]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/super.c
Merge tag 'staging-4.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 .scan_objects = f2fs_shrink_scan,
45 .count_objects = f2fs_shrink_count,
46 .seeks = DEFAULT_SEEKS,
47 };
48
49 enum {
50 Opt_gc_background,
51 Opt_disable_roll_forward,
52 Opt_norecovery,
53 Opt_discard,
54 Opt_noheap,
55 Opt_user_xattr,
56 Opt_nouser_xattr,
57 Opt_acl,
58 Opt_noacl,
59 Opt_active_logs,
60 Opt_disable_ext_identify,
61 Opt_inline_xattr,
62 Opt_inline_data,
63 Opt_inline_dentry,
64 Opt_flush_merge,
65 Opt_nobarrier,
66 Opt_fastboot,
67 Opt_extent_cache,
68 Opt_noextent_cache,
69 Opt_noinline_data,
70 Opt_data_flush,
71 Opt_err,
72 };
73
74 static match_table_t f2fs_tokens = {
75 {Opt_gc_background, "background_gc=%s"},
76 {Opt_disable_roll_forward, "disable_roll_forward"},
77 {Opt_norecovery, "norecovery"},
78 {Opt_discard, "discard"},
79 {Opt_noheap, "no_heap"},
80 {Opt_user_xattr, "user_xattr"},
81 {Opt_nouser_xattr, "nouser_xattr"},
82 {Opt_acl, "acl"},
83 {Opt_noacl, "noacl"},
84 {Opt_active_logs, "active_logs=%u"},
85 {Opt_disable_ext_identify, "disable_ext_identify"},
86 {Opt_inline_xattr, "inline_xattr"},
87 {Opt_inline_data, "inline_data"},
88 {Opt_inline_dentry, "inline_dentry"},
89 {Opt_flush_merge, "flush_merge"},
90 {Opt_nobarrier, "nobarrier"},
91 {Opt_fastboot, "fastboot"},
92 {Opt_extent_cache, "extent_cache"},
93 {Opt_noextent_cache, "noextent_cache"},
94 {Opt_noinline_data, "noinline_data"},
95 {Opt_data_flush, "data_flush"},
96 {Opt_err, NULL},
97 };
98
99 /* Sysfs support for f2fs */
100 enum {
101 GC_THREAD, /* struct f2fs_gc_thread */
102 SM_INFO, /* struct f2fs_sm_info */
103 NM_INFO, /* struct f2fs_nm_info */
104 F2FS_SBI, /* struct f2fs_sb_info */
105 };
106
107 struct f2fs_attr {
108 struct attribute attr;
109 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
110 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
111 const char *, size_t);
112 int struct_type;
113 int offset;
114 };
115
116 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
117 {
118 if (struct_type == GC_THREAD)
119 return (unsigned char *)sbi->gc_thread;
120 else if (struct_type == SM_INFO)
121 return (unsigned char *)SM_I(sbi);
122 else if (struct_type == NM_INFO)
123 return (unsigned char *)NM_I(sbi);
124 else if (struct_type == F2FS_SBI)
125 return (unsigned char *)sbi;
126 return NULL;
127 }
128
129 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
130 struct f2fs_sb_info *sbi, char *buf)
131 {
132 struct super_block *sb = sbi->sb;
133
134 if (!sb->s_bdev->bd_part)
135 return snprintf(buf, PAGE_SIZE, "0\n");
136
137 return snprintf(buf, PAGE_SIZE, "%llu\n",
138 (unsigned long long)(sbi->kbytes_written +
139 BD_PART_WRITTEN(sbi)));
140 }
141
142 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
143 struct f2fs_sb_info *sbi, char *buf)
144 {
145 unsigned char *ptr = NULL;
146 unsigned int *ui;
147
148 ptr = __struct_ptr(sbi, a->struct_type);
149 if (!ptr)
150 return -EINVAL;
151
152 ui = (unsigned int *)(ptr + a->offset);
153
154 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
155 }
156
157 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
158 struct f2fs_sb_info *sbi,
159 const char *buf, size_t count)
160 {
161 unsigned char *ptr;
162 unsigned long t;
163 unsigned int *ui;
164 ssize_t ret;
165
166 ptr = __struct_ptr(sbi, a->struct_type);
167 if (!ptr)
168 return -EINVAL;
169
170 ui = (unsigned int *)(ptr + a->offset);
171
172 ret = kstrtoul(skip_spaces(buf), 0, &t);
173 if (ret < 0)
174 return ret;
175 *ui = t;
176 return count;
177 }
178
179 static ssize_t f2fs_attr_show(struct kobject *kobj,
180 struct attribute *attr, char *buf)
181 {
182 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
183 s_kobj);
184 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
185
186 return a->show ? a->show(a, sbi, buf) : 0;
187 }
188
189 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
190 const char *buf, size_t len)
191 {
192 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
193 s_kobj);
194 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
195
196 return a->store ? a->store(a, sbi, buf, len) : 0;
197 }
198
199 static void f2fs_sb_release(struct kobject *kobj)
200 {
201 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
202 s_kobj);
203 complete(&sbi->s_kobj_unregister);
204 }
205
206 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
207 static struct f2fs_attr f2fs_attr_##_name = { \
208 .attr = {.name = __stringify(_name), .mode = _mode }, \
209 .show = _show, \
210 .store = _store, \
211 .struct_type = _struct_type, \
212 .offset = _offset \
213 }
214
215 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
216 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
217 f2fs_sbi_show, f2fs_sbi_store, \
218 offsetof(struct struct_name, elname))
219
220 #define F2FS_GENERAL_RO_ATTR(name) \
221 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
222
223 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
224 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
225 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
226 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
227 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
228 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
229 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
230 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
231 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
232 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
233 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
234 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
235 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
236 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
237 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
238 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
239 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
240 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
241
242 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
243 static struct attribute *f2fs_attrs[] = {
244 ATTR_LIST(gc_min_sleep_time),
245 ATTR_LIST(gc_max_sleep_time),
246 ATTR_LIST(gc_no_gc_sleep_time),
247 ATTR_LIST(gc_idle),
248 ATTR_LIST(reclaim_segments),
249 ATTR_LIST(max_small_discards),
250 ATTR_LIST(batched_trim_sections),
251 ATTR_LIST(ipu_policy),
252 ATTR_LIST(min_ipu_util),
253 ATTR_LIST(min_fsync_blocks),
254 ATTR_LIST(max_victim_search),
255 ATTR_LIST(dir_level),
256 ATTR_LIST(ram_thresh),
257 ATTR_LIST(ra_nid_pages),
258 ATTR_LIST(dirty_nats_ratio),
259 ATTR_LIST(cp_interval),
260 ATTR_LIST(idle_interval),
261 ATTR_LIST(lifetime_write_kbytes),
262 NULL,
263 };
264
265 static const struct sysfs_ops f2fs_attr_ops = {
266 .show = f2fs_attr_show,
267 .store = f2fs_attr_store,
268 };
269
270 static struct kobj_type f2fs_ktype = {
271 .default_attrs = f2fs_attrs,
272 .sysfs_ops = &f2fs_attr_ops,
273 .release = f2fs_sb_release,
274 };
275
276 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
277 {
278 struct va_format vaf;
279 va_list args;
280
281 va_start(args, fmt);
282 vaf.fmt = fmt;
283 vaf.va = &args;
284 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
285 va_end(args);
286 }
287
288 static void init_once(void *foo)
289 {
290 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
291
292 inode_init_once(&fi->vfs_inode);
293 }
294
295 static int parse_options(struct super_block *sb, char *options)
296 {
297 struct f2fs_sb_info *sbi = F2FS_SB(sb);
298 struct request_queue *q;
299 substring_t args[MAX_OPT_ARGS];
300 char *p, *name;
301 int arg = 0;
302
303 if (!options)
304 return 0;
305
306 while ((p = strsep(&options, ",")) != NULL) {
307 int token;
308 if (!*p)
309 continue;
310 /*
311 * Initialize args struct so we know whether arg was
312 * found; some options take optional arguments.
