]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/fcntl.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-zesty-kernel.git] / fs / fcntl.c
1 /*
2 * linux/fs/fcntl.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
24 #include <linux/shmem_fs.h>
25
26 #include <asm/poll.h>
27 #include <asm/siginfo.h>
28 #include <asm/uaccess.h>
29
30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
31
32 static int setfl(int fd, struct file * filp, unsigned long arg)
33 {
34 struct inode * inode = file_inode(filp);
35 int error = 0;
36
37 /*
38 * O_APPEND cannot be cleared if the file is marked as append-only
39 * and the file is open for write.
40 */
41 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
42 return -EPERM;
43
44 /* O_NOATIME can only be set by the owner or superuser */
45 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
46 if (!inode_owner_or_capable(inode))
47 return -EPERM;
48
49 /* required for strict SunOS emulation */
50 if (O_NONBLOCK != O_NDELAY)
51 if (arg & O_NDELAY)
52 arg |= O_NONBLOCK;
53
54 if (arg & O_DIRECT) {
55 if (!filp->f_mapping || !filp->f_mapping->a_ops ||
56 !filp->f_mapping->a_ops->direct_IO)
57 return -EINVAL;
58 }
59
60 if (filp->f_op->check_flags)
61 error = filp->f_op->check_flags(arg);
62 if (error)
63 return error;
64
65 /*
66 * ->fasync() is responsible for setting the FASYNC bit.
67 */
68 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
69 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
70 if (error < 0)
71 goto out;
72 if (error > 0)
73 error = 0;
74 }
75 spin_lock(&filp->f_lock);
76 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
77 spin_unlock(&filp->f_lock);
78
79 out:
80 return error;
81 }
82
83 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
84 int force)
85 {
86 write_lock_irq(&filp->f_owner.lock);
87 if (force || !filp->f_owner.pid) {
88 put_pid(filp->f_owner.pid);
89 filp->f_owner.pid = get_pid(pid);
90 filp->f_owner.pid_type = type;
91
92 if (pid) {
93 const struct cred *cred = current_cred();
94 filp->f_owner.uid = cred->uid;
95 filp->f_owner.euid = cred->euid;
96 }
97 }
98 write_unlock_irq(&filp->f_owner.lock);
99 }
100
101 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
102 int force)
103 {
104 int err;
105
106 err = security_file_set_fowner(filp);
107 if (err)
108 return err;
109
110 f_modown(filp, pid, type, force);
111 return 0;
112 }
113 EXPORT_SYMBOL(__f_setown);
114
115 int f_setown(struct file *filp, unsigned long arg, int force)
116 {
117 enum pid_type type;
118 struct pid *pid;
119 int who = arg;
120 int result;
121 type = PIDTYPE_PID;
122 if (who < 0) {
123 type = PIDTYPE_PGID;
124 who = -who;
125 }
126 rcu_read_lock();
127 pid = find_vpid(who);
128 result = __f_setown(filp, pid, type, force);
129 rcu_read_unlock();
130 return result;
131 }
132 EXPORT_SYMBOL(f_setown);
133
134 void f_delown(struct file *filp)
135 {
136 f_modown(filp, NULL, PIDTYPE_PID, 1);
137 }
138
139 pid_t f_getown(struct file *filp)
140 {
141 pid_t pid;
142 read_lock(&filp->f_owner.lock);
143 pid = pid_vnr(filp->f_owner.pid);
144 if (filp->f_owner.pid_type == PIDTYPE_PGID)
145 pid = -pid;
146 read_unlock(&filp->f_owner.lock);
147 return pid;
148 }
149
150 static int f_setown_ex(struct file *filp, unsigned long arg)
151 {
152 struct f_owner_ex __user *owner_p = (void __user *)arg;
