]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/fcntl.c
rtc: at91sam9: Remove unnecessary offset variable checks
[mirror_ubuntu-jammy-kernel.git] / fs / fcntl.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/fcntl.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/fdtable.h>
15 #include <linux/capability.h>
16 #include <linux/dnotify.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/security.h>
21 #include <linux/ptrace.h>
22 #include <linux/signal.h>
23 #include <linux/rcupdate.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/user_namespace.h>
26 #include <linux/memfd.h>
27 #include <linux/compat.h>
28 #include <linux/mount.h>
29
30 #include <linux/poll.h>
31 #include <asm/siginfo.h>
32 #include <linux/uaccess.h>
33
34 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
35
36 static int setfl(int fd, struct file * filp, unsigned long arg)
37 {
38 struct inode * inode = file_inode(filp);
39 int error = 0;
40
41 /*
42 * O_APPEND cannot be cleared if the file is marked as append-only
43 * and the file is open for write.
44 */
45 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
46 return -EPERM;
47
48 /* O_NOATIME can only be set by the owner or superuser */
49 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
50 if (!inode_owner_or_capable(file_mnt_user_ns(filp), inode))
51 return -EPERM;
52
53 /* required for strict SunOS emulation */
54 if (O_NONBLOCK != O_NDELAY)
55 if (arg & O_NDELAY)
56 arg |= O_NONBLOCK;
57
58 /* Pipe packetized mode is controlled by O_DIRECT flag */
59 if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
60 if (!filp->f_mapping || !filp->f_mapping->a_ops ||
61 !filp->f_mapping->a_ops->direct_IO)
62 return -EINVAL;
63 }
64
65 if (filp->f_op->check_flags)
66 error = filp->f_op->check_flags(arg);
67 if (error)
68 return error;
69
70 /*
71 * ->fasync() is responsible for setting the FASYNC bit.
72 */
73 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
74 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
75 if (error < 0)
76 goto out;
77 if (error > 0)
78 error = 0;
79 }
80 spin_lock(&filp->f_lock);
81 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
82 spin_unlock(&filp->f_lock);
83
84 out:
85 return error;
86 }
87
88 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
89 int force)
90 {
91 write_lock_irq(&filp->f_owner.lock);
92 if (force || !filp->f_owner.pid) {
93 put_pid(filp->f_owner.pid);
94 filp->f_owner.pid = get_pid(pid);
95 filp->f_owner.pid_type = type;
96
97 if (pid) {
98 const struct cred *cred = current_cred();
99 filp->f_owner.uid = cred->uid;
100 filp->f_owner.euid = cred->euid;
101 }
102 }
103 write_unlock_irq(&filp->f_owner.lock);
104 }
105
106 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
107 int force)
108 {
109 security_file_set_fowner(filp);
110 f_modown(filp, pid, type, force);
111 }
112 EXPORT_SYMBOL(__f_setown);
113
114 int f_setown(struct file *filp, unsigned long arg, int force)
115 {
116 enum pid_type type;
117 struct pid *pid = NULL;
118 int who = arg, ret = 0;
119
120 type = PIDTYPE_TGID;
121 if (who < 0) {
122 /* avoid overflow below */
123 if (who == INT_MIN)
124 return -EINVAL;
125
126 type = PIDTYPE_PGID;
127 who = -who;
128 }
129
130 rcu_read_lock();
131 if (who) {
132 pid = find_vpid(who);
133 if (!pid)
134 ret = -ESRCH;
135 }
136
137 if (!ret)
138 __f_setown(filp, pid, type, force);
139 rcu_read_unlock();
140
141 return ret;
142 }
143 EXPORT_SYMBOL(f_setown);
144
145 void f_delown(struct file *filp)
