]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
58 *
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
61 */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 return test_bit(BDI_writeback_running, &bdi->state);
65 }
66
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69 struct super_block *sb = inode->i_sb;
70
71 if (strcmp(sb->s_type->name, "bdev") == 0)
72 return inode->i_mapping->backing_dev_info;
73
74 return sb->s_bdi;
75 }
76
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79 return list_entry(head, struct inode, i_wb_list);
80 }
81
82 /*
83 * Include the creation of the trace points after defining the
84 * wb_writeback_work structure and inline functions so that the definition
85 * remains local to this file.
86 */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89
90 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
91 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
92 {
93 if (bdi->wb.task) {
94 wake_up_process(bdi->wb.task);
95 } else {
96 /*
97 * The bdi thread isn't there, wake up the forker thread which
98 * will create and run it.
99 */
100 wake_up_process(default_backing_dev_info.wb.task);
101 }
102 }
103
104 static void bdi_queue_work(struct backing_dev_info *bdi,
105 struct wb_writeback_work *work)
106 {
107 trace_writeback_queue(bdi, work);
108
109 spin_lock_bh(&bdi->wb_lock);
110 list_add_tail(&work->list, &bdi->work_list);
111 if (!bdi->wb.task)
112 trace_writeback_nothread(bdi, work);
113 bdi_wakeup_flusher(bdi);
114 spin_unlock_bh(&bdi->wb_lock);
115 }
116
117 static void
118 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
119 bool range_cyclic, enum wb_reason reason)
120 {
121 struct wb_writeback_work *work;
122
123 /*
124 * This is WB_SYNC_NONE writeback, so if allocation fails just
125 * wakeup the thread for old dirty data writeback
126 */
127 work = kzalloc(sizeof(*work), GFP_ATOMIC);
128 if (!work) {
129 if (bdi->wb.task) {
130 trace_writeback_nowork(bdi);
131 wake_up_process(bdi->wb.task);
132 }
133 return;
134 }
135
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
140
141 bdi_queue_work(bdi, work);
142 }
143
144 /**
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
149 *
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
154 *
155 */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
158 {
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161
162 /**
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
165 *
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
171 */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 /*
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
177 */
178 trace_writeback_wake_background(bdi);
179 spin_lock_bh(&bdi->wb_lock);
180 bdi_wakeup_flusher(bdi);
181 spin_unlock_bh(&bdi->wb_lock);
182 }
183
184 /*
185 * Remove the inode from the writeback list it is on.
186 */
187 void inode_wb_list_del(struct inode *inode)
188 {
189 struct backing_dev_info *bdi = inode_to_bdi(inode);
190
191 spin_lock(&bdi->wb.list_lock);
192 list_del_init(&inode->i_wb_list);
193 spin_unlock(&bdi->wb.list_lock);
194 }
195
196 /*
197 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
198 * furthest end of its superblock's dirty-inode list.
199 *
200 * Before stamping the inode's ->dirtied_when, we check to see whether it is
201 * already the most-recently-dirtied inode on the b_dirty list. If that is
202 * the case then the inode must have been redirtied while it was being written
203 * out and we don't reset its dirtied_when.
204 */
205 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
206 {
207 assert_spin_locked(&wb->list_lock);
208 if (!list_empty(&wb->b_dirty)) {
209 struct inode *tail;
210
211 tail = wb_inode(wb->b_dirty.next);
212 if (time_before(inode->dirtied_when, tail->dirtied_when))
213 inode->dirtied_when = jiffies;
214 }
215 list_move(&inode->i_wb_list, &wb->b_dirty);
216 }
217
218 /*
219 * requeue inode for re-scanning after bdi->b_io list is exhausted.
220 */
221 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
222 {
223 assert_spin_locked(&wb->list_lock);
224 list_move(&inode->i_wb_list, &wb->b_more_io);
225 }
226
227 static void inode_sync_complete(struct inode *inode)
228 {
229 inode->i_state &= ~I_SYNC;
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 return ret;
248 }
249
250 /*
251 * Move expired (dirtied after work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
253 */
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 struct wb_writeback_work *work)
257 {
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263 int moved = 0;
264
265 while (!list_empty(delaying_queue)) {
266 inode = wb_inode(delaying_queue->prev);
267 if (work->older_than_this &&
268 inode_dirtied_after(inode, *work->older_than_this))
269 break;
270 if (sb && sb != inode->i_sb)
271 do_sb_sort = 1;
272 sb = inode->i_sb;
273 list_move(&inode->i_wb_list, &tmp);
274 moved++;
275 }
276
277 /* just one sb in list, splice to dispatch_queue and we're done */
278 if (!do_sb_sort) {
279 list_splice(&tmp, dispatch_queue);
280 goto out;
281 }
282
283 /* Move inodes from one superblock together */
284 while (!list_empty(&tmp)) {
285 sb = wb_inode(tmp.prev)->i_sb;
286 list_for_each_prev_safe(pos, node, &tmp) {
287 inode = wb_inode(pos);
288 if (inode->i_sb == sb)
289 list_move(&inode->i_wb_list, dispatch_queue);
290 }
291 }
292 out:
293 return moved;
294 }
295
296 /*
297 * Queue all expired dirty inodes for io, eldest first.