153 struct f_owner_ex owner;
154 struct pid *pid;
155 int type;
156 int ret;
157
158 ret = copy_from_user(&owner, owner_p, sizeof(owner));
159 if (ret)
160 return -EFAULT;
161
162 switch (owner.type) {
163 case F_OWNER_TID:
164 type = PIDTYPE_MAX;
165 break;
166
167 case F_OWNER_PID:
168 type = PIDTYPE_PID;
169 break;
170
171 case F_OWNER_PGRP:
172 type = PIDTYPE_PGID;
173 break;
174
175 default:
176 return -EINVAL;
177 }
178
179 rcu_read_lock();
180 pid = find_vpid(owner.pid);
181 if (owner.pid && !pid)
182 ret = -ESRCH;
183 else
184 ret = __f_setown(filp, pid, type, 1);
185 rcu_read_unlock();
186
187 return ret;
188 }
189
190 static int f_getown_ex(struct file *filp, unsigned long arg)
191 {
192 struct f_owner_ex __user *owner_p = (void __user *)arg;
193 struct f_owner_ex owner;
194 int ret = 0;
195
196 read_lock(&filp->f_owner.lock);
197 owner.pid = pid_vnr(filp->f_owner.pid);
198 switch (filp->f_owner.pid_type) {
199 case PIDTYPE_MAX:
200 owner.type = F_OWNER_TID;
201 break;
202
203 case PIDTYPE_PID:
204 owner.type = F_OWNER_PID;
205 break;
206
207 case PIDTYPE_PGID:
208 owner.type = F_OWNER_PGRP;
209 break;
210
211 default:
212 WARN_ON(1);
213 ret = -EINVAL;
214 break;
215 }
216 read_unlock(&filp->f_owner.lock);
217
218 if (!ret) {
219 ret = copy_to_user(owner_p, &owner, sizeof(owner));
220 if (ret)
221 ret = -EFAULT;
222 }
223 return ret;
224 }
225
226 #ifdef CONFIG_CHECKPOINT_RESTORE
227 static int f_getowner_uids(struct file *filp, unsigned long arg)
228 {
229 struct user_namespace *user_ns = current_user_ns();
230 uid_t __user *dst = (void __user *)arg;
231 uid_t src[2];
232 int err;
233
234 read_lock(&filp->f_owner.lock);
235 src[0] = from_kuid(user_ns, filp->f_owner.uid);
236 src[1] = from_kuid(user_ns, filp->f_owner.euid);
237 read_unlock(&filp->f_owner.lock);
238
239 err = put_user(src[0], &dst[0]);
240 err |= put_user(src[1], &dst[1]);
241
242 return err;
243 }
244 #else
245 static int f_getowner_uids(struct file *filp, unsigned long arg)
246 {
247 return -EINVAL;
248 }
249 #endif
250
251 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
252 struct file *filp)
253 {
254 long err = -EINVAL;
255
256 switch (cmd) {
257 case F_DUPFD:
258 err = f_dupfd(arg, filp, 0);
259 break;
260 case F_DUPFD_CLOEXEC:
261 err = f_dupfd(arg, filp, O_CLOEXEC);
262 break;
263 case F_GETFD:
264 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
265 break;
266 case F_SETFD:
267 err = 0;
268 set_close_on_exec(fd, arg & FD_CLOEXEC);
269 break;
270 case F_GETFL:
271 err = filp->f_flags;
272 break;
273 case F_SETFL:
274 err = setfl(fd, filp, arg);
275 break;
276 #if BITS_PER_LONG != 32
277 /* 32-bit arches must use fcntl64() */
278 case F_OFD_GETLK:
279 #endif
280 case F_GETLK:
281 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
282 break;
283 #if BITS_PER_LONG != 32
284 /* 32-bit arches must use fcntl64() */
285 case F_OFD_SETLK:
286 case F_OFD_SETLKW:
287 #endif
288 /* Fallthrough */
289 case F_SETLK:
290 case F_SETLKW:
291 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
292 break;
293 case F_GETOWN:
294 /*
295 * XXX If f_owner is a process group, the
296 * negative return value will get converted
297 * into an error. Oops. If we keep the
298 * current syscall conventions, the only way
299 * to fix this will be in libc.
