]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fs-writeback.c
fs: reduce the use of module.h wherever possible
[mirror_ubuntu-bionic-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58 int nr_pdflush_threads;
59
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 struct super_block *sb = inode->i_sb;
75
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
78
79 return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 return list_entry(head, struct inode, i_wb_list);
85 }
86
87 /*
88 * Include the creation of the trace points after defining the
89 * wb_writeback_work structure and inline functions so that the definition
90 * remains local to this file.
91 */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98 if (bdi->wb.task) {
99 wake_up_process(bdi->wb.task);
100 } else {
101 /*
102 * The bdi thread isn't there, wake up the forker thread which
103 * will create and run it.
104 */
105 wake_up_process(default_backing_dev_info.wb.task);
106 }
107 }
108
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 struct wb_writeback_work *work)
111 {
112 trace_writeback_queue(bdi, work);
113
114 spin_lock_bh(&bdi->wb_lock);
115 list_add_tail(&work->list, &bdi->work_list);
116 if (!bdi->wb.task)
117 trace_writeback_nothread(bdi, work);
118 bdi_wakeup_flusher(bdi);
119 spin_unlock_bh(&bdi->wb_lock);
120 }
121
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 bool range_cyclic, enum wb_reason reason)
125 {
126 struct wb_writeback_work *work;
127
128 /*
129 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 * wakeup the thread for old dirty data writeback
131 */
132 work = kzalloc(sizeof(*work), GFP_ATOMIC);
133 if (!work) {
134 if (bdi->wb.task) {
135 trace_writeback_nowork(bdi);
136 wake_up_process(bdi->wb.task);
137 }
138 return;
139 }
140
141 work->sync_mode = WB_SYNC_NONE;
142 work->nr_pages = nr_pages;
143 work->range_cyclic = range_cyclic;
144 work->reason = reason;
145
146 bdi_queue_work(bdi, work);
147 }
148
149 /**
150 * bdi_start_writeback - start writeback
151 * @bdi: the backing device to write from
152 * @nr_pages: the number of pages to write
153 * @reason: reason why some writeback work was initiated
154 *
155 * Description:
156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
157 * started when this function returns, we make no guarantees on
158 * completion. Caller need not hold sb s_umount semaphore.
159 *
160 */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 enum wb_reason reason)
163 {
164 __bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166
167 /**
168 * bdi_start_background_writeback - start background writeback
169 * @bdi: the backing device to write from
170 *
171 * Description:
172 * This makes sure WB_SYNC_NONE background writeback happens. When
173 * this function returns, it is only guaranteed that for given BDI
174 * some IO is happening if we are over background dirty threshold.
175 * Caller need not hold sb s_umount semaphore.
176 */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 /*
180 * We just wake up the flusher thread. It will perform background
181 * writeback as soon as there is no other work to do.
182 */
183 trace_writeback_wake_background(bdi);
184 spin_lock_bh(&bdi->wb_lock);
185 bdi_wakeup_flusher(bdi);
186 spin_unlock_bh(&bdi->wb_lock);
187 }
188
189 /*
190 * Remove the inode from the writeback list it is on.
191 */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 struct backing_dev_info *bdi = inode_to_bdi(inode);
195
196 spin_lock(&bdi->wb.list_lock);
197 list_del_init(&inode->i_wb_list);
198 spin_unlock(&bdi->wb.list_lock);
199 }
200
201 /*
202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203 * furthest end of its superblock's dirty-inode list.
204 *
205 * Before stamping the inode's ->dirtied_when, we check to see whether it is
206 * already the most-recently-dirtied inode on the b_dirty list. If that is
207 * the case then the inode must have been redirtied while it was being written
208 * out and we don't reset its dirtied_when.
209 */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 assert_spin_locked(&wb->list_lock);
213 if (!list_empty(&wb->b_dirty)) {
214 struct inode *tail;
215
216 tail = wb_inode(wb->b_dirty.next);
217 if (time_before(inode->dirtied_when, tail->dirtied_when))
218 inode->dirtied_when = jiffies;
219 }
220 list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222
223 /*
224 * requeue inode for re-scanning after bdi->b_io list is exhausted.
225 */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 assert_spin_locked(&wb->list_lock);
229 list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231
232 static void inode_sync_complete(struct inode *inode)
233 {
234 /*
235 * Prevent speculative execution through
236 * spin_unlock(&wb->list_lock);
237 */
238
239 smp_mb();
240 wake_up_bit(&inode->i_state, __I_SYNC);
241 }
242
243 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
244 {
245 bool ret = time_after(inode->dirtied_when, t);
246 #ifndef CONFIG_64BIT
247 /*
248 * For inodes being constantly redirtied, dirtied_when can get stuck.
249 * It _appears_ to be in the future, but is actually in distant past.
250 * This test is necessary to prevent such wrapped-around relative times
251 * from permanently stopping the whole bdi writeback.