298 * Before
299 * newly dirtied b_dirty b_io b_more_io
300 * =============> gf edc BA
301 * After
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> g fBAedc
304 * |
305 * +--> dequeue for IO
306 */
307 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
308 {
309 int moved;
310 assert_spin_locked(&wb->list_lock);
311 list_splice_init(&wb->b_more_io, &wb->b_io);
312 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
313 trace_writeback_queue_io(wb, work, moved);
314 }
315
316 static int write_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
319 return inode->i_sb->s_op->write_inode(inode, wbc);
320 return 0;
321 }
322
323 /*
324 * Wait for writeback on an inode to complete. Called with i_lock held.
325 * Caller must make sure inode cannot go away when we drop i_lock.
326 */
327 static void __inode_wait_for_writeback(struct inode *inode)
328 __releases(inode->i_lock)
329 __acquires(inode->i_lock)
330 {
331 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
332 wait_queue_head_t *wqh;
333
334 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
335 while (inode->i_state & I_SYNC) {
336 spin_unlock(&inode->i_lock);
337 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
338 spin_lock(&inode->i_lock);
339 }
340 }
341
342 /*
343 * Wait for writeback on an inode to complete. Caller must have inode pinned.
344 */
345 void inode_wait_for_writeback(struct inode *inode)
346 {
347 spin_lock(&inode->i_lock);
348 __inode_wait_for_writeback(inode);
349 spin_unlock(&inode->i_lock);
350 }
351
352 /*
353 * Sleep until I_SYNC is cleared. This function must be called with i_lock
354 * held and drops it. It is aimed for callers not holding any inode reference
355 * so once i_lock is dropped, inode can go away.
356 */
357 static void inode_sleep_on_writeback(struct inode *inode)
358 __releases(inode->i_lock)
359 {
360 DEFINE_WAIT(wait);
361 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
362 int sleep;
363
364 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
365 sleep = inode->i_state & I_SYNC;
366 spin_unlock(&inode->i_lock);
367 if (sleep)
368 schedule();
369 finish_wait(wqh, &wait);
370 }
371
372 /*
373 * Find proper writeback list for the inode depending on its current state and
374 * possibly also change of its state while we were doing writeback. Here we
375 * handle things such as livelock prevention or fairness of writeback among
376 * inodes. This function can be called only by flusher thread - noone else
377 * processes all inodes in writeback lists and requeueing inodes behind flusher
378 * thread's back can have unexpected consequences.
379 */
380 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
381 struct writeback_control *wbc)
382 {
383 if (inode->i_state & I_FREEING)
384 return;
385
386 /*
387 * Sync livelock prevention. Each inode is tagged and synced in one
388 * shot. If still dirty, it will be redirty_tail()'ed below. Update
389 * the dirty time to prevent enqueue and sync it again.
390 */
391 if ((inode->i_state & I_DIRTY) &&
392 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
393 inode->dirtied_when = jiffies;
394
395 if (wbc->pages_skipped) {
396 /*
397 * writeback is not making progress due to locked
398 * buffers. Skip this inode for now.
399 */
400 redirty_tail(inode, wb);
401 return;
402 }
403
404 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
405 /*
406 * We didn't write back all the pages. nfs_writepages()
407 * sometimes bales out without doing anything.
408 */
409 if (wbc->nr_to_write <= 0) {
410 /* Slice used up. Queue for next turn. */
411 requeue_io(inode, wb);
412 } else {
413 /*
414 * Writeback blocked by something other than
415 * congestion. Delay the inode for some time to
416 * avoid spinning on the CPU (100% iowait)
417 * retrying writeback of the dirty page/inode
418 * that cannot be performed immediately.
419 */
420 redirty_tail(inode, wb);
421 }
422 } else if (inode->i_state & I_DIRTY) {
423 /*
424 * Filesystems can dirty the inode during writeback operations,
425 * such as delayed allocation during submission or metadata
426 * updates after data IO completion.
427 */
428 redirty_tail(inode, wb);
429 } else {
430 /* The inode is clean. Remove from writeback lists. */
431 list_del_init(&inode->i_wb_list);
432 }
433 }
434
435 /*
436 * Write out an inode and its dirty pages. Do not update the writeback list
437 * linkage. That is left to the caller. The caller is also responsible for
438 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
439 */
440 static int
441 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
442 struct writeback_control *wbc)
443 {
444 struct address_space *mapping = inode->i_mapping;
445 long nr_to_write = wbc->nr_to_write;
446 unsigned dirty;
447 int ret;
448
449 WARN_ON(!(inode->i_state & I_SYNC));
450
451 ret = do_writepages(mapping, wbc);
452
453 /*
454 * Make sure to wait on the data before writing out the metadata.
455 * This is important for filesystems that modify metadata on data
456 * I/O completion.
457 */
458 if (wbc->sync_mode == WB_SYNC_ALL) {
459 int err = filemap_fdatawait(mapping);
460 if (ret == 0)
461 ret = err;
462 }
463
464 /*
465 * Some filesystems may redirty the inode during the writeback
466 * due to delalloc, clear dirty metadata flags right before
467 * write_inode()
468 */
469 spin_lock(&inode->i_lock);
470 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
471 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
472 inode->i_state &= ~I_DIRTY_PAGES;
473 dirty = inode->i_state & I_DIRTY;
474 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
475 spin_unlock(&inode->i_lock);
476 /* Don't write the inode if only I_DIRTY_PAGES was set */
477 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
478 int err = write_inode(inode, wbc);
479 if (ret == 0)
480 ret = err;
481 }
482 trace_writeback_single_inode(inode, wbc, nr_to_write);
483 return ret;
484 }
485
486 /*
487 * Write out an inode's dirty pages. Either the caller has an active reference
488 * on the inode or the inode has I_WILL_FREE set.
