]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fcntl.c
smack: use pernet operations for hook registration
[mirror_ubuntu-artful-kernel.git] / fs / fcntl.c
1 /*
2 * linux/fs/fcntl.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/fs.h>
12 #include <linux/file.h>
13 #include <linux/fdtable.h>
14 #include <linux/capability.h>
15 #include <linux/dnotify.h>
16 #include <linux/slab.h>
17 #include <linux/module.h>
18 #include <linux/pipe_fs_i.h>
19 #include <linux/security.h>
20 #include <linux/ptrace.h>
21 #include <linux/signal.h>
22 #include <linux/rcupdate.h>
23 #include <linux/pid_namespace.h>
24 #include <linux/user_namespace.h>
25 #include <linux/shmem_fs.h>
26 #include <linux/compat.h>
27
28 #include <asm/poll.h>
29 #include <asm/siginfo.h>
30 #include <linux/uaccess.h>
31
32 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
33
34 static int setfl(int fd, struct file * filp, unsigned long arg)
35 {
36 struct inode * inode = file_inode(filp);
37 int error = 0;
38
39 /*
40 * O_APPEND cannot be cleared if the file is marked as append-only
41 * and the file is open for write.
42 */
43 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
44 return -EPERM;
45
46 /* O_NOATIME can only be set by the owner or superuser */
47 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
48 if (!inode_owner_or_capable(inode))
49 return -EPERM;
50
51 /* required for strict SunOS emulation */
52 if (O_NONBLOCK != O_NDELAY)
53 if (arg & O_NDELAY)
54 arg |= O_NONBLOCK;
55
56 /* Pipe packetized mode is controlled by O_DIRECT flag */
57 if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
58 if (!filp->f_mapping || !filp->f_mapping->a_ops ||
59 !filp->f_mapping->a_ops->direct_IO)
60 return -EINVAL;
61 }
62
63 if (filp->f_op->check_flags)
64 error = filp->f_op->check_flags(arg);
65 if (error)
66 return error;
67
68 /*
69 * ->fasync() is responsible for setting the FASYNC bit.
70 */
71 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
72 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
73 if (error < 0)
74 goto out;
75 if (error > 0)
76 error = 0;
77 }
78 spin_lock(&filp->f_lock);
79 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
80 spin_unlock(&filp->f_lock);
81
82 out:
83 return error;
84 }
85
86 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
87 int force)
88 {
89 write_lock_irq(&filp->f_owner.lock);
90 if (force || !filp->f_owner.pid) {
91 put_pid(filp->f_owner.pid);
92 filp->f_owner.pid = get_pid(pid);
93 filp->f_owner.pid_type = type;
94
95 if (pid) {
96 const struct cred *cred = current_cred();
97 filp->f_owner.uid = cred->uid;
98 filp->f_owner.euid = cred->euid;
99 }
100 }
101 write_unlock_irq(&filp->f_owner.lock);
102 }
103
104 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
105 int force)
106 {
107 security_file_set_fowner(filp);
108 f_modown(filp, pid, type, force);
109 }
110 EXPORT_SYMBOL(__f_setown);
111
112 void f_setown(struct file *filp, unsigned long arg, int force)
113 {
114 enum pid_type type;
115 struct pid *pid;
116 int who = arg;
117 type = PIDTYPE_PID;
118 if (who < 0) {
119 type = PIDTYPE_PGID;
120 who = -who;
121 }
122 rcu_read_lock();
123 pid = find_vpid(who);
124 __f_setown(filp, pid, type, force);
125 rcu_read_unlock();
126 }
127 EXPORT_SYMBOL(f_setown);
128
129 void f_delown(struct file *filp)
130 {
131 f_modown(filp, NULL, PIDTYPE_PID, 1);
132 }
133
134 pid_t f_getown(struct file *filp)
135 {
136 pid_t pid;
137 read_lock(&filp->f_owner.lock);
138 pid = pid_vnr(filp->f_owner.pid);