313 */
314 args[0].to = args[0].from = NULL;
315 token = match_token(p, f2fs_tokens, args);
316
317 switch (token) {
318 case Opt_gc_background:
319 name = match_strdup(&args[0]);
320
321 if (!name)
322 return -ENOMEM;
323 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
324 set_opt(sbi, BG_GC);
325 clear_opt(sbi, FORCE_FG_GC);
326 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
327 clear_opt(sbi, BG_GC);
328 clear_opt(sbi, FORCE_FG_GC);
329 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
330 set_opt(sbi, BG_GC);
331 set_opt(sbi, FORCE_FG_GC);
332 } else {
333 kfree(name);
334 return -EINVAL;
335 }
336 kfree(name);
337 break;
338 case Opt_disable_roll_forward:
339 set_opt(sbi, DISABLE_ROLL_FORWARD);
340 break;
341 case Opt_norecovery:
342 /* this option mounts f2fs with ro */
343 set_opt(sbi, DISABLE_ROLL_FORWARD);
344 if (!f2fs_readonly(sb))
345 return -EINVAL;
346 break;
347 case Opt_discard:
348 q = bdev_get_queue(sb->s_bdev);
349 if (blk_queue_discard(q)) {
350 set_opt(sbi, DISCARD);
351 } else {
352 f2fs_msg(sb, KERN_WARNING,
353 "mounting with \"discard\" option, but "
354 "the device does not support discard");
355 }
356 break;
357 case Opt_noheap:
358 set_opt(sbi, NOHEAP);
359 break;
360 #ifdef CONFIG_F2FS_FS_XATTR
361 case Opt_user_xattr:
362 set_opt(sbi, XATTR_USER);
363 break;
364 case Opt_nouser_xattr:
365 clear_opt(sbi, XATTR_USER);
366 break;
367 case Opt_inline_xattr:
368 set_opt(sbi, INLINE_XATTR);
369 break;
370 #else
371 case Opt_user_xattr:
372 f2fs_msg(sb, KERN_INFO,
373 "user_xattr options not supported");
374 break;
375 case Opt_nouser_xattr:
376 f2fs_msg(sb, KERN_INFO,
377 "nouser_xattr options not supported");
378 break;
379 case Opt_inline_xattr:
380 f2fs_msg(sb, KERN_INFO,
381 "inline_xattr options not supported");
382 break;
383 #endif
384 #ifdef CONFIG_F2FS_FS_POSIX_ACL
385 case Opt_acl:
386 set_opt(sbi, POSIX_ACL);
387 break;
388 case Opt_noacl:
389 clear_opt(sbi, POSIX_ACL);
390 break;
391 #else
392 case Opt_acl:
393 f2fs_msg(sb, KERN_INFO, "acl options not supported");
394 break;
395 case Opt_noacl:
396 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
397 break;
398 #endif
399 case Opt_active_logs:
400 if (args->from && match_int(args, &arg))
401 return -EINVAL;
402 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
403 return -EINVAL;
404 sbi->active_logs = arg;
405 break;
406 case Opt_disable_ext_identify:
407 set_opt(sbi, DISABLE_EXT_IDENTIFY);
408 break;
409 case Opt_inline_data:
410 set_opt(sbi, INLINE_DATA);
411 break;
412 case Opt_inline_dentry:
413 set_opt(sbi, INLINE_DENTRY);
414 break;
415 case Opt_flush_merge:
416 set_opt(sbi, FLUSH_MERGE);
417 break;
418 case Opt_nobarrier:
419 set_opt(sbi, NOBARRIER);
420 break;
421 case Opt_fastboot:
422 set_opt(sbi, FASTBOOT);
423 break;
424 case Opt_extent_cache:
425 set_opt(sbi, EXTENT_CACHE);
426 break;
427 case Opt_noextent_cache:
428 clear_opt(sbi, EXTENT_CACHE);
429 break;
430 case Opt_noinline_data:
431 clear_opt(sbi, INLINE_DATA);
432 break;
433 case Opt_data_flush:
434 set_opt(sbi, DATA_FLUSH);
435 break;
436 default:
437 f2fs_msg(sb, KERN_ERR,
438 "Unrecognized mount option \"%s\" or missing value",
439 p);
440 return -EINVAL;
441 }
442 }
443 return 0;
444 }
445
446 static struct inode *f2fs_alloc_inode(struct super_block *sb)
447 {
448 struct f2fs_inode_info *fi;
449
450 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
451 if (!fi)
452 return NULL;
453
454 init_once((void *) fi);
455
456 /* Initialize f2fs-specific inode info */
457 fi->vfs_inode.i_version = 1;
458 atomic_set(&fi->dirty_pages, 0);
459 fi->i_current_depth = 1;
460 fi->i_advise = 0;
461 init_rwsem(&fi->i_sem);
462 INIT_LIST_HEAD(&fi->dirty_list);
463 INIT_LIST_HEAD(&fi->inmem_pages);
464 mutex_init(&fi->inmem_lock);
465
466 set_inode_flag(fi, FI_NEW_INODE);
467
468 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
469 set_inode_flag(fi, FI_INLINE_XATTR);
470
471 /* Will be used by directory only */
472 fi->i_dir_level = F2FS_SB(sb)->dir_level;
473 return &fi->vfs_inode;
474 }
475
476 static int f2fs_drop_inode(struct inode *inode)
477 {
478 /*
479 * This is to avoid a deadlock condition like below.