300 */
301 err = f_getown(filp);
302 force_successful_syscall_return();
303 break;
304 case F_SETOWN:
305 err = f_setown(filp, arg, 1);
306 break;
307 case F_GETOWN_EX:
308 err = f_getown_ex(filp, arg);
309 break;
310 case F_SETOWN_EX:
311 err = f_setown_ex(filp, arg);
312 break;
313 case F_GETOWNER_UIDS:
314 err = f_getowner_uids(filp, arg);
315 break;
316 case F_GETSIG:
317 err = filp->f_owner.signum;
318 break;
319 case F_SETSIG:
320 /* arg == 0 restores default behaviour. */
321 if (!valid_signal(arg)) {
322 break;
323 }
324 err = 0;
325 filp->f_owner.signum = arg;
326 break;
327 case F_GETLEASE:
328 err = fcntl_getlease(filp);
329 break;
330 case F_SETLEASE:
331 err = fcntl_setlease(fd, filp, arg);
332 break;
333 case F_NOTIFY:
334 err = fcntl_dirnotify(fd, filp, arg);
335 break;
336 case F_SETPIPE_SZ:
337 case F_GETPIPE_SZ:
338 err = pipe_fcntl(filp, cmd, arg);
339 break;
340 case F_ADD_SEALS:
341 case F_GET_SEALS:
342 err = shmem_fcntl(filp, cmd, arg);
343 break;
344 default:
345 break;
346 }
347 return err;
348 }
349
350 static int check_fcntl_cmd(unsigned cmd)
351 {
352 switch (cmd) {
353 case F_DUPFD:
354 case F_DUPFD_CLOEXEC:
355 case F_GETFD:
356 case F_SETFD:
357 case F_GETFL:
358 return 1;
359 }
360 return 0;
361 }
362
363 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
364 {
365 struct fd f = fdget_raw(fd);
366 long err = -EBADF;
367
368 if (!f.file)
369 goto out;
370
371 if (unlikely(f.file->f_mode & FMODE_PATH)) {
372 if (!check_fcntl_cmd(cmd))
373 goto out1;
374 }
375
376 err = security_file_fcntl(f.file, cmd, arg);
377 if (!err)
378 err = do_fcntl(fd, cmd, arg, f.file);
379
380 out1:
381 fdput(f);
382 out:
383 return err;
384 }
385
386 #if BITS_PER_LONG == 32
387 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
388 unsigned long, arg)
389 {
390 struct fd f = fdget_raw(fd);
391 long err = -EBADF;
392
393 if (!f.file)
394 goto out;
395
396 if (unlikely(f.file->f_mode & FMODE_PATH)) {
397 if (!check_fcntl_cmd(cmd))
398 goto out1;
399 }
400
401 err = security_file_fcntl(f.file, cmd, arg);
402 if (err)
403 goto out1;
404
405 switch (cmd) {
406 case F_GETLK64:
407 case F_OFD_GETLK:
408 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
409 break;
410 case F_SETLK64:
411 case F_SETLKW64:
412 case F_OFD_SETLK:
413 case F_OFD_SETLKW:
414 err = fcntl_setlk64(fd, f.file, cmd,
415 (struct flock64 __user *) arg);
416 break;
417 default:
418 err = do_fcntl(fd, cmd, arg, f.file);
419 break;
420 }
421 out1:
422 fdput(f);
423 out:
424 return err;
425 }
426 #endif
427
428 /* Table to convert sigio signal codes into poll band bitmaps */
429
430 static const long band_table[NSIGPOLL] = {
431 POLLIN | POLLRDNORM, /* POLL_IN */
432 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */
433 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */
434 POLLERR, /* POLL_ERR */
435 POLLPRI | POLLRDBAND, /* POLL_PRI */
436 POLLHUP | POLLERR /* POLL_HUP */
437 };
438
439 static inline int sigio_perm(struct task_struct *p,
440 struct fown_struct *fown, int sig)
441 {
442 const struct cred *cred;
443 int ret;
444
445 rcu_read_lock();
446 cred = __task_cred(p);
447 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
448 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
449 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) &&
450 !security_file_send_sigiotask(p, fown, sig));
451 rcu_read_unlock();
452 return ret;
453 }
454
455 static void send_sigio_to_task(struct task_struct *p,
456 struct fown_struct *fown,
457 int fd, int reason, int group)
458 {
459 /*
460 * F_SETSIG can change ->signum lockless in parallel, make
461 * sure we read it once and use the same value throughout.
