]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fs-writeback.c
USB: serial: whiteheat: fix line-speed endianness
[mirror_ubuntu-bionic-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34 * 4MB minimal write chunk size
35 */
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
37
38 struct wb_completion {
39 atomic_t cnt;
40 };
41
42 /*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
45 struct wb_writeback_work {
46 long nr_pages;
47 struct super_block *sb;
48 unsigned long *older_than_this;
49 enum writeback_sync_modes sync_mode;
50 unsigned int tagged_writepages:1;
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free:1; /* free on completion */
56 enum wb_reason reason; /* why was writeback initiated? */
57
58 struct list_head list; /* pending work list */
59 struct wb_completion *done; /* set if the caller waits */
60 };
61
62 /*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
75 /*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 return list_entry(head, struct inode, i_io_list);
90 }
91
92 /*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
111 return true;
112 }
113 }
114
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 clear_bit(WB_has_dirty_io, &wb->state);
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
122 }
123 }
124
125 /**
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 struct bdi_writeback *wb,
137 struct list_head *head)
138 {
139 assert_spin_locked(&wb->list_lock);
140
141 list_move(&inode->i_io_list, head);
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149 }
150
151 /**
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
159 static void inode_io_list_del_locked(struct inode *inode,
160 struct bdi_writeback *wb)
161 {
162 assert_spin_locked(&wb->list_lock);
163
164 list_del_init(&inode->i_io_list);
165 wb_io_lists_depopulated(wb);
166 }
167
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
174 }
175
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178 {
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185 }
186
187 static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
189 {
190 trace_writeback_queue(wb, work);
191
192 if (work->done)
193 atomic_inc(&work->done->cnt);
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
203 spin_unlock_bh(&wb->work_lock);
204 }
205
206 /**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219 {
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223
224 #ifdef CONFIG_CGROUP_WRITEBACK
225
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271 }
272
273 /**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285 {
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
298
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
304
305 spin_unlock(&wb->list_lock);
306 wb_put(wb);
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310 }
311
312 /**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321 {
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324 }
325
326 struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332 };
333
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 down_write(&bdi->wb_switch_rwsem);
337 }
338
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 up_write(&bdi->wb_switch_rwsem);
342 }
343
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
349 struct backing_dev_info *bdi = inode_to_bdi(inode);
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
352 struct bdi_writeback *new_wb = isw->new_wb;
353 struct radix_tree_iter iter;
354 bool switched = false;
355 void **slot;
356
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 * synchronizing against mapping->tree_lock.
368 *
369 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
372 */
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
380 spin_lock(&inode->i_lock);
381 spin_lock_irq(&mapping->tree_lock);
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
385 * the inode and we shouldn't modify ->i_io_list.
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under underwriteback.
394 */
395 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396 PAGECACHE_TAG_DIRTY) {
397 struct page *page = radix_tree_deref_slot_protected(slot,
398 &mapping->tree_lock);
399 if (likely(page) && PageDirty(page)) {
400 dec_wb_stat(old_wb, WB_RECLAIMABLE);
401 inc_wb_stat(new_wb, WB_RECLAIMABLE);
402 }
403 }
404
405 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406 PAGECACHE_TAG_WRITEBACK) {
407 struct page *page = radix_tree_deref_slot_protected(slot,
408 &mapping->tree_lock);
409 if (likely(page)) {
410 WARN_ON_ONCE(!PageWriteback(page));
411 dec_wb_stat(old_wb, WB_WRITEBACK);
412 inc_wb_stat(new_wb, WB_WRITEBACK);
413 }
414 }
415
416 wb_get(new_wb);
417
418 /*
419 * Transfer to @new_wb's IO list if necessary. The specific list
420 * @inode was on is ignored and the inode is put on ->b_dirty which
421 * is always correct including from ->b_dirty_time. The transfer
422 * preserves @inode->dirtied_when ordering.
423 */
424 if (!list_empty(&inode->i_io_list)) {
425 struct inode *pos;
426
427 inode_io_list_del_locked(inode, old_wb);
428 inode->i_wb = new_wb;
429 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
430 if (time_after_eq(inode->dirtied_when,
431 pos->dirtied_when))
432 break;
433 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
434 } else {
435 inode->i_wb = new_wb;
436 }
437
438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
442 switched = true;
443 skip_switch:
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450 spin_unlock_irq(&mapping->tree_lock);
451 spin_unlock(&inode->i_lock);
452 spin_unlock(&new_wb->list_lock);
453 spin_unlock(&old_wb->list_lock);
454
455 up_read(&bdi->wb_switch_rwsem);
456
457 if (switched) {
458 wb_wakeup(new_wb);
459 wb_put(old_wb);
460 }
461 wb_put(new_wb);
462
463 iput(inode);
464 kfree(isw);
465
466 atomic_dec(&isw_nr_in_flight);
467 }
468
469 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470 {
471 struct inode_switch_wbs_context *isw = container_of(rcu_head,
472 struct inode_switch_wbs_context, rcu_head);
473
474 /* needs to grab bh-unsafe locks, bounce to work item */
475 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
476 queue_work(isw_wq, &isw->work);
477 }
478
479 /**
480 * inode_switch_wbs - change the wb association of an inode
481 * @inode: target inode
482 * @new_wb_id: ID of the new wb
483 *
484 * Switch @inode's wb association to the wb identified by @new_wb_id. The
485 * switching is performed asynchronously and may fail silently.
486 */
487 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488 {
489 struct backing_dev_info *bdi = inode_to_bdi(inode);
490 struct cgroup_subsys_state *memcg_css;
491 struct inode_switch_wbs_context *isw;
492
493 /* noop if seems to be already in progress */
494 if (inode->i_state & I_WB_SWITCH)
495 return;
496
497 /*
498 * Avoid starting new switches while sync_inodes_sb() is in
499 * progress. Otherwise, if the down_write protected issue path
500 * blocks heavily, we might end up starting a large number of
501 * switches which will block on the rwsem.
502 */
503 if (!down_read_trylock(&bdi->wb_switch_rwsem))
504 return;
505
506 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507 if (!isw)
508 goto out_unlock;
509
510 /* find and pin the new wb */
511 rcu_read_lock();
512 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 if (memcg_css)
514 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 rcu_read_unlock();
516 if (!isw->new_wb)
517 goto out_free;
518
519 /* while holding I_WB_SWITCH, no one else can update the association */
520 spin_lock(&inode->i_lock);
521 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
522 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523 inode_to_wb(inode) == isw->new_wb) {
524 spin_unlock(&inode->i_lock);
525 goto out_free;
526 }
527 inode->i_state |= I_WB_SWITCH;
528 __iget(inode);
529 spin_unlock(&inode->i_lock);
530
531 isw->inode = inode;
532
533 /*
534 * In addition to synchronizing among switchers, I_WB_SWITCH tells
535 * the RCU protected stat update paths to grab the mapping's
536 * tree_lock so that stat transfer can synchronize against them.
537 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
538 */
539 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
540
541 atomic_inc(&isw_nr_in_flight);
542
543 goto out_unlock;
544
545 out_free:
546 if (isw->new_wb)
547 wb_put(isw->new_wb);
548 kfree(isw);
549 out_unlock:
550 up_read(&bdi->wb_switch_rwsem);
551 }
552
553 /**
554 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
555 * @wbc: writeback_control of interest
556 * @inode: target inode
557 *
558 * @inode is locked and about to be written back under the control of @wbc.