480 * writeback_single_inode(inode)
481 * - f2fs_write_data_page
482 * - f2fs_gc -> iput -> evict
483 * - inode_wait_for_writeback(inode)
484 */
485 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
486 if (!inode->i_nlink && !is_bad_inode(inode)) {
487 /* to avoid evict_inode call simultaneously */
488 atomic_inc(&inode->i_count);
489 spin_unlock(&inode->i_lock);
490
491 /* some remained atomic pages should discarded */
492 if (f2fs_is_atomic_file(inode))
493 drop_inmem_pages(inode);
494
495 /* should remain fi->extent_tree for writepage */
496 f2fs_destroy_extent_node(inode);
497
498 sb_start_intwrite(inode->i_sb);
499 i_size_write(inode, 0);
500
501 if (F2FS_HAS_BLOCKS(inode))
502 f2fs_truncate(inode, true);
503
504 sb_end_intwrite(inode->i_sb);
505
506 fscrypt_put_encryption_info(inode, NULL);
507 spin_lock(&inode->i_lock);
508 atomic_dec(&inode->i_count);
509 }
510 return 0;
511 }
512 return generic_drop_inode(inode);
513 }
514
515 /*
516 * f2fs_dirty_inode() is called from __mark_inode_dirty()
517 *
518 * We should call set_dirty_inode to write the dirty inode through write_inode.
519 */
520 static void f2fs_dirty_inode(struct inode *inode, int flags)
521 {
522 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
523 }
524
525 static void f2fs_i_callback(struct rcu_head *head)
526 {
527 struct inode *inode = container_of(head, struct inode, i_rcu);
528 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
529 }
530
531 static void f2fs_destroy_inode(struct inode *inode)
532 {
533 call_rcu(&inode->i_rcu, f2fs_i_callback);
534 }
535
536 static void f2fs_put_super(struct super_block *sb)
537 {
538 struct f2fs_sb_info *sbi = F2FS_SB(sb);
539
540 if (sbi->s_proc) {
541 remove_proc_entry("segment_info", sbi->s_proc);
542 remove_proc_entry(sb->s_id, f2fs_proc_root);
543 }
544 kobject_del(&sbi->s_kobj);
545
546 stop_gc_thread(sbi);
547
548 /* prevent remaining shrinker jobs */
549 mutex_lock(&sbi->umount_mutex);
550
551 /*
552 * We don't need to do checkpoint when superblock is clean.
553 * But, the previous checkpoint was not done by umount, it needs to do
554 * clean checkpoint again.
555 */
556 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
557 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
558 struct cp_control cpc = {
559 .reason = CP_UMOUNT,
560 };
561 write_checkpoint(sbi, &cpc);
562 }
563
564 /* write_checkpoint can update stat informaion */
565 f2fs_destroy_stats(sbi);
566
567 /*
568 * normally superblock is clean, so we need to release this.
569 * In addition, EIO will skip do checkpoint, we need this as well.
570 */
571 release_ino_entry(sbi);
572 release_discard_addrs(sbi);
573
574 f2fs_leave_shrinker(sbi);
575 mutex_unlock(&sbi->umount_mutex);
576
577 /* our cp_error case, we can wait for any writeback page */
578 if (get_pages(sbi, F2FS_WRITEBACK))
579 f2fs_flush_merged_bios(sbi);
580
581 iput(sbi->node_inode);
582 iput(sbi->meta_inode);
583
584 /* destroy f2fs internal modules */
585 destroy_node_manager(sbi);
586 destroy_segment_manager(sbi);
587
588 kfree(sbi->ckpt);
589 kobject_put(&sbi->s_kobj);
590 wait_for_completion(&sbi->s_kobj_unregister);
591
592 sb->s_fs_info = NULL;
593 if (sbi->s_chksum_driver)
594 crypto_free_shash(sbi->s_chksum_driver);
595 kfree(sbi->raw_super);
596 kfree(sbi);
597 }
598
599 int f2fs_sync_fs(struct super_block *sb, int sync)
600 {
601 struct f2fs_sb_info *sbi = F2FS_SB(sb);
602 int err = 0;
603
604 trace_f2fs_sync_fs(sb, sync);
605
606 if (sync) {
607 struct cp_control cpc;
608
609 cpc.reason = __get_cp_reason(sbi);
610
611 mutex_lock(&sbi->gc_mutex);
612 err = write_checkpoint(sbi, &cpc);
613 mutex_unlock(&sbi->gc_mutex);
614 }
615 f2fs_trace_ios(NULL, 1);
616
617 return err;
618 }
619
620 static int f2fs_freeze(struct super_block *sb)
621 {
622 int err;
623
624 if (f2fs_readonly(sb))
625 return 0;
626
627 err = f2fs_sync_fs(sb, 1);
628 return err;
629 }
630
631 static int f2fs_unfreeze(struct super_block *sb)
632 {
633 return 0;
634 }
635
636 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
637 {
638 struct super_block *sb = dentry->d_sb;
639 struct f2fs_sb_info *sbi = F2FS_SB(sb);
640 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
641 block_t total_count, user_block_count, start_count, ovp_count;
642
643 total_count = le64_to_cpu(sbi->raw_super->block_count);
644 user_block_count = sbi->user_block_count;
645 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
646 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
647 buf->f_type = F2FS_SUPER_MAGIC;
648 buf->f_bsize = sbi->blocksize;
649
650 buf->f_blocks = total_count - start_count;
651 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
652 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
653
654 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
655 buf->f_ffree = buf->f_files - valid_inode_count(sbi);
656
657 buf->f_namelen = F2FS_NAME_LEN;
658 buf->f_fsid.val[0] = (u32)id;
659 buf->f_fsid.val[1] = (u32)(id >> 32);
660
661 return 0;
662 }
663
664 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
665 {
666 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
667
668 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
669 if (test_opt(sbi, FORCE_FG_GC))
670 seq_printf(seq, ",background_gc=%s", "sync");
671 else
672 seq_printf(seq, ",background_gc=%s", "on");
673 } else {
674 seq_printf(seq, ",background_gc=%s", "off");
675 }
676 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
677 seq_puts(seq, ",disable_roll_forward");
678 if (test_opt(sbi, DISCARD))
679 seq_puts(seq, ",discard");
680 if (test_opt(sbi, NOHEAP))
681 seq_puts(seq, ",no_heap_alloc");
682 #ifdef CONFIG_F2FS_FS_XATTR
683 if (test_opt(sbi, XATTR_USER))
684 seq_puts(seq, ",user_xattr");
685 else
686 seq_puts(seq, ",nouser_xattr");
687 if (test_opt(sbi, INLINE_XATTR))
688 seq_puts(seq, ",inline_xattr");
689 #endif
690 #ifdef CONFIG_F2FS_FS_POSIX_ACL
691 if (test_opt(sbi, POSIX_ACL))
692 seq_puts(seq, ",acl");
693 else