139 if (filp->f_owner.pid_type == PIDTYPE_PGID)
140 pid = -pid;
141 read_unlock(&filp->f_owner.lock);
142 return pid;
143 }
144
145 static int f_setown_ex(struct file *filp, unsigned long arg)
146 {
147 struct f_owner_ex __user *owner_p = (void __user *)arg;
148 struct f_owner_ex owner;
149 struct pid *pid;
150 int type;
151 int ret;
152
153 ret = copy_from_user(&owner, owner_p, sizeof(owner));
154 if (ret)
155 return -EFAULT;
156
157 switch (owner.type) {
158 case F_OWNER_TID:
159 type = PIDTYPE_MAX;
160 break;
161
162 case F_OWNER_PID:
163 type = PIDTYPE_PID;
164 break;
165
166 case F_OWNER_PGRP:
167 type = PIDTYPE_PGID;
168 break;
169
170 default:
171 return -EINVAL;
172 }
173
174 rcu_read_lock();
175 pid = find_vpid(owner.pid);
176 if (owner.pid && !pid)
177 ret = -ESRCH;
178 else
179 __f_setown(filp, pid, type, 1);
180 rcu_read_unlock();
181
182 return ret;
183 }
184
185 static int f_getown_ex(struct file *filp, unsigned long arg)
186 {
187 struct f_owner_ex __user *owner_p = (void __user *)arg;
188 struct f_owner_ex owner;
189 int ret = 0;
190
191 read_lock(&filp->f_owner.lock);
192 owner.pid = pid_vnr(filp->f_owner.pid);
193 switch (filp->f_owner.pid_type) {
194 case PIDTYPE_MAX:
195 owner.type = F_OWNER_TID;
196 break;
197
198 case PIDTYPE_PID:
199 owner.type = F_OWNER_PID;
200 break;
201
202 case PIDTYPE_PGID:
203 owner.type = F_OWNER_PGRP;
204 break;
205
206 default:
207 WARN_ON(1);
208 ret = -EINVAL;
209 break;
210 }
211 read_unlock(&filp->f_owner.lock);
212
213 if (!ret) {
214 ret = copy_to_user(owner_p, &owner, sizeof(owner));
215 if (ret)
216 ret = -EFAULT;
217 }
218 return ret;
219 }
220
221 #ifdef CONFIG_CHECKPOINT_RESTORE
222 static int f_getowner_uids(struct file *filp, unsigned long arg)
223 {
224 struct user_namespace *user_ns = current_user_ns();
225 uid_t __user *dst = (void __user *)arg;
226 uid_t src[2];
227 int err;
228
229 read_lock(&filp->f_owner.lock);
230 src[0] = from_kuid(user_ns, filp->f_owner.uid);
231 src[1] = from_kuid(user_ns, filp->f_owner.euid);
232 read_unlock(&filp->f_owner.lock);
233
234 err = put_user(src[0], &dst[0]);
235 err |= put_user(src[1], &dst[1]);
236
237 return err;
238 }
239 #else
240 static int f_getowner_uids(struct file *filp, unsigned long arg)
241 {
242 return -EINVAL;
243 }
244 #endif
245
246 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
247 struct file *filp)
248 {
249 long err = -EINVAL;
250
251 switch (cmd) {
252 case F_DUPFD:
253 err = f_dupfd(arg, filp, 0);
254 break;
255 case F_DUPFD_CLOEXEC:
256 err = f_dupfd(arg, filp, O_CLOEXEC);
257 break;
258 case F_GETFD:
259 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
260 break;
261 case F_SETFD:
262 err = 0;
263 set_close_on_exec(fd, arg & FD_CLOEXEC);
264 break;
265 case F_GETFL:
266 err = filp->f_flags;
267 break;
268 case F_SETFL:
269 err = setfl(fd, filp, arg);
270 break;
271 #if BITS_PER_LONG != 32
272 /* 32-bit arches must use fcntl64() */
273 case F_OFD_GETLK:
274 #endif
275 case F_GETLK:
276 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
277 break;
278 #if BITS_PER_LONG != 32
279 /* 32-bit arches must use fcntl64() */
280 case F_OFD_SETLK:
281 case F_OFD_SETLKW:
282 #endif
283 /* Fallthrough */
284 case F_SETLK:
285 case F_SETLKW:
286 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
287 break;
288 case F_GETOWN:
289 /*
290 * XXX If f_owner is a process group, the
291 * negative return value will get converted
292 * into an error. Oops. If we keep the
293 * current syscall conventions, the only way
294 * to fix this will be in libc.