559 * Record @inode's writeback context into @wbc and unlock the i_lock. On
560 * writeback completion, wbc_detach_inode() should be called. This is used
561 * to track the cgroup writeback context.
562 */
563 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
564 struct inode *inode)
565 {
566 if (!inode_cgwb_enabled(inode)) {
567 spin_unlock(&inode->i_lock);
568 return;
569 }
570
571 wbc->wb = inode_to_wb(inode);
572 wbc->inode = inode;
573
574 wbc->wb_id = wbc->wb->memcg_css->id;
575 wbc->wb_lcand_id = inode->i_wb_frn_winner;
576 wbc->wb_tcand_id = 0;
577 wbc->wb_bytes = 0;
578 wbc->wb_lcand_bytes = 0;
579 wbc->wb_tcand_bytes = 0;
580
581 wb_get(wbc->wb);
582 spin_unlock(&inode->i_lock);
583
584 /*
585 * A dying wb indicates that the memcg-blkcg mapping has changed
586 * and a new wb is already serving the memcg. Switch immediately.
587 */
588 if (unlikely(wb_dying(wbc->wb)))
589 inode_switch_wbs(inode, wbc->wb_id);
590 }
591
592 /**
593 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
594 * @wbc: writeback_control of the just finished writeback
595 *
596 * To be called after a writeback attempt of an inode finishes and undoes
597 * wbc_attach_and_unlock_inode(). Can be called under any context.
598 *
599 * As concurrent write sharing of an inode is expected to be very rare and
600 * memcg only tracks page ownership on first-use basis severely confining
601 * the usefulness of such sharing, cgroup writeback tracks ownership
602 * per-inode. While the support for concurrent write sharing of an inode
603 * is deemed unnecessary, an inode being written to by different cgroups at
604 * different points in time is a lot more common, and, more importantly,
605 * charging only by first-use can too readily lead to grossly incorrect
606 * behaviors (single foreign page can lead to gigabytes of writeback to be
607 * incorrectly attributed).
608 *
609 * To resolve this issue, cgroup writeback detects the majority dirtier of
610 * an inode and transfers the ownership to it. To avoid unnnecessary
611 * oscillation, the detection mechanism keeps track of history and gives
612 * out the switch verdict only if the foreign usage pattern is stable over
613 * a certain amount of time and/or writeback attempts.
614 *
615 * On each writeback attempt, @wbc tries to detect the majority writer
616 * using Boyer-Moore majority vote algorithm. In addition to the byte
617 * count from the majority voting, it also counts the bytes written for the
618 * current wb and the last round's winner wb (max of last round's current
619 * wb, the winner from two rounds ago, and the last round's majority
620 * candidate). Keeping track of the historical winner helps the algorithm
621 * to semi-reliably detect the most active writer even when it's not the
622 * absolute majority.
623 *
624 * Once the winner of the round is determined, whether the winner is
625 * foreign or not and how much IO time the round consumed is recorded in
626 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
627 * over a certain threshold, the switch verdict is given.
628 */
629 void wbc_detach_inode(struct writeback_control *wbc)
630 {
631 struct bdi_writeback *wb = wbc->wb;
632 struct inode *inode = wbc->inode;
633 unsigned long avg_time, max_bytes, max_time;
634 u16 history;
635 int max_id;
636
637 if (!wb)
638 return;
639
640 history = inode->i_wb_frn_history;
641 avg_time = inode->i_wb_frn_avg_time;
642
643 /* pick the winner of this round */
644 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
645 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646 max_id = wbc->wb_id;
647 max_bytes = wbc->wb_bytes;
648 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
649 max_id = wbc->wb_lcand_id;
650 max_bytes = wbc->wb_lcand_bytes;
651 } else {
652 max_id = wbc->wb_tcand_id;
653 max_bytes = wbc->wb_tcand_bytes;
654 }
655
656 /*
657 * Calculate the amount of IO time the winner consumed and fold it
658 * into the running average kept per inode. If the consumed IO
659 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
660 * deciding whether to switch or not. This is to prevent one-off
661 * small dirtiers from skewing the verdict.
662 */
663 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
664 wb->avg_write_bandwidth);
665 if (avg_time)
666 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
667 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668 else
669 avg_time = max_time; /* immediate catch up on first run */
670
671 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
672 int slots;
673
674 /*
675 * The switch verdict is reached if foreign wb's consume
676 * more than a certain proportion of IO time in a
677 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
678 * history mask where each bit represents one sixteenth of
679 * the period. Determine the number of slots to shift into
680 * history from @max_time.
681 */
682 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
683 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684 history <<= slots;
685 if (wbc->wb_id != max_id)
686 history |= (1U << slots) - 1;
687
688 /*
689 * Switch if the current wb isn't the consistent winner.
690 * If there are multiple closely competing dirtiers, the
691 * inode may switch across them repeatedly over time, which
692 * is okay. The main goal is avoiding keeping an inode on
693 * the wrong wb for an extended period of time.
694 */
695 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
696 inode_switch_wbs(inode, max_id);
697 }
698
699 /*
700 * Multiple instances of this function may race to update the
701 * following fields but we don't mind occassional inaccuracies.
702 */
703 inode->i_wb_frn_winner = max_id;
704 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
705 inode->i_wb_frn_history = history;
706
707 wb_put(wbc->wb);
708 wbc->wb = NULL;
709 }
710
711 /**
712 * wbc_account_io - account IO issued during writeback
713 * @wbc: writeback_control of the writeback in progress
714 * @page: page being written out
715 * @bytes: number of bytes being written out
716 *
717 * @bytes from @page are about to written out during the writeback
718 * controlled by @wbc. Keep the book for foreign inode detection. See
719 * wbc_detach_inode().
720 */
721 void wbc_account_io(struct writeback_control *wbc, struct page *page,
722 size_t bytes)
723 {
724 struct cgroup_subsys_state *css;
725 int id;
726
727 /*
728 * pageout() path doesn't attach @wbc to the inode being written
729 * out. This is intentional as we don't want the function to block
730 * behind a slow cgroup. Ultimately, we want pageout() to kick off
731 * regular writeback instead of writing things out itself.
732 */
733 if (!wbc->wb)
734 return;
735
736 css = mem_cgroup_css_from_page(page);
737 /* dead cgroups shouldn't contribute to inode ownership arbitration */
738 if (!(css->flags & CSS_ONLINE))
739 return;
740
741 id = css->id;
742
743 if (id == wbc->wb_id) {
744 wbc->wb_bytes += bytes;
745 return;
746 }
747
748 if (id == wbc->wb_lcand_id)
749 wbc->wb_lcand_bytes += bytes;
750
751 /* Boyer-Moore majority vote algorithm */
752 if (!wbc->wb_tcand_bytes)
753 wbc->wb_tcand_id = id;
754 if (id == wbc->wb_tcand_id)
755 wbc->wb_tcand_bytes += bytes;
756 else
757 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
758 }
759 EXPORT_SYMBOL_GPL(wbc_account_io);
760
761 /**
762 * inode_congested - test whether an inode is congested
763 * @inode: inode to test for congestion (may be NULL)
764 * @cong_bits: mask of WB_[a]sync_congested bits to test
765 *
766 * Tests whether @inode is congested. @cong_bits is the mask of congestion
767 * bits to test and the return value is the mask of set bits.
