658
659 buf->f_blocks = total_count - start_count;
660 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
661 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
662
663 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
664 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
665
666 buf->f_namelen = F2FS_NAME_LEN;
667 buf->f_fsid.val[0] = (u32)id;
668 buf->f_fsid.val[1] = (u32)(id >> 32);
669
670 return 0;
671 }
672
673 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
674 {
675 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
676
677 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
678 if (test_opt(sbi, FORCE_FG_GC))
679 seq_printf(seq, ",background_gc=%s", "sync");
680 else
681 seq_printf(seq, ",background_gc=%s", "on");
682 } else {
683 seq_printf(seq, ",background_gc=%s", "off");
684 }
685 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
686 seq_puts(seq, ",disable_roll_forward");
687 if (test_opt(sbi, DISCARD))
688 seq_puts(seq, ",discard");
689 if (test_opt(sbi, NOHEAP))
690 seq_puts(seq, ",no_heap_alloc");
691 #ifdef CONFIG_F2FS_FS_XATTR
692 if (test_opt(sbi, XATTR_USER))
693 seq_puts(seq, ",user_xattr");
694 else
695 seq_puts(seq, ",nouser_xattr");
696 if (test_opt(sbi, INLINE_XATTR))
697 seq_puts(seq, ",inline_xattr");
698 #endif
699 #ifdef CONFIG_F2FS_FS_POSIX_ACL
700 if (test_opt(sbi, POSIX_ACL))
701 seq_puts(seq, ",acl");
702 else
703 seq_puts(seq, ",noacl");
704 #endif
705 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
706 seq_puts(seq, ",disable_ext_identify");
707 if (test_opt(sbi, INLINE_DATA))
708 seq_puts(seq, ",inline_data");
709 else
710 seq_puts(seq, ",noinline_data");
711 if (test_opt(sbi, INLINE_DENTRY))
712 seq_puts(seq, ",inline_dentry");
713 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
714 seq_puts(seq, ",flush_merge");
715 if (test_opt(sbi, NOBARRIER))
716 seq_puts(seq, ",nobarrier");
717 if (test_opt(sbi, FASTBOOT))
718 seq_puts(seq, ",fastboot");
719 if (test_opt(sbi, EXTENT_CACHE))
720 seq_puts(seq, ",extent_cache");
721 else
722 seq_puts(seq, ",noextent_cache");
723 if (test_opt(sbi, DATA_FLUSH))
724 seq_puts(seq, ",data_flush");
725 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
726
727 return 0;
728 }
729
730 static int segment_info_seq_show(struct seq_file *seq, void *offset)
731 {
732 struct super_block *sb = seq->private;
733 struct f2fs_sb_info *sbi = F2FS_SB(sb);
734 unsigned int total_segs =
735 le32_to_cpu(sbi->raw_super->segment_count_main);
736 int i;
737
738 seq_puts(seq, "format: segment_type|valid_blocks\n"
739 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
740
741 for (i = 0; i < total_segs; i++) {
742 struct seg_entry *se = get_seg_entry(sbi, i);
743
744 if ((i % 10) == 0)
745 seq_printf(seq, "%-10d", i);
746 seq_printf(seq, "%d|%-3u", se->type,
747 get_valid_blocks(sbi, i, 1));
748 if ((i % 10) == 9 || i == (total_segs - 1))
749 seq_putc(seq, '\n');
750 else
751 seq_putc(seq, ' ');
752 }
753
754 return 0;
755 }
756
757 static int segment_info_open_fs(struct inode *inode, struct file *file)
758 {
759 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
760 }
761
762 static const struct file_operations f2fs_seq_segment_info_fops = {
763 .owner = THIS_MODULE,
764 .open = segment_info_open_fs,
765 .read = seq_read,
766 .llseek = seq_lseek,
767 .release = single_release,
768 };
769
770 static void default_options(struct f2fs_sb_info *sbi)
771 {
772 /* init some FS parameters */
773 sbi->active_logs = NR_CURSEG_TYPE;
774
775 set_opt(sbi, BG_GC);
776 set_opt(sbi, INLINE_DATA);
777 set_opt(sbi, EXTENT_CACHE);
778
779 #ifdef CONFIG_F2FS_FS_XATTR
780 set_opt(sbi, XATTR_USER);
781 #endif
782 #ifdef CONFIG_F2FS_FS_POSIX_ACL
783 set_opt(sbi, POSIX_ACL);
784 #endif
785 }
786
787 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
788 {
789 struct f2fs_sb_info *sbi = F2FS_SB(sb);
790 struct f2fs_mount_info org_mount_opt;
791 int err, active_logs;
792 bool need_restart_gc = false;
793 bool need_stop_gc = false;
794 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
795
796 /*
797 * Save the old mount options in case we
798 * need to restore them.
