]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fs-writeback.c
ARM: dts: Cygnus: Fix MDIO node address/size cells
[mirror_ubuntu-bionic-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219 {
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271 }
272
273 /**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285 {
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310 }
311
312 /**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321 {
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
349 struct backing_dev_info *bdi = inode_to_bdi(inode);
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
352 struct bdi_writeback *new_wb = isw->new_wb;
353 struct radix_tree_iter iter;
354 bool switched = false;
355 void **slot;
356
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 * synchronizing against mapping->tree_lock.
368 *
369 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
372 */
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
380 spin_lock(&inode->i_lock);
381 spin_lock_irq(&mapping->tree_lock);
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
385 * the inode and we shouldn't modify ->i_io_list.
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under underwriteback.
394 */
395 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396 PAGECACHE_TAG_DIRTY) {
397 struct page *page = radix_tree_deref_slot_protected(slot,
398 &mapping->tree_lock);
399 if (likely(page) && PageDirty(page)) {
400 dec_wb_stat(old_wb, WB_RECLAIMABLE);
401 inc_wb_stat(new_wb, WB_RECLAIMABLE);
402 }
403 }
404
405 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406 PAGECACHE_TAG_WRITEBACK) {
407 struct page *page = radix_tree_deref_slot_protected(slot,
408 &mapping->tree_lock);
409 if (likely(page)) {
410 WARN_ON_ONCE(!PageWriteback(page));
411 dec_wb_stat(old_wb, WB_WRITEBACK);
412 inc_wb_stat(new_wb, WB_WRITEBACK);
413 }
414 }
415
416 wb_get(new_wb);
417
418 /*
419 * Transfer to @new_wb's IO list if necessary. The specific list
420 * @inode was on is ignored and the inode is put on ->b_dirty which
421 * is always correct including from ->b_dirty_time. The transfer
422 * preserves @inode->dirtied_when ordering.
423 */
424 if (!list_empty(&inode->i_io_list)) {
425 struct inode *pos;
426
427 inode_io_list_del_locked(inode, old_wb);
428 inode->i_wb = new_wb;
429 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430 if (time_after_eq(inode->dirtied_when,
431 pos->dirtied_when))
432 break;
433 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434 } else {
435 inode->i_wb = new_wb;
436 }
437
438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
442 switched = true;
443 skip_switch:
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450 spin_unlock_irq(&mapping->tree_lock);
451 spin_unlock(&inode->i_lock);
452 spin_unlock(&new_wb->list_lock);
453 spin_unlock(&old_wb->list_lock);
454
455 up_read(&bdi->wb_switch_rwsem);
456
457 if (switched) {
458 wb_wakeup(new_wb);
459 wb_put(old_wb);
460 }
461 wb_put(new_wb);
462
463 iput(inode);
464 kfree(isw);
465
466 atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471 struct inode_switch_wbs_context *isw = container_of(rcu_head,
472 struct inode_switch_wbs_context, rcu_head);
473
474 /* needs to grab bh-unsafe locks, bounce to work item */
475 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476 queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480 * inode_switch_wbs - change the wb association of an inode
481 * @inode: target inode
482 * @new_wb_id: ID of the new wb
483 *
484 * Switch @inode's wb association to the wb identified by @new_wb_id. The
485 * switching is performed asynchronously and may fail silently.
486 */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489 struct backing_dev_info *bdi = inode_to_bdi(inode);
490 struct cgroup_subsys_state *memcg_css;
491 struct inode_switch_wbs_context *isw;
492
493 /* noop if seems to be already in progress */
494 if (inode->i_state & I_WB_SWITCH)
495 return;
496
497 /*
498 * Avoid starting new switches while sync_inodes_sb() is in
499 * progress. Otherwise, if the down_write protected issue path
500 * blocks heavily, we might end up starting a large number of
501 * switches which will block on the rwsem.
502 */
503 if (!down_read_trylock(&bdi->wb_switch_rwsem))
504 return;
505
506 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507 if (!isw)
508 goto out_unlock;
509
510 /* find and pin the new wb */
511 rcu_read_lock();
512 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 if (memcg_css)
514 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 rcu_read_unlock();
516 if (!isw->new_wb)
517 goto out_free;
518
519 /* while holding I_WB_SWITCH, no one else can update the association */
520 spin_lock(&inode->i_lock);
521 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
522 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523 inode_to_wb(inode) == isw->new_wb) {
524 spin_unlock(&inode->i_lock);
525 goto out_free;
526 }
527 inode->i_state |= I_WB_SWITCH;
528 __iget(inode);
529 spin_unlock(&inode->i_lock);
530
531 isw->inode = inode;
532
533 /*
534 * In addition to synchronizing among switchers, I_WB_SWITCH tells
535 * the RCU protected stat update paths to grab the mapping's
536 * tree_lock so that stat transfer can synchronize against them.
537 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538 */
539 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541 atomic_inc(&isw_nr_in_flight);
542
543 goto out_unlock;
544
545 out_free:
546 if (isw->new_wb)
547 wb_put(isw->new_wb);
548 kfree(isw);
549 out_unlock:
550 up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555 * @wbc: writeback_control of interest
556 * @inode: target inode
557 *
558 * @inode is locked and about to be written back under the control of @wbc.
559 * Record @inode's writeback context into @wbc and unlock the i_lock. On
560 * writeback completion, wbc_detach_inode() should be called. This is used
561 * to track the cgroup writeback context.
562 */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564 struct inode *inode)
565 {
566 if (!inode_cgwb_enabled(inode)) {
567 spin_unlock(&inode->i_lock);
568 return;
569 }
570
571 wbc->wb = inode_to_wb(inode);
572 wbc->inode = inode;
573
574 wbc->wb_id = wbc->wb->memcg_css->id;
575 wbc->wb_lcand_id = inode->i_wb_frn_winner;
576 wbc->wb_tcand_id = 0;
577 wbc->wb_bytes = 0;
578 wbc->wb_lcand_bytes = 0;
579 wbc->wb_tcand_bytes = 0;
580
581 wb_get(wbc->wb);
582 spin_unlock(&inode->i_lock);
583
584 /*
585 * A dying wb indicates that either the blkcg associated with the
586 * memcg changed or the associated memcg is dying. In the first
587 * case, a replacement wb should already be available and we should
588 * refresh the wb immediately. In the second case, trying to
589 * refresh will keep failing.
590 */
591 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
592 inode_switch_wbs(inode, wbc->wb_id);
593 }
594
595 /**
596 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
597 * @wbc: writeback_control of the just finished writeback
598 *
599 * To be called after a writeback attempt of an inode finishes and undoes
600 * wbc_attach_and_unlock_inode(). Can be called under any context.
601 *
602 * As concurrent write sharing of an inode is expected to be very rare and
603 * memcg only tracks page ownership on first-use basis severely confining
604 * the usefulness of such sharing, cgroup writeback tracks ownership
605 * per-inode. While the support for concurrent write sharing of an inode
606 * is deemed unnecessary, an inode being written to by different cgroups at
607 * different points in time is a lot more common, and, more importantly,
608 * charging only by first-use can too readily lead to grossly incorrect
609 * behaviors (single foreign page can lead to gigabytes of writeback to be
610 * incorrectly attributed).
611 *
612 * To resolve this issue, cgroup writeback detects the majority dirtier of
613 * an inode and transfers the ownership to it. To avoid unnnecessary
614 * oscillation, the detection mechanism keeps track of history and gives
615 * out the switch verdict only if the foreign usage pattern is stable over
616 * a certain amount of time and/or writeback attempts.
617 *
618 * On each writeback attempt, @wbc tries to detect the majority writer
619 * using Boyer-Moore majority vote algorithm. In addition to the byte
620 * count from the majority voting, it also counts the bytes written for the
621 * current wb and the last round's winner wb (max of last round's current
622 * wb, the winner from two rounds ago, and the last round's majority
623 * candidate). Keeping track of the historical winner helps the algorithm
624 * to semi-reliably detect the most active writer even when it's not the
625 * absolute majority.
626 *
627 * Once the winner of the round is determined, whether the winner is
628 * foreign or not and how much IO time the round consumed is recorded in
629 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
630 * over a certain threshold, the switch verdict is given.