462 */
463 int signum = ACCESS_ONCE(fown->signum);
464
465 if (!sigio_perm(p, fown, signum))
466 return;
467
468 switch (signum) {
469 siginfo_t si;
470 default:
471 /* Queue a rt signal with the appropriate fd as its
472 value. We use SI_SIGIO as the source, not
473 SI_KERNEL, since kernel signals always get
474 delivered even if we can't queue. Failure to
475 queue in this case _should_ be reported; we fall
476 back to SIGIO in that case. --sct */
477 si.si_signo = signum;
478 si.si_errno = 0;
479 si.si_code = reason;
480 /* Make sure we are called with one of the POLL_*
481 reasons, otherwise we could leak kernel stack into
482 userspace. */
483 BUG_ON((reason & __SI_MASK) != __SI_POLL);
484 if (reason - POLL_IN >= NSIGPOLL)
485 si.si_band = ~0L;
486 else
487 si.si_band = band_table[reason - POLL_IN];
488 si.si_fd = fd;
489 if (!do_send_sig_info(signum, &si, p, group))
490 break;
491 /* fall-through: fall back on the old plain SIGIO signal */
492 case 0:
493 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
494 }
495 }
496
497 void send_sigio(struct fown_struct *fown, int fd, int band)
498 {
499 struct task_struct *p;
500 enum pid_type type;
501 struct pid *pid;
502 int group = 1;
503
504 read_lock(&fown->lock);
505
506 type = fown->pid_type;
507 if (type == PIDTYPE_MAX) {
508 group = 0;
509 type = PIDTYPE_PID;
510 }
511
512 pid = fown->pid;
513 if (!pid)
514 goto out_unlock_fown;
515
516 read_lock(&tasklist_lock);
517 do_each_pid_task(pid, type, p) {
518 send_sigio_to_task(p, fown, fd, band, group);
519 } while_each_pid_task(pid, type, p);
520 read_unlock(&tasklist_lock);
521 out_unlock_fown:
522 read_unlock(&fown->lock);
523 }
524
525 static void send_sigurg_to_task(struct task_struct *p,
526 struct fown_struct *fown, int group)
527 {
528 if (sigio_perm(p, fown, SIGURG))
529 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
530 }
531
532 int send_sigurg(struct fown_struct *fown)
533 {
534 struct task_struct *p;
535 enum pid_type type;
536 struct pid *pid;
537 int group = 1;
538 int ret = 0;
539
540 read_lock(&fown->lock);
541
542 type = fown->pid_type;
543 if (type == PIDTYPE_MAX) {
544 group = 0;
545 type = PIDTYPE_PID;
546 }
547
548 pid = fown->pid;
549 if (!pid)
550 goto out_unlock_fown;
551
552 ret = 1;
553
554 read_lock(&tasklist_lock);
555 do_each_pid_task(pid, type, p) {
556 send_sigurg_to_task(p, fown, group);
557 } while_each_pid_task(pid, type, p);
558 read_unlock(&tasklist_lock);
559 out_unlock_fown:
560 read_unlock(&fown->lock);
561 return ret;
562 }
563
564 static DEFINE_SPINLOCK(fasync_lock);
565 static struct kmem_cache *fasync_cache __read_mostly;
566
567 static void fasync_free_rcu(struct rcu_head *head)
568 {
569 kmem_cache_free(fasync_cache,
570 container_of(head, struct fasync_struct, fa_rcu));
571 }
572
573 /*
574 * Remove a fasync entry. If successfully removed, return
575 * positive and clear the FASYNC flag. If no entry exists,
576 * do nothing and return 0.
577 *
578 * NOTE! It is very important that the FASYNC flag always
579 * match the state "is the filp on a fasync list".
580 *
581 */
582 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
583 {
584 struct fasync_struct *fa, **fp;
585 int result = 0;
586
587 spin_lock(&filp->f_lock);
588 spin_lock(&fasync_lock);
589 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
590 if (fa->fa_file != filp)
591 continue;
592
593 spin_lock_irq(&fa->fa_lock);
594 fa->fa_file = NULL;
595 spin_unlock_irq(&fa->fa_lock);
596
597 *fp = fa->fa_next;
598 call_rcu(&fa->fa_rcu, fasync_free_rcu);
599 filp->f_flags &= ~FASYNC;
600 result = 1;
601 break;
602 }
603 spin_unlock(&fasync_lock);
604 spin_unlock(&filp->f_lock);
605 return result;
606 }
607
608 struct fasync_struct *fasync_alloc(void)
609 {
610 return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
611 }
612
613 /*
614 * NOTE! This can be used only for unused fasync entries:
615 * entries that actually got inserted on the fasync list
616 * need to be released by rcu - see fasync_remove_entry.
617 */
618 void fasync_free(struct fasync_struct *new)
619 {
620 kmem_cache_free(fasync_cache, new);
621 }
622
623 /*
624 * Insert a new entry into the fasync list. Return the pointer to the
625 * old one if we didn't use the new one.
