]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/f2fs/super.c
f2fs: fix to cover io->bio with io_rwsem
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36
37 static struct proc_dir_entry *f2fs_proc_root;
38 static struct kmem_cache *f2fs_inode_cachep;
39 static struct kset *f2fs_kset;
40
41 enum {
42 Opt_gc_background,
43 Opt_disable_roll_forward,
44 Opt_discard,
45 Opt_noheap,
46 Opt_user_xattr,
47 Opt_nouser_xattr,
48 Opt_acl,
49 Opt_noacl,
50 Opt_active_logs,
51 Opt_disable_ext_identify,
52 Opt_inline_xattr,
53 Opt_inline_data,
54 Opt_err,
55 };
56
57 static match_table_t f2fs_tokens = {
58 {Opt_gc_background, "background_gc=%s"},
59 {Opt_disable_roll_forward, "disable_roll_forward"},
60 {Opt_discard, "discard"},
61 {Opt_noheap, "no_heap"},
62 {Opt_user_xattr, "user_xattr"},
63 {Opt_nouser_xattr, "nouser_xattr"},
64 {Opt_acl, "acl"},
65 {Opt_noacl, "noacl"},
66 {Opt_active_logs, "active_logs=%u"},
67 {Opt_disable_ext_identify, "disable_ext_identify"},
68 {Opt_inline_xattr, "inline_xattr"},
69 {Opt_inline_data, "inline_data"},
70 {Opt_err, NULL},
71 };
72
73 /* Sysfs support for f2fs */
74 enum {
75 GC_THREAD, /* struct f2fs_gc_thread */
76 SM_INFO, /* struct f2fs_sm_info */
77 NM_INFO, /* struct f2fs_nm_info */
78 F2FS_SBI, /* struct f2fs_sb_info */
79 };
80
81 struct f2fs_attr {
82 struct attribute attr;
83 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
84 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
85 const char *, size_t);
86 int struct_type;
87 int offset;
88 };
89
90 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
91 {
92 if (struct_type == GC_THREAD)
93 return (unsigned char *)sbi->gc_thread;
94 else if (struct_type == SM_INFO)
95 return (unsigned char *)SM_I(sbi);
96 else if (struct_type == NM_INFO)
97 return (unsigned char *)NM_I(sbi);
98 else if (struct_type == F2FS_SBI)
99 return (unsigned char *)sbi;
100 return NULL;
101 }
102
103 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
104 struct f2fs_sb_info *sbi, char *buf)
105 {
106 unsigned char *ptr = NULL;
107 unsigned int *ui;
108
109 ptr = __struct_ptr(sbi, a->struct_type);
110 if (!ptr)
111 return -EINVAL;
112
113 ui = (unsigned int *)(ptr + a->offset);
114
115 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
116 }
117
118 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
119 struct f2fs_sb_info *sbi,
120 const char *buf, size_t count)
121 {
122 unsigned char *ptr;
123 unsigned long t;
124 unsigned int *ui;
125 ssize_t ret;
126
127 ptr = __struct_ptr(sbi, a->struct_type);
128 if (!ptr)
129 return -EINVAL;
130
131 ui = (unsigned int *)(ptr + a->offset);
132
133 ret = kstrtoul(skip_spaces(buf), 0, &t);
134 if (ret < 0)
135 return ret;
136 *ui = t;
137 return count;
138 }
139
140 static ssize_t f2fs_attr_show(struct kobject *kobj,
141 struct attribute *attr, char *buf)
142 {
143 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
144 s_kobj);
145 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
146
147 return a->show ? a->show(a, sbi, buf) : 0;
148 }
149
150 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
151 const char *buf, size_t len)
152 {
153 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
154 s_kobj);
155 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
156
157 return a->store ? a->store(a, sbi, buf, len) : 0;
158 }
159
160 static void f2fs_sb_release(struct kobject *kobj)
161 {
162 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
163 s_kobj);
164 complete(&sbi->s_kobj_unregister);
165 }
166
167 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
168 static struct f2fs_attr f2fs_attr_##_name = { \
169 .attr = {.name = __stringify(_name), .mode = _mode }, \
170 .show = _show, \
171 .store = _store, \
172 .struct_type = _struct_type, \
173 .offset = _offset \
174 }
175
176 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