631 */
632 void wbc_detach_inode(struct writeback_control *wbc)
633 {
634 struct bdi_writeback *wb = wbc->wb;
635 struct inode *inode = wbc->inode;
636 unsigned long avg_time, max_bytes, max_time;
637 u16 history;
638 int max_id;
639
640 if (!wb)
641 return;
642
643 history = inode->i_wb_frn_history;
644 avg_time = inode->i_wb_frn_avg_time;
645
646 /* pick the winner of this round */
647 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
648 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
649 max_id = wbc->wb_id;
650 max_bytes = wbc->wb_bytes;
651 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
652 max_id = wbc->wb_lcand_id;
653 max_bytes = wbc->wb_lcand_bytes;
654 } else {
655 max_id = wbc->wb_tcand_id;
656 max_bytes = wbc->wb_tcand_bytes;
657 }
658
659 /*
660 * Calculate the amount of IO time the winner consumed and fold it
661 * into the running average kept per inode. If the consumed IO
662 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
663 * deciding whether to switch or not. This is to prevent one-off
664 * small dirtiers from skewing the verdict.
665 */
666 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
667 wb->avg_write_bandwidth);
668 if (avg_time)
669 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
670 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
671 else
672 avg_time = max_time; /* immediate catch up on first run */
673
674 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
675 int slots;
676
677 /*
678 * The switch verdict is reached if foreign wb's consume
679 * more than a certain proportion of IO time in a
680 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
681 * history mask where each bit represents one sixteenth of
682 * the period. Determine the number of slots to shift into
683 * history from @max_time.
684 */
685 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
686 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
687 history <<= slots;
688 if (wbc->wb_id != max_id)
689 history |= (1U << slots) - 1;
690
691 /*
692 * Switch if the current wb isn't the consistent winner.
693 * If there are multiple closely competing dirtiers, the
694 * inode may switch across them repeatedly over time, which
695 * is okay. The main goal is avoiding keeping an inode on
696 * the wrong wb for an extended period of time.
697 */
698 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
699 inode_switch_wbs(inode, max_id);
700 }
701
702 /*
703 * Multiple instances of this function may race to update the
704 * following fields but we don't mind occassional inaccuracies.
705 */
706 inode->i_wb_frn_winner = max_id;
707 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
708 inode->i_wb_frn_history = history;
709
710 wb_put(wbc->wb);
711 wbc->wb = NULL;
712 }
713
714 /**
715 * wbc_account_io - account IO issued during writeback
716 * @wbc: writeback_control of the writeback in progress
717 * @page: page being written out
718 * @bytes: number of bytes being written out
719 *
720 * @bytes from @page are about to written out during the writeback
721 * controlled by @wbc. Keep the book for foreign inode detection. See
722 * wbc_detach_inode().
723 */
724 void wbc_account_io(struct writeback_control *wbc, struct page *page,
725 size_t bytes)
726 {
727 struct cgroup_subsys_state *css;
728 int id;
729
730 /*
731 * pageout() path doesn't attach @wbc to the inode being written
732 * out. This is intentional as we don't want the function to block
733 * behind a slow cgroup. Ultimately, we want pageout() to kick off
734 * regular writeback instead of writing things out itself.
735 */
736 if (!wbc->wb)
737 return;
738
739 css = mem_cgroup_css_from_page(page);
740 /* dead cgroups shouldn't contribute to inode ownership arbitration */
741 if (!(css->flags & CSS_ONLINE))
742 return;
743
744 id = css->id;
745
746 if (id == wbc->wb_id) {
747 wbc->wb_bytes += bytes;
748 return;
749 }
750
751 if (id == wbc->wb_lcand_id)
752 wbc->wb_lcand_bytes += bytes;
753
754 /* Boyer-Moore majority vote algorithm */
755 if (!wbc->wb_tcand_bytes)
756 wbc->wb_tcand_id = id;
757 if (id == wbc->wb_tcand_id)
758 wbc->wb_tcand_bytes += bytes;
759 else
760 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
761 }
762 EXPORT_SYMBOL_GPL(wbc_account_io);
763
764 /**
765 * inode_congested - test whether an inode is congested
766 * @inode: inode to test for congestion (may be NULL)
767 * @cong_bits: mask of WB_[a]sync_congested bits to test
768 *
769 * Tests whether @inode is congested. @cong_bits is the mask of congestion
770 * bits to test and the return value is the mask of set bits.
771 *
772 * If cgroup writeback is enabled for @inode, the congestion state is
773 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
774 * associated with @inode is congested; otherwise, the root wb's congestion
775 * state is used.
776 *
777 * @inode is allowed to be NULL as this function is often called on
778 * mapping->host which is NULL for the swapper space.
779 */
780 int inode_congested(struct inode *inode, int cong_bits)
781 {
782 /*
783 * Once set, ->i_wb never becomes NULL while the inode is alive.
784 * Start transaction iff ->i_wb is visible.
785 */
786 if (inode && inode_to_wb_is_valid(inode)) {
787 struct bdi_writeback *wb;
788 struct wb_lock_cookie lock_cookie = {};
789 bool congested;
790
791 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
792 congested = wb_congested(wb, cong_bits);
793 unlocked_inode_to_wb_end(inode, &lock_cookie);
794 return congested;
795 }
796
797 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
798 }
799 EXPORT_SYMBOL_GPL(inode_congested);
800
801 /**
802 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
803 * @wb: target bdi_writeback to split @nr_pages to
804 * @nr_pages: number of pages to write for the whole bdi
805 *
806 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
807 * relation to the total write bandwidth of all wb's w/ dirty inodes on
808 * @wb->bdi.
809 */
810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
811 {
812 unsigned long this_bw = wb->avg_write_bandwidth;
813 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
814
815 if (nr_pages == LONG_MAX)
816 return LONG_MAX;
817
818 /*
819 * This may be called on clean wb's and proportional distribution
820 * may not make sense, just use the original @nr_pages in those
821 * cases. In general, we wanna err on the side of writing more.
822 */
823 if (!tot_bw || this_bw >= tot_bw)
824 return nr_pages;
825 else
826 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
827 }
828
829 /**
830 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
831 * @bdi: target backing_dev_info
832 * @base_work: wb_writeback_work to issue
833 * @skip_if_busy: skip wb's which already have writeback in progress
834 *
835 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
836 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
837 * distributed to the busy wbs according to each wb's proportion in the
838 * total active write bandwidth of @bdi.
839 */
840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
841 struct wb_writeback_work *base_work,
842 bool skip_if_busy)
843 {
844 struct bdi_writeback *last_wb = NULL;
845 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
846 struct bdi_writeback, bdi_node);
847
848 might_sleep();
849 restart:
850 rcu_read_lock();
851 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
852 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
853 struct wb_writeback_work fallback_work;
854 struct wb_writeback_work *work;
855 long nr_pages;
856
857 if (last_wb) {
858 wb_put(last_wb);
859 last_wb = NULL;
860 }
861
862 /* SYNC_ALL writes out I_DIRTY_TIME too */
863 if (!wb_has_dirty_io(wb) &&
864 (base_work->sync_mode == WB_SYNC_NONE ||
865 list_empty(&wb->b_dirty_time)))
866 continue;
867 if (skip_if_busy && writeback_in_progress(wb))
868 continue;
869
870 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
871
872 work = kmalloc(sizeof(*work), GFP_ATOMIC);
873 if (work) {
874 *work = *base_work;
875 work->nr_pages = nr_pages;
876 work->auto_free = 1;
877 wb_queue_work(wb, work);
878 continue;
879 }
880
881 /* alloc failed, execute synchronously using on-stack fallback */
882 work = &fallback_work;
883 *work = *base_work;
884 work->nr_pages = nr_pages;
885 work->auto_free = 0;
886 work->done = &fallback_work_done;
887
888 wb_queue_work(wb, work);
889
890 /*
891 * Pin @wb so that it stays on @bdi->wb_list. This allows
892 * continuing iteration from @wb after dropping and
893 * regrabbing rcu read lock.
894 */
895 wb_get(wb);
896 last_wb = wb;
897
898 rcu_read_unlock();
899 wb_wait_for_completion(bdi, &fallback_work_done);
900 goto restart;
901 }
902 rcu_read_unlock();
903
904 if (last_wb)
905 wb_put(last_wb);
906 }
907
908 /**
909 * cgroup_writeback_umount - flush inode wb switches for umount
910 *
911 * This function is called when a super_block is about to be destroyed and
912 * flushes in-flight inode wb switches. An inode wb switch goes through
913 * RCU and then workqueue, so the two need to be flushed in order to ensure
914 * that all previously scheduled switches are finished. As wb switches are
915 * rare occurrences and synchronize_rcu() can take a while, perform
916 * flushing iff wb switches are in flight.
917 */
918 void cgroup_writeback_umount(void)
919 {
920 if (atomic_read(&isw_nr_in_flight)) {
921 /*
922 * Use rcu_barrier() to wait for all pending callbacks to
923 * ensure that all in-flight wb switches are in the workqueue.