295 */
296 err = f_getown(filp);
297 force_successful_syscall_return();
298 break;
299 case F_SETOWN:
300 f_setown(filp, arg, 1);
301 err = 0;
302 break;
303 case F_GETOWN_EX:
304 err = f_getown_ex(filp, arg);
305 break;
306 case F_SETOWN_EX:
307 err = f_setown_ex(filp, arg);
308 break;
309 case F_GETOWNER_UIDS:
310 err = f_getowner_uids(filp, arg);
311 break;
312 case F_GETSIG:
313 err = filp->f_owner.signum;
314 break;
315 case F_SETSIG:
316 /* arg == 0 restores default behaviour. */
317 if (!valid_signal(arg)) {
318 break;
319 }
320 err = 0;
321 filp->f_owner.signum = arg;
322 break;
323 case F_GETLEASE:
324 err = fcntl_getlease(filp);
325 break;
326 case F_SETLEASE:
327 err = fcntl_setlease(fd, filp, arg);
328 break;
329 case F_NOTIFY:
330 err = fcntl_dirnotify(fd, filp, arg);
331 break;
332 case F_SETPIPE_SZ:
333 case F_GETPIPE_SZ:
334 err = pipe_fcntl(filp, cmd, arg);
335 break;
336 case F_ADD_SEALS:
337 case F_GET_SEALS:
338 err = shmem_fcntl(filp, cmd, arg);
339 break;
340 default:
341 break;
342 }
343 return err;
344 }
345
346 static int check_fcntl_cmd(unsigned cmd)
347 {
348 switch (cmd) {
349 case F_DUPFD:
350 case F_DUPFD_CLOEXEC:
351 case F_GETFD:
352 case F_SETFD:
353 case F_GETFL:
354 return 1;
355 }
356 return 0;
357 }
358
359 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
360 {
361 struct fd f = fdget_raw(fd);
362 long err = -EBADF;
363
364 if (!f.file)
365 goto out;
366
367 if (unlikely(f.file->f_mode & FMODE_PATH)) {
368 if (!check_fcntl_cmd(cmd))
369 goto out1;
370 }
371
372 err = security_file_fcntl(f.file, cmd, arg);
373 if (!err)
374 err = do_fcntl(fd, cmd, arg, f.file);
375
376 out1:
377 fdput(f);
378 out:
379 return err;
380 }
381
382 #if BITS_PER_LONG == 32
383 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
384 unsigned long, arg)
385 {
386 struct fd f = fdget_raw(fd);
387 long err = -EBADF;
388
389 if (!f.file)
390 goto out;
391
392 if (unlikely(f.file->f_mode & FMODE_PATH)) {
393 if (!check_fcntl_cmd(cmd))
394 goto out1;
395 }
396
397 err = security_file_fcntl(f.file, cmd, arg);
398 if (err)
399 goto out1;
400
401 switch (cmd) {
402 case F_GETLK64:
403 case F_OFD_GETLK:
404 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
405 break;
406 case F_SETLK64:
407 case F_SETLKW64:
408 case F_OFD_SETLK:
409 case F_OFD_SETLKW:
410 err = fcntl_setlk64(fd, f.file, cmd,
411 (struct flock64 __user *) arg);
412 break;
413 default:
414 err = do_fcntl(fd, cmd, arg, f.file);
415 break;
416 }
417 out1:
418 fdput(f);
419 out:
420 return err;
421 }
422 #endif
423
424 #ifdef CONFIG_COMPAT
425 static int get_compat_flock(struct flock *kfl, struct compat_flock __user *ufl)
426 {
427 if (!access_ok(VERIFY_READ, ufl, sizeof(*ufl)) ||