799 */
800 org_mount_opt = sbi->mount_opt;
801 active_logs = sbi->active_logs;
802
803 if (*flags & MS_RDONLY) {
804 set_opt(sbi, FASTBOOT);
805 set_sbi_flag(sbi, SBI_IS_DIRTY);
806 }
807
808 sync_filesystem(sb);
809
810 sbi->mount_opt.opt = 0;
811 default_options(sbi);
812
813 /* parse mount options */
814 err = parse_options(sb, data);
815 if (err)
816 goto restore_opts;
817
818 /*
819 * Previous and new state of filesystem is RO,
820 * so skip checking GC and FLUSH_MERGE conditions.
821 */
822 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
823 goto skip;
824
825 /* disallow enable/disable extent_cache dynamically */
826 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
827 err = -EINVAL;
828 f2fs_msg(sbi->sb, KERN_WARNING,
829 "switch extent_cache option is not allowed");
830 goto restore_opts;
831 }
832
833 /*
834 * We stop the GC thread if FS is mounted as RO
835 * or if background_gc = off is passed in mount
836 * option. Also sync the filesystem.
837 */
838 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
839 if (sbi->gc_thread) {
840 stop_gc_thread(sbi);
841 f2fs_sync_fs(sb, 1);
842 need_restart_gc = true;
843 }
844 } else if (!sbi->gc_thread) {
845 err = start_gc_thread(sbi);
846 if (err)
847 goto restore_opts;
848 need_stop_gc = true;
849 }
850
851 /*
852 * We stop issue flush thread if FS is mounted as RO
853 * or if flush_merge is not passed in mount option.
854 */
855 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
856 destroy_flush_cmd_control(sbi);
857 } else if (!SM_I(sbi)->cmd_control_info) {
858 err = create_flush_cmd_control(sbi);
859 if (err)
860 goto restore_gc;
861 }
862 skip:
863 /* Update the POSIXACL Flag */
864 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
865 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
866 return 0;
867 restore_gc:
868 if (need_restart_gc) {
869 if (start_gc_thread(sbi))
870 f2fs_msg(sbi->sb, KERN_WARNING,
871 "background gc thread has stopped");
872 } else if (need_stop_gc) {
873 stop_gc_thread(sbi);
874 }
875 restore_opts:
876 sbi->mount_opt = org_mount_opt;
877 sbi->active_logs = active_logs;
878 return err;
879 }
880
881 static struct super_operations f2fs_sops = {
882 .alloc_inode = f2fs_alloc_inode,
883 .drop_inode = f2fs_drop_inode,
884 .destroy_inode = f2fs_destroy_inode,
885 .write_inode = f2fs_write_inode,
886 .dirty_inode = f2fs_dirty_inode,
887 .show_options = f2fs_show_options,
888 .evict_inode = f2fs_evict_inode,
889 .put_super = f2fs_put_super,
890 .sync_fs = f2fs_sync_fs,
891 .freeze_fs = f2fs_freeze,
892 .unfreeze_fs = f2fs_unfreeze,
893 .statfs = f2fs_statfs,
894 .remount_fs = f2fs_remount,
895 };
896
897 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
898 u64 ino, u32 generation)
899 {
900 struct f2fs_sb_info *sbi = F2FS_SB(sb);
901 struct inode *inode;
902
903 if (check_nid_range(sbi, ino))
904 return ERR_PTR(-ESTALE);
905
906 /*
907 * f2fs_iget isn't quite right if the inode is currently unallocated!