924 */
925 rcu_barrier();
926 flush_workqueue(isw_wq);
927 }
928 }
929
930 static int __init cgroup_writeback_init(void)
931 {
932 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
933 if (!isw_wq)
934 return -ENOMEM;
935 return 0;
936 }
937 fs_initcall(cgroup_writeback_init);
938
939 #else /* CONFIG_CGROUP_WRITEBACK */
940
941 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
942 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
943
944 static struct bdi_writeback *
945 locked_inode_to_wb_and_lock_list(struct inode *inode)
946 __releases(&inode->i_lock)
947 __acquires(&wb->list_lock)
948 {
949 struct bdi_writeback *wb = inode_to_wb(inode);
950
951 spin_unlock(&inode->i_lock);
952 spin_lock(&wb->list_lock);
953 return wb;
954 }
955
956 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
957 __acquires(&wb->list_lock)
958 {
959 struct bdi_writeback *wb = inode_to_wb(inode);
960
961 spin_lock(&wb->list_lock);
962 return wb;
963 }
964
965 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
966 {
967 return nr_pages;
968 }
969
970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
971 struct wb_writeback_work *base_work,
972 bool skip_if_busy)
973 {
974 might_sleep();
975
976 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
977 base_work->auto_free = 0;
978 wb_queue_work(&bdi->wb, base_work);
979 }
980 }
981
982 #endif /* CONFIG_CGROUP_WRITEBACK */
983
984 /*
985 * Add in the number of potentially dirty inodes, because each inode
986 * write can dirty pagecache in the underlying blockdev.
987 */
988 static unsigned long get_nr_dirty_pages(void)
989 {
990 return global_node_page_state(NR_FILE_DIRTY) +
991 global_node_page_state(NR_UNSTABLE_NFS) +
992 get_nr_dirty_inodes();
993 }
994
995 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
996 {
997 if (!wb_has_dirty_io(wb))
998 return;
999
1000 /*
1001 * All callers of this function want to start writeback of all
1002 * dirty pages. Places like vmscan can call this at a very
1003 * high frequency, causing pointless allocations of tons of
1004 * work items and keeping the flusher threads busy retrieving
1005 * that work. Ensure that we only allow one of them pending and
1006 * inflight at the time.
1007 */
1008 if (test_bit(WB_start_all, &wb->state) ||
1009 test_and_set_bit(WB_start_all, &wb->state))
1010 return;
1011
1012 wb->start_all_reason = reason;
1013 wb_wakeup(wb);
1014 }
1015
1016 /**
1017 * wb_start_background_writeback - start background writeback
1018 * @wb: bdi_writback to write from
1019 *
1020 * Description:
1021 * This makes sure WB_SYNC_NONE background writeback happens. When
1022 * this function returns, it is only guaranteed that for given wb
1023 * some IO is happening if we are over background dirty threshold.
1024 * Caller need not hold sb s_umount semaphore.
1025 */
1026 void wb_start_background_writeback(struct bdi_writeback *wb)
1027 {
1028 /*
1029 * We just wake up the flusher thread. It will perform background
1030 * writeback as soon as there is no other work to do.
1031 */
1032 trace_writeback_wake_background(wb);
1033 wb_wakeup(wb);
1034 }
1035
1036 /*
1037 * Remove the inode from the writeback list it is on.
1038 */
1039 void inode_io_list_del(struct inode *inode)
1040 {
1041 struct bdi_writeback *wb;
1042
1043 wb = inode_to_wb_and_lock_list(inode);
1044 inode_io_list_del_locked(inode, wb);
1045 spin_unlock(&wb->list_lock);
1046 }
1047
1048 /*
1049 * mark an inode as under writeback on the sb
1050 */
1051 void sb_mark_inode_writeback(struct inode *inode)
1052 {
1053 struct super_block *sb = inode->i_sb;
1054 unsigned long flags;
1055
1056 if (list_empty(&inode->i_wb_list)) {
1057 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1058 if (list_empty(&inode->i_wb_list)) {
1059 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1060 trace_sb_mark_inode_writeback(inode);
1061 }
1062 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1063 }
1064 }
1065
1066 /*
1067 * clear an inode as under writeback on the sb
1068 */
1069 void sb_clear_inode_writeback(struct inode *inode)
1070 {
1071 struct super_block *sb = inode->i_sb;
1072 unsigned long flags;
1073
1074 if (!list_empty(&inode->i_wb_list)) {
1075 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1076 if (!list_empty(&inode->i_wb_list)) {
1077 list_del_init(&inode->i_wb_list);
1078 trace_sb_clear_inode_writeback(inode);
1079 }
1080 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1081 }
1082 }
1083
1084 /*
1085 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1086 * furthest end of its superblock's dirty-inode list.
1087 *
1088 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1089 * already the most-recently-dirtied inode on the b_dirty list. If that is
1090 * the case then the inode must have been redirtied while it was being written
1091 * out and we don't reset its dirtied_when.
1092 */
1093 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1094 {
1095 if (!list_empty(&wb->b_dirty)) {
1096 struct inode *tail;
1097
1098 tail = wb_inode(wb->b_dirty.next);
1099 if (time_before(inode->dirtied_when, tail->dirtied_when))
1100 inode->dirtied_when = jiffies;
1101 }
1102 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1103 }
1104
1105 /*
1106 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1107 */
1108 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1109 {
1110 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1111 }
1112
1113 static void inode_sync_complete(struct inode *inode)
1114 {
1115 inode->i_state &= ~I_SYNC;
1116 /* If inode is clean an unused, put it into LRU now... */
1117 inode_add_lru(inode);
1118 /* Waiters must see I_SYNC cleared before being woken up */
1119 smp_mb();
1120 wake_up_bit(&inode->i_state, __I_SYNC);
1121 }
1122
1123 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1124 {
1125 bool ret = time_after(inode->dirtied_when, t);
1126 #ifndef CONFIG_64BIT
1127 /*
1128 * For inodes being constantly redirtied, dirtied_when can get stuck.
1129 * It _appears_ to be in the future, but is actually in distant past.
1130 * This test is necessary to prevent such wrapped-around relative times
1131 * from permanently stopping the whole bdi writeback.
1132 */
1133 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1134 #endif
1135 return ret;
1136 }
1137
1138 #define EXPIRE_DIRTY_ATIME 0x0001
1139
1140 /*
1141 * Move expired (dirtied before work->older_than_this) dirty inodes from
1142 * @delaying_queue to @dispatch_queue.
1143 */
1144 static int move_expired_inodes(struct list_head *delaying_queue,
1145 struct list_head *dispatch_queue,
1146 int flags,
1147 struct wb_writeback_work *work)
1148 {
1149 unsigned long *older_than_this = NULL;
1150 unsigned long expire_time;
1151 LIST_HEAD(tmp);
1152 struct list_head *pos, *node;
1153 struct super_block *sb = NULL;
1154 struct inode *inode;
1155 int do_sb_sort = 0;
1156 int moved = 0;
1157
1158 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1159 older_than_this = work->older_than_this;
1160 else if (!work->for_sync) {
1161 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1162 older_than_this = &expire_time;
1163 }
1164 while (!list_empty(delaying_queue)) {
1165 inode = wb_inode(delaying_queue->prev);
1166 if (older_than_this &&
1167 inode_dirtied_after(inode, *older_than_this))
1168 break;
1169 list_move(&inode->i_io_list, &tmp);
1170 moved++;
1171 if (flags & EXPIRE_DIRTY_ATIME)
1172 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1173 if (sb_is_blkdev_sb(inode->i_sb))
1174 continue;
1175 if (sb && sb != inode->i_sb)
1176 do_sb_sort = 1;
1177 sb = inode->i_sb;
1178 }
1179
1180 /* just one sb in list, splice to dispatch_queue and we're done */
1181 if (!do_sb_sort) {
1182 list_splice(&tmp, dispatch_queue);
1183 goto out;
1184 }
1185
1186 /* Move inodes from one superblock together */
1187 while (!list_empty(&tmp)) {
1188 sb = wb_inode(tmp.prev)->i_sb;
1189 list_for_each_prev_safe(pos, node, &tmp) {
1190 inode = wb_inode(pos);
1191 if (inode->i_sb == sb)
1192 list_move(&inode->i_io_list, dispatch_queue);
1193 }
1194 }
1195 out:
1196 return moved;
1197 }
1198
1199 /*
1200 * Queue all expired dirty inodes for io, eldest first.