177 F2FS_ATTR_OFFSET(struct_type, name, 0644, \
178 f2fs_sbi_show, f2fs_sbi_store, \
179 offsetof(struct struct_name, elname))
180
181 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
182 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
183 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
184 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
185 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
186 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
187 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
188 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
189 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
190 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
191 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
192
193 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
194 static struct attribute *f2fs_attrs[] = {
195 ATTR_LIST(gc_min_sleep_time),
196 ATTR_LIST(gc_max_sleep_time),
197 ATTR_LIST(gc_no_gc_sleep_time),
198 ATTR_LIST(gc_idle),
199 ATTR_LIST(reclaim_segments),
200 ATTR_LIST(max_small_discards),
201 ATTR_LIST(ipu_policy),
202 ATTR_LIST(min_ipu_util),
203 ATTR_LIST(max_victim_search),
204 ATTR_LIST(dir_level),
205 ATTR_LIST(ram_thresh),
206 NULL,
207 };
208
209 static const struct sysfs_ops f2fs_attr_ops = {
210 .show = f2fs_attr_show,
211 .store = f2fs_attr_store,
212 };
213
214 static struct kobj_type f2fs_ktype = {
215 .default_attrs = f2fs_attrs,
216 .sysfs_ops = &f2fs_attr_ops,
217 .release = f2fs_sb_release,
218 };
219
220 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
221 {
222 struct va_format vaf;
223 va_list args;
224
225 va_start(args, fmt);
226 vaf.fmt = fmt;
227 vaf.va = &args;
228 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
229 va_end(args);
230 }
231
232 static void init_once(void *foo)
233 {
234 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
235
236 inode_init_once(&fi->vfs_inode);
237 }
238
239 static int parse_options(struct super_block *sb, char *options)
240 {
241 struct f2fs_sb_info *sbi = F2FS_SB(sb);
242 substring_t args[MAX_OPT_ARGS];
243 char *p, *name;
244 int arg = 0;
245
246 if (!options)
247 return 0;
248
249 while ((p = strsep(&options, ",")) != NULL) {
250 int token;
251 if (!*p)
252 continue;
253 /*
254 * Initialize args struct so we know whether arg was
255 * found; some options take optional arguments.
256 */
257 args[0].to = args[0].from = NULL;
258 token = match_token(p, f2fs_tokens, args);
259
260 switch (token) {
261 case Opt_gc_background:
262 name = match_strdup(&args[0]);
263
264 if (!name)
265 return -ENOMEM;
266 if (strlen(name) == 2 && !strncmp(name, "on", 2))
267 set_opt(sbi, BG_GC);
268 else if (strlen(name) == 3 && !strncmp(name, "off", 3))
269 clear_opt(sbi, BG_GC);
270 else {
271 kfree(name);
272 return -EINVAL;
273 }
274 kfree(name);
275 break;
276 case Opt_disable_roll_forward:
277 set_opt(sbi, DISABLE_ROLL_FORWARD);
278 break;
279 case Opt_discard:
280 set_opt(sbi, DISCARD);
281 break;
282 case Opt_noheap:
283 set_opt(sbi, NOHEAP);
284 break;
285 #ifdef CONFIG_F2FS_FS_XATTR
286 case Opt_user_xattr:
287 set_opt(sbi, XATTR_USER);
288 break;
289 case Opt_nouser_xattr:
290 clear_opt(sbi, XATTR_USER);
291 break;
292 case Opt_inline_xattr:
293 set_opt(sbi, INLINE_XATTR);
294 break;
295 #else
296 case Opt_user_xattr:
297 f2fs_msg(sb, KERN_INFO,
298 "user_xattr options not supported");
299 break;
300 case Opt_nouser_xattr:
301 f2fs_msg(sb, KERN_INFO,
302 "nouser_xattr options not supported");
303 break;
304 case Opt_inline_xattr:
305 f2fs_msg(sb, KERN_INFO,
306 "inline_xattr options not supported");
307 break;
308 #endif
309 #ifdef CONFIG_F2FS_FS_POSIX_ACL
310 case Opt_acl:
311 set_opt(sbi, POSIX_ACL);
312 break;
313 case Opt_noacl:
314 clear_opt(sbi, POSIX_ACL);
315 break;
316 #else
317 case Opt_acl:
318 f2fs_msg(sb, KERN_INFO, "acl options not supported");
319 break;