694 seq_puts(seq, ",noacl");
695 #endif
696 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
697 seq_puts(seq, ",disable_ext_identify");
698 if (test_opt(sbi, INLINE_DATA))
699 seq_puts(seq, ",inline_data");
700 else
701 seq_puts(seq, ",noinline_data");
702 if (test_opt(sbi, INLINE_DENTRY))
703 seq_puts(seq, ",inline_dentry");
704 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
705 seq_puts(seq, ",flush_merge");
706 if (test_opt(sbi, NOBARRIER))
707 seq_puts(seq, ",nobarrier");
708 if (test_opt(sbi, FASTBOOT))
709 seq_puts(seq, ",fastboot");
710 if (test_opt(sbi, EXTENT_CACHE))
711 seq_puts(seq, ",extent_cache");
712 else
713 seq_puts(seq, ",noextent_cache");
714 if (test_opt(sbi, DATA_FLUSH))
715 seq_puts(seq, ",data_flush");
716 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
717
718 return 0;
719 }
720
721 static int segment_info_seq_show(struct seq_file *seq, void *offset)
722 {
723 struct super_block *sb = seq->private;
724 struct f2fs_sb_info *sbi = F2FS_SB(sb);
725 unsigned int total_segs =
726 le32_to_cpu(sbi->raw_super->segment_count_main);
727 int i;
728
729 seq_puts(seq, "format: segment_type|valid_blocks\n"
730 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
731
732 for (i = 0; i < total_segs; i++) {
733 struct seg_entry *se = get_seg_entry(sbi, i);
734
735 if ((i % 10) == 0)
736 seq_printf(seq, "%-10d", i);
737 seq_printf(seq, "%d|%-3u", se->type,
738 get_valid_blocks(sbi, i, 1));
739 if ((i % 10) == 9 || i == (total_segs - 1))
740 seq_putc(seq, '\n');
741 else
742 seq_putc(seq, ' ');
743 }
744
745 return 0;
746 }
747
748 static int segment_info_open_fs(struct inode *inode, struct file *file)
749 {
750 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
751 }
752
753 static const struct file_operations f2fs_seq_segment_info_fops = {
754 .owner = THIS_MODULE,
755 .open = segment_info_open_fs,
756 .read = seq_read,
757 .llseek = seq_lseek,
758 .release = single_release,
759 };
760
761 static void default_options(struct f2fs_sb_info *sbi)
762 {
763 /* init some FS parameters */
764 sbi->active_logs = NR_CURSEG_TYPE;
765
766 set_opt(sbi, BG_GC);
767 set_opt(sbi, INLINE_DATA);
768 set_opt(sbi, EXTENT_CACHE);
769
770 #ifdef CONFIG_F2FS_FS_XATTR
771 set_opt(sbi, XATTR_USER);
772 #endif
773 #ifdef CONFIG_F2FS_FS_POSIX_ACL
774 set_opt(sbi, POSIX_ACL);
775 #endif
776 }
777
778 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
779 {
780 struct f2fs_sb_info *sbi = F2FS_SB(sb);
781 struct f2fs_mount_info org_mount_opt;
782 int err, active_logs;
783 bool need_restart_gc = false;
784 bool need_stop_gc = false;
785 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
786
787 /*
788 * Save the old mount options in case we
789 * need to restore them.
790 */
791 org_mount_opt = sbi->mount_opt;
792 active_logs = sbi->active_logs;
793
794 if (*flags & MS_RDONLY) {
795 set_opt(sbi, FASTBOOT);
796 set_sbi_flag(sbi, SBI_IS_DIRTY);
797 }
798
799 sync_filesystem(sb);
800
801 sbi->mount_opt.opt = 0;
802 default_options(sbi);
803
804 /* parse mount options */
805 err = parse_options(sb, data);
806 if (err)
807 goto restore_opts;
808
809 /*
810 * Previous and new state of filesystem is RO,
811 * so skip checking GC and FLUSH_MERGE conditions.
812 */
813 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
814 goto skip;
815
816 /* disallow enable/disable extent_cache dynamically */
817 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
818 err = -EINVAL;
819 f2fs_msg(sbi->sb, KERN_WARNING,
820 "switch extent_cache option is not allowed");
821 goto restore_opts;
822 }
823
824 /*
825 * We stop the GC thread if FS is mounted as RO
826 * or if background_gc = off is passed in mount
827 * option. Also sync the filesystem.
828 */
829 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
830 if (sbi->gc_thread) {
831 stop_gc_thread(sbi);
832 f2fs_sync_fs(sb, 1);
833 need_restart_gc = true;
834 }
835 } else if (!sbi->gc_thread) {
836 err = start_gc_thread(sbi);
837 if (err)
838 goto restore_opts;
839 need_stop_gc = true;
840 }
841
842 /*
843 * We stop issue flush thread if FS is mounted as RO
844 * or if flush_merge is not passed in mount option.
845 */
846 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
847 destroy_flush_cmd_control(sbi);
848 } else if (!SM_I(sbi)->cmd_control_info) {
849 err = create_flush_cmd_control(sbi);
850 if (err)
851 goto restore_gc;
852 }
853 skip:
854 /* Update the POSIXACL Flag */
855 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
856 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
857 return 0;
858 restore_gc:
859 if (need_restart_gc) {
860 if (start_gc_thread(sbi))
861 f2fs_msg(sbi->sb, KERN_WARNING,
862 "background gc thread has stopped");
863 } else if (need_stop_gc) {
864 stop_gc_thread(sbi);
865 }
866 restore_opts:
867 sbi->mount_opt = org_mount_opt;
868 sbi->active_logs = active_logs;
869 return err;
870 }
871
872 static struct super_operations f2fs_sops = {
873 .alloc_inode = f2fs_alloc_inode,
874 .drop_inode = f2fs_drop_inode,
875 .destroy_inode = f2fs_destroy_inode,
876 .write_inode = f2fs_write_inode,
877 .dirty_inode = f2fs_dirty_inode,
878 .show_options = f2fs_show_options,
879 .evict_inode = f2fs_evict_inode,
880 .put_super = f2fs_put_super,
881 .sync_fs = f2fs_sync_fs,
882 .freeze_fs = f2fs_freeze,
883 .unfreeze_fs = f2fs_unfreeze,
884 .statfs = f2fs_statfs,
885 .remount_fs = f2fs_remount,
886 };
887
888 #ifdef CONFIG_F2FS_FS_ENCRYPTION
889 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
890 {
891 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
892 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
893 ctx, len, NULL);
894 }
895
896 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
897 void *fs_data)
898 {
899 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
900 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
901 ctx, len, fs_data, XATTR_CREATE);
902 }
903
904 static unsigned f2fs_max_namelen(struct inode *inode)
905 {
906 return S_ISLNK(inode->i_mode) ?