252 */
253 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
254 #endif
255 return ret;
256 }
257
258 /*
259 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
260 */
261 static int move_expired_inodes(struct list_head *delaying_queue,
262 struct list_head *dispatch_queue,
263 struct wb_writeback_work *work)
264 {
265 LIST_HEAD(tmp);
266 struct list_head *pos, *node;
267 struct super_block *sb = NULL;
268 struct inode *inode;
269 int do_sb_sort = 0;
270 int moved = 0;
271
272 while (!list_empty(delaying_queue)) {
273 inode = wb_inode(delaying_queue->prev);
274 if (work->older_than_this &&
275 inode_dirtied_after(inode, *work->older_than_this))
276 break;
277 if (sb && sb != inode->i_sb)
278 do_sb_sort = 1;
279 sb = inode->i_sb;
280 list_move(&inode->i_wb_list, &tmp);
281 moved++;
282 }
283
284 /* just one sb in list, splice to dispatch_queue and we're done */
285 if (!do_sb_sort) {
286 list_splice(&tmp, dispatch_queue);
287 goto out;
288 }
289
290 /* Move inodes from one superblock together */
291 while (!list_empty(&tmp)) {
292 sb = wb_inode(tmp.prev)->i_sb;
293 list_for_each_prev_safe(pos, node, &tmp) {
294 inode = wb_inode(pos);
295 if (inode->i_sb == sb)
296 list_move(&inode->i_wb_list, dispatch_queue);
297 }
298 }
299 out:
300 return moved;
301 }
302
303 /*
304 * Queue all expired dirty inodes for io, eldest first.
305 * Before
306 * newly dirtied b_dirty b_io b_more_io
307 * =============> gf edc BA
308 * After
309 * newly dirtied b_dirty b_io b_more_io
310 * =============> g fBAedc
311 * |
312 * +--> dequeue for IO
313 */
314 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
315 {
316 int moved;
317 assert_spin_locked(&wb->list_lock);
318 list_splice_init(&wb->b_more_io, &wb->b_io);
319 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
320 trace_writeback_queue_io(wb, work, moved);
321 }
322
323 static int write_inode(struct inode *inode, struct writeback_control *wbc)
324 {
325 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
326 return inode->i_sb->s_op->write_inode(inode, wbc);
327 return 0;
328 }
329
330 /*
331 * Wait for writeback on an inode to complete.
332 */
333 static void inode_wait_for_writeback(struct inode *inode,
334 struct bdi_writeback *wb)
335 {
336 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 wait_queue_head_t *wqh;
338
339 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 while (inode->i_state & I_SYNC) {
341 spin_unlock(&inode->i_lock);
342 spin_unlock(&wb->list_lock);
343 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
344 spin_lock(&wb->list_lock);
345 spin_lock(&inode->i_lock);
346 }
347 }
348
349 /*
350 * Write out an inode's dirty pages. Called under wb->list_lock and
351 * inode->i_lock. Either the caller has an active reference on the inode or
352 * the inode has I_WILL_FREE set.
353 *
354 * If `wait' is set, wait on the writeout.
355 *
356 * The whole writeout design is quite complex and fragile. We want to avoid
357 * starvation of particular inodes when others are being redirtied, prevent
358 * livelocks, etc.
359 */
360 static int
361 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
362 struct writeback_control *wbc)
363 {
364 struct address_space *mapping = inode->i_mapping;
365 long nr_to_write = wbc->nr_to_write;
366 unsigned dirty;
367 int ret;
368
369 assert_spin_locked(&wb->list_lock);
370 assert_spin_locked(&inode->i_lock);
371
372 if (!atomic_read(&inode->i_count))
373 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
374 else
375 WARN_ON(inode->i_state & I_WILL_FREE);
376
377 if (inode->i_state & I_SYNC) {
378 /*
379 * If this inode is locked for writeback and we are not doing
380 * writeback-for-data-integrity, move it to b_more_io so that
381 * writeback can proceed with the other inodes on s_io.
382 *
383 * We'll have another go at writing back this inode when we
384 * completed a full scan of b_io.
385 */
386 if (wbc->sync_mode != WB_SYNC_ALL) {
387 requeue_io(inode, wb);
388 trace_writeback_single_inode_requeue(inode, wbc,
389 nr_to_write);
390 return 0;
391 }
392
393 /*
394 * It's a data-integrity sync. We must wait.
395 */
396 inode_wait_for_writeback(inode, wb);
397 }
398
399 BUG_ON(inode->i_state & I_SYNC);
400
401 /* Set I_SYNC, reset I_DIRTY_PAGES */
402 inode->i_state |= I_SYNC;
403 inode->i_state &= ~I_DIRTY_PAGES;
404 spin_unlock(&inode->i_lock);
405 spin_unlock(&wb->list_lock);
406
407 ret = do_writepages(mapping, wbc);
408
409 /*
410 * Make sure to wait on the data before writing out the metadata.
411 * This is important for filesystems that modify metadata on data
412 * I/O completion.