1201 * Before
1202 * newly dirtied b_dirty b_io b_more_io
1203 * =============> gf edc BA
1204 * After
1205 * newly dirtied b_dirty b_io b_more_io
1206 * =============> g fBAedc
1207 * |
1208 * +--> dequeue for IO
1209 */
1210 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1211 {
1212 int moved;
1213
1214 assert_spin_locked(&wb->list_lock);
1215 list_splice_init(&wb->b_more_io, &wb->b_io);
1216 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1217 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1218 EXPIRE_DIRTY_ATIME, work);
1219 if (moved)
1220 wb_io_lists_populated(wb);
1221 trace_writeback_queue_io(wb, work, moved);
1222 }
1223
1224 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1225 {
1226 int ret;
1227
1228 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1229 trace_writeback_write_inode_start(inode, wbc);
1230 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1231 trace_writeback_write_inode(inode, wbc);
1232 return ret;
1233 }
1234 return 0;
1235 }
1236
1237 /*
1238 * Wait for writeback on an inode to complete. Called with i_lock held.
1239 * Caller must make sure inode cannot go away when we drop i_lock.
1240 */
1241 static void __inode_wait_for_writeback(struct inode *inode)
1242 __releases(inode->i_lock)
1243 __acquires(inode->i_lock)
1244 {
1245 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1246 wait_queue_head_t *wqh;
1247
1248 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1249 while (inode->i_state & I_SYNC) {
1250 spin_unlock(&inode->i_lock);
1251 __wait_on_bit(wqh, &wq, bit_wait,
1252 TASK_UNINTERRUPTIBLE);
1253 spin_lock(&inode->i_lock);
1254 }
1255 }
1256
1257 /*
1258 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1259 */
1260 void inode_wait_for_writeback(struct inode *inode)
1261 {
1262 spin_lock(&inode->i_lock);
1263 __inode_wait_for_writeback(inode);
1264 spin_unlock(&inode->i_lock);
1265 }
1266
1267 /*
1268 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1269 * held and drops it. It is aimed for callers not holding any inode reference
1270 * so once i_lock is dropped, inode can go away.
1271 */
1272 static void inode_sleep_on_writeback(struct inode *inode)
1273 __releases(inode->i_lock)
1274 {
1275 DEFINE_WAIT(wait);
1276 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1277 int sleep;
1278
1279 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1280 sleep = inode->i_state & I_SYNC;
1281 spin_unlock(&inode->i_lock);
1282 if (sleep)
1283 schedule();
1284 finish_wait(wqh, &wait);
1285 }
1286
1287 /*
1288 * Find proper writeback list for the inode depending on its current state and
1289 * possibly also change of its state while we were doing writeback. Here we
1290 * handle things such as livelock prevention or fairness of writeback among
1291 * inodes. This function can be called only by flusher thread - noone else
1292 * processes all inodes in writeback lists and requeueing inodes behind flusher
1293 * thread's back can have unexpected consequences.
1294 */
1295 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1296 struct writeback_control *wbc)
1297 {
1298 if (inode->i_state & I_FREEING)
1299 return;
1300
1301 /*
1302 * Sync livelock prevention. Each inode is tagged and synced in one
1303 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1304 * the dirty time to prevent enqueue and sync it again.
1305 */
1306 if ((inode->i_state & I_DIRTY) &&
1307 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1308 inode->dirtied_when = jiffies;
1309
1310 if (wbc->pages_skipped) {
1311 /*
1312 * writeback is not making progress due to locked
1313 * buffers. Skip this inode for now.
1314 */
1315 redirty_tail(inode, wb);
1316 return;
1317 }
1318
1319 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1320 /*
1321 * We didn't write back all the pages. nfs_writepages()
1322 * sometimes bales out without doing anything.
1323 */
1324 if (wbc->nr_to_write <= 0) {
1325 /* Slice used up. Queue for next turn. */
1326 requeue_io(inode, wb);
1327 } else {
1328 /*
1329 * Writeback blocked by something other than
1330 * congestion. Delay the inode for some time to
1331 * avoid spinning on the CPU (100% iowait)
1332 * retrying writeback of the dirty page/inode
1333 * that cannot be performed immediately.
1334 */
1335 redirty_tail(inode, wb);
1336 }
1337 } else if (inode->i_state & I_DIRTY) {
1338 /*
1339 * Filesystems can dirty the inode during writeback operations,
1340 * such as delayed allocation during submission or metadata
1341 * updates after data IO completion.
1342 */
1343 redirty_tail(inode, wb);
1344 } else if (inode->i_state & I_DIRTY_TIME) {
1345 inode->dirtied_when = jiffies;
1346 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1347 } else {
1348 /* The inode is clean. Remove from writeback lists. */
1349 inode_io_list_del_locked(inode, wb);
1350 }
1351 }
1352
1353 /*
1354 * Write out an inode and its dirty pages. Do not update the writeback list
1355 * linkage. That is left to the caller. The caller is also responsible for
1356 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1357 */
1358 static int
1359 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1360 {
1361 struct address_space *mapping = inode->i_mapping;
1362 long nr_to_write = wbc->nr_to_write;
1363 unsigned dirty;
1364 int ret;
1365
1366 WARN_ON(!(inode->i_state & I_SYNC));
1367
1368 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1369
1370 ret = do_writepages(mapping, wbc);
1371
1372 /*
1373 * Make sure to wait on the data before writing out the metadata.
1374 * This is important for filesystems that modify metadata on data
1375 * I/O completion. We don't do it for sync(2) writeback because it has a
1376 * separate, external IO completion path and ->sync_fs for guaranteeing
1377 * inode metadata is written back correctly.
1378 */
1379 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1380 int err = filemap_fdatawait(mapping);
1381 if (ret == 0)
1382 ret = err;
1383 }
1384
1385 /*
1386 * Some filesystems may redirty the inode during the writeback
1387 * due to delalloc, clear dirty metadata flags right before
1388 * write_inode()
1389 */
1390 spin_lock(&inode->i_lock);
1391
1392 dirty = inode->i_state & I_DIRTY;
1393 if (inode->i_state & I_DIRTY_TIME) {
1394 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1395 wbc->sync_mode == WB_SYNC_ALL ||
1396 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1397 unlikely(time_after(jiffies,
1398 (inode->dirtied_time_when +
1399 dirtytime_expire_interval * HZ)))) {
1400 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1401 trace_writeback_lazytime(inode);
1402 }
1403 } else
1404 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1405 inode->i_state &= ~dirty;
1406
1407 /*
1408 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1409 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1410 * either they see the I_DIRTY bits cleared or we see the dirtied
1411 * inode.
1412 *
1413 * I_DIRTY_PAGES is always cleared together above even if @mapping
1414 * still has dirty pages. The flag is reinstated after smp_mb() if
1415 * necessary. This guarantees that either __mark_inode_dirty()
1416 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1417 */
1418 smp_mb();
1419
1420 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1421 inode->i_state |= I_DIRTY_PAGES;
1422
1423 spin_unlock(&inode->i_lock);
1424
1425 if (dirty & I_DIRTY_TIME)
1426 mark_inode_dirty_sync(inode);
1427 /* Don't write the inode if only I_DIRTY_PAGES was set */
1428 if (dirty & ~I_DIRTY_PAGES) {
1429 int err = write_inode(inode, wbc);
1430 if (ret == 0)
1431 ret = err;
1432 }
1433 trace_writeback_single_inode(inode, wbc, nr_to_write);
1434 return ret;
1435 }
1436
1437 /*
1438 * Write out an inode's dirty pages. Either the caller has an active reference
1439 * on the inode or the inode has I_WILL_FREE set.
1440 *
1441 * This function is designed to be called for writing back one inode which
1442 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1443 * and does more profound writeback list handling in writeback_sb_inodes().
1444 */
1445 static int writeback_single_inode(struct inode *inode,
1446 struct writeback_control *wbc)
1447 {
1448 struct bdi_writeback *wb;
1449 int ret = 0;
1450
1451 spin_lock(&inode->i_lock);
1452 if (!atomic_read(&inode->i_count))
1453 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1454 else
1455 WARN_ON(inode->i_state & I_WILL_FREE);
1456
1457 if (inode->i_state & I_SYNC) {
1458 if (wbc->sync_mode != WB_SYNC_ALL)
1459 goto out;
1460 /*
1461 * It's a data-integrity sync. We must wait. Since callers hold
1462 * inode reference or inode has I_WILL_FREE set, it cannot go
1463 * away under us.
1464 */
1465 __inode_wait_for_writeback(inode);
1466 }
1467 WARN_ON(inode->i_state & I_SYNC);
1468 /*
1469 * Skip inode if it is clean and we have no outstanding writeback in
1470 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1471 * function since flusher thread may be doing for example sync in
1472 * parallel and if we move the inode, it could get skipped. So here we
1473 * make sure inode is on some writeback list and leave it there unless
1474 * we have completely cleaned the inode.