768 *
769 * If cgroup writeback is enabled for @inode, the congestion state is
770 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
771 * associated with @inode is congested; otherwise, the root wb's congestion
772 * state is used.
773 *
774 * @inode is allowed to be NULL as this function is often called on
775 * mapping->host which is NULL for the swapper space.
776 */
777 int inode_congested(struct inode *inode, int cong_bits)
778 {
779 /*
780 * Once set, ->i_wb never becomes NULL while the inode is alive.
781 * Start transaction iff ->i_wb is visible.
782 */
783 if (inode && inode_to_wb_is_valid(inode)) {
784 struct bdi_writeback *wb;
785 struct wb_lock_cookie lock_cookie = {};
786 bool congested;
787
788 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
789 congested = wb_congested(wb, cong_bits);
790 unlocked_inode_to_wb_end(inode, &lock_cookie);
791 return congested;
792 }
793
794 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
795 }
796 EXPORT_SYMBOL_GPL(inode_congested);
797
798 /**
799 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
800 * @wb: target bdi_writeback to split @nr_pages to
801 * @nr_pages: number of pages to write for the whole bdi
802 *
803 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
804 * relation to the total write bandwidth of all wb's w/ dirty inodes on
805 * @wb->bdi.
806 */
807 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
808 {
809 unsigned long this_bw = wb->avg_write_bandwidth;
810 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
811
812 if (nr_pages == LONG_MAX)
813 return LONG_MAX;
814
815 /*
816 * This may be called on clean wb's and proportional distribution
817 * may not make sense, just use the original @nr_pages in those
818 * cases. In general, we wanna err on the side of writing more.
819 */
820 if (!tot_bw || this_bw >= tot_bw)
821 return nr_pages;
822 else
823 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
824 }
825
826 /**
827 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
828 * @bdi: target backing_dev_info
829 * @base_work: wb_writeback_work to issue
830 * @skip_if_busy: skip wb's which already have writeback in progress
831 *
832 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
833 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
834 * distributed to the busy wbs according to each wb's proportion in the
835 * total active write bandwidth of @bdi.
836 */
837 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
838 struct wb_writeback_work *base_work,
839 bool skip_if_busy)
840 {
841 struct bdi_writeback *last_wb = NULL;
842 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
843 struct bdi_writeback, bdi_node);
844
845 might_sleep();
846 restart:
847 rcu_read_lock();
848 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
849 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
850 struct wb_writeback_work fallback_work;
851 struct wb_writeback_work *work;
852 long nr_pages;
853
854 if (last_wb) {
855 wb_put(last_wb);
856 last_wb = NULL;
857 }
858
859 /* SYNC_ALL writes out I_DIRTY_TIME too */
860 if (!wb_has_dirty_io(wb) &&
861 (base_work->sync_mode == WB_SYNC_NONE ||
862 list_empty(&wb->b_dirty_time)))
863 continue;
864 if (skip_if_busy && writeback_in_progress(wb))
865 continue;
866
867 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
868
869 work = kmalloc(sizeof(*work), GFP_ATOMIC);
870 if (work) {
871 *work = *base_work;
872 work->nr_pages = nr_pages;
873 work->auto_free = 1;
874 wb_queue_work(wb, work);
875 continue;
876 }
877
878 /* alloc failed, execute synchronously using on-stack fallback */
879 work = &fallback_work;
880 *work = *base_work;
881 work->nr_pages = nr_pages;
882 work->auto_free = 0;
883 work->done = &fallback_work_done;
884
885 wb_queue_work(wb, work);
886
887 /*
888 * Pin @wb so that it stays on @bdi->wb_list. This allows
889 * continuing iteration from @wb after dropping and
890 * regrabbing rcu read lock.
891 */
892 wb_get(wb);
893 last_wb = wb;
894
895 rcu_read_unlock();
896 wb_wait_for_completion(bdi, &fallback_work_done);
897 goto restart;
898 }
899 rcu_read_unlock();
900
901 if (last_wb)
902 wb_put(last_wb);
903 }
904
905 /**
906 * cgroup_writeback_umount - flush inode wb switches for umount
907 *
908 * This function is called when a super_block is about to be destroyed and
909 * flushes in-flight inode wb switches. An inode wb switch goes through
910 * RCU and then workqueue, so the two need to be flushed in order to ensure
911 * that all previously scheduled switches are finished. As wb switches are
912 * rare occurrences and synchronize_rcu() can take a while, perform
913 * flushing iff wb switches are in flight.
914 */
915 void cgroup_writeback_umount(void)
916 {
917 if (atomic_read(&isw_nr_in_flight)) {
918 /*
919 * Use rcu_barrier() to wait for all pending callbacks to
920 * ensure that all in-flight wb switches are in the workqueue.
921 */
922 rcu_barrier();
923 flush_workqueue(isw_wq);
924 }
925 }
926
927 static int __init cgroup_writeback_init(void)
928 {
929 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
930 if (!isw_wq)
931 return -ENOMEM;
932 return 0;
933 }
934 fs_initcall(cgroup_writeback_init);
935
936 #else /* CONFIG_CGROUP_WRITEBACK */
937
938 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
939 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
940
941 static struct bdi_writeback *
942 locked_inode_to_wb_and_lock_list(struct inode *inode)
943 __releases(&inode->i_lock)
944 __acquires(&wb->list_lock)
945 {
946 struct bdi_writeback *wb = inode_to_wb(inode);
947
948 spin_unlock(&inode->i_lock);
949 spin_lock(&wb->list_lock);
950 return wb;
951 }
952
953 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
954 __acquires(&wb->list_lock)
955 {
956 struct bdi_writeback *wb = inode_to_wb(inode);
957
958 spin_lock(&wb->list_lock);
959 return wb;
960 }
961
962 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
963 {
964 return nr_pages;
965 }
966
967 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
968 struct wb_writeback_work *base_work,
969 bool skip_if_busy)
970 {
971 might_sleep();
972
973 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
974 base_work->auto_free = 0;
975 wb_queue_work(&bdi->wb, base_work);
976 }
977 }
978
979 #endif /* CONFIG_CGROUP_WRITEBACK */
980
981 /*
982 * Add in the number of potentially dirty inodes, because each inode
983 * write can dirty pagecache in the underlying blockdev.
984 */
985 static unsigned long get_nr_dirty_pages(void)
986 {
987 return global_node_page_state(NR_FILE_DIRTY) +
988 global_node_page_state(NR_UNSTABLE_NFS) +
989 get_nr_dirty_inodes();
990 }
991
992 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
993 {
994 if (!wb_has_dirty_io(wb))
995 return;
996
997 /*
998 * All callers of this function want to start writeback of all
999 * dirty pages. Places like vmscan can call this at a very
1000 * high frequency, causing pointless allocations of tons of
1001 * work items and keeping the flusher threads busy retrieving
1002 * that work. Ensure that we only allow one of them pending and
1003 * inflight at the time.
1004 */
1005 if (test_bit(WB_start_all, &wb->state) ||
1006 test_and_set_bit(WB_start_all, &wb->state))
1007 return;
1008
1009 wb->start_all_reason = reason;
1010 wb_wakeup(wb);
1011 }
1012
1013 /**
1014 * wb_start_background_writeback - start background writeback
1015 * @wb: bdi_writback to write from
1016 *
1017 * Description:
1018 * This makes sure WB_SYNC_NONE background writeback happens. When
1019 * this function returns, it is only guaranteed that for given wb
1020 * some IO is happening if we are over background dirty threshold.