908 * However f2fs_iget currently does appropriate checks to handle stale
909 * inodes so everything is OK.
910 */
911 inode = f2fs_iget(sb, ino);
912 if (IS_ERR(inode))
913 return ERR_CAST(inode);
914 if (unlikely(generation && inode->i_generation != generation)) {
915 /* we didn't find the right inode.. */
916 iput(inode);
917 return ERR_PTR(-ESTALE);
918 }
919 return inode;
920 }
921
922 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
923 int fh_len, int fh_type)
924 {
925 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
926 f2fs_nfs_get_inode);
927 }
928
929 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
930 int fh_len, int fh_type)
931 {
932 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
933 f2fs_nfs_get_inode);
934 }
935
936 static const struct export_operations f2fs_export_ops = {
937 .fh_to_dentry = f2fs_fh_to_dentry,
938 .fh_to_parent = f2fs_fh_to_parent,
939 .get_parent = f2fs_get_parent,
940 };
941
942 static loff_t max_file_blocks(void)
943 {
944 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
945 loff_t leaf_count = ADDRS_PER_BLOCK;
946
947 /* two direct node blocks */
948 result += (leaf_count * 2);
949
950 /* two indirect node blocks */
951 leaf_count *= NIDS_PER_BLOCK;
952 result += (leaf_count * 2);
953
954 /* one double indirect node block */
955 leaf_count *= NIDS_PER_BLOCK;
956 result += leaf_count;
957
958 return result;
959 }
960
961 static inline bool sanity_check_area_boundary(struct super_block *sb,
962 struct f2fs_super_block *raw_super)
963 {
964 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
965 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
966 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
967 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
968 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
969 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
970 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
971 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
972 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
973 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
974 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
975 u32 segment_count = le32_to_cpu(raw_super->segment_count);
976 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
977
978 if (segment0_blkaddr != cp_blkaddr) {
979 f2fs_msg(sb, KERN_INFO,
980 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
981 segment0_blkaddr, cp_blkaddr);
982 return true;
983 }
984
985 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
986 sit_blkaddr) {
987 f2fs_msg(sb, KERN_INFO,
988 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
989 cp_blkaddr, sit_blkaddr,
990 segment_count_ckpt << log_blocks_per_seg);
991 return true;
992 }
993
994 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
995 nat_blkaddr) {
996 f2fs_msg(sb, KERN_INFO,
997 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
998 sit_blkaddr, nat_blkaddr,
999 segment_count_sit << log_blocks_per_seg);
1000 return true;
1001 }
1002
1003 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1004 ssa_blkaddr) {
1005 f2fs_msg(sb, KERN_INFO,
1006 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1007 nat_blkaddr, ssa_blkaddr,
1008 segment_count_nat << log_blocks_per_seg);
1009 return true;
1010 }
1011
1012 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1013 main_blkaddr) {
1014 f2fs_msg(sb, KERN_INFO,
1015 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1016 ssa_blkaddr, main_blkaddr,
1017 segment_count_ssa << log_blocks_per_seg);
1018 return true;
1019 }
1020
1021 if (main_blkaddr + (segment_count_main << log_blocks_per_seg) !=
1022 segment0_blkaddr + (segment_count << log_blocks_per_seg)) {
1023 f2fs_msg(sb, KERN_INFO,
1024 "Wrong MAIN_AREA boundary, start(%u) end(%u) blocks(%u)",
1025 main_blkaddr,
1026 segment0_blkaddr + (segment_count << log_blocks_per_seg),
1027 segment_count_main << log_blocks_per_seg);
1028 return true;
1029 }
1030
1031 return false;
1032 }
1033
1034 static int sanity_check_raw_super(struct super_block *sb,
1035 struct f2fs_super_block *raw_super)
1036 {
1037 unsigned int blocksize;
1038
1039 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1040 f2fs_msg(sb, KERN_INFO,
1041 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1042 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1043 return 1;
1044 }
1045
1046 /* Currently, support only 4KB page cache size */