489 *
490 * This function is designed to be called for writing back one inode which
491 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
492 * and does more profound writeback list handling in writeback_sb_inodes().
493 */
494 static int
495 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
496 struct writeback_control *wbc)
497 {
498 int ret = 0;
499
500 spin_lock(&inode->i_lock);
501 if (!atomic_read(&inode->i_count))
502 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
503 else
504 WARN_ON(inode->i_state & I_WILL_FREE);
505
506 if (inode->i_state & I_SYNC) {
507 if (wbc->sync_mode != WB_SYNC_ALL)
508 goto out;
509 /*
510 * It's a data-integrity sync. We must wait. Since callers hold
511 * inode reference or inode has I_WILL_FREE set, it cannot go
512 * away under us.
513 */
514 __inode_wait_for_writeback(inode);
515 }
516 WARN_ON(inode->i_state & I_SYNC);
517 /*
518 * Skip inode if it is clean. We don't want to mess with writeback
519 * lists in this function since flusher thread may be doing for example
520 * sync in parallel and if we move the inode, it could get skipped. So
521 * here we make sure inode is on some writeback list and leave it there
522 * unless we have completely cleaned the inode.
523 */
524 if (!(inode->i_state & I_DIRTY))
525 goto out;
526 inode->i_state |= I_SYNC;
527 spin_unlock(&inode->i_lock);
528
529 ret = __writeback_single_inode(inode, wb, wbc);
530
531 spin_lock(&wb->list_lock);
532 spin_lock(&inode->i_lock);
533 /*
534 * If inode is clean, remove it from writeback lists. Otherwise don't
535 * touch it. See comment above for explanation.
536 */
537 if (!(inode->i_state & I_DIRTY))
538 list_del_init(&inode->i_wb_list);
539 spin_unlock(&wb->list_lock);
540 inode_sync_complete(inode);
541 out:
542 spin_unlock(&inode->i_lock);
543 return ret;
544 }
545
546 static long writeback_chunk_size(struct backing_dev_info *bdi,
547 struct wb_writeback_work *work)
548 {
549 long pages;
550
551 /*
552 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
553 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
554 * here avoids calling into writeback_inodes_wb() more than once.
555 *
556 * The intended call sequence for WB_SYNC_ALL writeback is:
557 *
558 * wb_writeback()
559 * writeback_sb_inodes() <== called only once
560 * write_cache_pages() <== called once for each inode
561 * (quickly) tag currently dirty pages
562 * (maybe slowly) sync all tagged pages
563 */
564 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
565 pages = LONG_MAX;
566 else {
567 pages = min(bdi->avg_write_bandwidth / 2,
568 global_dirty_limit / DIRTY_SCOPE);
569 pages = min(pages, work->nr_pages);
570 pages = round_down(pages + MIN_WRITEBACK_PAGES,
571 MIN_WRITEBACK_PAGES);
572 }
573
574 return pages;
575 }
576
577 /*
578 * Write a portion of b_io inodes which belong to @sb.
579 *
580 * Return the number of pages and/or inodes written.
581 */
582 static long writeback_sb_inodes(struct super_block *sb,
583 struct bdi_writeback *wb,
584 struct wb_writeback_work *work)
585 {
586 struct writeback_control wbc = {
587 .sync_mode = work->sync_mode,
588 .tagged_writepages = work->tagged_writepages,
589 .for_kupdate = work->for_kupdate,
590 .for_background = work->for_background,
591 .range_cyclic = work->range_cyclic,
592 .range_start = 0,
593 .range_end = LLONG_MAX,
594 };
595 unsigned long start_time = jiffies;
596 long write_chunk;
597 long wrote = 0; /* count both pages and inodes */
598
599 while (!list_empty(&wb->b_io)) {
600 struct inode *inode = wb_inode(wb->b_io.prev);
601
602 if (inode->i_sb != sb) {
603 if (work->sb) {
604 /*
605 * We only want to write back data for this
606 * superblock, move all inodes not belonging
607 * to it back onto the dirty list.
608 */
609 redirty_tail(inode, wb);
610 continue;
611 }
612
613 /*
614 * The inode belongs to a different superblock.
615 * Bounce back to the caller to unpin this and
616 * pin the next superblock.
617 */
618 break;
619 }
620
621 /*
622 * Don't bother with new inodes or inodes being freed, first
623 * kind does not need periodic writeout yet, and for the latter
624 * kind writeout is handled by the freer.
625 */
626 spin_lock(&inode->i_lock);
627 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
628 spin_unlock(&inode->i_lock);
629 redirty_tail(inode, wb);
630 continue;
631 }
632 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
633 /*
634 * If this inode is locked for writeback and we are not
635 * doing writeback-for-data-integrity, move it to
636 * b_more_io so that writeback can proceed with the
637 * other inodes on s_io.