413 */
414 if (wbc->sync_mode == WB_SYNC_ALL) {
415 int err = filemap_fdatawait(mapping);
416 if (ret == 0)
417 ret = err;
418 }
419
420 /*
421 * Some filesystems may redirty the inode during the writeback
422 * due to delalloc, clear dirty metadata flags right before
423 * write_inode()
424 */
425 spin_lock(&inode->i_lock);
426 dirty = inode->i_state & I_DIRTY;
427 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
428 spin_unlock(&inode->i_lock);
429 /* Don't write the inode if only I_DIRTY_PAGES was set */
430 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
431 int err = write_inode(inode, wbc);
432 if (ret == 0)
433 ret = err;
434 }
435
436 spin_lock(&wb->list_lock);
437 spin_lock(&inode->i_lock);
438 inode->i_state &= ~I_SYNC;
439 if (!(inode->i_state & I_FREEING)) {
440 /*
441 * Sync livelock prevention. Each inode is tagged and synced in
442 * one shot. If still dirty, it will be redirty_tail()'ed below.
443 * Update the dirty time to prevent enqueue and sync it again.
444 */
445 if ((inode->i_state & I_DIRTY) &&
446 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
447 inode->dirtied_when = jiffies;
448
449 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
450 /*
451 * We didn't write back all the pages. nfs_writepages()
452 * sometimes bales out without doing anything.
453 */
454 inode->i_state |= I_DIRTY_PAGES;
455 if (wbc->nr_to_write <= 0) {
456 /*
457 * slice used up: queue for next turn
458 */
459 requeue_io(inode, wb);
460 } else {
461 /*
462 * Writeback blocked by something other than
463 * congestion. Delay the inode for some time to
464 * avoid spinning on the CPU (100% iowait)
465 * retrying writeback of the dirty page/inode
466 * that cannot be performed immediately.
467 */
468 redirty_tail(inode, wb);
469 }
470 } else if (inode->i_state & I_DIRTY) {
471 /*
472 * Filesystems can dirty the inode during writeback
473 * operations, such as delayed allocation during
474 * submission or metadata updates after data IO
475 * completion.
476 */
477 redirty_tail(inode, wb);
478 } else {
479 /*
480 * The inode is clean. At this point we either have
481 * a reference to the inode or it's on it's way out.
482 * No need to add it back to the LRU.
483 */
484 list_del_init(&inode->i_wb_list);
485 }
486 }
487 inode_sync_complete(inode);
488 trace_writeback_single_inode(inode, wbc, nr_to_write);
489 return ret;
490 }
491
492 static long writeback_chunk_size(struct backing_dev_info *bdi,
493 struct wb_writeback_work *work)
494 {
495 long pages;
496
497 /*
498 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
499 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
500 * here avoids calling into writeback_inodes_wb() more than once.
501 *
502 * The intended call sequence for WB_SYNC_ALL writeback is:
503 *
504 * wb_writeback()
505 * writeback_sb_inodes() <== called only once
506 * write_cache_pages() <== called once for each inode
507 * (quickly) tag currently dirty pages
508 * (maybe slowly) sync all tagged pages
509 */
510 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
511 pages = LONG_MAX;
512 else {
513 pages = min(bdi->avg_write_bandwidth / 2,
514 global_dirty_limit / DIRTY_SCOPE);
515 pages = min(pages, work->nr_pages);
516 pages = round_down(pages + MIN_WRITEBACK_PAGES,
517 MIN_WRITEBACK_PAGES);
518 }
519
520 return pages;
521 }
522
523 /*
524 * Write a portion of b_io inodes which belong to @sb.
525 *
526 * If @only_this_sb is true, then find and write all such
527 * inodes. Otherwise write only ones which go sequentially
528 * in reverse order.
529 *
530 * Return the number of pages and/or inodes written.
531 */
532 static long writeback_sb_inodes(struct super_block *sb,
533 struct bdi_writeback *wb,
534 struct wb_writeback_work *work)
535 {
536 struct writeback_control wbc = {
537 .sync_mode = work->sync_mode,
538 .tagged_writepages = work->tagged_writepages,
539 .for_kupdate = work->for_kupdate,
540 .for_background = work->for_background,
541 .range_cyclic = work->range_cyclic,
542 .range_start = 0,
543 .range_end = LLONG_MAX,
544 };
545 unsigned long start_time = jiffies;
546 long write_chunk;
547 long wrote = 0; /* count both pages and inodes */
548
549 while (!list_empty(&wb->b_io)) {
550 struct inode *inode = wb_inode(wb->b_io.prev);
551
552 if (inode->i_sb != sb) {
553 if (work->sb) {
554 /*
555 * We only want to write back data for this
556 * superblock, move all inodes not belonging
557 * to it back onto the dirty list.
558 */
559 redirty_tail(inode, wb);
560 continue;
561 }
562
563 /*
564 * The inode belongs to a different superblock.
565 * Bounce back to the caller to unpin this and
566 * pin the next superblock.
567 */
568 break;
569 }
570
571 /*
572 * Don't bother with new inodes or inodes beeing freed, first
573 * kind does not need peridic writeout yet, and for the latter
574 * kind writeout is handled by the freer.
575 */
576 spin_lock(&inode->i_lock);
577 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
578 spin_unlock(&inode->i_lock);
579 redirty_tail(inode, wb);
580 continue;
581 }
582 __iget(inode);
583 write_chunk = writeback_chunk_size(wb->bdi, work);
584 wbc.nr_to_write = write_chunk;
585 wbc.pages_skipped = 0;
586
587 writeback_single_inode(inode, wb, &wbc);
588
589 work->nr_pages -= write_chunk - wbc.nr_to_write;
590 wrote += write_chunk - wbc.nr_to_write;
591 if (!(inode->i_state & I_DIRTY))
592 wrote++;
593 if (wbc.pages_skipped) {
594 /*
595 * writeback is not making progress due to locked
596 * buffers. Skip this inode for now.