320 case Opt_noacl:
321 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
322 break;
323 #endif
324 case Opt_active_logs:
325 if (args->from && match_int(args, &arg))
326 return -EINVAL;
327 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
328 return -EINVAL;
329 sbi->active_logs = arg;
330 break;
331 case Opt_disable_ext_identify:
332 set_opt(sbi, DISABLE_EXT_IDENTIFY);
333 break;
334 case Opt_inline_data:
335 set_opt(sbi, INLINE_DATA);
336 break;
337 default:
338 f2fs_msg(sb, KERN_ERR,
339 "Unrecognized mount option \"%s\" or missing value",
340 p);
341 return -EINVAL;
342 }
343 }
344 return 0;
345 }
346
347 static struct inode *f2fs_alloc_inode(struct super_block *sb)
348 {
349 struct f2fs_inode_info *fi;
350
351 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
352 if (!fi)
353 return NULL;
354
355 init_once((void *) fi);
356
357 /* Initialize f2fs-specific inode info */
358 fi->vfs_inode.i_version = 1;
359 atomic_set(&fi->dirty_dents, 0);
360 fi->i_current_depth = 1;
361 fi->i_advise = 0;
362 rwlock_init(&fi->ext.ext_lock);
363 init_rwsem(&fi->i_sem);
364
365 set_inode_flag(fi, FI_NEW_INODE);
366
367 if (test_opt(F2FS_SB(sb), INLINE_XATTR))
368 set_inode_flag(fi, FI_INLINE_XATTR);
369
370 /* Will be used by directory only */
371 fi->i_dir_level = F2FS_SB(sb)->dir_level;
372
373 return &fi->vfs_inode;
374 }
375
376 static int f2fs_drop_inode(struct inode *inode)
377 {
378 /*
379 * This is to avoid a deadlock condition like below.
380 * writeback_single_inode(inode)
381 * - f2fs_write_data_page
382 * - f2fs_gc -> iput -> evict
383 * - inode_wait_for_writeback(inode)
384 */
385 if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
386 return 0;
387 return generic_drop_inode(inode);
388 }
389
390 /*
391 * f2fs_dirty_inode() is called from __mark_inode_dirty()
392 *
393 * We should call set_dirty_inode to write the dirty inode through write_inode.
394 */
395 static void f2fs_dirty_inode(struct inode *inode, int flags)
396 {
397 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
398 }
399
400 static void f2fs_i_callback(struct rcu_head *head)
401 {
402 struct inode *inode = container_of(head, struct inode, i_rcu);
403 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
404 }
405
406 static void f2fs_destroy_inode(struct inode *inode)
407 {
408 call_rcu(&inode->i_rcu, f2fs_i_callback);
409 }
410
411 static void f2fs_put_super(struct super_block *sb)
412 {
413 struct f2fs_sb_info *sbi = F2FS_SB(sb);
414
415 if (sbi->s_proc) {
416 remove_proc_entry("segment_info", sbi->s_proc);
417 remove_proc_entry(sb->s_id, f2fs_proc_root);
418 }
419 kobject_del(&sbi->s_kobj);
420
421 f2fs_destroy_stats(sbi);
422 stop_gc_thread(sbi);
423
424 /* We don't need to do checkpoint when it's clean */
425 if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
426 write_checkpoint(sbi, true);
427
428 iput(sbi->node_inode);
429 iput(sbi->meta_inode);
430
431 /* destroy f2fs internal modules */
432 destroy_node_manager(sbi);
433 destroy_segment_manager(sbi);
434
435 kfree(sbi->ckpt);
436 kobject_put(&sbi->s_kobj);
437 wait_for_completion(&sbi->s_kobj_unregister);
438
439 sb->s_fs_info = NULL;
440 brelse(sbi->raw_super_buf);
441 kfree(sbi);
442 }
443
444 int f2fs_sync_fs(struct super_block *sb, int sync)
445 {
446 struct f2fs_sb_info *sbi = F2FS_SB(sb);
447
448 trace_f2fs_sync_fs(sb, sync);
449
450 if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
451 return 0;
452
453 if (sync) {
454 mutex_lock(&sbi->gc_mutex);
455 write_checkpoint(sbi, false);
456 mutex_unlock(&sbi->gc_mutex);
457 } else {
458 f2fs_balance_fs(sbi);
459 }
460
461 return 0;
462 }
463
464 static int f2fs_freeze(struct super_block *sb)
465 {
466 int err;
467
468 if (f2fs_readonly(sb))
469 return 0;
470
471 err = f2fs_sync_fs(sb, 1);
472 return err;
473 }
474
475 static int f2fs_unfreeze(struct super_block *sb)
476 {