146 {
147 f_modown(filp, NULL, PIDTYPE_TGID, 1);
148 }
149
150 pid_t f_getown(struct file *filp)
151 {
152 pid_t pid = 0;
153 read_lock(&filp->f_owner.lock);
154 rcu_read_lock();
155 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
156 pid = pid_vnr(filp->f_owner.pid);
157 if (filp->f_owner.pid_type == PIDTYPE_PGID)
158 pid = -pid;
159 }
160 rcu_read_unlock();
161 read_unlock(&filp->f_owner.lock);
162 return pid;
163 }
164
165 static int f_setown_ex(struct file *filp, unsigned long arg)
166 {
167 struct f_owner_ex __user *owner_p = (void __user *)arg;
168 struct f_owner_ex owner;
169 struct pid *pid;
170 int type;
171 int ret;
172
173 ret = copy_from_user(&owner, owner_p, sizeof(owner));
174 if (ret)
175 return -EFAULT;
176
177 switch (owner.type) {
178 case F_OWNER_TID:
179 type = PIDTYPE_PID;
180 break;
181
182 case F_OWNER_PID:
183 type = PIDTYPE_TGID;
184 break;
185
186 case F_OWNER_PGRP:
187 type = PIDTYPE_PGID;
188 break;
189
190 default:
191 return -EINVAL;
192 }
193
194 rcu_read_lock();
195 pid = find_vpid(owner.pid);
196 if (owner.pid && !pid)
197 ret = -ESRCH;
198 else
199 __f_setown(filp, pid, type, 1);
200 rcu_read_unlock();
201
202 return ret;
203 }
204
205 static int f_getown_ex(struct file *filp, unsigned long arg)
206 {
207 struct f_owner_ex __user *owner_p = (void __user *)arg;
208 struct f_owner_ex owner = {};
209 int ret = 0;
210
211 read_lock(&filp->f_owner.lock);
212 rcu_read_lock();
213 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
214 owner.pid = pid_vnr(filp->f_owner.pid);
215 rcu_read_unlock();
216 switch (filp->f_owner.pid_type) {
217 case PIDTYPE_PID:
218 owner.type = F_OWNER_TID;
219 break;
220
221 case PIDTYPE_TGID:
222 owner.type = F_OWNER_PID;
223 break;
224
225 case PIDTYPE_PGID:
226 owner.type = F_OWNER_PGRP;
227 break;
228
229 default:
230 WARN_ON(1);
231 ret = -EINVAL;
232 break;
233 }
234 read_unlock(&filp->f_owner.lock);
235
236 if (!ret) {
237 ret = copy_to_user(owner_p, &owner, sizeof(owner));
238 if (ret)
239 ret = -EFAULT;
240 }
241 return ret;
242 }
243
244 #ifdef CONFIG_CHECKPOINT_RESTORE
245 static int f_getowner_uids(struct file *filp, unsigned long arg)
246 {
247 struct user_namespace *user_ns = current_user_ns();
248 uid_t __user *dst = (void __user *)arg;
249 uid_t src[2];
250 int err;
251
252 read_lock(&filp->f_owner.lock);
253 src[0] = from_kuid(user_ns, filp->f_owner.uid);
254 src[1] = from_kuid(user_ns, filp->f_owner.euid);
255 read_unlock(&filp->f_owner.lock);
256
257 err = put_user(src[0], &dst[0]);
258 err |= put_user(src[1], &dst[1]);
259
260 return err;
261 }
262 #else
263 static int f_getowner_uids(struct file *filp, unsigned long arg)
264 {
265 return -EINVAL;
266 }
267 #endif
268
269 static bool rw_hint_valid(enum rw_hint hint)
270 {
271 switch (hint) {
272 case RWH_WRITE_LIFE_NOT_SET:
273 case RWH_WRITE_LIFE_NONE:
274 case RWH_WRITE_LIFE_SHORT:
275 case RWH_WRITE_LIFE_MEDIUM:
276 case RWH_WRITE_LIFE_LONG:
277 case RWH_WRITE_LIFE_EXTREME:
278 return true;
279 default:
280 return false;
281 }
282 }
283
284 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
285 unsigned long arg)
286 {
287 struct inode *inode = file_inode(file);
288 u64 __user *argp = (u64 __user *)arg;
289 enum rw_hint hint;
290 u64 h;
291
292 switch (cmd) {
293 case F_GET_FILE_RW_HINT:
294 h = file_write_hint(file);
295 if (copy_to_user(argp, &h, sizeof(*argp)))
296 return -EFAULT;
297 return 0;
298 case F_SET_FILE_RW_HINT:
299 if (copy_from_user(&h, argp, sizeof(h)))
300 return -EFAULT;