597 */
598 redirty_tail(inode, wb);
599 }
600 spin_unlock(&inode->i_lock);
601 spin_unlock(&wb->list_lock);
602 iput(inode);
603 cond_resched();
604 spin_lock(&wb->list_lock);
605 /*
606 * bail out to wb_writeback() often enough to check
607 * background threshold and other termination conditions.
608 */
609 if (wrote) {
610 if (time_is_before_jiffies(start_time + HZ / 10UL))
611 break;
612 if (work->nr_pages <= 0)
613 break;
614 }
615 }
616 return wrote;
617 }
618
619 static long __writeback_inodes_wb(struct bdi_writeback *wb,
620 struct wb_writeback_work *work)
621 {
622 unsigned long start_time = jiffies;
623 long wrote = 0;
624
625 while (!list_empty(&wb->b_io)) {
626 struct inode *inode = wb_inode(wb->b_io.prev);
627 struct super_block *sb = inode->i_sb;
628
629 if (!grab_super_passive(sb)) {
630 /*
631 * grab_super_passive() may fail consistently due to
632 * s_umount being grabbed by someone else. Don't use
633 * requeue_io() to avoid busy retrying the inode/sb.
634 */
635 redirty_tail(inode, wb);
636 continue;
637 }
638 wrote += writeback_sb_inodes(sb, wb, work);
639 drop_super(sb);
640
641 /* refer to the same tests at the end of writeback_sb_inodes */
642 if (wrote) {
643 if (time_is_before_jiffies(start_time + HZ / 10UL))
644 break;
645 if (work->nr_pages <= 0)
646 break;
647 }
648 }
649 /* Leave any unwritten inodes on b_io */
650 return wrote;
651 }
652
653 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
654 enum wb_reason reason)
655 {
656 struct wb_writeback_work work = {
657 .nr_pages = nr_pages,
658 .sync_mode = WB_SYNC_NONE,
659 .range_cyclic = 1,
660 .reason = reason,
661 };
662
663 spin_lock(&wb->list_lock);
664 if (list_empty(&wb->b_io))
665 queue_io(wb, &work);
666 __writeback_inodes_wb(wb, &work);
667 spin_unlock(&wb->list_lock);
668
669 return nr_pages - work.nr_pages;
670 }
671
672 static bool over_bground_thresh(struct backing_dev_info *bdi)
673 {
674 unsigned long background_thresh, dirty_thresh;
675
676 global_dirty_limits(&background_thresh, &dirty_thresh);
677
678 if (global_page_state(NR_FILE_DIRTY) +
679 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
680 return true;
681
682 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
683 bdi_dirty_limit(bdi, background_thresh))
684 return true;
685
686 return false;
687 }
688
689 /*
690 * Called under wb->list_lock. If there are multiple wb per bdi,
691 * only the flusher working on the first wb should do it.
692 */
693 static void wb_update_bandwidth(struct bdi_writeback *wb,
694 unsigned long start_time)
695 {
696 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
697 }
698
699 /*
700 * Explicit flushing or periodic writeback of "old" data.
701 *
702 * Define "old": the first time one of an inode's pages is dirtied, we mark the
703 * dirtying-time in the inode's address_space. So this periodic writeback code
704 * just walks the superblock inode list, writing back any inodes which are
705 * older than a specific point in time.
706 *
707 * Try to run once per dirty_writeback_interval. But if a writeback event
708 * takes longer than a dirty_writeback_interval interval, then leave a
709 * one-second gap.
710 *
711 * older_than_this takes precedence over nr_to_write. So we'll only write back
712 * all dirty pages if they are all attached to "old" mappings.
713 */
714 static long wb_writeback(struct bdi_writeback *wb,
715 struct wb_writeback_work *work)
716 {
717 unsigned long wb_start = jiffies;
718 long nr_pages = work->nr_pages;
719 unsigned long oldest_jif;
720 struct inode *inode;
721 long progress;
722
723 oldest_jif = jiffies;
724 work->older_than_this = &oldest_jif;
725
726 spin_lock(&wb->list_lock);
727 for (;;) {
728 /*
729 * Stop writeback when nr_pages has been consumed
730 */
731 if (work->nr_pages <= 0)
732 break;
733
734 /*
735 * Background writeout and kupdate-style writeback may
736 * run forever. Stop them if there is other work to do
737 * so that e.g. sync can proceed. They'll be restarted
738 * after the other works are all done.
739 */
740 if ((work->for_background || work->for_kupdate) &&
741 !list_empty(&wb->bdi->work_list))
742 break;
743
744 /*
745 * For background writeout, stop when we are below the
746 * background dirty threshold
747 */
748 if (work->for_background && !over_bground_thresh(wb->bdi))
749 break;
750
751 /*
752 * Kupdate and background works are special and we want to
753 * include all inodes that need writing. Livelock avoidance is
754 * handled by these works yielding to any other work so we are
755 * safe.