638 *
639 * We'll have another go at writing back this inode
640 * when we completed a full scan of b_io.
641 */
642 spin_unlock(&inode->i_lock);
643 requeue_io(inode, wb);
644 trace_writeback_sb_inodes_requeue(inode);
645 continue;
646 }
647 spin_unlock(&wb->list_lock);
648
649 /*
650 * We already requeued the inode if it had I_SYNC set and we
651 * are doing WB_SYNC_NONE writeback. So this catches only the
652 * WB_SYNC_ALL case.
653 */
654 if (inode->i_state & I_SYNC) {
655 /* Wait for I_SYNC. This function drops i_lock... */
656 inode_sleep_on_writeback(inode);
657 /* Inode may be gone, start again */
658 spin_lock(&wb->list_lock);
659 continue;
660 }
661 inode->i_state |= I_SYNC;
662 spin_unlock(&inode->i_lock);
663
664 write_chunk = writeback_chunk_size(wb->bdi, work);
665 wbc.nr_to_write = write_chunk;
666 wbc.pages_skipped = 0;
667
668 /*
669 * We use I_SYNC to pin the inode in memory. While it is set
670 * evict_inode() will wait so the inode cannot be freed.
671 */
672 __writeback_single_inode(inode, wb, &wbc);
673
674 work->nr_pages -= write_chunk - wbc.nr_to_write;
675 wrote += write_chunk - wbc.nr_to_write;
676 spin_lock(&wb->list_lock);
677 spin_lock(&inode->i_lock);
678 if (!(inode->i_state & I_DIRTY))
679 wrote++;
680 requeue_inode(inode, wb, &wbc);
681 inode_sync_complete(inode);
682 spin_unlock(&inode->i_lock);
683 cond_resched_lock(&wb->list_lock);
684 /*
685 * bail out to wb_writeback() often enough to check
686 * background threshold and other termination conditions.
687 */
688 if (wrote) {
689 if (time_is_before_jiffies(start_time + HZ / 10UL))
690 break;
691 if (work->nr_pages <= 0)
692 break;
693 }
694 }
695 return wrote;
696 }
697
698 static long __writeback_inodes_wb(struct bdi_writeback *wb,
699 struct wb_writeback_work *work)
700 {
701 unsigned long start_time = jiffies;
702 long wrote = 0;
703
704 while (!list_empty(&wb->b_io)) {
705 struct inode *inode = wb_inode(wb->b_io.prev);
706 struct super_block *sb = inode->i_sb;
707
708 if (!grab_super_passive(sb)) {
709 /*
710 * grab_super_passive() may fail consistently due to
711 * s_umount being grabbed by someone else. Don't use
712 * requeue_io() to avoid busy retrying the inode/sb.
713 */
714 redirty_tail(inode, wb);
715 continue;
716 }
717 wrote += writeback_sb_inodes(sb, wb, work);
718 drop_super(sb);
719
720 /* refer to the same tests at the end of writeback_sb_inodes */
721 if (wrote) {
722 if (time_is_before_jiffies(start_time + HZ / 10UL))
723 break;
724 if (work->nr_pages <= 0)
725 break;
726 }
727 }
728 /* Leave any unwritten inodes on b_io */
729 return wrote;
730 }
731
732 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
733 enum wb_reason reason)
734 {
735 struct wb_writeback_work work = {
736 .nr_pages = nr_pages,
737 .sync_mode = WB_SYNC_NONE,
738 .range_cyclic = 1,
739 .reason = reason,
740 };
741
742 spin_lock(&wb->list_lock);
743 if (list_empty(&wb->b_io))
744 queue_io(wb, &work);
745 __writeback_inodes_wb(wb, &work);
746 spin_unlock(&wb->list_lock);
747
748 return nr_pages - work.nr_pages;
749 }
750
751 static bool over_bground_thresh(struct backing_dev_info *bdi)
752 {
753 unsigned long background_thresh, dirty_thresh;
754
755 global_dirty_limits(&background_thresh, &dirty_thresh);
756
757 if (global_page_state(NR_FILE_DIRTY) +
758 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
759 return true;
760
761 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
762 bdi_dirty_limit(bdi, background_thresh))
763 return true;
764
765 return false;
766 }
767
768 /*
769 * Called under wb->list_lock. If there are multiple wb per bdi,
770 * only the flusher working on the first wb should do it.
771 */
772 static void wb_update_bandwidth(struct bdi_writeback *wb,
773 unsigned long start_time)
774 {
775 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
776 }
777
778 /*
779 * Explicit flushing or periodic writeback of "old" data.
780 *
781 * Define "old": the first time one of an inode's pages is dirtied, we mark the
782 * dirtying-time in the inode's address_space. So this periodic writeback code
783 * just walks the superblock inode list, writing back any inodes which are
784 * older than a specific point in time.
785 *
786 * Try to run once per dirty_writeback_interval. But if a writeback event
787 * takes longer than a dirty_writeback_interval interval, then leave a
788 * one-second gap.
789 *
790 * older_than_this takes precedence over nr_to_write. So we'll only write back
791 * all dirty pages if they are all attached to "old" mappings.