1047 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
1048 f2fs_msg(sb, KERN_INFO,
1049 "Invalid page_cache_size (%lu), supports only 4KB\n",
1050 PAGE_CACHE_SIZE);
1051 return 1;
1052 }
1053
1054 /* Currently, support only 4KB block size */
1055 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1056 if (blocksize != F2FS_BLKSIZE) {
1057 f2fs_msg(sb, KERN_INFO,
1058 "Invalid blocksize (%u), supports only 4KB\n",
1059 blocksize);
1060 return 1;
1061 }
1062
1063 /* check log blocks per segment */
1064 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1065 f2fs_msg(sb, KERN_INFO,
1066 "Invalid log blocks per segment (%u)\n",
1067 le32_to_cpu(raw_super->log_blocks_per_seg));
1068 return 1;
1069 }
1070
1071 /* Currently, support 512/1024/2048/4096 bytes sector size */
1072 if (le32_to_cpu(raw_super->log_sectorsize) >
1073 F2FS_MAX_LOG_SECTOR_SIZE ||
1074 le32_to_cpu(raw_super->log_sectorsize) <
1075 F2FS_MIN_LOG_SECTOR_SIZE) {
1076 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1077 le32_to_cpu(raw_super->log_sectorsize));
1078 return 1;
1079 }
1080 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1081 le32_to_cpu(raw_super->log_sectorsize) !=
1082 F2FS_MAX_LOG_SECTOR_SIZE) {
1083 f2fs_msg(sb, KERN_INFO,
1084 "Invalid log sectors per block(%u) log sectorsize(%u)",
1085 le32_to_cpu(raw_super->log_sectors_per_block),
1086 le32_to_cpu(raw_super->log_sectorsize));
1087 return 1;
1088 }
1089
1090 /* check reserved ino info */
1091 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1092 le32_to_cpu(raw_super->meta_ino) != 2 ||
1093 le32_to_cpu(raw_super->root_ino) != 3) {
1094 f2fs_msg(sb, KERN_INFO,
1095 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1096 le32_to_cpu(raw_super->node_ino),
1097 le32_to_cpu(raw_super->meta_ino),
1098 le32_to_cpu(raw_super->root_ino));
1099 return 1;
1100 }
1101
1102 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1103 if (sanity_check_area_boundary(sb, raw_super))
1104 return 1;
1105
1106 return 0;
1107 }
1108
1109 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1110 {
1111 unsigned int total, fsmeta;
1112 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1113 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1114
1115 total = le32_to_cpu(raw_super->segment_count);
1116 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1117 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1118 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1119 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1120 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1121
1122 if (unlikely(fsmeta >= total))
1123 return 1;
1124
1125 if (unlikely(f2fs_cp_error(sbi))) {
1126 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1127 return 1;
1128 }
1129 return 0;
1130 }
1131
1132 static void init_sb_info(struct f2fs_sb_info *sbi)
1133 {
1134 struct f2fs_super_block *raw_super = sbi->raw_super;
1135 int i;
1136
1137 sbi->log_sectors_per_block =
1138 le32_to_cpu(raw_super->log_sectors_per_block);
1139 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1140 sbi->blocksize = 1 << sbi->log_blocksize;
1141 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1142 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1143 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1144 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1145 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1146 sbi->total_node_count =
1147 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1148 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1149 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1150 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1151 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1152 sbi->cur_victim_sec = NULL_SECNO;
1153 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1154
1155 for (i = 0; i < NR_COUNT_TYPE; i++)
1156 atomic_set(&sbi->nr_pages[i], 0);
1157
1158 sbi->dir_level = DEF_DIR_LEVEL;
1159 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1160 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1161 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1162
1163 INIT_LIST_HEAD(&sbi->s_list);
1164 mutex_init(&sbi->umount_mutex);
1165 }
1166
1167 /*
1168 * Read f2fs raw super block.
1169 * Because we have two copies of super block, so read both of them
1170 * to get the first valid one. If any one of them is broken, we pass
1171 * them recovery flag back to the caller.