756 */
757 if (work->for_kupdate) {
758 oldest_jif = jiffies -
759 msecs_to_jiffies(dirty_expire_interval * 10);
760 } else if (work->for_background)
761 oldest_jif = jiffies;
762
763 trace_writeback_start(wb->bdi, work);
764 if (list_empty(&wb->b_io))
765 queue_io(wb, work);
766 if (work->sb)
767 progress = writeback_sb_inodes(work->sb, wb, work);
768 else
769 progress = __writeback_inodes_wb(wb, work);
770 trace_writeback_written(wb->bdi, work);
771
772 wb_update_bandwidth(wb, wb_start);
773
774 /*
775 * Did we write something? Try for more
776 *
777 * Dirty inodes are moved to b_io for writeback in batches.
778 * The completion of the current batch does not necessarily
779 * mean the overall work is done. So we keep looping as long
780 * as made some progress on cleaning pages or inodes.
781 */
782 if (progress)
783 continue;
784 /*
785 * No more inodes for IO, bail
786 */
787 if (list_empty(&wb->b_more_io))
788 break;
789 /*
790 * Nothing written. Wait for some inode to
791 * become available for writeback. Otherwise
792 * we'll just busyloop.
793 */
794 if (!list_empty(&wb->b_more_io)) {
795 trace_writeback_wait(wb->bdi, work);
796 inode = wb_inode(wb->b_more_io.prev);
797 spin_lock(&inode->i_lock);
798 inode_wait_for_writeback(inode, wb);
799 spin_unlock(&inode->i_lock);
800 }
801 }
802 spin_unlock(&wb->list_lock);
803
804 return nr_pages - work->nr_pages;
805 }
806
807 /*
808 * Return the next wb_writeback_work struct that hasn't been processed yet.
809 */
810 static struct wb_writeback_work *
811 get_next_work_item(struct backing_dev_info *bdi)
812 {
813 struct wb_writeback_work *work = NULL;
814
815 spin_lock_bh(&bdi->wb_lock);
816 if (!list_empty(&bdi->work_list)) {
817 work = list_entry(bdi->work_list.next,
818 struct wb_writeback_work, list);
819 list_del_init(&work->list);
820 }
821 spin_unlock_bh(&bdi->wb_lock);
822 return work;
823 }
824
825 /*
826 * Add in the number of potentially dirty inodes, because each inode
827 * write can dirty pagecache in the underlying blockdev.
828 */
829 static unsigned long get_nr_dirty_pages(void)
830 {
831 return global_page_state(NR_FILE_DIRTY) +
832 global_page_state(NR_UNSTABLE_NFS) +
833 get_nr_dirty_inodes();
834 }
835
836 static long wb_check_background_flush(struct bdi_writeback *wb)
837 {
838 if (over_bground_thresh(wb->bdi)) {
839
840 struct wb_writeback_work work = {
841 .nr_pages = LONG_MAX,
842 .sync_mode = WB_SYNC_NONE,
843 .for_background = 1,
844 .range_cyclic = 1,
845 .reason = WB_REASON_BACKGROUND,
846 };
847
848 return wb_writeback(wb, &work);
849 }
850
851 return 0;
852 }
853
854 static long wb_check_old_data_flush(struct bdi_writeback *wb)
855 {
856 unsigned long expired;
857 long nr_pages;
858
859 /*
860 * When set to zero, disable periodic writeback
861 */
862 if (!dirty_writeback_interval)
863 return 0;
864
865 expired = wb->last_old_flush +
866 msecs_to_jiffies(dirty_writeback_interval * 10);
867 if (time_before(jiffies, expired))
868 return 0;
869
870 wb->last_old_flush = jiffies;
871 nr_pages = get_nr_dirty_pages();
872
873 if (nr_pages) {
874 struct wb_writeback_work work = {
875 .nr_pages = nr_pages,
876 .sync_mode = WB_SYNC_NONE,
877 .for_kupdate = 1,
878 .range_cyclic = 1,
879 .reason = WB_REASON_PERIODIC,
880 };
881
882 return wb_writeback(wb, &work);
883 }
884
885 return 0;
886 }
887
888 /*
889 * Retrieve work items and do the writeback they describe
890 */
891 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
892 {
893 struct backing_dev_info *bdi = wb->bdi;
894 struct wb_writeback_work *work;
895 long wrote = 0;
896
897 set_bit(BDI_writeback_running, &wb->bdi->state);
898 while ((work = get_next_work_item(bdi)) != NULL) {
899 /*
900 * Override sync mode, in case we must wait for completion
901 * because this thread is exiting now.
902 */
903 if (force_wait)
904 work->sync_mode = WB_SYNC_ALL;
905
906 trace_writeback_exec(bdi, work);
907
908 wrote += wb_writeback(wb, work);
909
910 /*
911 * Notify the caller of completion if this is a synchronous
912 * work item, otherwise just free it.
913 */
914 if (work->done)
915 complete(work->done);
916 else
917 kfree(work);
918 }
919
920 /*
921 * Check for periodic writeback, kupdated() style
922 */
923 wrote += wb_check_old_data_flush(wb);
924 wrote += wb_check_background_flush(wb);
925 clear_bit(BDI_writeback_running, &wb->bdi->state);
926
927 return wrote;
928 }
929
930 /*
931 * Handle writeback of dirty data for the device backed by this bdi. Also
932 * wakes up periodically and does kupdated style flushing.