792 */
793 static long wb_writeback(struct bdi_writeback *wb,
794 struct wb_writeback_work *work)
795 {
796 unsigned long wb_start = jiffies;
797 long nr_pages = work->nr_pages;
798 unsigned long oldest_jif;
799 struct inode *inode;
800 long progress;
801
802 oldest_jif = jiffies;
803 work->older_than_this = &oldest_jif;
804
805 spin_lock(&wb->list_lock);
806 for (;;) {
807 /*
808 * Stop writeback when nr_pages has been consumed
809 */
810 if (work->nr_pages <= 0)
811 break;
812
813 /*
814 * Background writeout and kupdate-style writeback may
815 * run forever. Stop them if there is other work to do
816 * so that e.g. sync can proceed. They'll be restarted
817 * after the other works are all done.
818 */
819 if ((work->for_background || work->for_kupdate) &&
820 !list_empty(&wb->bdi->work_list))
821 break;
822
823 /*
824 * For background writeout, stop when we are below the
825 * background dirty threshold
826 */
827 if (work->for_background && !over_bground_thresh(wb->bdi))
828 break;
829
830 /*
831 * Kupdate and background works are special and we want to
832 * include all inodes that need writing. Livelock avoidance is
833 * handled by these works yielding to any other work so we are
834 * safe.
835 */
836 if (work->for_kupdate) {
837 oldest_jif = jiffies -
838 msecs_to_jiffies(dirty_expire_interval * 10);
839 } else if (work->for_background)
840 oldest_jif = jiffies;
841
842 trace_writeback_start(wb->bdi, work);
843 if (list_empty(&wb->b_io))
844 queue_io(wb, work);
845 if (work->sb)
846 progress = writeback_sb_inodes(work->sb, wb, work);
847 else
848 progress = __writeback_inodes_wb(wb, work);
849 trace_writeback_written(wb->bdi, work);
850
851 wb_update_bandwidth(wb, wb_start);
852
853 /*
854 * Did we write something? Try for more
855 *
856 * Dirty inodes are moved to b_io for writeback in batches.
857 * The completion of the current batch does not necessarily
858 * mean the overall work is done. So we keep looping as long
859 * as made some progress on cleaning pages or inodes.
860 */
861 if (progress)
862 continue;
863 /*
864 * No more inodes for IO, bail
865 */
866 if (list_empty(&wb->b_more_io))
867 break;
868 /*
869 * Nothing written. Wait for some inode to
870 * become available for writeback. Otherwise
871 * we'll just busyloop.
872 */
873 if (!list_empty(&wb->b_more_io)) {
874 trace_writeback_wait(wb->bdi, work);
875 inode = wb_inode(wb->b_more_io.prev);
876 spin_lock(&inode->i_lock);
877 spin_unlock(&wb->list_lock);
878 /* This function drops i_lock... */
879 inode_sleep_on_writeback(inode);
880 spin_lock(&wb->list_lock);
881 }
882 }
883 spin_unlock(&wb->list_lock);
884
885 return nr_pages - work->nr_pages;
886 }
887
888 /*
889 * Return the next wb_writeback_work struct that hasn't been processed yet.
890 */
891 static struct wb_writeback_work *
892 get_next_work_item(struct backing_dev_info *bdi)
893 {
894 struct wb_writeback_work *work = NULL;
895
896 spin_lock_bh(&bdi->wb_lock);
897 if (!list_empty(&bdi->work_list)) {
898 work = list_entry(bdi->work_list.next,
899 struct wb_writeback_work, list);
900 list_del_init(&work->list);
901 }
902 spin_unlock_bh(&bdi->wb_lock);
903 return work;
904 }
905
906 /*
907 * Add in the number of potentially dirty inodes, because each inode
908 * write can dirty pagecache in the underlying blockdev.
909 */
910 static unsigned long get_nr_dirty_pages(void)
911 {
912 return global_page_state(NR_FILE_DIRTY) +
913 global_page_state(NR_UNSTABLE_NFS) +
914 get_nr_dirty_inodes();
915 }
916
917 static long wb_check_background_flush(struct bdi_writeback *wb)
918 {
919 if (over_bground_thresh(wb->bdi)) {
920
921 struct wb_writeback_work work = {
922 .nr_pages = LONG_MAX,
923 .sync_mode = WB_SYNC_NONE,
924 .for_background = 1,
925 .range_cyclic = 1,
926 .reason = WB_REASON_BACKGROUND,
927 };
928
929 return wb_writeback(wb, &work);
930 }
931
932 return 0;
933 }
934
935 static long wb_check_old_data_flush(struct bdi_writeback *wb)
936 {
937 unsigned long expired;
938 long nr_pages;
939
940 /*
941 * When set to zero, disable periodic writeback
942 */
943 if (!dirty_writeback_interval)
944 return 0;
945
946 expired = wb->last_old_flush +
947 msecs_to_jiffies(dirty_writeback_interval * 10);
948 if (time_before(jiffies, expired))
949 return 0;
950
951 wb->last_old_flush = jiffies;
952 nr_pages = get_nr_dirty_pages();
953
954 if (nr_pages) {
955 struct wb_writeback_work work = {
956 .nr_pages = nr_pages,
957 .sync_mode = WB_SYNC_NONE,
958 .for_kupdate = 1,
959 .range_cyclic = 1,
960 .reason = WB_REASON_PERIODIC,
961 };
962
963 return wb_writeback(wb, &work);
964 }
965
966 return 0;
967 }
968
969 /*
970 * Retrieve work items and do the writeback they describe
971 */
972 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
973 {
974 struct backing_dev_info *bdi = wb->bdi;
975 struct wb_writeback_work *work;
976 long wrote = 0;
977
978 set_bit(BDI_writeback_running, &wb->bdi->state);
979 while ((work = get_next_work_item(bdi)) != NULL) {
980 /*
981 * Override sync mode, in case we must wait for completion
982 * because this thread is exiting now.