1021 * Caller need not hold sb s_umount semaphore.
1022 */
1023 void wb_start_background_writeback(struct bdi_writeback *wb)
1024 {
1025 /*
1026 * We just wake up the flusher thread. It will perform background
1027 * writeback as soon as there is no other work to do.
1028 */
1029 trace_writeback_wake_background(wb);
1030 wb_wakeup(wb);
1031 }
1032
1033 /*
1034 * Remove the inode from the writeback list it is on.
1035 */
1036 void inode_io_list_del(struct inode *inode)
1037 {
1038 struct bdi_writeback *wb;
1039
1040 wb = inode_to_wb_and_lock_list(inode);
1041 inode_io_list_del_locked(inode, wb);
1042 spin_unlock(&wb->list_lock);
1043 }
1044
1045 /*
1046 * mark an inode as under writeback on the sb
1047 */
1048 void sb_mark_inode_writeback(struct inode *inode)
1049 {
1050 struct super_block *sb = inode->i_sb;
1051 unsigned long flags;
1052
1053 if (list_empty(&inode->i_wb_list)) {
1054 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1055 if (list_empty(&inode->i_wb_list)) {
1056 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1057 trace_sb_mark_inode_writeback(inode);
1058 }
1059 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1060 }
1061 }
1062
1063 /*
1064 * clear an inode as under writeback on the sb
1065 */
1066 void sb_clear_inode_writeback(struct inode *inode)
1067 {
1068 struct super_block *sb = inode->i_sb;
1069 unsigned long flags;
1070
1071 if (!list_empty(&inode->i_wb_list)) {
1072 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1073 if (!list_empty(&inode->i_wb_list)) {
1074 list_del_init(&inode->i_wb_list);
1075 trace_sb_clear_inode_writeback(inode);
1076 }
1077 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1078 }
1079 }
1080
1081 /*
1082 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1083 * furthest end of its superblock's dirty-inode list.
1084 *
1085 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1086 * already the most-recently-dirtied inode on the b_dirty list. If that is
1087 * the case then the inode must have been redirtied while it was being written
1088 * out and we don't reset its dirtied_when.
1089 */
1090 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1091 {
1092 if (!list_empty(&wb->b_dirty)) {
1093 struct inode *tail;
1094
1095 tail = wb_inode(wb->b_dirty.next);
1096 if (time_before(inode->dirtied_when, tail->dirtied_when))
1097 inode->dirtied_when = jiffies;
1098 }
1099 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1100 }
1101
1102 /*
1103 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1104 */
1105 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1106 {
1107 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1108 }
1109
1110 static void inode_sync_complete(struct inode *inode)
1111 {
1112 inode->i_state &= ~I_SYNC;
1113 /* If inode is clean an unused, put it into LRU now... */
1114 inode_add_lru(inode);
1115 /* Waiters must see I_SYNC cleared before being woken up */
1116 smp_mb();
1117 wake_up_bit(&inode->i_state, __I_SYNC);
1118 }
1119
1120 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1121 {
1122 bool ret = time_after(inode->dirtied_when, t);
1123 #ifndef CONFIG_64BIT
1124 /*
1125 * For inodes being constantly redirtied, dirtied_when can get stuck.
1126 * It _appears_ to be in the future, but is actually in distant past.
1127 * This test is necessary to prevent such wrapped-around relative times
1128 * from permanently stopping the whole bdi writeback.
1129 */
1130 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1131 #endif
1132 return ret;
1133 }
1134
1135 #define EXPIRE_DIRTY_ATIME 0x0001
1136
1137 /*
1138 * Move expired (dirtied before work->older_than_this) dirty inodes from
1139 * @delaying_queue to @dispatch_queue.
1140 */
1141 static int move_expired_inodes(struct list_head *delaying_queue,
1142 struct list_head *dispatch_queue,
1143 int flags,
1144 struct wb_writeback_work *work)
1145 {
1146 unsigned long *older_than_this = NULL;
1147 unsigned long expire_time;
1148 LIST_HEAD(tmp);
1149 struct list_head *pos, *node;
1150 struct super_block *sb = NULL;
1151 struct inode *inode;
1152 int do_sb_sort = 0;
1153 int moved = 0;
1154
1155 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1156 older_than_this = work->older_than_this;
1157 else if (!work->for_sync) {
1158 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1159 older_than_this = &expire_time;
1160 }
1161 while (!list_empty(delaying_queue)) {
1162 inode = wb_inode(delaying_queue->prev);
1163 if (older_than_this &&
1164 inode_dirtied_after(inode, *older_than_this))
1165 break;
1166 list_move(&inode->i_io_list, &tmp);
1167 moved++;
1168 if (flags & EXPIRE_DIRTY_ATIME)
1169 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1170 if (sb_is_blkdev_sb(inode->i_sb))
1171 continue;
1172 if (sb && sb != inode->i_sb)
1173 do_sb_sort = 1;
1174 sb = inode->i_sb;
1175 }
1176
1177 /* just one sb in list, splice to dispatch_queue and we're done */
1178 if (!do_sb_sort) {
1179 list_splice(&tmp, dispatch_queue);
1180 goto out;
1181 }
1182
1183 /* Move inodes from one superblock together */
1184 while (!list_empty(&tmp)) {
1185 sb = wb_inode(tmp.prev)->i_sb;
1186 list_for_each_prev_safe(pos, node, &tmp) {
1187 inode = wb_inode(pos);
1188 if (inode->i_sb == sb)
1189 list_move(&inode->i_io_list, dispatch_queue);
1190 }
1191 }
1192 out:
1193 return moved;
1194 }
1195
1196 /*
1197 * Queue all expired dirty inodes for io, eldest first.
1198 * Before
1199 * newly dirtied b_dirty b_io b_more_io
1200 * =============> gf edc BA
1201 * After
1202 * newly dirtied b_dirty b_io b_more_io
1203 * =============> g fBAedc
1204 * |
1205 * +--> dequeue for IO
1206 */
1207 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1208 {
1209 int moved;
1210
1211 assert_spin_locked(&wb->list_lock);
1212 list_splice_init(&wb->b_more_io, &wb->b_io);
1213 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1214 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1215 EXPIRE_DIRTY_ATIME, work);
1216 if (moved)
1217 wb_io_lists_populated(wb);
1218 trace_writeback_queue_io(wb, work, moved);
1219 }
1220
1221 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1222 {
1223 int ret;
1224
1225 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1226 trace_writeback_write_inode_start(inode, wbc);
1227 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1228 trace_writeback_write_inode(inode, wbc);
1229 return ret;
1230 }
1231 return 0;
1232 }
1233
1234 /*
1235 * Wait for writeback on an inode to complete. Called with i_lock held.
1236 * Caller must make sure inode cannot go away when we drop i_lock.