933 */
934 int bdi_writeback_thread(void *data)
935 {
936 struct bdi_writeback *wb = data;
937 struct backing_dev_info *bdi = wb->bdi;
938 long pages_written;
939
940 current->flags |= PF_SWAPWRITE;
941 set_freezable();
942 wb->last_active = jiffies;
943
944 /*
945 * Our parent may run at a different priority, just set us to normal
946 */
947 set_user_nice(current, 0);
948
949 trace_writeback_thread_start(bdi);
950
951 while (!kthread_freezable_should_stop(NULL)) {
952 /*
953 * Remove own delayed wake-up timer, since we are already awake
954 * and we'll take care of the preriodic write-back.
955 */
956 del_timer(&wb->wakeup_timer);
957
958 pages_written = wb_do_writeback(wb, 0);
959
960 trace_writeback_pages_written(pages_written);
961
962 if (pages_written)
963 wb->last_active = jiffies;
964
965 set_current_state(TASK_INTERRUPTIBLE);
966 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
967 __set_current_state(TASK_RUNNING);
968 continue;
969 }
970
971 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
972 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
973 else {
974 /*
975 * We have nothing to do, so can go sleep without any
976 * timeout and save power. When a work is queued or
977 * something is made dirty - we will be woken up.
978 */
979 schedule();
980 }
981 }
982
983 /* Flush any work that raced with us exiting */
984 if (!list_empty(&bdi->work_list))
985 wb_do_writeback(wb, 1);
986
987 trace_writeback_thread_stop(bdi);
988 return 0;
989 }
990
991
992 /*
993 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
994 * the whole world.
995 */
996 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
997 {
998 struct backing_dev_info *bdi;
999
1000 if (!nr_pages) {
1001 nr_pages = global_page_state(NR_FILE_DIRTY) +
1002 global_page_state(NR_UNSTABLE_NFS);
1003 }
1004
1005 rcu_read_lock();
1006 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1007 if (!bdi_has_dirty_io(bdi))
1008 continue;
1009 __bdi_start_writeback(bdi, nr_pages, false, reason);
1010 }
1011 rcu_read_unlock();
1012 }
1013
1014 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1015 {
1016 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1017 struct dentry *dentry;
1018 const char *name = "?";
1019
1020 dentry = d_find_alias(inode);
1021 if (dentry) {
1022 spin_lock(&dentry->d_lock);
1023 name = (const char *) dentry->d_name.name;
1024 }
1025 printk(KERN_DEBUG
1026 "%s(%d): dirtied inode %lu (%s) on %s\n",
1027 current->comm, task_pid_nr(current), inode->i_ino,
1028 name, inode->i_sb->s_id);
1029 if (dentry) {
1030 spin_unlock(&dentry->d_lock);
1031 dput(dentry);
1032 }
1033 }
1034 }
1035
1036 /**
1037 * __mark_inode_dirty - internal function
1038 * @inode: inode to mark
1039 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1040 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1041 * mark_inode_dirty_sync.
1042 *
1043 * Put the inode on the super block's dirty list.
1044 *
1045 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1046 * dirty list only if it is hashed or if it refers to a blockdev.
1047 * If it was not hashed, it will never be added to the dirty list
1048 * even if it is later hashed, as it will have been marked dirty already.
1049 *
1050 * In short, make sure you hash any inodes _before_ you start marking
1051 * them dirty.
1052 *
1053 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1054 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1055 * the kernel-internal blockdev inode represents the dirtying time of the
1056 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1057 * page->mapping->host, so the page-dirtying time is recorded in the internal
1058 * blockdev inode.
1059 */
1060 void __mark_inode_dirty(struct inode *inode, int flags)
1061 {
1062 struct super_block *sb = inode->i_sb;
1063 struct backing_dev_info *bdi = NULL;
1064
1065 /*
1066 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1067 * dirty the inode itself
1068 */
1069 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1070 if (sb->s_op->dirty_inode)
1071 sb->s_op->dirty_inode(inode, flags);
1072 }
1073
1074 /*
1075 * make sure that changes are seen by all cpus before we test i_state
1076 * -- mikulas
1077 */
1078 smp_mb();
1079
1080 /* avoid the locking if we can */
1081 if ((inode->i_state & flags) == flags)
1082 return;
1083
1084 if (unlikely(block_dump))
1085 block_dump___mark_inode_dirty(inode);
1086
1087 spin_lock(&inode->i_lock);
1088 if ((inode->i_state & flags) != flags) {
1089 const int was_dirty = inode->i_state & I_DIRTY;
1090
1091 inode->i_state |= flags;
1092
1093 /*
1094 * If the inode is being synced, just update its dirty state.
1095 * The unlocker will place the inode on the appropriate
1096 * superblock list, based upon its state.
1097 */
1098 if (inode->i_state & I_SYNC)
1099 goto out_unlock_inode;
1100
1101 /*
1102 * Only add valid (hashed) inodes to the superblock's
1103 * dirty list. Add blockdev inodes as well.