983 */
984 if (force_wait)
985 work->sync_mode = WB_SYNC_ALL;
986
987 trace_writeback_exec(bdi, work);
988
989 wrote += wb_writeback(wb, work);
990
991 /*
992 * Notify the caller of completion if this is a synchronous
993 * work item, otherwise just free it.
994 */
995 if (work->done)
996 complete(work->done);
997 else
998 kfree(work);
999 }
1000
1001 /*
1002 * Check for periodic writeback, kupdated() style
1003 */
1004 wrote += wb_check_old_data_flush(wb);
1005 wrote += wb_check_background_flush(wb);
1006 clear_bit(BDI_writeback_running, &wb->bdi->state);
1007
1008 return wrote;
1009 }
1010
1011 /*
1012 * Handle writeback of dirty data for the device backed by this bdi. Also
1013 * wakes up periodically and does kupdated style flushing.
1014 */
1015 int bdi_writeback_thread(void *data)
1016 {
1017 struct bdi_writeback *wb = data;
1018 struct backing_dev_info *bdi = wb->bdi;
1019 long pages_written;
1020
1021 current->flags |= PF_SWAPWRITE;
1022 set_freezable();
1023 wb->last_active = jiffies;
1024
1025 /*
1026 * Our parent may run at a different priority, just set us to normal
1027 */
1028 set_user_nice(current, 0);
1029
1030 trace_writeback_thread_start(bdi);
1031
1032 while (!kthread_freezable_should_stop(NULL)) {
1033 /*
1034 * Remove own delayed wake-up timer, since we are already awake
1035 * and we'll take care of the preriodic write-back.
1036 */
1037 del_timer(&wb->wakeup_timer);
1038
1039 pages_written = wb_do_writeback(wb, 0);
1040
1041 trace_writeback_pages_written(pages_written);
1042
1043 if (pages_written)
1044 wb->last_active = jiffies;
1045
1046 set_current_state(TASK_INTERRUPTIBLE);
1047 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1048 __set_current_state(TASK_RUNNING);
1049 continue;
1050 }
1051
1052 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1053 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1054 else {
1055 /*
1056 * We have nothing to do, so can go sleep without any
1057 * timeout and save power. When a work is queued or
1058 * something is made dirty - we will be woken up.
1059 */
1060 schedule();
1061 }
1062 }
1063
1064 /* Flush any work that raced with us exiting */
1065 if (!list_empty(&bdi->work_list))
1066 wb_do_writeback(wb, 1);
1067
1068 trace_writeback_thread_stop(bdi);
1069 return 0;
1070 }
1071
1072
1073 /*
1074 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1075 * the whole world.
1076 */
1077 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1078 {
1079 struct backing_dev_info *bdi;
1080
1081 if (!nr_pages) {
1082 nr_pages = global_page_state(NR_FILE_DIRTY) +
1083 global_page_state(NR_UNSTABLE_NFS);
1084 }
1085
1086 rcu_read_lock();
1087 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1088 if (!bdi_has_dirty_io(bdi))
1089 continue;
1090 __bdi_start_writeback(bdi, nr_pages, false, reason);
1091 }
1092 rcu_read_unlock();
1093 }
1094
1095 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1096 {
1097 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1098 struct dentry *dentry;
1099 const char *name = "?";
1100
1101 dentry = d_find_alias(inode);
1102 if (dentry) {
1103 spin_lock(&dentry->d_lock);
1104 name = (const char *) dentry->d_name.name;
1105 }
1106 printk(KERN_DEBUG
1107 "%s(%d): dirtied inode %lu (%s) on %s\n",
1108 current->comm, task_pid_nr(current), inode->i_ino,
1109 name, inode->i_sb->s_id);
1110 if (dentry) {
1111 spin_unlock(&dentry->d_lock);
1112 dput(dentry);
1113 }
1114 }
1115 }
1116
1117 /**
1118 * __mark_inode_dirty - internal function
1119 * @inode: inode to mark
1120 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1121 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1122 * mark_inode_dirty_sync.
1123 *
1124 * Put the inode on the super block's dirty list.
1125 *
1126 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1127 * dirty list only if it is hashed or if it refers to a blockdev.
1128 * If it was not hashed, it will never be added to the dirty list
1129 * even if it is later hashed, as it will have been marked dirty already.
1130 *
1131 * In short, make sure you hash any inodes _before_ you start marking
1132 * them dirty.
1133 *
1134 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1135 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1136 * the kernel-internal blockdev inode represents the dirtying time of the
1137 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1138 * page->mapping->host, so the page-dirtying time is recorded in the internal
1139 * blockdev inode.