301 hint = (enum rw_hint) h;
302 if (!rw_hint_valid(hint))
303 return -EINVAL;
304
305 spin_lock(&file->f_lock);
306 file->f_write_hint = hint;
307 spin_unlock(&file->f_lock);
308 return 0;
309 case F_GET_RW_HINT:
310 h = inode->i_write_hint;
311 if (copy_to_user(argp, &h, sizeof(*argp)))
312 return -EFAULT;
313 return 0;
314 case F_SET_RW_HINT:
315 if (copy_from_user(&h, argp, sizeof(h)))
316 return -EFAULT;
317 hint = (enum rw_hint) h;
318 if (!rw_hint_valid(hint))
319 return -EINVAL;
320
321 inode_lock(inode);
322 inode->i_write_hint = hint;
323 inode_unlock(inode);
324 return 0;
325 default:
326 return -EINVAL;
327 }
328 }
329
330 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
331 struct file *filp)
332 {
333 void __user *argp = (void __user *)arg;
334 struct flock flock;
335 long err = -EINVAL;
336
337 switch (cmd) {
338 case F_DUPFD:
339 err = f_dupfd(arg, filp, 0);
340 break;
341 case F_DUPFD_CLOEXEC:
342 err = f_dupfd(arg, filp, O_CLOEXEC);
343 break;
344 case F_GETFD:
345 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
346 break;
347 case F_SETFD:
348 err = 0;
349 set_close_on_exec(fd, arg & FD_CLOEXEC);
350 break;
351 case F_GETFL:
352 err = filp->f_flags;
353 break;
354 case F_SETFL:
355 err = setfl(fd, filp, arg);
356 break;
357 #if BITS_PER_LONG != 32
358 /* 32-bit arches must use fcntl64() */
359 case F_OFD_GETLK:
360 #endif
361 case F_GETLK:
362 if (copy_from_user(&flock, argp, sizeof(flock)))
363 return -EFAULT;
364 err = fcntl_getlk(filp, cmd, &flock);
365 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
366 return -EFAULT;
367 break;
368 #if BITS_PER_LONG != 32
369 /* 32-bit arches must use fcntl64() */
370 case F_OFD_SETLK:
371 case F_OFD_SETLKW:
372 #endif
373 fallthrough;
374 case F_SETLK:
375 case F_SETLKW:
376 if (copy_from_user(&flock, argp, sizeof(flock)))
377 return -EFAULT;
378 err = fcntl_setlk(fd, filp, cmd, &flock);
379 break;
380 case F_GETOWN:
381 /*
382 * XXX If f_owner is a process group, the
383 * negative return value will get converted
384 * into an error. Oops. If we keep the
385 * current syscall conventions, the only way
386 * to fix this will be in libc.
387 */
388 err = f_getown(filp);
389 force_successful_syscall_return();
390 break;
391 case F_SETOWN:
392 err = f_setown(filp, arg, 1);
393 break;
394 case F_GETOWN_EX:
395 err = f_getown_ex(filp, arg);
396 break;
397 case F_SETOWN_EX:
398 err = f_setown_ex(filp, arg);
399 break;
400 case F_GETOWNER_UIDS:
401 err = f_getowner_uids(filp, arg);
402 break;
403 case F_GETSIG:
404 err = filp->f_owner.signum;
405 break;
406 case F_SETSIG:
407 /* arg == 0 restores default behaviour. */
408 if (!valid_signal(arg)) {
409 break;
410 }
411 err = 0;
412 filp->f_owner.signum = arg;
413 break;
414 case F_GETLEASE:
415 err = fcntl_getlease(filp);
416 break;
417 case F_SETLEASE:
418 err = fcntl_setlease(fd, filp, arg);
419 break;
420 case F_NOTIFY:
421 err = fcntl_dirnotify(fd, filp, arg);
422 break;
423 case F_SETPIPE_SZ:
424 case F_GETPIPE_SZ:
425 err = pipe_fcntl(filp, cmd, arg);
426 break;
427 case F_ADD_SEALS:
428 case F_GET_SEALS:
429 err = memfd_fcntl(filp, cmd, arg);
430 break;
431 case F_GET_RW_HINT:
432 case F_SET_RW_HINT:
433 case F_GET_FILE_RW_HINT:
434 case F_SET_FILE_RW_HINT:
435 err = fcntl_rw_hint(filp, cmd, arg);
436 break;
437 default:
438 break;
439 }
440 return err;
441 }
442
443 static int check_fcntl_cmd(unsigned cmd)
444 {
445 switch (cmd) {
446 case F_DUPFD:
447 case F_DUPFD_CLOEXEC:
448 case F_GETFD:
449 case F_SETFD:
450 case F_GETFL:
451 return 1;
452 }
453 return 0;
454 }
455
456 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
457 {
458 struct fd f = fdget_raw(fd);
459 long err = -EBADF;
460
461 if (!f.file)
462 goto out;
463
464 if (unlikely(f.file->f_mode & FMODE_PATH)) {
465 if (!check_fcntl_cmd(cmd))
466 goto out1;
467 }
468
469 err = security_file_fcntl(f.file, cmd, arg);
470 if (!err)
471 err = do_fcntl(fd, cmd, arg, f.file);
472
473 out1:
474 fdput(f);
475 out:
476 return err;
477 }
478
479 #if BITS_PER_LONG == 32
480 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
481 unsigned long, arg)
482 {
483 void __user *argp = (void __user *)arg;
484 struct fd f = fdget_raw(fd);
485 struct flock64 flock;
486 long err = -EBADF;
487
488 if (!f.file)
489 goto out;
490
491 if (unlikely(f.file->f_mode & FMODE_PATH)) {
492 if (!check_fcntl_cmd(cmd))
493 goto out1;
494 }
495
496 err = security_file_fcntl(f.file, cmd, arg);
497 if (err)
498 goto out1;
499
500 switch (cmd) {
501 case F_GETLK64:
502 case F_OFD_GETLK:
503 err = -EFAULT;
504 if (copy_from_user(&flock, argp, sizeof(flock)))
505 break;
506 err = fcntl_getlk64(f.file, cmd, &flock);
507 if (!err && copy_to_user(argp, &flock, sizeof(flock)))
508 err = -EFAULT;
509 break;
510 case F_SETLK64:
511 case F_SETLKW64:
512 case F_OFD_SETLK:
513 case F_OFD_SETLKW:
514 err = -EFAULT;
515 if (copy_from_user(&flock, argp, sizeof(flock)))
516 break;
517 err = fcntl_setlk64(fd, f.file, cmd, &flock);
518 break;
519 default:
520 err = do_fcntl(fd, cmd, arg, f.file);
521 break;
522 }
523 out1:
524 fdput(f);
525 out:
526 return err;
527 }
528 #endif
529
530 #ifdef CONFIG_COMPAT
531 /* careful - don't use anywhere else */
532 #define copy_flock_fields(dst, src) \
533 (dst)->l_type = (src)->l_type; \
534 (dst)->l_whence = (src)->l_whence; \
535 (dst)->l_start = (src)->l_start; \
536 (dst)->l_len = (src)->l_len; \
537 (dst)->l_pid = (src)->l_pid;
538
539 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
540 {
541 struct compat_flock fl;
542
543 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
544 return -EFAULT;
545 copy_flock_fields(kfl, &fl);
546 return 0;
547 }
548
549 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
550 {
551 struct compat_flock64 fl;
552
553 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
554 return -EFAULT;
555 copy_flock_fields(kfl, &fl);
556 return 0;
557 }
558
559 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
560 {
561 struct compat_flock fl;
562
563 memset(&fl, 0, sizeof(struct compat_flock));
564 copy_flock_fields(&fl, kfl);
565 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
566 return -EFAULT;
567 return 0;
568 }
569
570 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
571 {
572 struct compat_flock64 fl;
573
574 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
575 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
576
577 memset(&fl, 0, sizeof(struct compat_flock64));
578 copy_flock_fields(&fl, kfl);
579 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
580 return -EFAULT;
581 return 0;
582 }
583 #undef copy_flock_fields
584
585 static unsigned int
586 convert_fcntl_cmd(unsigned int cmd)
587 {
588 switch (cmd) {
589 case F_GETLK64:
590 return F_GETLK;
591 case F_SETLK64:
592 return F_SETLK;
593 case F_SETLKW64:
594 return F_SETLKW;
595 }
596
597 return cmd;
598 }
599
600 /*
601 * GETLK was successful and we need to return the data, but it needs to fit in
602 * the compat structure.