907 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
908 }
909
910 static struct fscrypt_operations f2fs_cryptops = {
911 .get_context = f2fs_get_context,
912 .set_context = f2fs_set_context,
913 .is_encrypted = f2fs_encrypted_inode,
914 .empty_dir = f2fs_empty_dir,
915 .max_namelen = f2fs_max_namelen,
916 };
917 #else
918 static struct fscrypt_operations f2fs_cryptops = {
919 .is_encrypted = f2fs_encrypted_inode,
920 };
921 #endif
922
923 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
924 u64 ino, u32 generation)
925 {
926 struct f2fs_sb_info *sbi = F2FS_SB(sb);
927 struct inode *inode;
928
929 if (check_nid_range(sbi, ino))
930 return ERR_PTR(-ESTALE);
931
932 /*
933 * f2fs_iget isn't quite right if the inode is currently unallocated!
934 * However f2fs_iget currently does appropriate checks to handle stale
935 * inodes so everything is OK.
936 */
937 inode = f2fs_iget(sb, ino);
938 if (IS_ERR(inode))
939 return ERR_CAST(inode);
940 if (unlikely(generation && inode->i_generation != generation)) {
941 /* we didn't find the right inode.. */
942 iput(inode);
943 return ERR_PTR(-ESTALE);
944 }
945 return inode;
946 }
947
948 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
949 int fh_len, int fh_type)
950 {
951 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
952 f2fs_nfs_get_inode);
953 }
954
955 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
956 int fh_len, int fh_type)
957 {
958 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
959 f2fs_nfs_get_inode);
960 }
961
962 static const struct export_operations f2fs_export_ops = {
963 .fh_to_dentry = f2fs_fh_to_dentry,
964 .fh_to_parent = f2fs_fh_to_parent,
965 .get_parent = f2fs_get_parent,
966 };
967
968 static loff_t max_file_blocks(void)
969 {
970 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
971 loff_t leaf_count = ADDRS_PER_BLOCK;
972
973 /* two direct node blocks */
974 result += (leaf_count * 2);
975
976 /* two indirect node blocks */
977 leaf_count *= NIDS_PER_BLOCK;
978 result += (leaf_count * 2);
979
980 /* one double indirect node block */
981 leaf_count *= NIDS_PER_BLOCK;
982 result += leaf_count;
983
984 return result;
985 }
986
987 static int __f2fs_commit_super(struct buffer_head *bh,
988 struct f2fs_super_block *super)
989 {
990 lock_buffer(bh);
991 if (super)
992 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
993 set_buffer_uptodate(bh);
994 set_buffer_dirty(bh);
995 unlock_buffer(bh);
996
997 /* it's rare case, we can do fua all the time */
998 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
999 }
1000
1001 static inline bool sanity_check_area_boundary(struct super_block *sb,
1002 struct buffer_head *bh)
1003 {
1004 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1005 (bh->b_data + F2FS_SUPER_OFFSET);
1006 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1007 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1008 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1009 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1010 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1011 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1012 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1013 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1014 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1015 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1016 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1017 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1018 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1019 u64 main_end_blkaddr = main_blkaddr +
1020 (segment_count_main << log_blocks_per_seg);
1021 u64 seg_end_blkaddr = segment0_blkaddr +
1022 (segment_count << log_blocks_per_seg);
1023
1024 if (segment0_blkaddr != cp_blkaddr) {
1025 f2fs_msg(sb, KERN_INFO,
1026 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1027 segment0_blkaddr, cp_blkaddr);
1028 return true;
1029 }
1030
1031 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1032 sit_blkaddr) {
1033 f2fs_msg(sb, KERN_INFO,
1034 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1035 cp_blkaddr, sit_blkaddr,
1036 segment_count_ckpt << log_blocks_per_seg);
1037 return true;
1038 }
1039
1040 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1041 nat_blkaddr) {
1042 f2fs_msg(sb, KERN_INFO,
1043 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1044 sit_blkaddr, nat_blkaddr,
1045 segment_count_sit << log_blocks_per_seg);
1046 return true;
1047 }
1048
1049 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1050 ssa_blkaddr) {
1051 f2fs_msg(sb, KERN_INFO,
1052 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1053 nat_blkaddr, ssa_blkaddr,
1054 segment_count_nat << log_blocks_per_seg);
1055 return true;
1056 }
1057
1058 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1059 main_blkaddr) {
1060 f2fs_msg(sb, KERN_INFO,
1061 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1062 ssa_blkaddr, main_blkaddr,
1063 segment_count_ssa << log_blocks_per_seg);
1064 return true;
1065 }
1066
1067 if (main_end_blkaddr > seg_end_blkaddr) {
1068 f2fs_msg(sb, KERN_INFO,
1069 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1070 main_blkaddr,
1071 segment0_blkaddr +
1072 (segment_count << log_blocks_per_seg),
1073 segment_count_main << log_blocks_per_seg);
1074 return true;
1075 } else if (main_end_blkaddr < seg_end_blkaddr) {
1076 int err = 0;
1077 char *res;
1078
1079 /* fix in-memory information all the time */
1080 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1081 segment0_blkaddr) >> log_blocks_per_seg);
1082
1083 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1084 res = "internally";
1085 } else {
1086 err = __f2fs_commit_super(bh, NULL);
1087 res = err ? "failed" : "done";
1088 }
1089 f2fs_msg(sb, KERN_INFO,
1090 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1091 res, main_blkaddr,
1092 segment0_blkaddr +
1093 (segment_count << log_blocks_per_seg),
1094 segment_count_main << log_blocks_per_seg);
1095 if (err)
1096 return true;
1097 }
1098 return false;
1099 }
1100
1101 static int sanity_check_raw_super(struct super_block *sb,
1102 struct buffer_head *bh)
1103 {
1104 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1105 (bh->b_data + F2FS_SUPER_OFFSET);
1106 unsigned int blocksize;
1107
1108 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1109 f2fs_msg(sb, KERN_INFO,
1110 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1111 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1112 return 1;