428 __get_user(kfl->l_type, &ufl->l_type) ||
429 __get_user(kfl->l_whence, &ufl->l_whence) ||
430 __get_user(kfl->l_start, &ufl->l_start) ||
431 __get_user(kfl->l_len, &ufl->l_len) ||
432 __get_user(kfl->l_pid, &ufl->l_pid))
433 return -EFAULT;
434 return 0;
435 }
436
437 static int put_compat_flock(struct flock *kfl, struct compat_flock __user *ufl)
438 {
439 if (!access_ok(VERIFY_WRITE, ufl, sizeof(*ufl)) ||
440 __put_user(kfl->l_type, &ufl->l_type) ||
441 __put_user(kfl->l_whence, &ufl->l_whence) ||
442 __put_user(kfl->l_start, &ufl->l_start) ||
443 __put_user(kfl->l_len, &ufl->l_len) ||
444 __put_user(kfl->l_pid, &ufl->l_pid))
445 return -EFAULT;
446 return 0;
447 }
448
449 #ifndef HAVE_ARCH_GET_COMPAT_FLOCK64
450 static int get_compat_flock64(struct flock *kfl, struct compat_flock64 __user *ufl)
451 {
452 if (!access_ok(VERIFY_READ, ufl, sizeof(*ufl)) ||
453 __get_user(kfl->l_type, &ufl->l_type) ||
454 __get_user(kfl->l_whence, &ufl->l_whence) ||
455 __get_user(kfl->l_start, &ufl->l_start) ||
456 __get_user(kfl->l_len, &ufl->l_len) ||
457 __get_user(kfl->l_pid, &ufl->l_pid))
458 return -EFAULT;
459 return 0;
460 }
461 #endif
462
463 #ifndef HAVE_ARCH_PUT_COMPAT_FLOCK64
464 static int put_compat_flock64(struct flock *kfl, struct compat_flock64 __user *ufl)
465 {
466 if (!access_ok(VERIFY_WRITE, ufl, sizeof(*ufl)) ||
467 __put_user(kfl->l_type, &ufl->l_type) ||
468 __put_user(kfl->l_whence, &ufl->l_whence) ||
469 __put_user(kfl->l_start, &ufl->l_start) ||
470 __put_user(kfl->l_len, &ufl->l_len) ||
471 __put_user(kfl->l_pid, &ufl->l_pid))
472 return -EFAULT;
473 return 0;
474 }
475 #endif
476
477 static unsigned int
478 convert_fcntl_cmd(unsigned int cmd)
479 {
480 switch (cmd) {
481 case F_GETLK64:
482 return F_GETLK;
483 case F_SETLK64:
484 return F_SETLK;
485 case F_SETLKW64:
486 return F_SETLKW;
487 }
488
489 return cmd;
490 }
491
492 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
493 compat_ulong_t, arg)
494 {
495 mm_segment_t old_fs;
496 struct flock f;
497 long ret;
498 unsigned int conv_cmd;
499
500 switch (cmd) {
501 case F_GETLK:
502 case F_SETLK:
503 case F_SETLKW:
504 ret = get_compat_flock(&f, compat_ptr(arg));
505 if (ret != 0)
506 break;
507 old_fs = get_fs();
508 set_fs(KERNEL_DS);
509 ret = sys_fcntl(fd, cmd, (unsigned long)&f);
510 set_fs(old_fs);
511 if (cmd == F_GETLK && ret == 0) {
512 /* GETLK was successful and we need to return the data...
513 * but it needs to fit in the compat structure.
514 * l_start shouldn't be too big, unless the original
515 * start + end is greater than COMPAT_OFF_T_MAX, in which
516 * case the app was asking for trouble, so we return
517 * -EOVERFLOW in that case.