603 * l_start shouldn't be too big, unless the original start + end is greater than
604 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
605 * -EOVERFLOW in that case. l_len could be too big, in which case we just
606 * truncate it, and only allow the app to see that part of the conflicting lock
607 * that might make sense to it anyway
608 */
609 static int fixup_compat_flock(struct flock *flock)
610 {
611 if (flock->l_start > COMPAT_OFF_T_MAX)
612 return -EOVERFLOW;
613 if (flock->l_len > COMPAT_OFF_T_MAX)
614 flock->l_len = COMPAT_OFF_T_MAX;
615 return 0;
616 }
617
618 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
619 compat_ulong_t arg)
620 {
621 struct fd f = fdget_raw(fd);
622 struct flock flock;
623 long err = -EBADF;
624
625 if (!f.file)
626 return err;
627
628 if (unlikely(f.file->f_mode & FMODE_PATH)) {
629 if (!check_fcntl_cmd(cmd))
630 goto out_put;
631 }
632
633 err = security_file_fcntl(f.file, cmd, arg);
634 if (err)
635 goto out_put;
636
637 switch (cmd) {
638 case F_GETLK:
639 err = get_compat_flock(&flock, compat_ptr(arg));
640 if (err)
641 break;
642 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
643 if (err)
644 break;
645 err = fixup_compat_flock(&flock);
646 if (!err)
647 err = put_compat_flock(&flock, compat_ptr(arg));
648 break;
649 case F_GETLK64:
650 case F_OFD_GETLK:
651 err = get_compat_flock64(&flock, compat_ptr(arg));
652 if (err)
653 break;
654 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
655 if (!err)
656 err = put_compat_flock64(&flock, compat_ptr(arg));
657 break;
658 case F_SETLK:
659 case F_SETLKW:
660 err = get_compat_flock(&flock, compat_ptr(arg));
661 if (err)
662 break;
663 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
664 break;
665 case F_SETLK64:
666 case F_SETLKW64:
667 case F_OFD_SETLK:
668 case F_OFD_SETLKW:
669 err = get_compat_flock64(&flock, compat_ptr(arg));
670 if (err)
671 break;
672 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
673 break;
674 default:
675 err = do_fcntl(fd, cmd, arg, f.file);
676 break;
677 }
678 out_put:
679 fdput(f);
680 return err;
681 }
682
683 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
684 compat_ulong_t, arg)
685 {
686 return do_compat_fcntl64(fd, cmd, arg);
687 }
688
689 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
690 compat_ulong_t, arg)
691 {
692 switch (cmd) {
693 case F_GETLK64:
694 case F_SETLK64:
695 case F_SETLKW64:
696 case F_OFD_GETLK:
697 case F_OFD_SETLK:
698 case F_OFD_SETLKW:
699 return -EINVAL;
700 }
701 return do_compat_fcntl64(fd, cmd, arg);
702 }
703 #endif
704
705 /* Table to convert sigio signal codes into poll band bitmaps */
706
707 static const __poll_t band_table[NSIGPOLL] = {
708 EPOLLIN | EPOLLRDNORM, /* POLL_IN */
709 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */
710 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */
711 EPOLLERR, /* POLL_ERR */
712 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */
713 EPOLLHUP | EPOLLERR /* POLL_HUP */
714 };
715
716 static inline int sigio_perm(struct task_struct *p,
717 struct fown_struct *fown, int sig)
718 {
719 const struct cred *cred;
720 int ret;
721
722 rcu_read_lock();
723 cred = __task_cred(p);
724 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
725 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
726 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
727 !security_file_send_sigiotask(p, fown, sig));
728 rcu_read_unlock();
729 return ret;
730 }
731
732 static void send_sigio_to_task(struct task_struct *p,
733 struct fown_struct *fown,
734 int fd, int reason, enum pid_type type)
735 {
736 /*
737 * F_SETSIG can change ->signum lockless in parallel, make
738 * sure we read it once and use the same value throughout.
739 */
740 int signum = READ_ONCE(fown->signum);
741
742 if (!sigio_perm(p, fown, signum))
743 return;
744
745 switch (signum) {
746 default: {
747 kernel_siginfo_t si;
748
749 /* Queue a rt signal with the appropriate fd as its
750 value. We use SI_SIGIO as the source, not
751 SI_KERNEL, since kernel signals always get
752 delivered even if we can't queue. Failure to
753 queue in this case _should_ be reported; we fall
754 back to SIGIO in that case. --sct */
755 clear_siginfo(&si);
756 si.si_signo = signum;
757 si.si_errno = 0;
758 si.si_code = reason;
759 /*
760 * Posix definies POLL_IN and friends to be signal
761 * specific si_codes for SIG_POLL. Linux extended
762 * these si_codes to other signals in a way that is
763 * ambiguous if other signals also have signal
764 * specific si_codes. In that case use SI_SIGIO instead
765 * to remove the ambiguity.