1475 */
1476 if (!(inode->i_state & I_DIRTY_ALL) &&
1477 (wbc->sync_mode != WB_SYNC_ALL ||
1478 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1479 goto out;
1480 inode->i_state |= I_SYNC;
1481 wbc_attach_and_unlock_inode(wbc, inode);
1482
1483 ret = __writeback_single_inode(inode, wbc);
1484
1485 wbc_detach_inode(wbc);
1486
1487 wb = inode_to_wb_and_lock_list(inode);
1488 spin_lock(&inode->i_lock);
1489 /*
1490 * If inode is clean, remove it from writeback lists. Otherwise don't
1491 * touch it. See comment above for explanation.
1492 */
1493 if (!(inode->i_state & I_DIRTY_ALL))
1494 inode_io_list_del_locked(inode, wb);
1495 spin_unlock(&wb->list_lock);
1496 inode_sync_complete(inode);
1497 out:
1498 spin_unlock(&inode->i_lock);
1499 return ret;
1500 }
1501
1502 static long writeback_chunk_size(struct bdi_writeback *wb,
1503 struct wb_writeback_work *work)
1504 {
1505 long pages;
1506
1507 /*
1508 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1509 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1510 * here avoids calling into writeback_inodes_wb() more than once.
1511 *
1512 * The intended call sequence for WB_SYNC_ALL writeback is:
1513 *
1514 * wb_writeback()
1515 * writeback_sb_inodes() <== called only once
1516 * write_cache_pages() <== called once for each inode
1517 * (quickly) tag currently dirty pages
1518 * (maybe slowly) sync all tagged pages
1519 */
1520 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1521 pages = LONG_MAX;
1522 else {
1523 pages = min(wb->avg_write_bandwidth / 2,
1524 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1525 pages = min(pages, work->nr_pages);
1526 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1527 MIN_WRITEBACK_PAGES);
1528 }
1529
1530 return pages;
1531 }
1532
1533 /*
1534 * Write a portion of b_io inodes which belong to @sb.
1535 *
1536 * Return the number of pages and/or inodes written.
1537 *
1538 * NOTE! This is called with wb->list_lock held, and will
1539 * unlock and relock that for each inode it ends up doing
1540 * IO for.
1541 */
1542 static long writeback_sb_inodes(struct super_block *sb,
1543 struct bdi_writeback *wb,
1544 struct wb_writeback_work *work)
1545 {
1546 struct writeback_control wbc = {
1547 .sync_mode = work->sync_mode,
1548 .tagged_writepages = work->tagged_writepages,
1549 .for_kupdate = work->for_kupdate,
1550 .for_background = work->for_background,
1551 .for_sync = work->for_sync,
1552 .range_cyclic = work->range_cyclic,
1553 .range_start = 0,
1554 .range_end = LLONG_MAX,
1555 };
1556 unsigned long start_time = jiffies;
1557 long write_chunk;
1558 long wrote = 0; /* count both pages and inodes */
1559
1560 while (!list_empty(&wb->b_io)) {
1561 struct inode *inode = wb_inode(wb->b_io.prev);
1562 struct bdi_writeback *tmp_wb;
1563
1564 if (inode->i_sb != sb) {
1565 if (work->sb) {
1566 /*
1567 * We only want to write back data for this
1568 * superblock, move all inodes not belonging
1569 * to it back onto the dirty list.
1570 */
1571 redirty_tail(inode, wb);
1572 continue;
1573 }
1574
1575 /*
1576 * The inode belongs to a different superblock.
1577 * Bounce back to the caller to unpin this and
1578 * pin the next superblock.
1579 */
1580 break;
1581 }
1582
1583 /*
1584 * Don't bother with new inodes or inodes being freed, first
1585 * kind does not need periodic writeout yet, and for the latter
1586 * kind writeout is handled by the freer.
1587 */
1588 spin_lock(&inode->i_lock);
1589 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1590 spin_unlock(&inode->i_lock);
1591 redirty_tail(inode, wb);
1592 continue;
1593 }
1594 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1595 /*
1596 * If this inode is locked for writeback and we are not
1597 * doing writeback-for-data-integrity, move it to
1598 * b_more_io so that writeback can proceed with the
1599 * other inodes on s_io.
1600 *
1601 * We'll have another go at writing back this inode
1602 * when we completed a full scan of b_io.
1603 */
1604 spin_unlock(&inode->i_lock);
1605 requeue_io(inode, wb);
1606 trace_writeback_sb_inodes_requeue(inode);
1607 continue;
1608 }
1609 spin_unlock(&wb->list_lock);
1610
1611 /*
1612 * We already requeued the inode if it had I_SYNC set and we
1613 * are doing WB_SYNC_NONE writeback. So this catches only the
1614 * WB_SYNC_ALL case.
1615 */
1616 if (inode->i_state & I_SYNC) {
1617 /* Wait for I_SYNC. This function drops i_lock... */
1618 inode_sleep_on_writeback(inode);
1619 /* Inode may be gone, start again */
1620 spin_lock(&wb->list_lock);
1621 continue;
1622 }
1623 inode->i_state |= I_SYNC;
1624 wbc_attach_and_unlock_inode(&wbc, inode);
1625
1626 write_chunk = writeback_chunk_size(wb, work);
1627 wbc.nr_to_write = write_chunk;
1628 wbc.pages_skipped = 0;
1629
1630 /*
1631 * We use I_SYNC to pin the inode in memory. While it is set
1632 * evict_inode() will wait so the inode cannot be freed.
1633 */
1634 __writeback_single_inode(inode, &wbc);
1635
1636 wbc_detach_inode(&wbc);
1637 work->nr_pages -= write_chunk - wbc.nr_to_write;
1638 wrote += write_chunk - wbc.nr_to_write;
1639
1640 if (need_resched()) {
1641 /*
1642 * We're trying to balance between building up a nice
1643 * long list of IOs to improve our merge rate, and
1644 * getting those IOs out quickly for anyone throttling
1645 * in balance_dirty_pages(). cond_resched() doesn't
1646 * unplug, so get our IOs out the door before we
1647 * give up the CPU.
1648 */
1649 blk_flush_plug(current);
1650 cond_resched();
1651 }
1652
1653 /*
1654 * Requeue @inode if still dirty. Be careful as @inode may
1655 * have been switched to another wb in the meantime.
1656 */
1657 tmp_wb = inode_to_wb_and_lock_list(inode);
1658 spin_lock(&inode->i_lock);
1659 if (!(inode->i_state & I_DIRTY_ALL))
1660 wrote++;
1661 requeue_inode(inode, tmp_wb, &wbc);
1662 inode_sync_complete(inode);
1663 spin_unlock(&inode->i_lock);
1664
1665 if (unlikely(tmp_wb != wb)) {
1666 spin_unlock(&tmp_wb->list_lock);
1667 spin_lock(&wb->list_lock);
1668 }
1669
1670 /*
1671 * bail out to wb_writeback() often enough to check
1672 * background threshold and other termination conditions.
1673 */
1674 if (wrote) {
1675 if (time_is_before_jiffies(start_time + HZ / 10UL))
1676 break;
1677 if (work->nr_pages <= 0)
1678 break;
1679 }
1680 }
1681 return wrote;
1682 }
1683
1684 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1685 struct wb_writeback_work *work)
1686 {
1687 unsigned long start_time = jiffies;
1688 long wrote = 0;
1689
1690 while (!list_empty(&wb->b_io)) {
1691 struct inode *inode = wb_inode(wb->b_io.prev);
1692 struct super_block *sb = inode->i_sb;
1693
1694 if (!trylock_super(sb)) {
1695 /*
1696 * trylock_super() may fail consistently due to
1697 * s_umount being grabbed by someone else. Don't use
1698 * requeue_io() to avoid busy retrying the inode/sb.
1699 */
1700 redirty_tail(inode, wb);
1701 continue;
1702 }
1703 wrote += writeback_sb_inodes(sb, wb, work);
1704 up_read(&sb->s_umount);
1705
1706 /* refer to the same tests at the end of writeback_sb_inodes */
1707 if (wrote) {
1708 if (time_is_before_jiffies(start_time + HZ / 10UL))
1709 break;
1710 if (work->nr_pages <= 0)
1711 break;
1712 }
1713 }
1714 /* Leave any unwritten inodes on b_io */
1715 return wrote;
1716 }
1717
1718 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1719 enum wb_reason reason)
1720 {
1721 struct wb_writeback_work work = {
1722 .nr_pages = nr_pages,
1723 .sync_mode = WB_SYNC_NONE,
1724 .range_cyclic = 1,
1725 .reason = reason,
1726 };
1727 struct blk_plug plug;
1728
1729 blk_start_plug(&plug);
1730 spin_lock(&wb->list_lock);
1731 if (list_empty(&wb->b_io))
1732 queue_io(wb, &work);
1733 __writeback_inodes_wb(wb, &work);
1734 spin_unlock(&wb->list_lock);
1735 blk_finish_plug(&plug);
1736
1737 return nr_pages - work.nr_pages;
1738 }
1739
1740 /*
1741 * Explicit flushing or periodic writeback of "old" data.