477 return 0;
478 }
479
480 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
481 {
482 struct super_block *sb = dentry->d_sb;
483 struct f2fs_sb_info *sbi = F2FS_SB(sb);
484 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
485 block_t total_count, user_block_count, start_count, ovp_count;
486
487 total_count = le64_to_cpu(sbi->raw_super->block_count);
488 user_block_count = sbi->user_block_count;
489 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
490 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
491 buf->f_type = F2FS_SUPER_MAGIC;
492 buf->f_bsize = sbi->blocksize;
493
494 buf->f_blocks = total_count - start_count;
495 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
496 buf->f_bavail = user_block_count - valid_user_blocks(sbi);
497
498 buf->f_files = sbi->total_node_count;
499 buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
500
501 buf->f_namelen = F2FS_NAME_LEN;
502 buf->f_fsid.val[0] = (u32)id;
503 buf->f_fsid.val[1] = (u32)(id >> 32);
504
505 return 0;
506 }
507
508 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
509 {
510 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
511
512 if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC))
513 seq_printf(seq, ",background_gc=%s", "on");
514 else
515 seq_printf(seq, ",background_gc=%s", "off");
516 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
517 seq_puts(seq, ",disable_roll_forward");
518 if (test_opt(sbi, DISCARD))
519 seq_puts(seq, ",discard");
520 if (test_opt(sbi, NOHEAP))
521 seq_puts(seq, ",no_heap_alloc");
522 #ifdef CONFIG_F2FS_FS_XATTR
523 if (test_opt(sbi, XATTR_USER))
524 seq_puts(seq, ",user_xattr");
525 else
526 seq_puts(seq, ",nouser_xattr");
527 if (test_opt(sbi, INLINE_XATTR))
528 seq_puts(seq, ",inline_xattr");
529 #endif
530 #ifdef CONFIG_F2FS_FS_POSIX_ACL
531 if (test_opt(sbi, POSIX_ACL))
532 seq_puts(seq, ",acl");
533 else
534 seq_puts(seq, ",noacl");
535 #endif
536 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
537 seq_puts(seq, ",disable_ext_identify");
538 if (test_opt(sbi, INLINE_DATA))
539 seq_puts(seq, ",inline_data");
540 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
541
542 return 0;
543 }
544
545 static int segment_info_seq_show(struct seq_file *seq, void *offset)
546 {
547 struct super_block *sb = seq->private;
548 struct f2fs_sb_info *sbi = F2FS_SB(sb);
549 unsigned int total_segs =
550 le32_to_cpu(sbi->raw_super->segment_count_main);
551 int i;
552
553 seq_puts(seq, "format: segment_type|valid_blocks\n"
554 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
555
556 for (i = 0; i < total_segs; i++) {
557 struct seg_entry *se = get_seg_entry(sbi, i);
558
559 if ((i % 10) == 0)
560 seq_printf(seq, "%-5d", i);
561 seq_printf(seq, "%d|%-3u", se->type,
562 get_valid_blocks(sbi, i, 1));
563 if ((i % 10) == 9 || i == (total_segs - 1))
564 seq_putc(seq, '\n');
565 else
566 seq_putc(seq, ' ');
567 }
568
569 return 0;
570 }
571
572 static int segment_info_open_fs(struct inode *inode, struct file *file)
573 {
574 return single_open(file, segment_info_seq_show, PDE_DATA(inode));
575 }
576
577 static const struct file_operations f2fs_seq_segment_info_fops = {
578 .owner = THIS_MODULE,
579 .open = segment_info_open_fs,
580 .read = seq_read,
581 .llseek = seq_lseek,
582 .release = single_release,
583 };
584
585 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
586 {
587 struct f2fs_sb_info *sbi = F2FS_SB(sb);
588 struct f2fs_mount_info org_mount_opt;
589 int err, active_logs;
590
591 /*
592 * Save the old mount options in case we
593 * need to restore them.
594 */
595 org_mount_opt = sbi->mount_opt;
596 active_logs = sbi->active_logs;
597
598 /* parse mount options */
599 err = parse_options(sb, data);
600 if (err)
601 goto restore_opts;
602
603 /*
604 * Previous and new state of filesystem is RO,
605 * so no point in checking GC conditions.