518 * l_len could be too big, in which case we just truncate it,
519 * and only allow the app to see that part of the conflicting
520 * lock that might make sense to it anyway
521 */
522
523 if (f.l_start > COMPAT_OFF_T_MAX)
524 ret = -EOVERFLOW;
525 if (f.l_len > COMPAT_OFF_T_MAX)
526 f.l_len = COMPAT_OFF_T_MAX;
527 if (ret == 0)
528 ret = put_compat_flock(&f, compat_ptr(arg));
529 }
530 break;
531
532 case F_GETLK64:
533 case F_SETLK64:
534 case F_SETLKW64:
535 case F_OFD_GETLK:
536 case F_OFD_SETLK:
537 case F_OFD_SETLKW:
538 ret = get_compat_flock64(&f, compat_ptr(arg));
539 if (ret != 0)
540 break;
541 old_fs = get_fs();
542 set_fs(KERNEL_DS);
543 conv_cmd = convert_fcntl_cmd(cmd);
544 ret = sys_fcntl(fd, conv_cmd, (unsigned long)&f);
545 set_fs(old_fs);
546 if ((conv_cmd == F_GETLK || conv_cmd == F_OFD_GETLK) && ret == 0) {
547 /* need to return lock information - see above for commentary */
548 if (f.l_start > COMPAT_LOFF_T_MAX)
549 ret = -EOVERFLOW;
550 if (f.l_len > COMPAT_LOFF_T_MAX)
551 f.l_len = COMPAT_LOFF_T_MAX;
552 if (ret == 0)
553 ret = put_compat_flock64(&f, compat_ptr(arg));
554 }
555 break;
556
557 default:
558 ret = sys_fcntl(fd, cmd, arg);
559 break;
560 }
561 return ret;
562 }
563
564 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
565 compat_ulong_t, arg)
566 {
567 switch (cmd) {
568 case F_GETLK64:
569 case F_SETLK64:
570 case F_SETLKW64:
571 case F_OFD_GETLK:
572 case F_OFD_SETLK:
573 case F_OFD_SETLKW:
574 return -EINVAL;
575 }
576 return compat_sys_fcntl64(fd, cmd, arg);
577 }
578 #endif
579
580 /* Table to convert sigio signal codes into poll band bitmaps */
581
582 static const long band_table[NSIGPOLL] = {
583 POLLIN | POLLRDNORM, /* POLL_IN */
584 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */
585 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */
586 POLLERR, /* POLL_ERR */
587 POLLPRI | POLLRDBAND, /* POLL_PRI */
588 POLLHUP | POLLERR /* POLL_HUP */
589 };
590
591 static inline int sigio_perm(struct task_struct *p,
592 struct fown_struct *fown, int sig)
593 {
594 const struct cred *cred;
595 int ret;
596
597 rcu_read_lock();
598 cred = __task_cred(p);
599 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
600 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
601 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
602 !security_file_send_sigiotask(p, fown, sig));
603 rcu_read_unlock();
604 return ret;
605 }
606
607 static void send_sigio_to_task(struct task_struct *p,
608 struct fown_struct *fown,
609 int fd, int reason, int group)
610 {
611 /*
612 * F_SETSIG can change ->signum lockless in parallel, make
613 * sure we read it once and use the same value throughout.