1237 */
1238 static void __inode_wait_for_writeback(struct inode *inode)
1239 __releases(inode->i_lock)
1240 __acquires(inode->i_lock)
1241 {
1242 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1243 wait_queue_head_t *wqh;
1244
1245 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1246 while (inode->i_state & I_SYNC) {
1247 spin_unlock(&inode->i_lock);
1248 __wait_on_bit(wqh, &wq, bit_wait,
1249 TASK_UNINTERRUPTIBLE);
1250 spin_lock(&inode->i_lock);
1251 }
1252 }
1253
1254 /*
1255 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1256 */
1257 void inode_wait_for_writeback(struct inode *inode)
1258 {
1259 spin_lock(&inode->i_lock);
1260 __inode_wait_for_writeback(inode);
1261 spin_unlock(&inode->i_lock);
1262 }
1263
1264 /*
1265 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1266 * held and drops it. It is aimed for callers not holding any inode reference
1267 * so once i_lock is dropped, inode can go away.
1268 */
1269 static void inode_sleep_on_writeback(struct inode *inode)
1270 __releases(inode->i_lock)
1271 {
1272 DEFINE_WAIT(wait);
1273 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1274 int sleep;
1275
1276 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1277 sleep = inode->i_state & I_SYNC;
1278 spin_unlock(&inode->i_lock);
1279 if (sleep)
1280 schedule();
1281 finish_wait(wqh, &wait);
1282 }
1283
1284 /*
1285 * Find proper writeback list for the inode depending on its current state and
1286 * possibly also change of its state while we were doing writeback. Here we
1287 * handle things such as livelock prevention or fairness of writeback among
1288 * inodes. This function can be called only by flusher thread - noone else
1289 * processes all inodes in writeback lists and requeueing inodes behind flusher
1290 * thread's back can have unexpected consequences.
1291 */
1292 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1293 struct writeback_control *wbc)
1294 {
1295 if (inode->i_state & I_FREEING)
1296 return;
1297
1298 /*
1299 * Sync livelock prevention. Each inode is tagged and synced in one
1300 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1301 * the dirty time to prevent enqueue and sync it again.
1302 */
1303 if ((inode->i_state & I_DIRTY) &&
1304 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1305 inode->dirtied_when = jiffies;
1306
1307 if (wbc->pages_skipped) {
1308 /*
1309 * writeback is not making progress due to locked
1310 * buffers. Skip this inode for now.
1311 */
1312 redirty_tail(inode, wb);
1313 return;
1314 }
1315
1316 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1317 /*
1318 * We didn't write back all the pages. nfs_writepages()
1319 * sometimes bales out without doing anything.
1320 */
1321 if (wbc->nr_to_write <= 0) {
1322 /* Slice used up. Queue for next turn. */
1323 requeue_io(inode, wb);
1324 } else {
1325 /*
1326 * Writeback blocked by something other than
1327 * congestion. Delay the inode for some time to
1328 * avoid spinning on the CPU (100% iowait)
1329 * retrying writeback of the dirty page/inode
1330 * that cannot be performed immediately.
1331 */
1332 redirty_tail(inode, wb);
1333 }
1334 } else if (inode->i_state & I_DIRTY) {
1335 /*
1336 * Filesystems can dirty the inode during writeback operations,
1337 * such as delayed allocation during submission or metadata
1338 * updates after data IO completion.
1339 */
1340 redirty_tail(inode, wb);
1341 } else if (inode->i_state & I_DIRTY_TIME) {
1342 inode->dirtied_when = jiffies;
1343 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1344 } else {
1345 /* The inode is clean. Remove from writeback lists. */
1346 inode_io_list_del_locked(inode, wb);
1347 }
1348 }
1349
1350 /*
1351 * Write out an inode and its dirty pages. Do not update the writeback list
1352 * linkage. That is left to the caller. The caller is also responsible for
1353 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1354 */
1355 static int
1356 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1357 {
1358 struct address_space *mapping = inode->i_mapping;
1359 long nr_to_write = wbc->nr_to_write;
1360 unsigned dirty;
1361 int ret;
1362
1363 WARN_ON(!(inode->i_state & I_SYNC));
1364
1365 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1366
1367 ret = do_writepages(mapping, wbc);
1368
1369 /*
1370 * Make sure to wait on the data before writing out the metadata.
1371 * This is important for filesystems that modify metadata on data
1372 * I/O completion. We don't do it for sync(2) writeback because it has a
1373 * separate, external IO completion path and ->sync_fs for guaranteeing
1374 * inode metadata is written back correctly.
1375 */
1376 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1377 int err = filemap_fdatawait(mapping);
1378 if (ret == 0)
1379 ret = err;
1380 }
1381
1382 /*
1383 * Some filesystems may redirty the inode during the writeback
1384 * due to delalloc, clear dirty metadata flags right before
1385 * write_inode()
1386 */
1387 spin_lock(&inode->i_lock);
1388
1389 dirty = inode->i_state & I_DIRTY;
1390 if (inode->i_state & I_DIRTY_TIME) {
1391 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1392 wbc->sync_mode == WB_SYNC_ALL ||
1393 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1394 unlikely(time_after(jiffies,
1395 (inode->dirtied_time_when +
1396 dirtytime_expire_interval * HZ)))) {
1397 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1398 trace_writeback_lazytime(inode);
1399 }
1400 } else
1401 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1402 inode->i_state &= ~dirty;
1403
1404 /*
1405 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1406 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1407 * either they see the I_DIRTY bits cleared or we see the dirtied
1408 * inode.
1409 *
1410 * I_DIRTY_PAGES is always cleared together above even if @mapping
1411 * still has dirty pages. The flag is reinstated after smp_mb() if
1412 * necessary. This guarantees that either __mark_inode_dirty()
1413 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1414 */
1415 smp_mb();
1416
1417 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1418 inode->i_state |= I_DIRTY_PAGES;
1419
1420 spin_unlock(&inode->i_lock);
1421
1422 if (dirty & I_DIRTY_TIME)
1423 mark_inode_dirty_sync(inode);
1424 /* Don't write the inode if only I_DIRTY_PAGES was set */
1425 if (dirty & ~I_DIRTY_PAGES) {
1426 int err = write_inode(inode, wbc);
1427 if (ret == 0)
1428 ret = err;
1429 }
1430 trace_writeback_single_inode(inode, wbc, nr_to_write);
1431 return ret;
1432 }
1433
1434 /*
1435 * Write out an inode's dirty pages. Either the caller has an active reference
1436 * on the inode or the inode has I_WILL_FREE set.
1437 *
1438 * This function is designed to be called for writing back one inode which
1439 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1440 * and does more profound writeback list handling in writeback_sb_inodes().
1441 */
1442 static int writeback_single_inode(struct inode *inode,
1443 struct writeback_control *wbc)
1444 {
1445 struct bdi_writeback *wb;
1446 int ret = 0;
1447
1448 spin_lock(&inode->i_lock);
1449 if (!atomic_read(&inode->i_count))
1450 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1451 else
1452 WARN_ON(inode->i_state & I_WILL_FREE);
1453
1454 if (inode->i_state & I_SYNC) {
1455 if (wbc->sync_mode != WB_SYNC_ALL)
1456 goto out;
1457 /*
1458 * It's a data-integrity sync. We must wait. Since callers hold
1459 * inode reference or inode has I_WILL_FREE set, it cannot go
1460 * away under us.