1172 */
1173 static int read_raw_super_block(struct super_block *sb,
1174 struct f2fs_super_block **raw_super,
1175 int *valid_super_block, int *recovery)
1176 {
1177 int block;
1178 struct buffer_head *bh;
1179 struct f2fs_super_block *super, *buf;
1180 int err = 0;
1181
1182 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1183 if (!super)
1184 return -ENOMEM;
1185
1186 for (block = 0; block < 2; block++) {
1187 bh = sb_bread(sb, block);
1188 if (!bh) {
1189 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1190 block + 1);
1191 err = -EIO;
1192 continue;
1193 }
1194
1195 buf = (struct f2fs_super_block *)
1196 (bh->b_data + F2FS_SUPER_OFFSET);
1197
1198 /* sanity checking of raw super */
1199 if (sanity_check_raw_super(sb, buf)) {
1200 f2fs_msg(sb, KERN_ERR,
1201 "Can't find valid F2FS filesystem in %dth superblock",
1202 block + 1);
1203 err = -EINVAL;
1204 brelse(bh);
1205 continue;
1206 }
1207
1208 if (!*raw_super) {
1209 memcpy(super, buf, sizeof(*super));
1210 *valid_super_block = block;
1211 *raw_super = super;
1212 }
1213 brelse(bh);
1214 }
1215
1216 /* Fail to read any one of the superblocks*/
1217 if (err < 0)
1218 *recovery = 1;
1219
1220 /* No valid superblock */
1221 if (!*raw_super)
1222 kfree(super);
1223 else
1224 err = 0;
1225
1226 return err;
1227 }
1228
1229 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, int block)
1230 {
1231 struct f2fs_super_block *super = F2FS_RAW_SUPER(sbi);
1232 struct buffer_head *bh;
1233 int err;
1234
1235 bh = sb_getblk(sbi->sb, block);
1236 if (!bh)
1237 return -EIO;
1238
1239 lock_buffer(bh);
1240 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1241 set_buffer_uptodate(bh);
1242 set_buffer_dirty(bh);
1243 unlock_buffer(bh);
1244
1245 /* it's rare case, we can do fua all the time */
1246 err = __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1247 brelse(bh);
1248
1249 return err;
1250 }
1251
1252 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1253 {
1254 int err;
1255
1256 /* write back-up superblock first */
1257 err = __f2fs_commit_super(sbi, sbi->valid_super_block ? 0 : 1);
1258
1259 /* if we are in recovery path, skip writing valid superblock */
1260 if (recover || err)
1261 return err;
1262
1263 /* write current valid superblock */
1264 return __f2fs_commit_super(sbi, sbi->valid_super_block);
1265 }
1266
1267 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1268 {
1269 struct f2fs_sb_info *sbi;
1270 struct f2fs_super_block *raw_super;
1271 struct inode *root;
1272 long err;
1273 bool retry = true, need_fsck = false;
1274 char *options = NULL;
1275 int recovery, i, valid_super_block;
1276 struct curseg_info *seg_i;
1277
1278 try_onemore:
1279 err = -EINVAL;
1280 raw_super = NULL;
1281 valid_super_block = -1;
1282 recovery = 0;
1283
1284 /* allocate memory for f2fs-specific super block info */
1285 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1286 if (!sbi)
1287 return -ENOMEM;
1288
1289 /* set a block size */
1290 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1291 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1292 goto free_sbi;
1293 }
1294
1295 err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1296 &recovery);
1297 if (err)
1298 goto free_sbi;
1299
1300 sb->s_fs_info = sbi;
1301 default_options(sbi);
1302 /* parse mount options */
1303 options = kstrdup((const char *)data, GFP_KERNEL);
1304 if (data && !options) {
1305 err = -ENOMEM;
1306 goto free_sb_buf;
1307 }
1308
1309 err = parse_options(sb, options);
1310 if (err)
1311 goto free_options;
1312
1313 sbi->max_file_blocks = max_file_blocks();
1314 sb->s_maxbytes = sbi->max_file_blocks <<
1315 le32_to_cpu(raw_super->log_blocksize);
1316 sb->s_max_links = F2FS_LINK_MAX;
1317 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1318
1319 sb->s_op = &f2fs_sops;
1320 sb->s_xattr = f2fs_xattr_handlers;
1321 sb->s_export_op = &f2fs_export_ops;
