]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/file.c
take rlimit check to callers of expand_files()
[mirror_ubuntu-bionic-kernel.git] / fs / file.c
1 /*
2 * linux/fs/file.c
3 *
4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5 *
6 * Manage the dynamic fd arrays in the process files_struct.
7 */
8
9 #include <linux/export.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/mmzone.h>
13 #include <linux/time.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/rcupdate.h>
23 #include <linux/workqueue.h>
24
25 struct fdtable_defer {
26 spinlock_t lock;
27 struct work_struct wq;
28 struct fdtable *next;
29 };
30
31 int sysctl_nr_open __read_mostly = 1024*1024;
32 int sysctl_nr_open_min = BITS_PER_LONG;
33 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
34
35 /*
36 * We use this list to defer free fdtables that have vmalloced
37 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
38 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
39 * this per-task structure.
40 */
41 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
42
43 static void *alloc_fdmem(size_t size)
44 {
45 /*
46 * Very large allocations can stress page reclaim, so fall back to
47 * vmalloc() if the allocation size will be considered "large" by the VM.
48 */
49 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) {
50 void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN);
51 if (data != NULL)
52 return data;
53 }
54 return vmalloc(size);
55 }
56
57 static void free_fdmem(void *ptr)
58 {
59 is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr);
60 }
61
62 static void __free_fdtable(struct fdtable *fdt)
63 {
64 free_fdmem(fdt->fd);
65 free_fdmem(fdt->open_fds);
66 kfree(fdt);
67 }
68
69 static void free_fdtable_work(struct work_struct *work)
70 {
71 struct fdtable_defer *f =
72 container_of(work, struct fdtable_defer, wq);
73 struct fdtable *fdt;
74
75 spin_lock_bh(&f->lock);
76 fdt = f->next;
77 f->next = NULL;
78 spin_unlock_bh(&f->lock);
79 while(fdt) {
80 struct fdtable *next = fdt->next;
81
82 __free_fdtable(fdt);
83 fdt = next;
84 }
85 }
86
87 void free_fdtable_rcu(struct rcu_head *rcu)
88 {
89 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
90 struct fdtable_defer *fddef;
91
92 BUG_ON(!fdt);
93
94 if (fdt->max_fds <= NR_OPEN_DEFAULT) {
95 /*
96 * This fdtable is embedded in the files structure and that
97 * structure itself is getting destroyed.
98 */
99 kmem_cache_free(files_cachep,
100 container_of(fdt, struct files_struct, fdtab));
101 return;
102 }
103 if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) {
104 kfree(fdt->fd);
105 kfree(fdt->open_fds);
106 kfree(fdt);
107 } else {
108 fddef = &get_cpu_var(fdtable_defer_list);
109 spin_lock(&fddef->lock);
110 fdt->next = fddef->next;
111 fddef->next = fdt;
112 /* vmallocs are handled from the workqueue context */
113 schedule_work(&fddef->wq);
114 spin_unlock(&fddef->lock);
115 put_cpu_var(fdtable_defer_list);
116 }
117 }
118
119 /*
120 * Expand the fdset in the files_struct. Called with the files spinlock
121 * held for write.
122 */
123 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
124 {
125 unsigned int cpy, set;
126
127 BUG_ON(nfdt->max_fds < ofdt->max_fds);
128
129 cpy = ofdt->max_fds * sizeof(struct file *);
130 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
131 memcpy(nfdt->fd, ofdt->fd, cpy);
132 memset((char *)(nfdt->fd) + cpy, 0, set);
133
134 cpy = ofdt->max_fds / BITS_PER_BYTE;
135 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
136 memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
137 memset((char *)(nfdt->open_fds) + cpy, 0, set);
138 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
139 memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
140 }
141
142 static struct fdtable * alloc_fdtable(unsigned int nr)
143 {
144 struct fdtable *fdt;
145 void *data;
146
147 /*
148 * Figure out how many fds we actually want to support in this fdtable.
149 * Allocation steps are keyed to the size of the fdarray, since it
150 * grows far faster than any of the other dynamic data. We try to fit
151 * the fdarray into comfortable page-tuned chunks: starting at 1024B
152 * and growing in powers of two from there on.
153 */
154 nr /= (1024 / sizeof(struct file *));
155 nr = roundup_pow_of_two(nr + 1);
156 nr *= (1024 / sizeof(struct file *));
157 /*
158 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
159 * had been set lower between the check in expand_files() and here. Deal
160 * with that in caller, it's cheaper that way.
161 *
162 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
163 * bitmaps handling below becomes unpleasant, to put it mildly...