1113 }
1114
1115 /* Currently, support only 4KB page cache size */
1116 if (F2FS_BLKSIZE != PAGE_SIZE) {
1117 f2fs_msg(sb, KERN_INFO,
1118 "Invalid page_cache_size (%lu), supports only 4KB\n",
1119 PAGE_SIZE);
1120 return 1;
1121 }
1122
1123 /* Currently, support only 4KB block size */
1124 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1125 if (blocksize != F2FS_BLKSIZE) {
1126 f2fs_msg(sb, KERN_INFO,
1127 "Invalid blocksize (%u), supports only 4KB\n",
1128 blocksize);
1129 return 1;
1130 }
1131
1132 /* check log blocks per segment */
1133 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1134 f2fs_msg(sb, KERN_INFO,
1135 "Invalid log blocks per segment (%u)\n",
1136 le32_to_cpu(raw_super->log_blocks_per_seg));
1137 return 1;
1138 }
1139
1140 /* Currently, support 512/1024/2048/4096 bytes sector size */
1141 if (le32_to_cpu(raw_super->log_sectorsize) >
1142 F2FS_MAX_LOG_SECTOR_SIZE ||
1143 le32_to_cpu(raw_super->log_sectorsize) <
1144 F2FS_MIN_LOG_SECTOR_SIZE) {
1145 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1146 le32_to_cpu(raw_super->log_sectorsize));
1147 return 1;
1148 }
1149 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1150 le32_to_cpu(raw_super->log_sectorsize) !=
1151 F2FS_MAX_LOG_SECTOR_SIZE) {
1152 f2fs_msg(sb, KERN_INFO,
1153 "Invalid log sectors per block(%u) log sectorsize(%u)",
1154 le32_to_cpu(raw_super->log_sectors_per_block),
1155 le32_to_cpu(raw_super->log_sectorsize));
1156 return 1;
1157 }
1158
1159 /* check reserved ino info */
1160 if (le32_to_cpu(raw_super->node_ino) != 1 ||
1161 le32_to_cpu(raw_super->meta_ino) != 2 ||
1162 le32_to_cpu(raw_super->root_ino) != 3) {
1163 f2fs_msg(sb, KERN_INFO,
1164 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1165 le32_to_cpu(raw_super->node_ino),
1166 le32_to_cpu(raw_super->meta_ino),
1167 le32_to_cpu(raw_super->root_ino));
1168 return 1;
1169 }
1170
1171 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1172 if (sanity_check_area_boundary(sb, bh))
1173 return 1;
1174
1175 return 0;
1176 }
1177
1178 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1179 {
1180 unsigned int total, fsmeta;
1181 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1182 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1183
1184 total = le32_to_cpu(raw_super->segment_count);
1185 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1186 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1187 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1188 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1189 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1190
1191 if (unlikely(fsmeta >= total))
1192 return 1;
1193
1194 if (unlikely(f2fs_cp_error(sbi))) {
1195 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1196 return 1;
1197 }
1198 return 0;
1199 }
1200
1201 static void init_sb_info(struct f2fs_sb_info *sbi)
1202 {
1203 struct f2fs_super_block *raw_super = sbi->raw_super;
1204 int i;
1205
1206 sbi->log_sectors_per_block =
1207 le32_to_cpu(raw_super->log_sectors_per_block);
1208 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1209 sbi->blocksize = 1 << sbi->log_blocksize;
1210 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1211 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1212 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1213 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1214 sbi->total_sections = le32_to_cpu(raw_super->section_count);
1215 sbi->total_node_count =
1216 (le32_to_cpu(raw_super->segment_count_nat) / 2)
1217 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1218 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1219 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1220 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1221 sbi->cur_victim_sec = NULL_SECNO;
1222 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1223
1224 for (i = 0; i < NR_COUNT_TYPE; i++)
1225 atomic_set(&sbi->nr_pages[i], 0);
1226
1227 sbi->dir_level = DEF_DIR_LEVEL;
1228 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1229 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1230 clear_sbi_flag(sbi, SBI_NEED_FSCK);
1231
1232 INIT_LIST_HEAD(&sbi->s_list);
1233 mutex_init(&sbi->umount_mutex);
1234 }
1235
1236 /*
1237 * Read f2fs raw super block.
1238 * Because we have two copies of super block, so read both of them
1239 * to get the first valid one. If any one of them is broken, we pass
1240 * them recovery flag back to the caller.
1241 */
1242 static int read_raw_super_block(struct super_block *sb,
1243 struct f2fs_super_block **raw_super,
1244 int *valid_super_block, int *recovery)
1245 {
1246 int block;
1247 struct buffer_head *bh;
1248 struct f2fs_super_block *super;
1249 int err = 0;
1250
1251 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1252 if (!super)
1253 return -ENOMEM;
1254
1255 for (block = 0; block < 2; block++) {
1256 bh = sb_bread(sb, block);
1257 if (!bh) {
1258 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1259 block + 1);
1260 err = -EIO;
1261 continue;
1262 }
1263
1264 /* sanity checking of raw super */
1265 if (sanity_check_raw_super(sb, bh)) {
1266 f2fs_msg(sb, KERN_ERR,
1267 "Can't find valid F2FS filesystem in %dth superblock",
1268 block + 1);
1269 err = -EINVAL;
1270 brelse(bh);
1271 continue;
1272 }
1273
1274 if (!*raw_super) {
1275 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1276 sizeof(*super));
1277 *valid_super_block = block;
1278 *raw_super = super;
1279 }
1280 brelse(bh);
1281 }
1282
1283 /* Fail to read any one of the superblocks*/
1284 if (err < 0)
1285 *recovery = 1;
1286
1287 /* No valid superblock */
1288 if (!*raw_super)
1289 kfree(super);
1290 else
1291 err = 0;
1292
1293 return err;
1294 }
1295
1296 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1297 {
1298 struct buffer_head *bh;
1299 int err;
1300
1301 /* write back-up superblock first */
1302 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1303 if (!bh)
1304 return -EIO;
1305 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1306 brelse(bh);
1307
1308 /* if we are in recovery path, skip writing valid superblock */
1309 if (recover || err)
1310 return err;
1311
1312 /* write current valid superblock */
1313 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1314 if (!bh)
1315 return -EIO;
1316 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1317 brelse(bh);
1318 return err;
1319 }
1320