1322 sb->s_magic = F2FS_SUPER_MAGIC;
1323 sb->s_time_gran = 1;
1324 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1325 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1326 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1327
1328 /* init f2fs-specific super block info */
1329 sbi->sb = sb;
1330 sbi->raw_super = raw_super;
1331 sbi->valid_super_block = valid_super_block;
1332 mutex_init(&sbi->gc_mutex);
1333 mutex_init(&sbi->writepages);
1334 mutex_init(&sbi->cp_mutex);
1335 init_rwsem(&sbi->node_write);
1336
1337 /* disallow all the data/node/meta page writes */
1338 set_sbi_flag(sbi, SBI_POR_DOING);
1339 spin_lock_init(&sbi->stat_lock);
1340
1341 init_rwsem(&sbi->read_io.io_rwsem);
1342 sbi->read_io.sbi = sbi;
1343 sbi->read_io.bio = NULL;
1344 for (i = 0; i < NR_PAGE_TYPE; i++) {
1345 init_rwsem(&sbi->write_io[i].io_rwsem);
1346 sbi->write_io[i].sbi = sbi;
1347 sbi->write_io[i].bio = NULL;
1348 }
1349
1350 init_rwsem(&sbi->cp_rwsem);
1351 init_waitqueue_head(&sbi->cp_wait);
1352 init_sb_info(sbi);
1353
1354 /* get an inode for meta space */
1355 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1356 if (IS_ERR(sbi->meta_inode)) {
1357 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1358 err = PTR_ERR(sbi->meta_inode);
1359 goto free_options;
1360 }
1361
1362 err = get_valid_checkpoint(sbi);
1363 if (err) {
1364 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1365 goto free_meta_inode;
1366 }
1367
1368 sbi->total_valid_node_count =
1369 le32_to_cpu(sbi->ckpt->valid_node_count);
1370 sbi->total_valid_inode_count =
1371 le32_to_cpu(sbi->ckpt->valid_inode_count);
1372 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1373 sbi->total_valid_block_count =
1374 le64_to_cpu(sbi->ckpt->valid_block_count);
1375 sbi->last_valid_block_count = sbi->total_valid_block_count;
1376 sbi->alloc_valid_block_count = 0;
1377 for (i = 0; i < NR_INODE_TYPE; i++) {
1378 INIT_LIST_HEAD(&sbi->inode_list[i]);
1379 spin_lock_init(&sbi->inode_lock[i]);
1380 }
1381
1382 init_extent_cache_info(sbi);
1383
1384 init_ino_entry_info(sbi);
1385
1386 /* setup f2fs internal modules */
1387 err = build_segment_manager(sbi);
1388 if (err) {
1389 f2fs_msg(sb, KERN_ERR,
1390 "Failed to initialize F2FS segment manager");
1391 goto free_sm;
1392 }
1393 err = build_node_manager(sbi);
1394 if (err) {
1395 f2fs_msg(sb, KERN_ERR,
1396 "Failed to initialize F2FS node manager");
1397 goto free_nm;
1398 }
1399
1400 /* For write statistics */
1401 if (sb->s_bdev->bd_part)
1402 sbi->sectors_written_start =
1403 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1404
1405 /* Read accumulated write IO statistics if exists */
1406 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1407 if (__exist_node_summaries(sbi))
1408 sbi->kbytes_written =
1409 le64_to_cpu(seg_i->sum_blk->journal.info.kbytes_written);
1410
1411 build_gc_manager(sbi);
1412
1413 /* get an inode for node space */
1414 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1415 if (IS_ERR(sbi->node_inode)) {
1416 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1417 err = PTR_ERR(sbi->node_inode);
1418 goto free_nm;
1419 }
1420
1421 f2fs_join_shrinker(sbi);
1422
1423 /* if there are nt orphan nodes free them */
1424 err = recover_orphan_inodes(sbi);
1425 if (err)
1426 goto free_node_inode;
1427
1428 /* read root inode and dentry */
1429 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1430 if (IS_ERR(root)) {
1431 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1432 err = PTR_ERR(root);
1433 goto free_node_inode;
1434 }
1435 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1436 iput(root);
1437 err = -EINVAL;
1438 goto free_node_inode;
1439 }
1440
1441 sb->s_root = d_make_root(root); /* allocate root dentry */
1442 if (!sb->s_root) {
1443 err = -ENOMEM;
1444 goto free_root_inode;
1445 }
1446
1447 err = f2fs_build_stats(sbi);