614 */
615 int signum = ACCESS_ONCE(fown->signum);
616
617 if (!sigio_perm(p, fown, signum))
618 return;
619
620 switch (signum) {
621 siginfo_t si;
622 default:
623 /* Queue a rt signal with the appropriate fd as its
624 value. We use SI_SIGIO as the source, not
625 SI_KERNEL, since kernel signals always get
626 delivered even if we can't queue. Failure to
627 queue in this case _should_ be reported; we fall
628 back to SIGIO in that case. --sct */
629 si.si_signo = signum;
630 si.si_errno = 0;
631 si.si_code = reason;
632 /* Make sure we are called with one of the POLL_*
633 reasons, otherwise we could leak kernel stack into
634 userspace. */
635 BUG_ON((reason & __SI_MASK) != __SI_POLL);
636 if (reason - POLL_IN >= NSIGPOLL)
637 si.si_band = ~0L;
638 else
639 si.si_band = band_table[reason - POLL_IN];
640 si.si_fd = fd;
641 if (!do_send_sig_info(signum, &si, p, group))
642 break;
643 /* fall-through: fall back on the old plain SIGIO signal */
644 case 0:
645 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
646 }
647 }
648
649 void send_sigio(struct fown_struct *fown, int fd, int band)
650 {
651 struct task_struct *p;
652 enum pid_type type;
653 struct pid *pid;
654 int group = 1;
655
656 read_lock(&fown->lock);
657
658 type = fown->pid_type;
659 if (type == PIDTYPE_MAX) {
660 group = 0;
661 type = PIDTYPE_PID;
662 }
663
664 pid = fown->pid;
665 if (!pid)
666 goto out_unlock_fown;
667
668 read_lock(&tasklist_lock);
669 do_each_pid_task(pid, type, p) {
670 send_sigio_to_task(p, fown, fd, band, group);
671 } while_each_pid_task(pid, type, p);
672 read_unlock(&tasklist_lock);
673 out_unlock_fown:
674 read_unlock(&fown->lock);
675 }
676
677 static void send_sigurg_to_task(struct task_struct *p,
678 struct fown_struct *fown, int group)
679 {
680 if (sigio_perm(p, fown, SIGURG))
681 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
682 }
683
684 int send_sigurg(struct fown_struct *fown)
685 {
686 struct task_struct *p;
687 enum pid_type type;
688 struct pid *pid;
689 int group = 1;
690 int ret = 0;
691
692 read_lock(&fown->lock);
693
694 type = fown->pid_type;
695 if (type == PIDTYPE_MAX) {
696 group = 0;
697 type = PIDTYPE_PID;
698 }
699
700 pid = fown->pid;
701 if (!pid)
702 goto out_unlock_fown;
703
704 ret = 1;
705
706 read_lock(&tasklist_lock);
707 do_each_pid_task(pid, type, p) {
708 send_sigurg_to_task(p, fown, group);
709 } while_each_pid_task(pid, type, p);
710 read_unlock(&tasklist_lock);
711 out_unlock_fown:
712 read_unlock(&fown->lock);
713 return ret;
714 }
715
716 static DEFINE_SPINLOCK(fasync_lock);
717 static struct kmem_cache *fasync_cache __read_mostly;
718
719 static void fasync_free_rcu(struct rcu_head *head)
720 {
721 kmem_cache_free(fasync_cache,
722 container_of(head, struct fasync_struct, fa_rcu));
723 }
724
725 /*
726 * Remove a fasync entry. If successfully removed, return
727 * positive and clear the FASYNC flag. If no entry exists,
728 * do nothing and return 0.
729 *
730 * NOTE! It is very important that the FASYNC flag always
731 * match the state "is the filp on a fasync list".
732 *
733 */
734 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
735 {
736 struct fasync_struct *fa, **fp;
737 int result = 0;
738
739 spin_lock(&filp->f_lock);
740 spin_lock(&fasync_lock);
741 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
742 if (fa->fa_file != filp)
743 continue;
744
745 spin_lock_irq(&fa->fa_lock);
746 fa->fa_file = NULL;
747 spin_unlock_irq(&fa->fa_lock);
748
749 *fp = fa->fa_next;
750 call_rcu(&fa->fa_rcu, fasync_free_rcu);
751 filp->f_flags &= ~FASYNC;
752 result = 1;
753 break;
754 }
755 spin_unlock(&fasync_lock);
756 spin_unlock(&filp->f_lock);
757 return result;
758 }
759
760 struct fasync_struct *fasync_alloc(void)
761 {
762 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
763 }
764
765 /*
766 * NOTE! This can be used only for unused fasync entries:
767 * entries that actually got inserted on the fasync list
768 * need to be released by rcu - see fasync_remove_entry.
769 */
770 void fasync_free(struct fasync_struct *new)
771 {
772 kmem_cache_free(fasync_cache, new);
773 }
774
775 /*
776 * Insert a new entry into the fasync list. Return the pointer to the
777 * old one if we didn't use the new one.