164 */
165 if (unlikely(nr > sysctl_nr_open))
166 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
167
168 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
169 if (!fdt)
170 goto out;
171 fdt->max_fds = nr;
172 data = alloc_fdmem(nr * sizeof(struct file *));
173 if (!data)
174 goto out_fdt;
175 fdt->fd = data;
176
177 data = alloc_fdmem(max_t(size_t,
178 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
179 if (!data)
180 goto out_arr;
181 fdt->open_fds = data;
182 data += nr / BITS_PER_BYTE;
183 fdt->close_on_exec = data;
184 fdt->next = NULL;
185
186 return fdt;
187
188 out_arr:
189 free_fdmem(fdt->fd);
190 out_fdt:
191 kfree(fdt);
192 out:
193 return NULL;
194 }
195
196 /*
197 * Expand the file descriptor table.
198 * This function will allocate a new fdtable and both fd array and fdset, of
199 * the given size.
200 * Return <0 error code on error; 1 on successful completion.
201 * The files->file_lock should be held on entry, and will be held on exit.
202 */
203 static int expand_fdtable(struct files_struct *files, int nr)
204 __releases(files->file_lock)
205 __acquires(files->file_lock)
206 {
207 struct fdtable *new_fdt, *cur_fdt;
208
209 spin_unlock(&files->file_lock);
210 new_fdt = alloc_fdtable(nr);
211 spin_lock(&files->file_lock);
212 if (!new_fdt)
213 return -ENOMEM;
214 /*
215 * extremely unlikely race - sysctl_nr_open decreased between the check in
216 * caller and alloc_fdtable(). Cheaper to catch it here...
217 */
218 if (unlikely(new_fdt->max_fds <= nr)) {
219 __free_fdtable(new_fdt);
220 return -EMFILE;
221 }
222 /*
223 * Check again since another task may have expanded the fd table while
224 * we dropped the lock
225 */
226 cur_fdt = files_fdtable(files);
227 if (nr >= cur_fdt->max_fds) {
228 /* Continue as planned */
229 copy_fdtable(new_fdt, cur_fdt);
230 rcu_assign_pointer(files->fdt, new_fdt);
231 if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
232 free_fdtable(cur_fdt);
233 } else {
234 /* Somebody else expanded, so undo our attempt */
235 __free_fdtable(new_fdt);
236 }
237 return 1;
238 }
239
240 /*
241 * Expand files.
242 * This function will expand the file structures, if the requested size exceeds
243 * the current capacity and there is room for expansion.
244 * Return <0 error code on error; 0 when nothing done; 1 when files were
245 * expanded and execution may have blocked.
246 * The files->file_lock should be held on entry, and will be held on exit.
247 */
248 int expand_files(struct files_struct *files, int nr)
249 {
250 struct fdtable *fdt;
251
252 fdt = files_fdtable(files);
253
254 /* Do we need to expand? */
255 if (nr < fdt->max_fds)
256 return 0;
257
258 /* Can we expand? */
259 if (nr >= sysctl_nr_open)
260 return -EMFILE;
261
262 /* All good, so we try */
263 return expand_fdtable(files, nr);
264 }
265
266 static int count_open_files(struct fdtable *fdt)
267 {
268 int size = fdt->max_fds;
269 int i;
270
271 /* Find the last open fd */
272 for (i = size / BITS_PER_LONG; i > 0; ) {
273 if (fdt->open_fds[--i])
274 break;
275 }
276 i = (i + 1) * BITS_PER_LONG;
277 return i;
278 }
279
280 /*
281 * Allocate a new files structure and copy contents from the
282 * passed in files structure.
283 * errorp will be valid only when the returned files_struct is NULL.
284 */
285 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
286 {
287 struct files_struct *newf;
288 struct file **old_fds, **new_fds;
289 int open_files, size, i;
290 struct fdtable *old_fdt, *new_fdt;
291
292 *errorp = -ENOMEM;
293 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
294 if (!newf)
295 goto out;
296
297 atomic_set(&newf->count, 1);
298
299 spin_lock_init(&newf->file_lock);
300 newf->next_fd = 0;
301 new_fdt = &newf->fdtab;
302 new_fdt->max_fds = NR_OPEN_DEFAULT;
303 new_fdt->close_on_exec = newf->close_on_exec_init;
304 new_fdt->open_fds = newf->open_fds_init;
305 new_fdt->fd = &newf->fd_array[0];
306 new_fdt->next = NULL;
307
308 spin_lock(&oldf->file_lock);
309 old_fdt = files_fdtable(oldf);
310 open_files = count_open_files(old_fdt);
311
312 /*
313 * Check whether we need to allocate a larger fd array and fd set.