1448 if (err)
1449 goto free_root_inode;
1450
1451 if (f2fs_proc_root)
1452 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1453
1454 if (sbi->s_proc)
1455 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1456 &f2fs_seq_segment_info_fops, sb);
1457
1458 sbi->s_kobj.kset = f2fs_kset;
1459 init_completion(&sbi->s_kobj_unregister);
1460 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1461 "%s", sb->s_id);
1462 if (err)
1463 goto free_proc;
1464
1465 /* recover fsynced data */
1466 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1467 /*
1468 * mount should be failed, when device has readonly mode, and
1469 * previous checkpoint was not done by clean system shutdown.
1470 */
1471 if (bdev_read_only(sb->s_bdev) &&
1472 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1473 err = -EROFS;
1474 goto free_kobj;
1475 }
1476
1477 if (need_fsck)
1478 set_sbi_flag(sbi, SBI_NEED_FSCK);
1479
1480 err = recover_fsync_data(sbi);
1481 if (err) {
1482 need_fsck = true;
1483 f2fs_msg(sb, KERN_ERR,
1484 "Cannot recover all fsync data errno=%ld", err);
1485 goto free_kobj;
1486 }
1487 }
1488 /* recover_fsync_data() cleared this already */
1489 clear_sbi_flag(sbi, SBI_POR_DOING);
1490
1491 /*
1492 * If filesystem is not mounted as read-only then
1493 * do start the gc_thread.
1494 */
1495 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1496 /* After POR, we can run background GC thread.*/
1497 err = start_gc_thread(sbi);
1498 if (err)
1499 goto free_kobj;
1500 }
1501 kfree(options);
1502
1503 /* recover broken superblock */
1504 if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1505 f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1506 f2fs_commit_super(sbi, true);
1507 }
1508
1509 f2fs_update_time(sbi, CP_TIME);
1510 f2fs_update_time(sbi, REQ_TIME);
1511 return 0;
1512
1513 free_kobj:
1514 kobject_del(&sbi->s_kobj);
1515 kobject_put(&sbi->s_kobj);
1516 wait_for_completion(&sbi->s_kobj_unregister);
1517 free_proc:
1518 if (sbi->s_proc) {
1519 remove_proc_entry("segment_info", sbi->s_proc);
1520 remove_proc_entry(sb->s_id, f2fs_proc_root);
1521 }
1522 f2fs_destroy_stats(sbi);
1523 free_root_inode:
1524 dput(sb->s_root);
1525 sb->s_root = NULL;
1526 free_node_inode:
1527 mutex_lock(&sbi->umount_mutex);
1528 f2fs_leave_shrinker(sbi);
1529 iput(sbi->node_inode);
1530 mutex_unlock(&sbi->umount_mutex);
1531 free_nm:
1532 destroy_node_manager(sbi);
1533 free_sm:
1534 destroy_segment_manager(sbi);
1535 kfree(sbi->ckpt);
1536 free_meta_inode:
1537 make_bad_inode(sbi->meta_inode);
1538 iput(sbi->meta_inode);
1539 free_options:
1540 kfree(options);
1541 free_sb_buf:
1542 kfree(raw_super);
1543 free_sbi:
1544 kfree(sbi);
1545
1546 /* give only one another chance */
1547 if (retry) {
1548 retry = false;
1549 shrink_dcache_sb(sb);
1550 goto try_onemore;
1551 }
1552 return err;
1553 }
1554
1555 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1556 const char *dev_name, void *data)
1557 {
1558 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1559 }
1560
1561 static void kill_f2fs_super(struct super_block *sb)
1562 {
1563 if (sb->s_root)
1564 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1565 kill_block_super(sb);
1566 }
1567
1568 static struct file_system_type f2fs_fs_type = {
1569 .owner = THIS_MODULE,
1570 .name = "f2fs",
1571 .mount = f2fs_mount,
1572 .kill_sb = kill_f2fs_super,
1573 .fs_flags = FS_REQUIRES_DEV,
1574 };
1575 MODULE_ALIAS_FS("f2fs");
1576
1577 static int __init init_inodecache(void)
1578 {
1579 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1580 sizeof(struct f2fs_inode_info), 0,
1581 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1582 if (!f2fs_inode_cachep)
1583 return -ENOMEM;
1584 return 0;
1585 }
1586
1587 static void destroy_inodecache(void)
1588 {
1589 /*
1590 * Make sure all delayed rcu free inodes are flushed before we
1591 * destroy cache.