1461 */
1462 __inode_wait_for_writeback(inode);
1463 }
1464 WARN_ON(inode->i_state & I_SYNC);
1465 /*
1466 * Skip inode if it is clean and we have no outstanding writeback in
1467 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1468 * function since flusher thread may be doing for example sync in
1469 * parallel and if we move the inode, it could get skipped. So here we
1470 * make sure inode is on some writeback list and leave it there unless
1471 * we have completely cleaned the inode.
1472 */
1473 if (!(inode->i_state & I_DIRTY_ALL) &&
1474 (wbc->sync_mode != WB_SYNC_ALL ||
1475 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1476 goto out;
1477 inode->i_state |= I_SYNC;
1478 wbc_attach_and_unlock_inode(wbc, inode);
1479
1480 ret = __writeback_single_inode(inode, wbc);
1481
1482 wbc_detach_inode(wbc);
1483
1484 wb = inode_to_wb_and_lock_list(inode);
1485 spin_lock(&inode->i_lock);
1486 /*
1487 * If inode is clean, remove it from writeback lists. Otherwise don't
1488 * touch it. See comment above for explanation.
1489 */
1490 if (!(inode->i_state & I_DIRTY_ALL))
1491 inode_io_list_del_locked(inode, wb);
1492 spin_unlock(&wb->list_lock);
1493 inode_sync_complete(inode);
1494 out:
1495 spin_unlock(&inode->i_lock);
1496 return ret;
1497 }
1498
1499 static long writeback_chunk_size(struct bdi_writeback *wb,
1500 struct wb_writeback_work *work)
1501 {
1502 long pages;
1503
1504 /*
1505 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1506 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1507 * here avoids calling into writeback_inodes_wb() more than once.
1508 *
1509 * The intended call sequence for WB_SYNC_ALL writeback is:
1510 *
1511 * wb_writeback()
1512 * writeback_sb_inodes() <== called only once
1513 * write_cache_pages() <== called once for each inode
1514 * (quickly) tag currently dirty pages
1515 * (maybe slowly) sync all tagged pages
1516 */
1517 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1518 pages = LONG_MAX;
1519 else {
1520 pages = min(wb->avg_write_bandwidth / 2,
1521 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1522 pages = min(pages, work->nr_pages);
1523 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1524 MIN_WRITEBACK_PAGES);
1525 }
1526
1527 return pages;
1528 }
1529
1530 /*
1531 * Write a portion of b_io inodes which belong to @sb.
1532 *
1533 * Return the number of pages and/or inodes written.
1534 *
1535 * NOTE! This is called with wb->list_lock held, and will
1536 * unlock and relock that for each inode it ends up doing
1537 * IO for.
1538 */
1539 static long writeback_sb_inodes(struct super_block *sb,
1540 struct bdi_writeback *wb,
1541 struct wb_writeback_work *work)
1542 {
1543 struct writeback_control wbc = {
1544 .sync_mode = work->sync_mode,
1545 .tagged_writepages = work->tagged_writepages,
1546 .for_kupdate = work->for_kupdate,
1547 .for_background = work->for_background,
1548 .for_sync = work->for_sync,
1549 .range_cyclic = work->range_cyclic,
1550 .range_start = 0,
1551 .range_end = LLONG_MAX,
1552 };
1553 unsigned long start_time = jiffies;
1554 long write_chunk;
1555 long wrote = 0; /* count both pages and inodes */
1556
1557 while (!list_empty(&wb->b_io)) {
1558 struct inode *inode = wb_inode(wb->b_io.prev);
1559 struct bdi_writeback *tmp_wb;
1560
1561 if (inode->i_sb != sb) {
1562 if (work->sb) {
1563 /*
1564 * We only want to write back data for this
1565 * superblock, move all inodes not belonging
1566 * to it back onto the dirty list.
1567 */
1568 redirty_tail(inode, wb);
1569 continue;
1570 }
1571
1572 /*
1573 * The inode belongs to a different superblock.
1574 * Bounce back to the caller to unpin this and
1575 * pin the next superblock.
1576 */
1577 break;
1578 }
1579
1580 /*
1581 * Don't bother with new inodes or inodes being freed, first
1582 * kind does not need periodic writeout yet, and for the latter
1583 * kind writeout is handled by the freer.
1584 */
1585 spin_lock(&inode->i_lock);
1586 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1587 spin_unlock(&inode->i_lock);
1588 redirty_tail(inode, wb);
1589 continue;
1590 }
1591 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1592 /*
1593 * If this inode is locked for writeback and we are not
1594 * doing writeback-for-data-integrity, move it to
1595 * b_more_io so that writeback can proceed with the
1596 * other inodes on s_io.
1597 *
1598 * We'll have another go at writing back this inode
1599 * when we completed a full scan of b_io.
1600 */
1601 spin_unlock(&inode->i_lock);
1602 requeue_io(inode, wb);
1603 trace_writeback_sb_inodes_requeue(inode);
1604 continue;
1605 }
1606 spin_unlock(&wb->list_lock);
1607
1608 /*
1609 * We already requeued the inode if it had I_SYNC set and we
1610 * are doing WB_SYNC_NONE writeback. So this catches only the
1611 * WB_SYNC_ALL case.
1612 */
1613 if (inode->i_state & I_SYNC) {
1614 /* Wait for I_SYNC. This function drops i_lock... */
1615 inode_sleep_on_writeback(inode);
1616 /* Inode may be gone, start again */
1617 spin_lock(&wb->list_lock);
1618 continue;
1619 }
1620 inode->i_state |= I_SYNC;
1621 wbc_attach_and_unlock_inode(&wbc, inode);
1622
1623 write_chunk = writeback_chunk_size(wb, work);
1624 wbc.nr_to_write = write_chunk;
1625 wbc.pages_skipped = 0;
1626
1627 /*
1628 * We use I_SYNC to pin the inode in memory. While it is set
1629 * evict_inode() will wait so the inode cannot be freed.
1630 */
1631 __writeback_single_inode(inode, &wbc);
1632
1633 wbc_detach_inode(&wbc);
1634 work->nr_pages -= write_chunk - wbc.nr_to_write;
1635 wrote += write_chunk - wbc.nr_to_write;
1636
1637 if (need_resched()) {
1638 /*
1639 * We're trying to balance between building up a nice
1640 * long list of IOs to improve our merge rate, and
1641 * getting those IOs out quickly for anyone throttling
1642 * in balance_dirty_pages(). cond_resched() doesn't
1643 * unplug, so get our IOs out the door before we
1644 * give up the CPU.
1645 */
1646 blk_flush_plug(current);
1647 cond_resched();
1648 }
1649
1650 /*
1651 * Requeue @inode if still dirty. Be careful as @inode may
1652 * have been switched to another wb in the meantime.
1653 */
1654 tmp_wb = inode_to_wb_and_lock_list(inode);
1655 spin_lock(&inode->i_lock);
1656 if (!(inode->i_state & I_DIRTY_ALL))
1657 wrote++;
1658 requeue_inode(inode, tmp_wb, &wbc);
1659 inode_sync_complete(inode);
1660 spin_unlock(&inode->i_lock);
1661
1662 if (unlikely(tmp_wb != wb)) {
1663 spin_unlock(&tmp_wb->list_lock);
1664 spin_lock(&wb->list_lock);
1665 }
1666
1667 /*
1668 * bail out to wb_writeback() often enough to check
1669 * background threshold and other termination conditions.