1140 */
1141 void __mark_inode_dirty(struct inode *inode, int flags)
1142 {
1143 struct super_block *sb = inode->i_sb;
1144 struct backing_dev_info *bdi = NULL;
1145
1146 /*
1147 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1148 * dirty the inode itself
1149 */
1150 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1151 if (sb->s_op->dirty_inode)
1152 sb->s_op->dirty_inode(inode, flags);
1153 }
1154
1155 /*
1156 * make sure that changes are seen by all cpus before we test i_state
1157 * -- mikulas
1158 */
1159 smp_mb();
1160
1161 /* avoid the locking if we can */
1162 if ((inode->i_state & flags) == flags)
1163 return;
1164
1165 if (unlikely(block_dump))
1166 block_dump___mark_inode_dirty(inode);
1167
1168 spin_lock(&inode->i_lock);
1169 if ((inode->i_state & flags) != flags) {
1170 const int was_dirty = inode->i_state & I_DIRTY;
1171
1172 inode->i_state |= flags;
1173
1174 /*
1175 * If the inode is being synced, just update its dirty state.
1176 * The unlocker will place the inode on the appropriate
1177 * superblock list, based upon its state.
1178 */
1179 if (inode->i_state & I_SYNC)
1180 goto out_unlock_inode;
1181
1182 /*
1183 * Only add valid (hashed) inodes to the superblock's
1184 * dirty list. Add blockdev inodes as well.
1185 */
1186 if (!S_ISBLK(inode->i_mode)) {
1187 if (inode_unhashed(inode))
1188 goto out_unlock_inode;
1189 }
1190 if (inode->i_state & I_FREEING)
1191 goto out_unlock_inode;
1192
1193 /*
1194 * If the inode was already on b_dirty/b_io/b_more_io, don't
1195 * reposition it (that would break b_dirty time-ordering).
1196 */
1197 if (!was_dirty) {
1198 bool wakeup_bdi = false;
1199 bdi = inode_to_bdi(inode);
1200
1201 if (bdi_cap_writeback_dirty(bdi)) {
1202 WARN(!test_bit(BDI_registered, &bdi->state),
1203 "bdi-%s not registered\n", bdi->name);
1204
1205 /*
1206 * If this is the first dirty inode for this
1207 * bdi, we have to wake-up the corresponding
1208 * bdi thread to make sure background
1209 * write-back happens later.
1210 */
1211 if (!wb_has_dirty_io(&bdi->wb))
1212 wakeup_bdi = true;
1213 }
1214
1215 spin_unlock(&inode->i_lock);
1216 spin_lock(&bdi->wb.list_lock);
1217 inode->dirtied_when = jiffies;
1218 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1219 spin_unlock(&bdi->wb.list_lock);
1220
1221 if (wakeup_bdi)
1222 bdi_wakeup_thread_delayed(bdi);
1223 return;
1224 }
1225 }
1226 out_unlock_inode:
1227 spin_unlock(&inode->i_lock);
1228
1229 }
1230 EXPORT_SYMBOL(__mark_inode_dirty);
1231
1232 static void wait_sb_inodes(struct super_block *sb)
1233 {
1234 struct inode *inode, *old_inode = NULL;
1235
1236 /*
1237 * We need to be protected against the filesystem going from
1238 * r/o to r/w or vice versa.
1239 */
1240 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1241
1242 spin_lock(&inode_sb_list_lock);
1243
1244 /*
1245 * Data integrity sync. Must wait for all pages under writeback,
1246 * because there may have been pages dirtied before our sync
1247 * call, but which had writeout started before we write it out.
1248 * In which case, the inode may not be on the dirty list, but
1249 * we still have to wait for that writeout.
1250 */
1251 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1252 struct address_space *mapping = inode->i_mapping;
1253
1254 spin_lock(&inode->i_lock);
1255 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1256 (mapping->nrpages == 0)) {
1257 spin_unlock(&inode->i_lock);
1258 continue;
1259 }
1260 __iget(inode);
1261 spin_unlock(&inode->i_lock);
1262 spin_unlock(&inode_sb_list_lock);
1263
1264 /*
1265 * We hold a reference to 'inode' so it couldn't have been
1266 * removed from s_inodes list while we dropped the
1267 * inode_sb_list_lock. We cannot iput the inode now as we can
1268 * be holding the last reference and we cannot iput it under
1269 * inode_sb_list_lock. So we keep the reference and iput it
1270 * later.
1271 */
1272 iput(old_inode);
1273 old_inode = inode;
1274
1275 filemap_fdatawait(mapping);
1276
1277 cond_resched();
1278
1279 spin_lock(&inode_sb_list_lock);
1280 }
1281 spin_unlock(&inode_sb_list_lock);
1282 iput(old_inode);
1283 }
1284
1285 /**
1286 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1287 * @sb: the superblock
1288 * @nr: the number of pages to write
1289 * @reason: reason why some writeback work initiated
1290 *
1291 * Start writeback on some inodes on this super_block. No guarantees are made
1292 * on how many (if any) will be written, and this function does not wait
1293 * for IO completion of submitted IO.