766 */
767 if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
768 si.si_code = SI_SIGIO;
769
770 /* Make sure we are called with one of the POLL_*
771 reasons, otherwise we could leak kernel stack into
772 userspace. */
773 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
774 if (reason - POLL_IN >= NSIGPOLL)
775 si.si_band = ~0L;
776 else
777 si.si_band = mangle_poll(band_table[reason - POLL_IN]);
778 si.si_fd = fd;
779 if (!do_send_sig_info(signum, &si, p, type))
780 break;
781 }
782 fallthrough; /* fall back on the old plain SIGIO signal */
783 case 0:
784 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
785 }
786 }
787
788 void send_sigio(struct fown_struct *fown, int fd, int band)
789 {
790 struct task_struct *p;
791 enum pid_type type;
792 unsigned long flags;
793 struct pid *pid;
794
795 read_lock_irqsave(&fown->lock, flags);
796
797 type = fown->pid_type;
798 pid = fown->pid;
799 if (!pid)
800 goto out_unlock_fown;
801
802 if (type <= PIDTYPE_TGID) {
803 rcu_read_lock();
804 p = pid_task(pid, PIDTYPE_PID);
805 if (p)
806 send_sigio_to_task(p, fown, fd, band, type);
807 rcu_read_unlock();
808 } else {
809 read_lock(&tasklist_lock);
810 do_each_pid_task(pid, type, p) {
811 send_sigio_to_task(p, fown, fd, band, type);
812 } while_each_pid_task(pid, type, p);
813 read_unlock(&tasklist_lock);
814 }
815 out_unlock_fown:
816 read_unlock_irqrestore(&fown->lock, flags);
817 }
818
819 static void send_sigurg_to_task(struct task_struct *p,
820 struct fown_struct *fown, enum pid_type type)
821 {
822 if (sigio_perm(p, fown, SIGURG))
823 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
824 }
825
826 int send_sigurg(struct fown_struct *fown)
827 {
828 struct task_struct *p;
829 enum pid_type type;
830 struct pid *pid;
831 unsigned long flags;
832 int ret = 0;
833
834 read_lock_irqsave(&fown->lock, flags);
835
836 type = fown->pid_type;
837 pid = fown->pid;
838 if (!pid)
839 goto out_unlock_fown;
840
841 ret = 1;
842
843 if (type <= PIDTYPE_TGID) {
844 rcu_read_lock();
845 p = pid_task(pid, PIDTYPE_PID);
846 if (p)
847 send_sigurg_to_task(p, fown, type);
848 rcu_read_unlock();
849 } else {
850 read_lock(&tasklist_lock);
851 do_each_pid_task(pid, type, p) {
852 send_sigurg_to_task(p, fown, type);
853 } while_each_pid_task(pid, type, p);
854 read_unlock(&tasklist_lock);
855 }
856 out_unlock_fown:
857 read_unlock_irqrestore(&fown->lock, flags);
858 return ret;
859 }
860
861 static DEFINE_SPINLOCK(fasync_lock);
862 static struct kmem_cache *fasync_cache __read_mostly;
863
864 static void fasync_free_rcu(struct rcu_head *head)
865 {
866 kmem_cache_free(fasync_cache,
867 container_of(head, struct fasync_struct, fa_rcu));
868 }
869
870 /*
871 * Remove a fasync entry. If successfully removed, return
872 * positive and clear the FASYNC flag. If no entry exists,
873 * do nothing and return 0.
874 *
875 * NOTE! It is very important that the FASYNC flag always
876 * match the state "is the filp on a fasync list".
877 *
878 */
879 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
880 {
881 struct fasync_struct *fa, **fp;
882 int result = 0;
883
884 spin_lock(&filp->f_lock);
885 spin_lock(&fasync_lock);
886 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
887 if (fa->fa_file != filp)
888 continue;
889
890 write_lock_irq(&fa->fa_lock);
891 fa->fa_file = NULL;
892 write_unlock_irq(&fa->fa_lock);
893
894 *fp = fa->fa_next;
895 call_rcu(&fa->fa_rcu, fasync_free_rcu);
896 filp->f_flags &= ~FASYNC;
897 result = 1;
898 break;
899 }
900 spin_unlock(&fasync_lock);
901 spin_unlock(&filp->f_lock);
902 return result;
903 }
904
905 struct fasync_struct *fasync_alloc(void)
906 {
907 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
908 }
909
910 /*
911 * NOTE! This can be used only for unused fasync entries:
912 * entries that actually got inserted on the fasync list
913 * need to be released by rcu - see fasync_remove_entry.