606 */
607 if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
608 goto skip;
609
610 /*
611 * We stop the GC thread if FS is mounted as RO
612 * or if background_gc = off is passed in mount
613 * option. Also sync the filesystem.
614 */
615 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
616 if (sbi->gc_thread) {
617 stop_gc_thread(sbi);
618 f2fs_sync_fs(sb, 1);
619 }
620 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
621 err = start_gc_thread(sbi);
622 if (err)
623 goto restore_opts;
624 }
625 skip:
626 /* Update the POSIXACL Flag */
627 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
628 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
629 return 0;
630
631 restore_opts:
632 sbi->mount_opt = org_mount_opt;
633 sbi->active_logs = active_logs;
634 return err;
635 }
636
637 static struct super_operations f2fs_sops = {
638 .alloc_inode = f2fs_alloc_inode,
639 .drop_inode = f2fs_drop_inode,
640 .destroy_inode = f2fs_destroy_inode,
641 .write_inode = f2fs_write_inode,
642 .dirty_inode = f2fs_dirty_inode,
643 .show_options = f2fs_show_options,
644 .evict_inode = f2fs_evict_inode,
645 .put_super = f2fs_put_super,
646 .sync_fs = f2fs_sync_fs,
647 .freeze_fs = f2fs_freeze,
648 .unfreeze_fs = f2fs_unfreeze,
649 .statfs = f2fs_statfs,
650 .remount_fs = f2fs_remount,
651 };
652
653 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
654 u64 ino, u32 generation)
655 {
656 struct f2fs_sb_info *sbi = F2FS_SB(sb);
657 struct inode *inode;
658
659 if (unlikely(ino < F2FS_ROOT_INO(sbi)))
660 return ERR_PTR(-ESTALE);
661 if (unlikely(ino >= NM_I(sbi)->max_nid))
662 return ERR_PTR(-ESTALE);
663
664 /*
665 * f2fs_iget isn't quite right if the inode is currently unallocated!
666 * However f2fs_iget currently does appropriate checks to handle stale
667 * inodes so everything is OK.
668 */
669 inode = f2fs_iget(sb, ino);
670 if (IS_ERR(inode))
671 return ERR_CAST(inode);
672 if (unlikely(generation && inode->i_generation != generation)) {
673 /* we didn't find the right inode.. */
674 iput(inode);
675 return ERR_PTR(-ESTALE);
676 }
677 return inode;
678 }
679
680 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
681 int fh_len, int fh_type)
682 {
683 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
684 f2fs_nfs_get_inode);
685 }
686
687 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
688 int fh_len, int fh_type)
689 {
690 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
691 f2fs_nfs_get_inode);
692 }
693
694 static const struct export_operations f2fs_export_ops = {
695 .fh_to_dentry = f2fs_fh_to_dentry,
696 .fh_to_parent = f2fs_fh_to_parent,
697 .get_parent = f2fs_get_parent,
698 };
699
700 static loff_t max_file_size(unsigned bits)
701 {
702 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
703 loff_t leaf_count = ADDRS_PER_BLOCK;
704
705 /* two direct node blocks */
706 result += (leaf_count * 2);
707
708 /* two indirect node blocks */
709 leaf_count *= NIDS_PER_BLOCK;
710 result += (leaf_count * 2);
711
712 /* one double indirect node block */
713 leaf_count *= NIDS_PER_BLOCK;
714 result += leaf_count;
715
716 result <<= bits;
717 return result;
718 }
719
720 static int sanity_check_raw_super(struct super_block *sb,
721 struct f2fs_super_block *raw_super)
722 {
723 unsigned int blocksize;
724
725 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
726 f2fs_msg(sb, KERN_INFO,
727 "Magic Mismatch, valid(0x%x) - read(0x%x)",
728 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
729 return 1;
730 }
731
732 /* Currently, support only 4KB page cache size */
733 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
734 f2fs_msg(sb, KERN_INFO,
735 "Invalid page_cache_size (%lu), supports only 4KB\n",
736 PAGE_CACHE_SIZE);
737 return 1;
738 }
739
740 /* Currently, support only 4KB block size */
741 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
742 if (blocksize != F2FS_BLKSIZE) {
743 f2fs_msg(sb, KERN_INFO,
744 "Invalid blocksize (%u), supports only 4KB\n",
745 blocksize);
746 return 1;
747 }
748
749 if (le32_to_cpu(raw_super->log_sectorsize) !=
750 F2FS_LOG_SECTOR_SIZE) {
751 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
752 return 1;
753 }
754 if (le32_to_cpu(raw_super->log_sectors_per_block) !=
755 F2FS_LOG_SECTORS_PER_BLOCK) {
756 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
757 return 1;
758 }