1742 *
1743 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1744 * dirtying-time in the inode's address_space. So this periodic writeback code
1745 * just walks the superblock inode list, writing back any inodes which are
1746 * older than a specific point in time.
1747 *
1748 * Try to run once per dirty_writeback_interval. But if a writeback event
1749 * takes longer than a dirty_writeback_interval interval, then leave a
1750 * one-second gap.
1751 *
1752 * older_than_this takes precedence over nr_to_write. So we'll only write back
1753 * all dirty pages if they are all attached to "old" mappings.
1754 */
1755 static long wb_writeback(struct bdi_writeback *wb,
1756 struct wb_writeback_work *work)
1757 {
1758 unsigned long wb_start = jiffies;
1759 long nr_pages = work->nr_pages;
1760 unsigned long oldest_jif;
1761 struct inode *inode;
1762 long progress;
1763 struct blk_plug plug;
1764
1765 oldest_jif = jiffies;
1766 work->older_than_this = &oldest_jif;
1767
1768 blk_start_plug(&plug);
1769 spin_lock(&wb->list_lock);
1770 for (;;) {
1771 /*
1772 * Stop writeback when nr_pages has been consumed
1773 */
1774 if (work->nr_pages <= 0)
1775 break;
1776
1777 /*
1778 * Background writeout and kupdate-style writeback may
1779 * run forever. Stop them if there is other work to do
1780 * so that e.g. sync can proceed. They'll be restarted
1781 * after the other works are all done.
1782 */
1783 if ((work->for_background || work->for_kupdate) &&
1784 !list_empty(&wb->work_list))
1785 break;
1786
1787 /*
1788 * For background writeout, stop when we are below the
1789 * background dirty threshold
1790 */
1791 if (work->for_background && !wb_over_bg_thresh(wb))
1792 break;
1793
1794 /*
1795 * Kupdate and background works are special and we want to
1796 * include all inodes that need writing. Livelock avoidance is
1797 * handled by these works yielding to any other work so we are
1798 * safe.
1799 */
1800 if (work->for_kupdate) {
1801 oldest_jif = jiffies -
1802 msecs_to_jiffies(dirty_expire_interval * 10);
1803 } else if (work->for_background)
1804 oldest_jif = jiffies;
1805
1806 trace_writeback_start(wb, work);
1807 if (list_empty(&wb->b_io))
1808 queue_io(wb, work);
1809 if (work->sb)
1810 progress = writeback_sb_inodes(work->sb, wb, work);
1811 else
1812 progress = __writeback_inodes_wb(wb, work);
1813 trace_writeback_written(wb, work);
1814
1815 wb_update_bandwidth(wb, wb_start);
1816
1817 /*
1818 * Did we write something? Try for more
1819 *
1820 * Dirty inodes are moved to b_io for writeback in batches.
1821 * The completion of the current batch does not necessarily
1822 * mean the overall work is done. So we keep looping as long
1823 * as made some progress on cleaning pages or inodes.
1824 */
1825 if (progress)
1826 continue;
1827 /*
1828 * No more inodes for IO, bail
1829 */
1830 if (list_empty(&wb->b_more_io))
1831 break;
1832 /*
1833 * Nothing written. Wait for some inode to
1834 * become available for writeback. Otherwise
1835 * we'll just busyloop.
1836 */
1837 trace_writeback_wait(wb, work);
1838 inode = wb_inode(wb->b_more_io.prev);
1839 spin_lock(&inode->i_lock);
1840 spin_unlock(&wb->list_lock);
1841 /* This function drops i_lock... */
1842 inode_sleep_on_writeback(inode);
1843 spin_lock(&wb->list_lock);
1844 }
1845 spin_unlock(&wb->list_lock);
1846 blk_finish_plug(&plug);
1847
1848 return nr_pages - work->nr_pages;
1849 }
1850
1851 /*
1852 * Return the next wb_writeback_work struct that hasn't been processed yet.
1853 */
1854 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1855 {
1856 struct wb_writeback_work *work = NULL;
1857
1858 spin_lock_bh(&wb->work_lock);
1859 if (!list_empty(&wb->work_list)) {
1860 work = list_entry(wb->work_list.next,
1861 struct wb_writeback_work, list);
1862 list_del_init(&work->list);
1863 }
1864 spin_unlock_bh(&wb->work_lock);
1865 return work;
1866 }
1867
1868 static long wb_check_background_flush(struct bdi_writeback *wb)
1869 {
1870 if (wb_over_bg_thresh(wb)) {
1871
1872 struct wb_writeback_work work = {
1873 .nr_pages = LONG_MAX,
1874 .sync_mode = WB_SYNC_NONE,
1875 .for_background = 1,
1876 .range_cyclic = 1,
1877 .reason = WB_REASON_BACKGROUND,
1878 };
1879
1880 return wb_writeback(wb, &work);
1881 }
1882
1883 return 0;
1884 }
1885
1886 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1887 {
1888 unsigned long expired;
1889 long nr_pages;
1890
1891 /*
1892 * When set to zero, disable periodic writeback
1893 */
1894 if (!dirty_writeback_interval)
1895 return 0;
1896
1897 expired = wb->last_old_flush +
1898 msecs_to_jiffies(dirty_writeback_interval * 10);
1899 if (time_before(jiffies, expired))
1900 return 0;
1901
1902 wb->last_old_flush = jiffies;
1903 nr_pages = get_nr_dirty_pages();
1904
1905 if (nr_pages) {
1906 struct wb_writeback_work work = {
1907 .nr_pages = nr_pages,
1908 .sync_mode = WB_SYNC_NONE,
1909 .for_kupdate = 1,
1910 .range_cyclic = 1,
1911 .reason = WB_REASON_PERIODIC,
1912 };
1913
1914 return wb_writeback(wb, &work);
1915 }
1916
1917 return 0;
1918 }
1919
1920 static long wb_check_start_all(struct bdi_writeback *wb)
1921 {
1922 long nr_pages;
1923
1924 if (!test_bit(WB_start_all, &wb->state))
1925 return 0;
1926
1927 nr_pages = get_nr_dirty_pages();
1928 if (nr_pages) {
1929 struct wb_writeback_work work = {
1930 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1931 .sync_mode = WB_SYNC_NONE,
1932 .range_cyclic = 1,
1933 .reason = wb->start_all_reason,
1934 };
1935
1936 nr_pages = wb_writeback(wb, &work);
1937 }
1938
1939 clear_bit(WB_start_all, &wb->state);
1940 return nr_pages;
1941 }
1942
1943
1944 /*
1945 * Retrieve work items and do the writeback they describe
1946 */
1947 static long wb_do_writeback(struct bdi_writeback *wb)
1948 {
1949 struct wb_writeback_work *work;
1950 long wrote = 0;
1951
1952 set_bit(WB_writeback_running, &wb->state);
1953 while ((work = get_next_work_item(wb)) != NULL) {
1954 trace_writeback_exec(wb, work);
1955 wrote += wb_writeback(wb, work);
1956 finish_writeback_work(wb, work);
1957 }
1958
1959 /*
1960 * Check for a flush-everything request
1961 */
1962 wrote += wb_check_start_all(wb);
1963
1964 /*
1965 * Check for periodic writeback, kupdated() style
1966 */
1967 wrote += wb_check_old_data_flush(wb);
1968 wrote += wb_check_background_flush(wb);
1969 clear_bit(WB_writeback_running, &wb->state);
1970
1971 return wrote;
1972 }
1973
1974 /*
1975 * Handle writeback of dirty data for the device backed by this bdi. Also
1976 * reschedules periodically and does kupdated style flushing.
1977 */
1978 void wb_workfn(struct work_struct *work)
1979 {
1980 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1981 struct bdi_writeback, dwork);
1982 long pages_written;
1983
1984 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1985 current->flags |= PF_SWAPWRITE;
1986
1987 if (likely(!current_is_workqueue_rescuer() ||
1988 !test_bit(WB_registered, &wb->state))) {
1989 /*
1990 * The normal path. Keep writing back @wb until its
1991 * work_list is empty. Note that this path is also taken
1992 * if @wb is shutting down even when we're running off the
1993 * rescuer as work_list needs to be drained.