1104 */
1105 if (!S_ISBLK(inode->i_mode)) {
1106 if (inode_unhashed(inode))
1107 goto out_unlock_inode;
1108 }
1109 if (inode->i_state & I_FREEING)
1110 goto out_unlock_inode;
1111
1112 /*
1113 * If the inode was already on b_dirty/b_io/b_more_io, don't
1114 * reposition it (that would break b_dirty time-ordering).
1115 */
1116 if (!was_dirty) {
1117 bool wakeup_bdi = false;
1118 bdi = inode_to_bdi(inode);
1119
1120 if (bdi_cap_writeback_dirty(bdi)) {
1121 WARN(!test_bit(BDI_registered, &bdi->state),
1122 "bdi-%s not registered\n", bdi->name);
1123
1124 /*
1125 * If this is the first dirty inode for this
1126 * bdi, we have to wake-up the corresponding
1127 * bdi thread to make sure background
1128 * write-back happens later.
1129 */
1130 if (!wb_has_dirty_io(&bdi->wb))
1131 wakeup_bdi = true;
1132 }
1133
1134 spin_unlock(&inode->i_lock);
1135 spin_lock(&bdi->wb.list_lock);
1136 inode->dirtied_when = jiffies;
1137 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1138 spin_unlock(&bdi->wb.list_lock);
1139
1140 if (wakeup_bdi)
1141 bdi_wakeup_thread_delayed(bdi);
1142 return;
1143 }
1144 }
1145 out_unlock_inode:
1146 spin_unlock(&inode->i_lock);
1147
1148 }
1149 EXPORT_SYMBOL(__mark_inode_dirty);
1150
1151 /*
1152 * Write out a superblock's list of dirty inodes. A wait will be performed
1153 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1154 *
1155 * If older_than_this is non-NULL, then only write out inodes which
1156 * had their first dirtying at a time earlier than *older_than_this.
1157 *
1158 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1159 * This function assumes that the blockdev superblock's inodes are backed by
1160 * a variety of queues, so all inodes are searched. For other superblocks,
1161 * assume that all inodes are backed by the same queue.
1162 *
1163 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1164 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1165 * on the writer throttling path, and we get decent balancing between many
1166 * throttled threads: we don't want them all piling up on inode_sync_wait.
1167 */
1168 static void wait_sb_inodes(struct super_block *sb)
1169 {
1170 struct inode *inode, *old_inode = NULL;
1171
1172 /*
1173 * We need to be protected against the filesystem going from
1174 * r/o to r/w or vice versa.
1175 */
1176 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1177
1178 spin_lock(&inode_sb_list_lock);
1179
1180 /*
1181 * Data integrity sync. Must wait for all pages under writeback,
1182 * because there may have been pages dirtied before our sync
1183 * call, but which had writeout started before we write it out.
1184 * In which case, the inode may not be on the dirty list, but
1185 * we still have to wait for that writeout.
1186 */
1187 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1188 struct address_space *mapping = inode->i_mapping;
1189
1190 spin_lock(&inode->i_lock);
1191 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1192 (mapping->nrpages == 0)) {
1193 spin_unlock(&inode->i_lock);
1194 continue;
1195 }
1196 __iget(inode);
1197 spin_unlock(&inode->i_lock);
1198 spin_unlock(&inode_sb_list_lock);
1199
1200 /*
1201 * We hold a reference to 'inode' so it couldn't have been
1202 * removed from s_inodes list while we dropped the
1203 * inode_sb_list_lock. We cannot iput the inode now as we can
1204 * be holding the last reference and we cannot iput it under
1205 * inode_sb_list_lock. So we keep the reference and iput it
1206 * later.
1207 */
1208 iput(old_inode);
1209 old_inode = inode;
1210
1211 filemap_fdatawait(mapping);
1212
1213 cond_resched();
1214
1215 spin_lock(&inode_sb_list_lock);
1216 }
1217 spin_unlock(&inode_sb_list_lock);
1218 iput(old_inode);
1219 }
1220
1221 /**
1222 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1223 * @sb: the superblock
1224 * @nr: the number of pages to write
1225 * @reason: reason why some writeback work initiated
1226 *
1227 * Start writeback on some inodes on this super_block. No guarantees are made
1228 * on how many (if any) will be written, and this function does not wait
1229 * for IO completion of submitted IO.
1230 */
1231 void writeback_inodes_sb_nr(struct super_block *sb,
1232 unsigned long nr,
1233 enum wb_reason reason)
1234 {
1235 DECLARE_COMPLETION_ONSTACK(done);
1236 struct wb_writeback_work work = {
1237 .sb = sb,
1238 .sync_mode = WB_SYNC_NONE,
1239 .tagged_writepages = 1,
1240 .done = &done,
1241 .nr_pages = nr,
1242 .reason = reason,
1243 };
1244
1245 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1246 bdi_queue_work(sb->s_bdi, &work);
1247 wait_for_completion(&done);
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1250
1251 /**
1252 * writeback_inodes_sb - writeback dirty inodes from given super_block
1253 * @sb: the superblock
1254 * @reason: reason why some writeback work was initiated
1255 *
1256 * Start writeback on some inodes on this super_block. No guarantees are made
1257 * on how many (if any) will be written, and this function does not wait
1258 * for IO completion of submitted IO.