759 return 0;
760 }
761
762 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
763 {
764 unsigned int total, fsmeta;
765 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
766 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
767
768 total = le32_to_cpu(raw_super->segment_count);
769 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
770 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
771 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
772 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
773 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
774
775 if (unlikely(fsmeta >= total))
776 return 1;
777
778 if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
779 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
780 return 1;
781 }
782 return 0;
783 }
784
785 static void init_sb_info(struct f2fs_sb_info *sbi)
786 {
787 struct f2fs_super_block *raw_super = sbi->raw_super;
788 int i;
789
790 sbi->log_sectors_per_block =
791 le32_to_cpu(raw_super->log_sectors_per_block);
792 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
793 sbi->blocksize = 1 << sbi->log_blocksize;
794 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
795 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
796 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
797 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
798 sbi->total_sections = le32_to_cpu(raw_super->section_count);
799 sbi->total_node_count =
800 (le32_to_cpu(raw_super->segment_count_nat) / 2)
801 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
802 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
803 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
804 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
805 sbi->cur_victim_sec = NULL_SECNO;
806 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
807
808 for (i = 0; i < NR_COUNT_TYPE; i++)
809 atomic_set(&sbi->nr_pages[i], 0);
810
811 sbi->dir_level = DEF_DIR_LEVEL;
812 }
813
814 /*
815 * Read f2fs raw super block.
816 * Because we have two copies of super block, so read the first one at first,
817 * if the first one is invalid, move to read the second one.
818 */
819 static int read_raw_super_block(struct super_block *sb,
820 struct f2fs_super_block **raw_super,
821 struct buffer_head **raw_super_buf)
822 {
823 int block = 0;
824
825 retry:
826 *raw_super_buf = sb_bread(sb, block);
827 if (!*raw_super_buf) {
828 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
829 block + 1);
830 if (block == 0) {
831 block++;
832 goto retry;
833 } else {
834 return -EIO;
835 }
836 }
837
838 *raw_super = (struct f2fs_super_block *)
839 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
840
841 /* sanity checking of raw super */
842 if (sanity_check_raw_super(sb, *raw_super)) {
843 brelse(*raw_super_buf);
844 f2fs_msg(sb, KERN_ERR,
845 "Can't find valid F2FS filesystem in %dth superblock",
846 block + 1);
847 if (block == 0) {
848 block++;
849 goto retry;
850 } else {
851 return -EINVAL;
852 }
853 }
854
855 return 0;
856 }
857
858 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
859 {
860 struct f2fs_sb_info *sbi;
861 struct f2fs_super_block *raw_super;
862 struct buffer_head *raw_super_buf;
863 struct inode *root;
864 long err = -EINVAL;
865 int i;
866
867 /* allocate memory for f2fs-specific super block info */
868 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
869 if (!sbi)
870 return -ENOMEM;
871
872 /* set a block size */
873 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
874 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
875 goto free_sbi;
876 }
877
878 err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
879 if (err)
880 goto free_sbi;
881
882 sb->s_fs_info = sbi;
883 /* init some FS parameters */
884 sbi->active_logs = NR_CURSEG_TYPE;
885
886 set_opt(sbi, BG_GC);
887
888 #ifdef CONFIG_F2FS_FS_XATTR
889 set_opt(sbi, XATTR_USER);
890 #endif
891 #ifdef CONFIG_F2FS_FS_POSIX_ACL
892 set_opt(sbi, POSIX_ACL);
893 #endif
894 /* parse mount options */
895 err = parse_options(sb, (char *)data);
896 if (err)
897 goto free_sb_buf;
898
899 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
900 sb->s_max_links = F2FS_LINK_MAX;
901 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
902
903 sb->s_op = &f2fs_sops;
904 sb->s_xattr = f2fs_xattr_handlers;
905 sb->s_export_op = &f2fs_export_ops;