1592 */
1593 rcu_barrier();
1594 kmem_cache_destroy(f2fs_inode_cachep);
1595 }
1596
1597 static int __init init_f2fs_fs(void)
1598 {
1599 int err;
1600
1601 f2fs_build_trace_ios();
1602
1603 err = init_inodecache();
1604 if (err)
1605 goto fail;
1606 err = create_node_manager_caches();
1607 if (err)
1608 goto free_inodecache;
1609 err = create_segment_manager_caches();
1610 if (err)
1611 goto free_node_manager_caches;
1612 err = create_checkpoint_caches();
1613 if (err)
1614 goto free_segment_manager_caches;
1615 err = create_extent_cache();
1616 if (err)
1617 goto free_checkpoint_caches;
1618 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1619 if (!f2fs_kset) {
1620 err = -ENOMEM;
1621 goto free_extent_cache;
1622 }
1623 err = f2fs_init_crypto();
1624 if (err)
1625 goto free_kset;
1626
1627 err = register_shrinker(&f2fs_shrinker_info);
1628 if (err)
1629 goto free_crypto;
1630
1631 err = register_filesystem(&f2fs_fs_type);
1632 if (err)
1633 goto free_shrinker;
1634 err = f2fs_create_root_stats();
1635 if (err)
1636 goto free_filesystem;
1637 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1638 return 0;
1639
1640 free_filesystem:
1641 unregister_filesystem(&f2fs_fs_type);
1642 free_shrinker:
1643 unregister_shrinker(&f2fs_shrinker_info);
1644 free_crypto:
1645 f2fs_exit_crypto();
1646 free_kset:
1647 kset_unregister(f2fs_kset);
1648 free_extent_cache:
1649 destroy_extent_cache();
1650 free_checkpoint_caches:
1651 destroy_checkpoint_caches();
1652 free_segment_manager_caches:
1653 destroy_segment_manager_caches();
1654 free_node_manager_caches:
1655 destroy_node_manager_caches();
1656 free_inodecache:
1657 destroy_inodecache();
1658 fail:
1659 return err;
1660 }
1661
1662 static void __exit exit_f2fs_fs(void)
1663 {
1664 remove_proc_entry("fs/f2fs", NULL);
1665 f2fs_destroy_root_stats();
1666 unregister_shrinker(&f2fs_shrinker_info);
1667 unregister_filesystem(&f2fs_fs_type);
1668 f2fs_exit_crypto();
1669 destroy_extent_cache();
1670 destroy_checkpoint_caches();
1671 destroy_segment_manager_caches();
1672 destroy_node_manager_caches();
1673 destroy_inodecache();
1674 kset_unregister(f2fs_kset);
1675 f2fs_destroy_trace_ios();
1676 }
1677
1678 module_init(init_f2fs_fs)
1679 module_exit(exit_f2fs_fs)
1680
1681 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1682 MODULE_DESCRIPTION("Flash Friendly File System");
1683 MODULE_LICENSE("GPL");