1994 */
1995 do {
1996 pages_written = wb_do_writeback(wb);
1997 trace_writeback_pages_written(pages_written);
1998 } while (!list_empty(&wb->work_list));
1999 } else {
2000 /*
2001 * bdi_wq can't get enough workers and we're running off
2002 * the emergency worker. Don't hog it. Hopefully, 1024 is
2003 * enough for efficient IO.
2004 */
2005 pages_written = writeback_inodes_wb(wb, 1024,
2006 WB_REASON_FORKER_THREAD);
2007 trace_writeback_pages_written(pages_written);
2008 }
2009
2010 if (!list_empty(&wb->work_list))
2011 wb_wakeup(wb);
2012 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2013 wb_wakeup_delayed(wb);
2014
2015 current->flags &= ~PF_SWAPWRITE;
2016 }
2017
2018 /*
2019 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2020 * write back the whole world.
2021 */
2022 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2023 enum wb_reason reason)
2024 {
2025 struct bdi_writeback *wb;
2026
2027 if (!bdi_has_dirty_io(bdi))
2028 return;
2029
2030 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2031 wb_start_writeback(wb, reason);
2032 }
2033
2034 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2035 enum wb_reason reason)
2036 {
2037 rcu_read_lock();
2038 __wakeup_flusher_threads_bdi(bdi, reason);
2039 rcu_read_unlock();
2040 }
2041
2042 /*
2043 * Wakeup the flusher threads to start writeback of all currently dirty pages
2044 */
2045 void wakeup_flusher_threads(enum wb_reason reason)
2046 {
2047 struct backing_dev_info *bdi;
2048
2049 /*
2050 * If we are expecting writeback progress we must submit plugged IO.
2051 */
2052 if (blk_needs_flush_plug(current))
2053 blk_schedule_flush_plug(current);
2054
2055 rcu_read_lock();
2056 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2057 __wakeup_flusher_threads_bdi(bdi, reason);
2058 rcu_read_unlock();
2059 }
2060
2061 /*
2062 * Wake up bdi's periodically to make sure dirtytime inodes gets
2063 * written back periodically. We deliberately do *not* check the
2064 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2065 * kernel to be constantly waking up once there are any dirtytime
2066 * inodes on the system. So instead we define a separate delayed work
2067 * function which gets called much more rarely. (By default, only
2068 * once every 12 hours.)
2069 *
2070 * If there is any other write activity going on in the file system,
2071 * this function won't be necessary. But if the only thing that has
2072 * happened on the file system is a dirtytime inode caused by an atime
2073 * update, we need this infrastructure below to make sure that inode
2074 * eventually gets pushed out to disk.
2075 */
2076 static void wakeup_dirtytime_writeback(struct work_struct *w);
2077 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2078
2079 static void wakeup_dirtytime_writeback(struct work_struct *w)
2080 {
2081 struct backing_dev_info *bdi;
2082
2083 rcu_read_lock();
2084 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2085 struct bdi_writeback *wb;
2086
2087 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2088 if (!list_empty(&wb->b_dirty_time))
2089 wb_wakeup(wb);
2090 }
2091 rcu_read_unlock();
2092 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2093 }
2094
2095 static int __init start_dirtytime_writeback(void)
2096 {
2097 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2098 return 0;
2099 }
2100 __initcall(start_dirtytime_writeback);
2101
2102 int dirtytime_interval_handler(struct ctl_table *table, int write,
2103 void __user *buffer, size_t *lenp, loff_t *ppos)
2104 {
2105 int ret;
2106
2107 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2108 if (ret == 0 && write)
2109 mod_delayed_work(system_wq, &dirtytime_work, 0);
2110 return ret;
2111 }
2112
2113 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2114 {
2115 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2116 struct dentry *dentry;
2117 const char *name = "?";
2118
2119 dentry = d_find_alias(inode);
2120 if (dentry) {
2121 spin_lock(&dentry->d_lock);
2122 name = (const char *) dentry->d_name.name;
2123 }
2124 printk(KERN_DEBUG
2125 "%s(%d): dirtied inode %lu (%s) on %s\n",
2126 current->comm, task_pid_nr(current), inode->i_ino,
2127 name, inode->i_sb->s_id);
2128 if (dentry) {
2129 spin_unlock(&dentry->d_lock);
2130 dput(dentry);
2131 }
2132 }
2133 }
2134
2135 /**
2136 * __mark_inode_dirty - internal function
2137 *
2138 * @inode: inode to mark
2139 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2140 *
2141 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2142 * mark_inode_dirty_sync.
2143 *
2144 * Put the inode on the super block's dirty list.
2145 *
2146 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2147 * dirty list only if it is hashed or if it refers to a blockdev.
2148 * If it was not hashed, it will never be added to the dirty list
2149 * even if it is later hashed, as it will have been marked dirty already.
2150 *
2151 * In short, make sure you hash any inodes _before_ you start marking
2152 * them dirty.
2153 *
2154 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2155 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2156 * the kernel-internal blockdev inode represents the dirtying time of the
2157 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2158 * page->mapping->host, so the page-dirtying time is recorded in the internal
2159 * blockdev inode.
2160 */
2161 void __mark_inode_dirty(struct inode *inode, int flags)
2162 {
2163 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2164 struct super_block *sb = inode->i_sb;
2165 int dirtytime;
2166
2167 trace_writeback_mark_inode_dirty(inode, flags);
2168
2169 /*
2170 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2171 * dirty the inode itself
2172 */
2173 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2174 trace_writeback_dirty_inode_start(inode, flags);
2175
2176 if (sb->s_op->dirty_inode)
2177 sb->s_op->dirty_inode(inode, flags);
2178
2179 trace_writeback_dirty_inode(inode, flags);
2180 }
2181 if (flags & I_DIRTY_INODE)
2182 flags &= ~I_DIRTY_TIME;
2183 dirtytime = flags & I_DIRTY_TIME;
2184
2185 /*
2186 * Paired with smp_mb() in __writeback_single_inode() for the
2187 * following lockless i_state test. See there for details.
2188 */
2189 smp_mb();
2190
2191 if (((inode->i_state & flags) == flags) ||
2192 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2193 return;
2194
2195 if (unlikely(block_dump))
2196 block_dump___mark_inode_dirty(inode);
2197
2198 spin_lock(&inode->i_lock);
2199 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2200 goto out_unlock_inode;
2201 if ((inode->i_state & flags) != flags) {
2202 const int was_dirty = inode->i_state & I_DIRTY;
2203
2204 inode_attach_wb(inode, NULL);
2205
2206 if (flags & I_DIRTY_INODE)
2207 inode->i_state &= ~I_DIRTY_TIME;
2208 inode->i_state |= flags;
2209
2210 /*
2211 * If the inode is being synced, just update its dirty state.
2212 * The unlocker will place the inode on the appropriate
2213 * superblock list, based upon its state.
2214 */
2215 if (inode->i_state & I_SYNC)
2216 goto out_unlock_inode;
2217
2218 /*
2219 * Only add valid (hashed) inodes to the superblock's
2220 * dirty list. Add blockdev inodes as well.
2221 */
2222 if (!S_ISBLK(inode->i_mode)) {
2223 if (inode_unhashed(inode))
2224 goto out_unlock_inode;
2225 }
2226 if (inode->i_state & I_FREEING)
2227 goto out_unlock_inode;
2228
2229 /*
2230 * If the inode was already on b_dirty/b_io/b_more_io, don't
2231 * reposition it (that would break b_dirty time-ordering).
2232 */
2233 if (!was_dirty) {
2234 struct bdi_writeback *wb;
2235 struct list_head *dirty_list;
2236 bool wakeup_bdi = false;
2237
2238 wb = locked_inode_to_wb_and_lock_list(inode);
2239
2240 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2241 !test_bit(WB_registered, &wb->state),
2242 "bdi-%s not registered\n", wb->bdi->name);
2243
2244 inode->dirtied_when = jiffies;
2245 if (dirtytime)
2246 inode->dirtied_time_when = jiffies;
2247
2248 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2249 dirty_list = &wb->b_dirty;
2250 else
2251 dirty_list = &wb->b_dirty_time;
2252
2253 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2254 dirty_list);
2255
2256 spin_unlock(&wb->list_lock);
2257 trace_writeback_dirty_inode_enqueue(inode);
2258
2259 /*
2260 * If this is the first dirty inode for this bdi,
2261 * we have to wake-up the corresponding bdi thread
2262 * to make sure background write-back happens
2263 * later.