1321 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1322 {
1323 struct f2fs_sb_info *sbi;
1324 struct f2fs_super_block *raw_super;
1325 struct inode *root;
1326 long err;
1327 bool retry = true, need_fsck = false;
1328 char *options = NULL;
1329 int recovery, i, valid_super_block;
1330 struct curseg_info *seg_i;
1331
1332 try_onemore:
1333 err = -EINVAL;
1334 raw_super = NULL;
1335 valid_super_block = -1;
1336 recovery = 0;
1337
1338 /* allocate memory for f2fs-specific super block info */
1339 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1340 if (!sbi)
1341 return -ENOMEM;
1342
1343 /* Load the checksum driver */
1344 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1345 if (IS_ERR(sbi->s_chksum_driver)) {
1346 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1347 err = PTR_ERR(sbi->s_chksum_driver);
1348 sbi->s_chksum_driver = NULL;
1349 goto free_sbi;
1350 }
1351
1352 /* set a block size */
1353 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1354 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1355 goto free_sbi;
1356 }
1357
1358 err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1359 &recovery);
1360 if (err)
1361 goto free_sbi;
1362
1363 sb->s_fs_info = sbi;
1364 default_options(sbi);
1365 /* parse mount options */
1366 options = kstrdup((const char *)data, GFP_KERNEL);
1367 if (data && !options) {
1368 err = -ENOMEM;
1369 goto free_sb_buf;
1370 }
1371
1372 err = parse_options(sb, options);
1373 if (err)
1374 goto free_options;
1375
1376 sbi->max_file_blocks = max_file_blocks();
1377 sb->s_maxbytes = sbi->max_file_blocks <<
1378 le32_to_cpu(raw_super->log_blocksize);
1379 sb->s_max_links = F2FS_LINK_MAX;
1380 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1381
1382 sb->s_op = &f2fs_sops;
1383 sb->s_cop = &f2fs_cryptops;
1384 sb->s_xattr = f2fs_xattr_handlers;
1385 sb->s_export_op = &f2fs_export_ops;
1386 sb->s_magic = F2FS_SUPER_MAGIC;
1387 sb->s_time_gran = 1;
1388 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1389 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1390 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1391
1392 /* init f2fs-specific super block info */
1393 sbi->sb = sb;
1394 sbi->raw_super = raw_super;
1395 sbi->valid_super_block = valid_super_block;
1396 mutex_init(&sbi->gc_mutex);
1397 mutex_init(&sbi->writepages);
1398 mutex_init(&sbi->cp_mutex);
1399 init_rwsem(&sbi->node_write);
1400
1401 /* disallow all the data/node/meta page writes */
1402 set_sbi_flag(sbi, SBI_POR_DOING);
1403 spin_lock_init(&sbi->stat_lock);
1404
1405 init_rwsem(&sbi->read_io.io_rwsem);
1406 sbi->read_io.sbi = sbi;
1407 sbi->read_io.bio = NULL;
1408 for (i = 0; i < NR_PAGE_TYPE; i++) {
1409 init_rwsem(&sbi->write_io[i].io_rwsem);
1410 sbi->write_io[i].sbi = sbi;
1411 sbi->write_io[i].bio = NULL;
1412 }
1413
1414 init_rwsem(&sbi->cp_rwsem);
1415 init_waitqueue_head(&sbi->cp_wait);
1416 init_sb_info(sbi);
1417
1418 /* get an inode for meta space */
1419 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1420 if (IS_ERR(sbi->meta_inode)) {
1421 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1422 err = PTR_ERR(sbi->meta_inode);
1423 goto free_options;
1424 }
1425
1426 err = get_valid_checkpoint(sbi);
1427 if (err) {
1428 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1429 goto free_meta_inode;
1430 }
1431
1432 sbi->total_valid_node_count =
1433 le32_to_cpu(sbi->ckpt->valid_node_count);
1434 sbi->total_valid_inode_count =
1435 le32_to_cpu(sbi->ckpt->valid_inode_count);
1436 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1437 sbi->total_valid_block_count =
1438 le64_to_cpu(sbi->ckpt->valid_block_count);
1439 sbi->last_valid_block_count = sbi->total_valid_block_count;
1440 sbi->alloc_valid_block_count = 0;
1441 for (i = 0; i < NR_INODE_TYPE; i++) {
1442 INIT_LIST_HEAD(&sbi->inode_list[i]);
1443 spin_lock_init(&sbi->inode_lock[i]);
1444 }
1445
1446 init_extent_cache_info(sbi);
1447
1448 init_ino_entry_info(sbi);
1449
1450 /* setup f2fs internal modules */
1451 err = build_segment_manager(sbi);
1452 if (err) {
1453 f2fs_msg(sb, KERN_ERR,
1454 "Failed to initialize F2FS segment manager");
1455 goto free_sm;
1456 }
1457 err = build_node_manager(sbi);
1458 if (err) {
1459 f2fs_msg(sb, KERN_ERR,
1460 "Failed to initialize F2FS node manager");
1461 goto free_nm;
1462 }
1463
1464 /* For write statistics */
1465 if (sb->s_bdev->bd_part)
1466 sbi->sectors_written_start =
1467 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1468
1469 /* Read accumulated write IO statistics if exists */
1470 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1471 if (__exist_node_summaries(sbi))
1472 sbi->kbytes_written =
1473 le64_to_cpu(seg_i->journal->info.kbytes_written);
1474
1475 build_gc_manager(sbi);
1476
1477 /* get an inode for node space */
1478 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1479 if (IS_ERR(sbi->node_inode)) {
1480 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1481 err = PTR_ERR(sbi->node_inode);
1482 goto free_nm;
1483 }
1484
1485 f2fs_join_shrinker(sbi);
1486
1487 /* if there are nt orphan nodes free them */
1488 err = recover_orphan_inodes(sbi);
1489 if (err)
1490 goto free_node_inode;
1491
1492 /* read root inode and dentry */
1493 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1494 if (IS_ERR(root)) {
1495 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1496 err = PTR_ERR(root);
1497 goto free_node_inode;
1498 }
1499 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1500 iput(root);
1501 err = -EINVAL;
1502 goto free_node_inode;
1503 }
1504
1505 sb->s_root = d_make_root(root); /* allocate root dentry */
1506 if (!sb->s_root) {
1507 err = -ENOMEM;
1508 goto free_root_inode;
1509 }
1510
1511 err = f2fs_build_stats(sbi);
1512 if (err)
1513 goto free_root_inode;
1514
1515 if (f2fs_proc_root)
1516 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1517
1518 if (sbi->s_proc)
1519 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1520 &f2fs_seq_segment_info_fops, sb);
1521
1522 sbi->s_kobj.kset = f2fs_kset;
1523 init_completion(&sbi->s_kobj_unregister);
1524 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1525 "%s", sb->s_id);
1526 if (err)
1527 goto free_proc;
1528
1529 /* recover fsynced data */
1530 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1531 /*
1532 * mount should be failed, when device has readonly mode, and
1533 * previous checkpoint was not done by clean system shutdown.