914 */
915 void fasync_free(struct fasync_struct *new)
916 {
917 kmem_cache_free(fasync_cache, new);
918 }
919
920 /*
921 * Insert a new entry into the fasync list. Return the pointer to the
922 * old one if we didn't use the new one.
923 *
924 * NOTE! It is very important that the FASYNC flag always
925 * match the state "is the filp on a fasync list".
926 */
927 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
928 {
929 struct fasync_struct *fa, **fp;
930
931 spin_lock(&filp->f_lock);
932 spin_lock(&fasync_lock);
933 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
934 if (fa->fa_file != filp)
935 continue;
936
937 write_lock_irq(&fa->fa_lock);
938 fa->fa_fd = fd;
939 write_unlock_irq(&fa->fa_lock);
940 goto out;
941 }
942
943 rwlock_init(&new->fa_lock);
944 new->magic = FASYNC_MAGIC;
945 new->fa_file = filp;
946 new->fa_fd = fd;
947 new->fa_next = *fapp;
948 rcu_assign_pointer(*fapp, new);
949 filp->f_flags |= FASYNC;
950
951 out:
952 spin_unlock(&fasync_lock);
953 spin_unlock(&filp->f_lock);
954 return fa;
955 }
956
957 /*
958 * Add a fasync entry. Return negative on error, positive if
959 * added, and zero if did nothing but change an existing one.
960 */
961 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
962 {
963 struct fasync_struct *new;
964
965 new = fasync_alloc();
966 if (!new)
967 return -ENOMEM;
968
969 /*
970 * fasync_insert_entry() returns the old (update) entry if
971 * it existed.
972 *
973 * So free the (unused) new entry and return 0 to let the
974 * caller know that we didn't add any new fasync entries.
975 */
976 if (fasync_insert_entry(fd, filp, fapp, new)) {
977 fasync_free(new);
978 return 0;
979 }
980
981 return 1;
982 }
983
984 /*
985 * fasync_helper() is used by almost all character device drivers
986 * to set up the fasync queue, and for regular files by the file
987 * lease code. It returns negative on error, 0 if it did no changes
988 * and positive if it added/deleted the entry.
989 */
990 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
991 {
992 if (!on)
993 return fasync_remove_entry(filp, fapp);
994 return fasync_add_entry(fd, filp, fapp);
995 }
996
997 EXPORT_SYMBOL(fasync_helper);
998
999 /*
1000 * rcu_read_lock() is held
1001 */
1002 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1003 {
1004 while (fa) {
1005 struct fown_struct *fown;
1006
1007 if (fa->magic != FASYNC_MAGIC) {
1008 printk(KERN_ERR "kill_fasync: bad magic number in "
1009 "fasync_struct!\n");
1010 return;
1011 }
1012 read_lock(&fa->fa_lock);
1013 if (fa->fa_file) {
1014 fown = &fa->fa_file->f_owner;
1015 /* Don't send SIGURG to processes which have not set a
1016 queued signum: SIGURG has its own default signalling
1017 mechanism. */
1018 if (!(sig == SIGURG && fown->signum == 0))
1019 send_sigio(fown, fa->fa_fd, band);
1020 }
1021 read_unlock(&fa->fa_lock);
1022 fa = rcu_dereference(fa->fa_next);
1023 }
1024 }
1025
1026 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1027 {
1028 /* First a quick test without locking: usually
1029 * the list is empty.
1030 */
1031 if (*fp) {
1032 rcu_read_lock();
1033 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1034 rcu_read_unlock();
1035 }
1036 }
1037 EXPORT_SYMBOL(kill_fasync);
1038
1039 static int __init fcntl_init(void)
1040 {
1041 /*
1042 * Please add new bits here to ensure allocation uniqueness.
1043 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1044 * is defined as O_NONBLOCK on some platforms and not on others.
1045 */
1046 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1047 HWEIGHT32(
1048 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1049 __FMODE_EXEC | __FMODE_NONOTIFY));
1050
1051 fasync_cache = kmem_cache_create("fasync_cache",
1052 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
1053 return 0;
1054 }
1055
1056 module_init(fcntl_init)