314 */
315 while (unlikely(open_files > new_fdt->max_fds)) {
316 spin_unlock(&oldf->file_lock);
317
318 if (new_fdt != &newf->fdtab)
319 __free_fdtable(new_fdt);
320
321 new_fdt = alloc_fdtable(open_files - 1);
322 if (!new_fdt) {
323 *errorp = -ENOMEM;
324 goto out_release;
325 }
326
327 /* beyond sysctl_nr_open; nothing to do */
328 if (unlikely(new_fdt->max_fds < open_files)) {
329 __free_fdtable(new_fdt);
330 *errorp = -EMFILE;
331 goto out_release;
332 }
333
334 /*
335 * Reacquire the oldf lock and a pointer to its fd table
336 * who knows it may have a new bigger fd table. We need
337 * the latest pointer.
338 */
339 spin_lock(&oldf->file_lock);
340 old_fdt = files_fdtable(oldf);
341 open_files = count_open_files(old_fdt);
342 }
343
344 old_fds = old_fdt->fd;
345 new_fds = new_fdt->fd;
346
347 memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8);
348 memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8);
349
350 for (i = open_files; i != 0; i--) {
351 struct file *f = *old_fds++;
352 if (f) {
353 get_file(f);
354 } else {
355 /*
356 * The fd may be claimed in the fd bitmap but not yet
357 * instantiated in the files array if a sibling thread
358 * is partway through open(). So make sure that this
359 * fd is available to the new process.
360 */
361 __clear_open_fd(open_files - i, new_fdt);
362 }
363 rcu_assign_pointer(*new_fds++, f);
364 }
365 spin_unlock(&oldf->file_lock);
366
367 /* compute the remainder to be cleared */
368 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
369
370 /* This is long word aligned thus could use a optimized version */
371 memset(new_fds, 0, size);
372
373 if (new_fdt->max_fds > open_files) {
374 int left = (new_fdt->max_fds - open_files) / 8;
375 int start = open_files / BITS_PER_LONG;
376
377 memset(&new_fdt->open_fds[start], 0, left);
378 memset(&new_fdt->close_on_exec[start], 0, left);
379 }
380
381 rcu_assign_pointer(newf->fdt, new_fdt);
382
383 return newf;
384
385 out_release:
386 kmem_cache_free(files_cachep, newf);
387 out:
388 return NULL;
389 }
390
391 static void __devinit fdtable_defer_list_init(int cpu)
392 {
393 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
394 spin_lock_init(&fddef->lock);
395 INIT_WORK(&fddef->wq, free_fdtable_work);
396 fddef->next = NULL;
397 }
398
399 void __init files_defer_init(void)
400 {
401 int i;
402 for_each_possible_cpu(i)
403 fdtable_defer_list_init(i);
404 sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
405 -BITS_PER_LONG;
406 }
407
408 struct files_struct init_files = {
409 .count = ATOMIC_INIT(1),
410 .fdt = &init_files.fdtab,
411 .fdtab = {
412 .max_fds = NR_OPEN_DEFAULT,
413 .fd = &init_files.fd_array[0],
414 .close_on_exec = init_files.close_on_exec_init,
415 .open_fds = init_files.open_fds_init,
416 },
417 .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock),
418 };
419
420 /*
421 * allocate a file descriptor, mark it busy.
422 */
423 int alloc_fd(unsigned start, unsigned flags)
424 {
425 struct files_struct *files = current->files;
426 unsigned int fd;
427 unsigned end = rlimit(RLIMIT_NOFILE);
428 int error;
429 struct fdtable *fdt;
430
431 spin_lock(&files->file_lock);
432 repeat:
433 fdt = files_fdtable(files);
434 fd = start;
435 if (fd < files->next_fd)
436 fd = files->next_fd;
437
438 if (fd < fdt->max_fds)
439 fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd);
440
441 /*
442 * N.B. For clone tasks sharing a files structure, this test
443 * will limit the total number of files that can be opened.
444 */
445 error = -EMFILE;
446 if (fd >= end)
447 goto out;
448
449 error = expand_files(files, fd);
450 if (error < 0)
451 goto out;
452
453 /*
454 * If we needed to expand the fs array we
455 * might have blocked - try again.
456 */
457 if (error)
458 goto repeat;
459
460 if (start <= files->next_fd)
461 files->next_fd = fd + 1;
462
463 __set_open_fd(fd, fdt);
464 if (flags & O_CLOEXEC)
465 __set_close_on_exec(fd, fdt);
466 else
467 __clear_close_on_exec(fd, fdt);
468 error = fd;
469 #if 1
470 /* Sanity check */
471 if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
472 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
473 rcu_assign_pointer(fdt->fd[fd], NULL);
474 }
475 #endif
476
477 out:
478 spin_unlock(&files->file_lock);
479 return error;
480 }
481
482 int get_unused_fd_flags(unsigned flags)
483 {
484 return alloc_fd(0, flags);
485 }
486 EXPORT_SYMBOL(get_unused_fd_flags);