1534 */
1535 if (bdev_read_only(sb->s_bdev) &&
1536 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1537 err = -EROFS;
1538 goto free_kobj;
1539 }
1540
1541 if (need_fsck)
1542 set_sbi_flag(sbi, SBI_NEED_FSCK);
1543
1544 err = recover_fsync_data(sbi);
1545 if (err) {
1546 need_fsck = true;
1547 f2fs_msg(sb, KERN_ERR,
1548 "Cannot recover all fsync data errno=%ld", err);
1549 goto free_kobj;
1550 }
1551 }
1552 /* recover_fsync_data() cleared this already */
1553 clear_sbi_flag(sbi, SBI_POR_DOING);
1554
1555 /*
1556 * If filesystem is not mounted as read-only then
1557 * do start the gc_thread.
1558 */
1559 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1560 /* After POR, we can run background GC thread.*/
1561 err = start_gc_thread(sbi);
1562 if (err)
1563 goto free_kobj;
1564 }
1565 kfree(options);
1566
1567 /* recover broken superblock */
1568 if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1569 err = f2fs_commit_super(sbi, true);
1570 f2fs_msg(sb, KERN_INFO,
1571 "Try to recover %dth superblock, ret: %ld",
1572 sbi->valid_super_block ? 1 : 2, err);
1573 }
1574
1575 f2fs_update_time(sbi, CP_TIME);
1576 f2fs_update_time(sbi, REQ_TIME);
1577 return 0;
1578
1579 free_kobj:
1580 kobject_del(&sbi->s_kobj);
1581 kobject_put(&sbi->s_kobj);
1582 wait_for_completion(&sbi->s_kobj_unregister);
1583 free_proc:
1584 if (sbi->s_proc) {
1585 remove_proc_entry("segment_info", sbi->s_proc);
1586 remove_proc_entry(sb->s_id, f2fs_proc_root);
1587 }
1588 f2fs_destroy_stats(sbi);
1589 free_root_inode:
1590 dput(sb->s_root);
1591 sb->s_root = NULL;
1592 free_node_inode:
1593 mutex_lock(&sbi->umount_mutex);
1594 f2fs_leave_shrinker(sbi);
1595 iput(sbi->node_inode);
1596 mutex_unlock(&sbi->umount_mutex);
1597 free_nm:
1598 destroy_node_manager(sbi);
1599 free_sm:
1600 destroy_segment_manager(sbi);
1601 kfree(sbi->ckpt);
1602 free_meta_inode:
1603 make_bad_inode(sbi->meta_inode);
1604 iput(sbi->meta_inode);
1605 free_options:
1606 kfree(options);
1607 free_sb_buf:
1608 kfree(raw_super);
1609 free_sbi:
1610 if (sbi->s_chksum_driver)
1611 crypto_free_shash(sbi->s_chksum_driver);
1612 kfree(sbi);
1613
1614 /* give only one another chance */
1615 if (retry) {
1616 retry = false;
1617 shrink_dcache_sb(sb);
1618 goto try_onemore;
1619 }
1620 return err;
1621 }
1622
1623 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1624 const char *dev_name, void *data)
1625 {
1626 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1627 }
1628
1629 static void kill_f2fs_super(struct super_block *sb)
1630 {
1631 if (sb->s_root)
1632 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1633 kill_block_super(sb);
1634 }
1635
1636 static struct file_system_type f2fs_fs_type = {
1637 .owner = THIS_MODULE,
1638 .name = "f2fs",
1639 .mount = f2fs_mount,
1640 .kill_sb = kill_f2fs_super,
1641 .fs_flags = FS_REQUIRES_DEV,
1642 };
1643 MODULE_ALIAS_FS("f2fs");
1644
1645 static int __init init_inodecache(void)
1646 {
1647 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1648 sizeof(struct f2fs_inode_info), 0,
1649 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1650 if (!f2fs_inode_cachep)
1651 return -ENOMEM;
1652 return 0;
1653 }
1654
1655 static void destroy_inodecache(void)
1656 {
1657 /*
1658 * Make sure all delayed rcu free inodes are flushed before we
1659 * destroy cache.
1660 */
1661 rcu_barrier();
1662 kmem_cache_destroy(f2fs_inode_cachep);
1663 }
1664
1665 static int __init init_f2fs_fs(void)
1666 {
1667 int err;
1668
1669 f2fs_build_trace_ios();
1670
1671 err = init_inodecache();
1672 if (err)
1673 goto fail;
1674 err = create_node_manager_caches();
1675 if (err)
1676 goto free_inodecache;
1677 err = create_segment_manager_caches();
1678 if (err)
1679 goto free_node_manager_caches;
1680 err = create_checkpoint_caches();
1681 if (err)
1682 goto free_segment_manager_caches;
1683 err = create_extent_cache();
1684 if (err)
1685 goto free_checkpoint_caches;
1686 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1687 if (!f2fs_kset) {
1688 err = -ENOMEM;
1689 goto free_extent_cache;
1690 }
1691 err = register_shrinker(&f2fs_shrinker_info);
1692 if (err)
1693 goto free_kset;
1694
1695 err = register_filesystem(&f2fs_fs_type);
1696 if (err)
1697 goto free_shrinker;
1698 err = f2fs_create_root_stats();
1699 if (err)
1700 goto free_filesystem;
1701 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1702 return 0;
1703
1704 free_filesystem:
1705 unregister_filesystem(&f2fs_fs_type);
1706 free_shrinker:
1707 unregister_shrinker(&f2fs_shrinker_info);
1708 free_kset:
1709 kset_unregister(f2fs_kset);
1710 free_extent_cache:
1711 destroy_extent_cache();
1712 free_checkpoint_caches:
1713 destroy_checkpoint_caches();
1714 free_segment_manager_caches:
1715 destroy_segment_manager_caches();
1716 free_node_manager_caches:
1717 destroy_node_manager_caches();
1718 free_inodecache:
1719 destroy_inodecache();
1720 fail:
1721 return err;
1722 }
1723
1724 static void __exit exit_f2fs_fs(void)
1725 {
1726 remove_proc_entry("fs/f2fs", NULL);
1727 f2fs_destroy_root_stats();
1728 unregister_shrinker(&f2fs_shrinker_info);
1729 unregister_filesystem(&f2fs_fs_type);
1730 destroy_extent_cache();
1731 destroy_checkpoint_caches();
1732 destroy_segment_manager_caches();
1733 destroy_node_manager_caches();
1734 destroy_inodecache();
1735 kset_unregister(f2fs_kset);
1736 f2fs_destroy_trace_ios();
1737 }
1738
1739 module_init(init_f2fs_fs)
1740 module_exit(exit_f2fs_fs)
1741
1742 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1743 MODULE_DESCRIPTION("Flash Friendly File System");
1744 MODULE_LICENSE("GPL");