1670 */
1671 if (wrote) {
1672 if (time_is_before_jiffies(start_time + HZ / 10UL))
1673 break;
1674 if (work->nr_pages <= 0)
1675 break;
1676 }
1677 }
1678 return wrote;
1679 }
1680
1681 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1682 struct wb_writeback_work *work)
1683 {
1684 unsigned long start_time = jiffies;
1685 long wrote = 0;
1686
1687 while (!list_empty(&wb->b_io)) {
1688 struct inode *inode = wb_inode(wb->b_io.prev);
1689 struct super_block *sb = inode->i_sb;
1690
1691 if (!trylock_super(sb)) {
1692 /*
1693 * trylock_super() may fail consistently due to
1694 * s_umount being grabbed by someone else. Don't use
1695 * requeue_io() to avoid busy retrying the inode/sb.
1696 */
1697 redirty_tail(inode, wb);
1698 continue;
1699 }
1700 wrote += writeback_sb_inodes(sb, wb, work);
1701 up_read(&sb->s_umount);
1702
1703 /* refer to the same tests at the end of writeback_sb_inodes */
1704 if (wrote) {
1705 if (time_is_before_jiffies(start_time + HZ / 10UL))
1706 break;
1707 if (work->nr_pages <= 0)
1708 break;
1709 }
1710 }
1711 /* Leave any unwritten inodes on b_io */
1712 return wrote;
1713 }
1714
1715 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1716 enum wb_reason reason)
1717 {
1718 struct wb_writeback_work work = {
1719 .nr_pages = nr_pages,
1720 .sync_mode = WB_SYNC_NONE,
1721 .range_cyclic = 1,
1722 .reason = reason,
1723 };
1724 struct blk_plug plug;
1725
1726 blk_start_plug(&plug);
1727 spin_lock(&wb->list_lock);
1728 if (list_empty(&wb->b_io))
1729 queue_io(wb, &work);
1730 __writeback_inodes_wb(wb, &work);
1731 spin_unlock(&wb->list_lock);
1732 blk_finish_plug(&plug);
1733
1734 return nr_pages - work.nr_pages;
1735 }
1736
1737 /*
1738 * Explicit flushing or periodic writeback of "old" data.
1739 *
1740 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1741 * dirtying-time in the inode's address_space. So this periodic writeback code
1742 * just walks the superblock inode list, writing back any inodes which are
1743 * older than a specific point in time.
1744 *
1745 * Try to run once per dirty_writeback_interval. But if a writeback event
1746 * takes longer than a dirty_writeback_interval interval, then leave a
1747 * one-second gap.
1748 *
1749 * older_than_this takes precedence over nr_to_write. So we'll only write back
1750 * all dirty pages if they are all attached to "old" mappings.
1751 */
1752 static long wb_writeback(struct bdi_writeback *wb,
1753 struct wb_writeback_work *work)
1754 {
1755 unsigned long wb_start = jiffies;
1756 long nr_pages = work->nr_pages;
1757 unsigned long oldest_jif;
1758 struct inode *inode;
1759 long progress;
1760 struct blk_plug plug;
1761
1762 oldest_jif = jiffies;
1763 work->older_than_this = &oldest_jif;
1764
1765 blk_start_plug(&plug);
1766 spin_lock(&wb->list_lock);
1767 for (;;) {
1768 /*
1769 * Stop writeback when nr_pages has been consumed
1770 */
1771 if (work->nr_pages <= 0)
1772 break;
1773
1774 /*
1775 * Background writeout and kupdate-style writeback may
1776 * run forever. Stop them if there is other work to do
1777 * so that e.g. sync can proceed. They'll be restarted
1778 * after the other works are all done.
1779 */
1780 if ((work->for_background || work->for_kupdate) &&
1781 !list_empty(&wb->work_list))
1782 break;
1783
1784 /*
1785 * For background writeout, stop when we are below the
1786 * background dirty threshold
1787 */
1788 if (work->for_background && !wb_over_bg_thresh(wb))
1789 break;
1790
1791 /*
1792 * Kupdate and background works are special and we want to
1793 * include all inodes that need writing. Livelock avoidance is
1794 * handled by these works yielding to any other work so we are
1795 * safe.
1796 */
1797 if (work->for_kupdate) {
1798 oldest_jif = jiffies -
1799 msecs_to_jiffies(dirty_expire_interval * 10);
1800 } else if (work->for_background)
1801 oldest_jif = jiffies;
1802
1803 trace_writeback_start(wb, work);
1804 if (list_empty(&wb->b_io))
1805 queue_io(wb, work);
1806 if (work->sb)
1807 progress = writeback_sb_inodes(work->sb, wb, work);
1808 else
1809 progress = __writeback_inodes_wb(wb, work);
1810 trace_writeback_written(wb, work);
1811
1812 wb_update_bandwidth(wb, wb_start);
1813
1814 /*
1815 * Did we write something? Try for more
1816 *
1817 * Dirty inodes are moved to b_io for writeback in batches.
1818 * The completion of the current batch does not necessarily
1819 * mean the overall work is done. So we keep looping as long
1820 * as made some progress on cleaning pages or inodes.
1821 */
1822 if (progress)
1823 continue;
1824 /*
1825 * No more inodes for IO, bail
1826 */
1827 if (list_empty(&wb->b_more_io))
1828 break;
1829 /*
1830 * Nothing written. Wait for some inode to
1831 * become available for writeback. Otherwise
1832 * we'll just busyloop.
1833 */
1834 trace_writeback_wait(wb, work);
1835 inode = wb_inode(wb->b_more_io.prev);
1836 spin_lock(&inode->i_lock);
1837 spin_unlock(&wb->list_lock);
1838 /* This function drops i_lock... */
1839 inode_sleep_on_writeback(inode);
1840 spin_lock(&wb->list_lock);
1841 }
1842 spin_unlock(&wb->list_lock);
1843 blk_finish_plug(&plug);
1844
1845 return nr_pages - work->nr_pages;
1846 }
1847
1848 /*
1849 * Return the next wb_writeback_work struct that hasn't been processed yet.