778 *
779 * NOTE! It is very important that the FASYNC flag always
780 * match the state "is the filp on a fasync list".
781 */
782 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
783 {
784 struct fasync_struct *fa, **fp;
785
786 spin_lock(&filp->f_lock);
787 spin_lock(&fasync_lock);
788 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
789 if (fa->fa_file != filp)
790 continue;
791
792 spin_lock_irq(&fa->fa_lock);
793 fa->fa_fd = fd;
794 spin_unlock_irq(&fa->fa_lock);
795 goto out;
796 }
797
798 spin_lock_init(&new->fa_lock);
799 new->magic = FASYNC_MAGIC;
800 new->fa_file = filp;
801 new->fa_fd = fd;
802 new->fa_next = *fapp;
803 rcu_assign_pointer(*fapp, new);
804 filp->f_flags |= FASYNC;
805
806 out:
807 spin_unlock(&fasync_lock);
808 spin_unlock(&filp->f_lock);
809 return fa;
810 }
811
812 /*
813 * Add a fasync entry. Return negative on error, positive if
814 * added, and zero if did nothing but change an existing one.
815 */
816 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
817 {
818 struct fasync_struct *new;
819
820 new = fasync_alloc();
821 if (!new)
822 return -ENOMEM;
823
824 /*
825 * fasync_insert_entry() returns the old (update) entry if
826 * it existed.
827 *
828 * So free the (unused) new entry and return 0 to let the
829 * caller know that we didn't add any new fasync entries.
830 */
831 if (fasync_insert_entry(fd, filp, fapp, new)) {
832 fasync_free(new);
833 return 0;
834 }
835
836 return 1;
837 }
838
839 /*
840 * fasync_helper() is used by almost all character device drivers
841 * to set up the fasync queue, and for regular files by the file
842 * lease code. It returns negative on error, 0 if it did no changes
843 * and positive if it added/deleted the entry.
844 */
845 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
846 {
847 if (!on)
848 return fasync_remove_entry(filp, fapp);
849 return fasync_add_entry(fd, filp, fapp);
850 }
851
852 EXPORT_SYMBOL(fasync_helper);
853
854 /*
855 * rcu_read_lock() is held
856 */
857 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
858 {
859 while (fa) {
860 struct fown_struct *fown;
861 unsigned long flags;
862
863 if (fa->magic != FASYNC_MAGIC) {
864 printk(KERN_ERR "kill_fasync: bad magic number in "
865 "fasync_struct!\n");
866 return;
867 }
868 spin_lock_irqsave(&fa->fa_lock, flags);
869 if (fa->fa_file) {
870 fown = &fa->fa_file->f_owner;
871 /* Don't send SIGURG to processes which have not set a
872 queued signum: SIGURG has its own default signalling
873 mechanism. */
874 if (!(sig == SIGURG && fown->signum == 0))
875 send_sigio(fown, fa->fa_fd, band);
876 }
877 spin_unlock_irqrestore(&fa->fa_lock, flags);
878 fa = rcu_dereference(fa->fa_next);
879 }
880 }
881
882 void kill_fasync(struct fasync_struct **fp, int sig, int band)
883 {
884 /* First a quick test without locking: usually
885 * the list is empty.
886 */
887 if (*fp) {
888 rcu_read_lock();
889 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
890 rcu_read_unlock();
891 }
892 }
893 EXPORT_SYMBOL(kill_fasync);
894
895 static int __init fcntl_init(void)
896 {
897 /*
898 * Please add new bits here to ensure allocation uniqueness.
899 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
900 * is defined as O_NONBLOCK on some platforms and not on others.
901 */
902 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
903 HWEIGHT32(
904 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
905 __FMODE_EXEC | __FMODE_NONOTIFY));
906
907 fasync_cache = kmem_cache_create("fasync_cache",
908 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
909 return 0;
910 }
911
912 module_init(fcntl_init)