626 *
627 * NOTE! It is very important that the FASYNC flag always
628 * match the state "is the filp on a fasync list".
629 */
630 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
631 {
632 struct fasync_struct *fa, **fp;
633
634 spin_lock(&filp->f_lock);
635 spin_lock(&fasync_lock);
636 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
637 if (fa->fa_file != filp)
638 continue;
639
640 spin_lock_irq(&fa->fa_lock);
641 fa->fa_fd = fd;
642 spin_unlock_irq(&fa->fa_lock);
643 goto out;
644 }
645
646 spin_lock_init(&new->fa_lock);
647 new->magic = FASYNC_MAGIC;
648 new->fa_file = filp;
649 new->fa_fd = fd;
650 new->fa_next = *fapp;
651 rcu_assign_pointer(*fapp, new);
652 filp->f_flags |= FASYNC;
653
654 out:
655 spin_unlock(&fasync_lock);
656 spin_unlock(&filp->f_lock);
657 return fa;
658 }
659
660 /*
661 * Add a fasync entry. Return negative on error, positive if
662 * added, and zero if did nothing but change an existing one.
663 */
664 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
665 {
666 struct fasync_struct *new;
667
668 new = fasync_alloc();
669 if (!new)
670 return -ENOMEM;
671
672 /*
673 * fasync_insert_entry() returns the old (update) entry if
674 * it existed.
675 *
676 * So free the (unused) new entry and return 0 to let the
677 * caller know that we didn't add any new fasync entries.
678 */
679 if (fasync_insert_entry(fd, filp, fapp, new)) {
680 fasync_free(new);
681 return 0;
682 }
683
684 return 1;
685 }
686
687 /*
688 * fasync_helper() is used by almost all character device drivers
689 * to set up the fasync queue, and for regular files by the file
690 * lease code. It returns negative on error, 0 if it did no changes
691 * and positive if it added/deleted the entry.
692 */
693 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
694 {
695 if (!on)
696 return fasync_remove_entry(filp, fapp);
697 return fasync_add_entry(fd, filp, fapp);
698 }
699
700 EXPORT_SYMBOL(fasync_helper);
701
702 /*
703 * rcu_read_lock() is held
704 */
705 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
706 {
707 while (fa) {
708 struct fown_struct *fown;
709 unsigned long flags;
710
711 if (fa->magic != FASYNC_MAGIC) {
712 printk(KERN_ERR "kill_fasync: bad magic number in "
713 "fasync_struct!\n");
714 return;
715 }
716 spin_lock_irqsave(&fa->fa_lock, flags);
717 if (fa->fa_file) {
718 fown = &fa->fa_file->f_owner;
719 /* Don't send SIGURG to processes which have not set a
720 queued signum: SIGURG has its own default signalling
721 mechanism. */
722 if (!(sig == SIGURG && fown->signum == 0))
723 send_sigio(fown, fa->fa_fd, band);
724 }
725 spin_unlock_irqrestore(&fa->fa_lock, flags);
726 fa = rcu_dereference(fa->fa_next);
727 }
728 }
729
730 void kill_fasync(struct fasync_struct **fp, int sig, int band)
731 {
732 /* First a quick test without locking: usually
733 * the list is empty.
734 */
735 if (*fp) {
736 rcu_read_lock();
737 kill_fasync_rcu(rcu_dereference(*fp), sig, band);
738 rcu_read_unlock();
739 }
740 }
741 EXPORT_SYMBOL(kill_fasync);
742
743 static int __init fcntl_init(void)
744 {
745 /*
746 * Please add new bits here to ensure allocation uniqueness.
747 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
748 * is defined as O_NONBLOCK on some platforms and not on others.
749 */
750 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
751 O_RDONLY | O_WRONLY | O_RDWR |
752 O_CREAT | O_EXCL | O_NOCTTY |
753 O_TRUNC | O_APPEND | /* O_NONBLOCK | */
754 __O_SYNC | O_DSYNC | FASYNC |
755 O_DIRECT | O_LARGEFILE | O_DIRECTORY |
756 O_NOFOLLOW | O_NOATIME | O_CLOEXEC |
757 __FMODE_EXEC | O_PATH | __O_TMPFILE
758 ));
759
760 fasync_cache = kmem_cache_create("fasync_cache",
761 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
762 return 0;
763 }
764
765 module_init(fcntl_init)