906 sb->s_magic = F2FS_SUPER_MAGIC;
907 sb->s_time_gran = 1;
908 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
909 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
910 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
911
912 /* init f2fs-specific super block info */
913 sbi->sb = sb;
914 sbi->raw_super = raw_super;
915 sbi->raw_super_buf = raw_super_buf;
916 mutex_init(&sbi->gc_mutex);
917 mutex_init(&sbi->writepages);
918 mutex_init(&sbi->cp_mutex);
919 mutex_init(&sbi->node_write);
920 sbi->por_doing = false;
921 spin_lock_init(&sbi->stat_lock);
922
923 init_rwsem(&sbi->read_io.io_rwsem);
924 sbi->read_io.sbi = sbi;
925 sbi->read_io.bio = NULL;
926 for (i = 0; i < NR_PAGE_TYPE; i++) {
927 init_rwsem(&sbi->write_io[i].io_rwsem);
928 sbi->write_io[i].sbi = sbi;
929 sbi->write_io[i].bio = NULL;
930 }
931
932 init_rwsem(&sbi->cp_rwsem);
933 init_waitqueue_head(&sbi->cp_wait);
934 init_sb_info(sbi);
935
936 /* get an inode for meta space */
937 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
938 if (IS_ERR(sbi->meta_inode)) {
939 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
940 err = PTR_ERR(sbi->meta_inode);
941 goto free_sb_buf;
942 }
943
944 err = get_valid_checkpoint(sbi);
945 if (err) {
946 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
947 goto free_meta_inode;
948 }
949
950 /* sanity checking of checkpoint */
951 err = -EINVAL;
952 if (sanity_check_ckpt(sbi)) {
953 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
954 goto free_cp;
955 }
956
957 sbi->total_valid_node_count =
958 le32_to_cpu(sbi->ckpt->valid_node_count);
959 sbi->total_valid_inode_count =
960 le32_to_cpu(sbi->ckpt->valid_inode_count);
961 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
962 sbi->total_valid_block_count =
963 le64_to_cpu(sbi->ckpt->valid_block_count);
964 sbi->last_valid_block_count = sbi->total_valid_block_count;
965 sbi->alloc_valid_block_count = 0;
966 INIT_LIST_HEAD(&sbi->dir_inode_list);
967 spin_lock_init(&sbi->dir_inode_lock);
968
969 init_orphan_info(sbi);
970
971 /* setup f2fs internal modules */
972 err = build_segment_manager(sbi);
973 if (err) {
974 f2fs_msg(sb, KERN_ERR,
975 "Failed to initialize F2FS segment manager");
976 goto free_sm;
977 }
978 err = build_node_manager(sbi);
979 if (err) {
980 f2fs_msg(sb, KERN_ERR,
981 "Failed to initialize F2FS node manager");
982 goto free_nm;
983 }
984
985 build_gc_manager(sbi);
986
987 /* get an inode for node space */
988 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
989 if (IS_ERR(sbi->node_inode)) {
990 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
991 err = PTR_ERR(sbi->node_inode);
992 goto free_nm;
993 }
994
995 /* if there are nt orphan nodes free them */
996 recover_orphan_inodes(sbi);
997
998 /* read root inode and dentry */
999 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1000 if (IS_ERR(root)) {
1001 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1002 err = PTR_ERR(root);
1003 goto free_node_inode;
1004 }
1005 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1006 err = -EINVAL;
1007 goto free_root_inode;
1008 }
1009
1010 sb->s_root = d_make_root(root); /* allocate root dentry */
1011 if (!sb->s_root) {
1012 err = -ENOMEM;
1013 goto free_root_inode;
1014 }
1015
1016 err = f2fs_build_stats(sbi);
1017 if (err)
1018 goto free_root_inode;
1019
1020 if (f2fs_proc_root)
1021 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1022
1023 if (sbi->s_proc)
1024 proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1025 &f2fs_seq_segment_info_fops, sb);
1026
1027 if (test_opt(sbi, DISCARD)) {
1028 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1029 if (!blk_queue_discard(q))
1030 f2fs_msg(sb, KERN_WARNING,
1031 "mounting with \"discard\" option, but "
1032 "the device does not support discard");
1033 }
1034
1035 sbi->s_kobj.kset = f2fs_kset;
1036 init_completion(&sbi->s_kobj_unregister);
1037 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1038 "%s", sb->s_id);
1039 if (err)
1040 goto free_proc;
1041
1042 /* recover fsynced data */
1043 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1044 err = recover_fsync_data(sbi);
1045 if (err)
1046 f2fs_msg(sb, KERN_ERR,
1047 "Cannot recover all fsync data errno=%ld", err);
1048 }
1049
1050 /*
1051 * If filesystem is not mounted as read-only then
1052 * do start the gc_thread.