1259 */
1260 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1261 {
1262 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1263 }
1264 EXPORT_SYMBOL(writeback_inodes_sb);
1265
1266 /**
1267 * writeback_inodes_sb_if_idle - start writeback if none underway
1268 * @sb: the superblock
1269 * @reason: reason why some writeback work was initiated
1270 *
1271 * Invoke writeback_inodes_sb if no writeback is currently underway.
1272 * Returns 1 if writeback was started, 0 if not.
1273 */
1274 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1275 {
1276 if (!writeback_in_progress(sb->s_bdi)) {
1277 down_read(&sb->s_umount);
1278 writeback_inodes_sb(sb, reason);
1279 up_read(&sb->s_umount);
1280 return 1;
1281 } else
1282 return 0;
1283 }
1284 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1285
1286 /**
1287 * writeback_inodes_sb_if_idle - start writeback if none underway
1288 * @sb: the superblock
1289 * @nr: the number of pages to write
1290 * @reason: reason why some writeback work was initiated
1291 *
1292 * Invoke writeback_inodes_sb if no writeback is currently underway.
1293 * Returns 1 if writeback was started, 0 if not.
1294 */
1295 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1296 unsigned long nr,
1297 enum wb_reason reason)
1298 {
1299 if (!writeback_in_progress(sb->s_bdi)) {
1300 down_read(&sb->s_umount);
1301 writeback_inodes_sb_nr(sb, nr, reason);
1302 up_read(&sb->s_umount);
1303 return 1;
1304 } else
1305 return 0;
1306 }
1307 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1308
1309 /**
1310 * sync_inodes_sb - sync sb inode pages
1311 * @sb: the superblock
1312 *
1313 * This function writes and waits on any dirty inode belonging to this
1314 * super_block.
1315 */
1316 void sync_inodes_sb(struct super_block *sb)
1317 {
1318 DECLARE_COMPLETION_ONSTACK(done);
1319 struct wb_writeback_work work = {
1320 .sb = sb,
1321 .sync_mode = WB_SYNC_ALL,
1322 .nr_pages = LONG_MAX,
1323 .range_cyclic = 0,
1324 .done = &done,
1325 .reason = WB_REASON_SYNC,
1326 };
1327
1328 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1329
1330 bdi_queue_work(sb->s_bdi, &work);
1331 wait_for_completion(&done);
1332
1333 wait_sb_inodes(sb);
1334 }
1335 EXPORT_SYMBOL(sync_inodes_sb);
1336
1337 /**
1338 * write_inode_now - write an inode to disk
1339 * @inode: inode to write to disk
1340 * @sync: whether the write should be synchronous or not
1341 *
1342 * This function commits an inode to disk immediately if it is dirty. This is
1343 * primarily needed by knfsd.
1344 *
1345 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1346 */
1347 int write_inode_now(struct inode *inode, int sync)
1348 {
1349 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1350 int ret;
1351 struct writeback_control wbc = {
1352 .nr_to_write = LONG_MAX,
1353 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1354 .range_start = 0,
1355 .range_end = LLONG_MAX,
1356 };
1357
1358 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1359 wbc.nr_to_write = 0;
1360
1361 might_sleep();
1362 spin_lock(&wb->list_lock);
1363 spin_lock(&inode->i_lock);
1364 ret = writeback_single_inode(inode, wb, &wbc);
1365 spin_unlock(&inode->i_lock);
1366 spin_unlock(&wb->list_lock);
1367 if (sync)
1368 inode_sync_wait(inode);
1369 return ret;
1370 }
1371 EXPORT_SYMBOL(write_inode_now);
1372
1373 /**
1374 * sync_inode - write an inode and its pages to disk.
1375 * @inode: the inode to sync
1376 * @wbc: controls the writeback mode
1377 *
1378 * sync_inode() will write an inode and its pages to disk. It will also
1379 * correctly update the inode on its superblock's dirty inode lists and will
1380 * update inode->i_state.
1381 *
1382 * The caller must have a ref on the inode.
1383 */
1384 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1385 {
1386 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1387 int ret;
1388
1389 spin_lock(&wb->list_lock);
1390 spin_lock(&inode->i_lock);
1391 ret = writeback_single_inode(inode, wb, wbc);
1392 spin_unlock(&inode->i_lock);
1393 spin_unlock(&wb->list_lock);
1394 return ret;
1395 }
1396 EXPORT_SYMBOL(sync_inode);
1397
1398 /**
1399 * sync_inode_metadata - write an inode to disk
1400 * @inode: the inode to sync
1401 * @wait: wait for I/O to complete.
1402 *
1403 * Write an inode to disk and adjust its dirty state after completion.
1404 *
1405 * Note: only writes the actual inode, no associated data or other metadata.
1406 */
1407 int sync_inode_metadata(struct inode *inode, int wait)
1408 {
1409 struct writeback_control wbc = {
1410 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1411 .nr_to_write = 0, /* metadata-only */
1412 };
1413
1414 return sync_inode(inode, &wbc);
1415 }
1416 EXPORT_SYMBOL(sync_inode_metadata);