1294 */
1295 void writeback_inodes_sb_nr(struct super_block *sb,
1296 unsigned long nr,
1297 enum wb_reason reason)
1298 {
1299 DECLARE_COMPLETION_ONSTACK(done);
1300 struct wb_writeback_work work = {
1301 .sb = sb,
1302 .sync_mode = WB_SYNC_NONE,
1303 .tagged_writepages = 1,
1304 .done = &done,
1305 .nr_pages = nr,
1306 .reason = reason,
1307 };
1308
1309 if (sb->s_bdi == &noop_backing_dev_info)
1310 return;
1311 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1312 bdi_queue_work(sb->s_bdi, &work);
1313 wait_for_completion(&done);
1314 }
1315 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1316
1317 /**
1318 * writeback_inodes_sb - writeback dirty inodes from given super_block
1319 * @sb: the superblock
1320 * @reason: reason why some writeback work was initiated
1321 *
1322 * Start writeback on some inodes on this super_block. No guarantees are made
1323 * on how many (if any) will be written, and this function does not wait
1324 * for IO completion of submitted IO.
1325 */
1326 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1327 {
1328 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1329 }
1330 EXPORT_SYMBOL(writeback_inodes_sb);
1331
1332 /**
1333 * writeback_inodes_sb_if_idle - start writeback if none underway
1334 * @sb: the superblock
1335 * @reason: reason why some writeback work was initiated
1336 *
1337 * Invoke writeback_inodes_sb if no writeback is currently underway.
1338 * Returns 1 if writeback was started, 0 if not.
1339 */
1340 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1341 {
1342 if (!writeback_in_progress(sb->s_bdi)) {
1343 down_read(&sb->s_umount);
1344 writeback_inodes_sb(sb, reason);
1345 up_read(&sb->s_umount);
1346 return 1;
1347 } else
1348 return 0;
1349 }
1350 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1351
1352 /**
1353 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1354 * @sb: the superblock
1355 * @nr: the number of pages to write
1356 * @reason: reason why some writeback work was initiated
1357 *
1358 * Invoke writeback_inodes_sb if no writeback is currently underway.
1359 * Returns 1 if writeback was started, 0 if not.
1360 */
1361 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1362 unsigned long nr,
1363 enum wb_reason reason)
1364 {
1365 if (!writeback_in_progress(sb->s_bdi)) {
1366 down_read(&sb->s_umount);
1367 writeback_inodes_sb_nr(sb, nr, reason);
1368 up_read(&sb->s_umount);
1369 return 1;
1370 } else
1371 return 0;
1372 }
1373 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1374
1375 /**
1376 * sync_inodes_sb - sync sb inode pages
1377 * @sb: the superblock
1378 *
1379 * This function writes and waits on any dirty inode belonging to this
1380 * super_block.
1381 */
1382 void sync_inodes_sb(struct super_block *sb)
1383 {
1384 DECLARE_COMPLETION_ONSTACK(done);
1385 struct wb_writeback_work work = {
1386 .sb = sb,
1387 .sync_mode = WB_SYNC_ALL,
1388 .nr_pages = LONG_MAX,
1389 .range_cyclic = 0,
1390 .done = &done,
1391 .reason = WB_REASON_SYNC,
1392 };
1393
1394 /* Nothing to do? */
1395 if (sb->s_bdi == &noop_backing_dev_info)
1396 return;
1397 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1398
1399 bdi_queue_work(sb->s_bdi, &work);
1400 wait_for_completion(&done);
1401
1402 wait_sb_inodes(sb);
1403 }
1404 EXPORT_SYMBOL(sync_inodes_sb);
1405
1406 /**
1407 * write_inode_now - write an inode to disk
1408 * @inode: inode to write to disk
1409 * @sync: whether the write should be synchronous or not
1410 *
1411 * This function commits an inode to disk immediately if it is dirty. This is
1412 * primarily needed by knfsd.
1413 *
1414 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1415 */
1416 int write_inode_now(struct inode *inode, int sync)
1417 {
1418 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1419 struct writeback_control wbc = {
1420 .nr_to_write = LONG_MAX,
1421 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1422 .range_start = 0,
1423 .range_end = LLONG_MAX,
1424 };
1425
1426 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1427 wbc.nr_to_write = 0;
1428
1429 might_sleep();
1430 return writeback_single_inode(inode, wb, &wbc);
1431 }
1432 EXPORT_SYMBOL(write_inode_now);
1433
1434 /**
1435 * sync_inode - write an inode and its pages to disk.
1436 * @inode: the inode to sync
1437 * @wbc: controls the writeback mode
1438 *
1439 * sync_inode() will write an inode and its pages to disk. It will also
1440 * correctly update the inode on its superblock's dirty inode lists and will
1441 * update inode->i_state.
1442 *
1443 * The caller must have a ref on the inode.
1444 */
1445 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1446 {
1447 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1448 }
1449 EXPORT_SYMBOL(sync_inode);
1450
1451 /**
1452 * sync_inode_metadata - write an inode to disk
1453 * @inode: the inode to sync
1454 * @wait: wait for I/O to complete.
1455 *
1456 * Write an inode to disk and adjust its dirty state after completion.
1457 *
1458 * Note: only writes the actual inode, no associated data or other metadata.
1459 */
1460 int sync_inode_metadata(struct inode *inode, int wait)
1461 {
1462 struct writeback_control wbc = {
1463 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1464 .nr_to_write = 0, /* metadata-only */
1465 };
1466
1467 return sync_inode(inode, &wbc);
1468 }
1469 EXPORT_SYMBOL(sync_inode_metadata);