1053 */
1054 if (!(sb->s_flags & MS_RDONLY)) {
1055 /* After POR, we can run background GC thread.*/
1056 err = start_gc_thread(sbi);
1057 if (err)
1058 goto free_kobj;
1059 }
1060 return 0;
1061
1062 free_kobj:
1063 kobject_del(&sbi->s_kobj);
1064 free_proc:
1065 if (sbi->s_proc) {
1066 remove_proc_entry("segment_info", sbi->s_proc);
1067 remove_proc_entry(sb->s_id, f2fs_proc_root);
1068 }
1069 f2fs_destroy_stats(sbi);
1070 free_root_inode:
1071 dput(sb->s_root);
1072 sb->s_root = NULL;
1073 free_node_inode:
1074 iput(sbi->node_inode);
1075 free_nm:
1076 destroy_node_manager(sbi);
1077 free_sm:
1078 destroy_segment_manager(sbi);
1079 free_cp:
1080 kfree(sbi->ckpt);
1081 free_meta_inode:
1082 make_bad_inode(sbi->meta_inode);
1083 iput(sbi->meta_inode);
1084 free_sb_buf:
1085 brelse(raw_super_buf);
1086 free_sbi:
1087 kfree(sbi);
1088 return err;
1089 }
1090
1091 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1092 const char *dev_name, void *data)
1093 {
1094 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1095 }
1096
1097 static struct file_system_type f2fs_fs_type = {
1098 .owner = THIS_MODULE,
1099 .name = "f2fs",
1100 .mount = f2fs_mount,
1101 .kill_sb = kill_block_super,
1102 .fs_flags = FS_REQUIRES_DEV,
1103 };
1104 MODULE_ALIAS_FS("f2fs");
1105
1106 static int __init init_inodecache(void)
1107 {
1108 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1109 sizeof(struct f2fs_inode_info));
1110 if (!f2fs_inode_cachep)
1111 return -ENOMEM;
1112 return 0;
1113 }
1114
1115 static void destroy_inodecache(void)
1116 {
1117 /*
1118 * Make sure all delayed rcu free inodes are flushed before we
1119 * destroy cache.
1120 */
1121 rcu_barrier();
1122 kmem_cache_destroy(f2fs_inode_cachep);
1123 }
1124
1125 static int __init init_f2fs_fs(void)
1126 {
1127 int err;
1128
1129 err = init_inodecache();
1130 if (err)
1131 goto fail;
1132 err = create_node_manager_caches();
1133 if (err)
1134 goto free_inodecache;
1135 err = create_segment_manager_caches();
1136 if (err)
1137 goto free_node_manager_caches;
1138 err = create_gc_caches();
1139 if (err)
1140 goto free_segment_manager_caches;
1141 err = create_checkpoint_caches();
1142 if (err)
1143 goto free_gc_caches;
1144 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1145 if (!f2fs_kset) {
1146 err = -ENOMEM;
1147 goto free_checkpoint_caches;
1148 }
1149 err = register_filesystem(&f2fs_fs_type);
1150 if (err)
1151 goto free_kset;
1152 f2fs_create_root_stats();
1153 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1154 return 0;
1155
1156 free_kset:
1157 kset_unregister(f2fs_kset);
1158 free_checkpoint_caches:
1159 destroy_checkpoint_caches();
1160 free_gc_caches:
1161 destroy_gc_caches();
1162 free_segment_manager_caches:
1163 destroy_segment_manager_caches();
1164 free_node_manager_caches:
1165 destroy_node_manager_caches();
1166 free_inodecache:
1167 destroy_inodecache();
1168 fail:
1169 return err;
1170 }
1171
1172 static void __exit exit_f2fs_fs(void)
1173 {
1174 remove_proc_entry("fs/f2fs", NULL);
1175 f2fs_destroy_root_stats();
1176 unregister_filesystem(&f2fs_fs_type);
1177 destroy_checkpoint_caches();
1178 destroy_gc_caches();
1179 destroy_segment_manager_caches();
1180 destroy_node_manager_caches();
1181 destroy_inodecache();
1182 kset_unregister(f2fs_kset);
1183 }
1184
1185 module_init(init_f2fs_fs)
1186 module_exit(exit_f2fs_fs)
1187
1188 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1189 MODULE_DESCRIPTION("Flash Friendly File System");
1190 MODULE_LICENSE("GPL");