2264 */
2265 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2266 wb_wakeup_delayed(wb);
2267 return;
2268 }
2269 }
2270 out_unlock_inode:
2271 spin_unlock(&inode->i_lock);
2272
2273 #undef I_DIRTY_INODE
2274 }
2275 EXPORT_SYMBOL(__mark_inode_dirty);
2276
2277 /*
2278 * The @s_sync_lock is used to serialise concurrent sync operations
2279 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2280 * Concurrent callers will block on the s_sync_lock rather than doing contending
2281 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2282 * has been issued up to the time this function is enter is guaranteed to be
2283 * completed by the time we have gained the lock and waited for all IO that is
2284 * in progress regardless of the order callers are granted the lock.
2285 */
2286 static void wait_sb_inodes(struct super_block *sb)
2287 {
2288 LIST_HEAD(sync_list);
2289
2290 /*
2291 * We need to be protected against the filesystem going from
2292 * r/o to r/w or vice versa.
2293 */
2294 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2295
2296 mutex_lock(&sb->s_sync_lock);
2297
2298 /*
2299 * Splice the writeback list onto a temporary list to avoid waiting on
2300 * inodes that have started writeback after this point.
2301 *
2302 * Use rcu_read_lock() to keep the inodes around until we have a
2303 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2304 * the local list because inodes can be dropped from either by writeback
2305 * completion.
2306 */
2307 rcu_read_lock();
2308 spin_lock_irq(&sb->s_inode_wblist_lock);
2309 list_splice_init(&sb->s_inodes_wb, &sync_list);
2310
2311 /*
2312 * Data integrity sync. Must wait for all pages under writeback, because
2313 * there may have been pages dirtied before our sync call, but which had
2314 * writeout started before we write it out. In which case, the inode
2315 * may not be on the dirty list, but we still have to wait for that
2316 * writeout.
2317 */
2318 while (!list_empty(&sync_list)) {
2319 struct inode *inode = list_first_entry(&sync_list, struct inode,
2320 i_wb_list);
2321 struct address_space *mapping = inode->i_mapping;
2322
2323 /*
2324 * Move each inode back to the wb list before we drop the lock
2325 * to preserve consistency between i_wb_list and the mapping
2326 * writeback tag. Writeback completion is responsible to remove
2327 * the inode from either list once the writeback tag is cleared.
2328 */
2329 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2330
2331 /*
2332 * The mapping can appear untagged while still on-list since we
2333 * do not have the mapping lock. Skip it here, wb completion
2334 * will remove it.
2335 */
2336 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2337 continue;
2338
2339 spin_unlock_irq(&sb->s_inode_wblist_lock);
2340
2341 spin_lock(&inode->i_lock);
2342 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2343 spin_unlock(&inode->i_lock);
2344
2345 spin_lock_irq(&sb->s_inode_wblist_lock);
2346 continue;
2347 }
2348 __iget(inode);
2349 spin_unlock(&inode->i_lock);
2350 rcu_read_unlock();
2351
2352 /*
2353 * We keep the error status of individual mapping so that
2354 * applications can catch the writeback error using fsync(2).
2355 * See filemap_fdatawait_keep_errors() for details.
2356 */
2357 filemap_fdatawait_keep_errors(mapping);
2358
2359 cond_resched();
2360
2361 iput(inode);
2362
2363 rcu_read_lock();
2364 spin_lock_irq(&sb->s_inode_wblist_lock);
2365 }
2366 spin_unlock_irq(&sb->s_inode_wblist_lock);
2367 rcu_read_unlock();
2368 mutex_unlock(&sb->s_sync_lock);
2369 }
2370
2371 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2372 enum wb_reason reason, bool skip_if_busy)
2373 {
2374 DEFINE_WB_COMPLETION_ONSTACK(done);
2375 struct wb_writeback_work work = {
2376 .sb = sb,
2377 .sync_mode = WB_SYNC_NONE,
2378 .tagged_writepages = 1,
2379 .done = &done,
2380 .nr_pages = nr,
2381 .reason = reason,
2382 };
2383 struct backing_dev_info *bdi = sb->s_bdi;
2384
2385 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2386 return;
2387 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2388
2389 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2390 wb_wait_for_completion(bdi, &done);
2391 }
2392
2393 /**
2394 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2395 * @sb: the superblock
2396 * @nr: the number of pages to write
2397 * @reason: reason why some writeback work initiated
2398 *
2399 * Start writeback on some inodes on this super_block. No guarantees are made
2400 * on how many (if any) will be written, and this function does not wait
2401 * for IO completion of submitted IO.
2402 */
2403 void writeback_inodes_sb_nr(struct super_block *sb,
2404 unsigned long nr,
2405 enum wb_reason reason)
2406 {
2407 __writeback_inodes_sb_nr(sb, nr, reason, false);
2408 }
2409 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2410
2411 /**
2412 * writeback_inodes_sb - writeback dirty inodes from given super_block
2413 * @sb: the superblock
2414 * @reason: reason why some writeback work was initiated
2415 *
2416 * Start writeback on some inodes on this super_block. No guarantees are made
2417 * on how many (if any) will be written, and this function does not wait
2418 * for IO completion of submitted IO.
2419 */
2420 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2421 {
2422 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2423 }
2424 EXPORT_SYMBOL(writeback_inodes_sb);
2425
2426 /**
2427 * try_to_writeback_inodes_sb - try to start writeback if none underway
2428 * @sb: the superblock
2429 * @reason: reason why some writeback work was initiated
2430 *
2431 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2432 */
2433 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2434 {
2435 if (!down_read_trylock(&sb->s_umount))
2436 return;
2437
2438 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2439 up_read(&sb->s_umount);
2440 }
2441 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2442
2443 /**
2444 * sync_inodes_sb - sync sb inode pages
2445 * @sb: the superblock
2446 *
2447 * This function writes and waits on any dirty inode belonging to this
2448 * super_block.
2449 */
2450 void sync_inodes_sb(struct super_block *sb)
2451 {
2452 DEFINE_WB_COMPLETION_ONSTACK(done);
2453 struct wb_writeback_work work = {
2454 .sb = sb,
2455 .sync_mode = WB_SYNC_ALL,
2456 .nr_pages = LONG_MAX,
2457 .range_cyclic = 0,
2458 .done = &done,
2459 .reason = WB_REASON_SYNC,
2460 .for_sync = 1,
2461 };
2462 struct backing_dev_info *bdi = sb->s_bdi;
2463
2464 /*
2465 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2466 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2467 * bdi_has_dirty() need to be written out too.
2468 */
2469 if (bdi == &noop_backing_dev_info)
2470 return;
2471 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2472
2473 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2474 bdi_down_write_wb_switch_rwsem(bdi);
2475 bdi_split_work_to_wbs(bdi, &work, false);
2476 wb_wait_for_completion(bdi, &done);
2477 bdi_up_write_wb_switch_rwsem(bdi);
2478
2479 wait_sb_inodes(sb);
2480 }
2481 EXPORT_SYMBOL(sync_inodes_sb);
2482
2483 /**
2484 * write_inode_now - write an inode to disk
2485 * @inode: inode to write to disk
2486 * @sync: whether the write should be synchronous or not
2487 *
2488 * This function commits an inode to disk immediately if it is dirty. This is
2489 * primarily needed by knfsd.
2490 *
2491 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2492 */
2493 int write_inode_now(struct inode *inode, int sync)
2494 {
2495 struct writeback_control wbc = {
2496 .nr_to_write = LONG_MAX,
2497 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2498 .range_start = 0,
2499 .range_end = LLONG_MAX,
2500 };
2501
2502 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2503 wbc.nr_to_write = 0;
2504
2505 might_sleep();
2506 return writeback_single_inode(inode, &wbc);
2507 }
2508 EXPORT_SYMBOL(write_inode_now);
2509
2510 /**
2511 * sync_inode - write an inode and its pages to disk.
2512 * @inode: the inode to sync
2513 * @wbc: controls the writeback mode
2514 *
2515 * sync_inode() will write an inode and its pages to disk. It will also
2516 * correctly update the inode on its superblock's dirty inode lists and will
2517 * update inode->i_state.
2518 *
2519 * The caller must have a ref on the inode.
2520 */
2521 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2522 {
2523 return writeback_single_inode(inode, wbc);
2524 }
2525 EXPORT_SYMBOL(sync_inode);
2526
2527 /**
2528 * sync_inode_metadata - write an inode to disk
2529 * @inode: the inode to sync
2530 * @wait: wait for I/O to complete.
2531 *
2532 * Write an inode to disk and adjust its dirty state after completion.
2533 *
2534 * Note: only writes the actual inode, no associated data or other metadata.
2535 */
2536 int sync_inode_metadata(struct inode *inode, int wait)
2537 {
2538 struct writeback_control wbc = {
2539 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2540 .nr_to_write = 0, /* metadata-only */
2541 };
2542
2543 return sync_inode(inode, &wbc);
2544 }
2545 EXPORT_SYMBOL(sync_inode_metadata);