1850 */
1851 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1852 {
1853 struct wb_writeback_work *work = NULL;
1854
1855 spin_lock_bh(&wb->work_lock);
1856 if (!list_empty(&wb->work_list)) {
1857 work = list_entry(wb->work_list.next,
1858 struct wb_writeback_work, list);
1859 list_del_init(&work->list);
1860 }
1861 spin_unlock_bh(&wb->work_lock);
1862 return work;
1863 }
1864
1865 static long wb_check_background_flush(struct bdi_writeback *wb)
1866 {
1867 if (wb_over_bg_thresh(wb)) {
1868
1869 struct wb_writeback_work work = {
1870 .nr_pages = LONG_MAX,
1871 .sync_mode = WB_SYNC_NONE,
1872 .for_background = 1,
1873 .range_cyclic = 1,
1874 .reason = WB_REASON_BACKGROUND,
1875 };
1876
1877 return wb_writeback(wb, &work);
1878 }
1879
1880 return 0;
1881 }
1882
1883 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1884 {
1885 unsigned long expired;
1886 long nr_pages;
1887
1888 /*
1889 * When set to zero, disable periodic writeback
1890 */
1891 if (!dirty_writeback_interval)
1892 return 0;
1893
1894 expired = wb->last_old_flush +
1895 msecs_to_jiffies(dirty_writeback_interval * 10);
1896 if (time_before(jiffies, expired))
1897 return 0;
1898
1899 wb->last_old_flush = jiffies;
1900 nr_pages = get_nr_dirty_pages();
1901
1902 if (nr_pages) {
1903 struct wb_writeback_work work = {
1904 .nr_pages = nr_pages,
1905 .sync_mode = WB_SYNC_NONE,
1906 .for_kupdate = 1,
1907 .range_cyclic = 1,
1908 .reason = WB_REASON_PERIODIC,
1909 };
1910
1911 return wb_writeback(wb, &work);
1912 }
1913
1914 return 0;
1915 }
1916
1917 static long wb_check_start_all(struct bdi_writeback *wb)
1918 {
1919 long nr_pages;
1920
1921 if (!test_bit(WB_start_all, &wb->state))
1922 return 0;
1923
1924 nr_pages = get_nr_dirty_pages();
1925 if (nr_pages) {
1926 struct wb_writeback_work work = {
1927 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1928 .sync_mode = WB_SYNC_NONE,
1929 .range_cyclic = 1,
1930 .reason = wb->start_all_reason,
1931 };
1932
1933 nr_pages = wb_writeback(wb, &work);
1934 }
1935
1936 clear_bit(WB_start_all, &wb->state);
1937 return nr_pages;
1938 }
1939
1940
1941 /*
1942 * Retrieve work items and do the writeback they describe
1943 */
1944 static long wb_do_writeback(struct bdi_writeback *wb)
1945 {
1946 struct wb_writeback_work *work;
1947 long wrote = 0;
1948
1949 set_bit(WB_writeback_running, &wb->state);
1950 while ((work = get_next_work_item(wb)) != NULL) {
1951 trace_writeback_exec(wb, work);
1952 wrote += wb_writeback(wb, work);
1953 finish_writeback_work(wb, work);
1954 }
1955
1956 /*
1957 * Check for a flush-everything request
1958 */
1959 wrote += wb_check_start_all(wb);
1960
1961 /*
1962 * Check for periodic writeback, kupdated() style
1963 */
1964 wrote += wb_check_old_data_flush(wb);
1965 wrote += wb_check_background_flush(wb);
1966 clear_bit(WB_writeback_running, &wb->state);
1967
1968 return wrote;
1969 }
1970
1971 /*
1972 * Handle writeback of dirty data for the device backed by this bdi. Also
1973 * reschedules periodically and does kupdated style flushing.
1974 */
1975 void wb_workfn(struct work_struct *work)
1976 {
1977 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1978 struct bdi_writeback, dwork);
1979 long pages_written;
1980
1981 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1982 current->flags |= PF_SWAPWRITE;
1983
1984 if (likely(!current_is_workqueue_rescuer() ||
1985 !test_bit(WB_registered, &wb->state))) {
1986 /*
1987 * The normal path. Keep writing back @wb until its
1988 * work_list is empty. Note that this path is also taken
1989 * if @wb is shutting down even when we're running off the
1990 * rescuer as work_list needs to be drained.
1991 */
1992 do {
1993 pages_written = wb_do_writeback(wb);
1994 trace_writeback_pages_written(pages_written);
1995 } while (!list_empty(&wb->work_list));
1996 } else {
1997 /*
1998 * bdi_wq can't get enough workers and we're running off
1999 * the emergency worker. Don't hog it. Hopefully, 1024 is
2000 * enough for efficient IO.
2001 */
2002 pages_written = writeback_inodes_wb(wb, 1024,
2003 WB_REASON_FORKER_THREAD);
2004 trace_writeback_pages_written(pages_written);
2005 }
2006
2007 if (!list_empty(&wb->work_list))
2008 wb_wakeup(wb);
2009 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2010 wb_wakeup_delayed(wb);
2011
2012 current->flags &= ~PF_SWAPWRITE;
2013 }
2014
2015 /*
2016 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2017 * write back the whole world.
2018 */
2019 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2020 enum wb_reason reason)
2021 {
2022 struct bdi_writeback *wb;
2023
2024 if (!bdi_has_dirty_io(bdi))
2025 return;
2026
2027 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2028 wb_start_writeback(wb, reason);
2029 }
2030
2031 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2032 enum wb_reason reason)
2033 {
2034 rcu_read_lock();
2035 __wakeup_flusher_threads_bdi(bdi, reason);
2036 rcu_read_unlock();
2037 }
2038
2039 /*
2040 * Wakeup the flusher threads to start writeback of all currently dirty pages
2041 */
2042 void wakeup_flusher_threads(enum wb_reason reason)
2043 {
2044 struct backing_dev_info *bdi;
2045
2046 /*
2047 * If we are expecting writeback progress we must submit plugged IO.
2048 */
2049 if (blk_needs_flush_plug(current))
2050 blk_schedule_flush_plug(current);
2051
2052 rcu_read_lock();
2053 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2054 __wakeup_flusher_threads_bdi(bdi, reason);
2055 rcu_read_unlock();
2056 }
2057
2058 /*
2059 * Wake up bdi's periodically to make sure dirtytime inodes gets
2060 * written back periodically. We deliberately do *not* check the
2061 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2062 * kernel to be constantly waking up once there are any dirtytime
2063 * inodes on the system. So instead we define a separate delayed work
2064 * function which gets called much more rarely. (By default, only
2065 * once every 12 hours.)
2066 *
2067 * If there is any other write activity going on in the file system,
2068 * this function won't be necessary. But if the only thing that has
2069 * happened on the file system is a dirtytime inode caused by an atime
2070 * update, we need this infrastructure below to make sure that inode
2071 * eventually gets pushed out to disk.
2072 */
2073 static void wakeup_dirtytime_writeback(struct work_struct *w);
2074 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2075
2076 static void wakeup_dirtytime_writeback(struct work_struct *w)
2077 {
2078 struct backing_dev_info *bdi;
2079
2080 rcu_read_lock();
2081 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2082 struct bdi_writeback *wb;
2083
2084 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2085 if (!list_empty(&wb->b_dirty_time))
2086 wb_wakeup(wb);
2087 }
2088 rcu_read_unlock();
2089 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2090 }
2091
2092 static int __init start_dirtytime_writeback(void)
2093 {
2094 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2095 return 0;
2096 }
2097 __initcall(start_dirtytime_writeback);
2098
2099 int dirtytime_interval_handler(struct ctl_table *table, int write,
2100 void __user *buffer, size_t *lenp, loff_t *ppos)
2101 {
2102 int ret;
2103
2104 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2105 if (ret == 0 && write)
2106 mod_delayed_work(system_wq, &dirtytime_work, 0);
2107 return ret;
2108 }
2109
2110 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2111 {
2112 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2113 struct dentry *dentry;
2114 const char *name = "?";
2115
2116 dentry = d_find_alias(inode);
2117 if (dentry) {
2118 spin_lock(&dentry->d_lock);
2119 name = (const char *) dentry->d_name.name;
2120 }
2121 printk(KERN_DEBUG
2122 "%s(%d): dirtied inode %lu (%s) on %s\n",
2123 current->comm, task_pid_nr(current), inode->i_ino,
2124 name, inode->i_sb->s_id);
2125 if (dentry) {
2126 spin_unlock(&dentry->d_lock);
2127 dput(dentry);
2128 }
2129 }
2130 }
2131
2132 /**
2133 * __mark_inode_dirty - internal function
2134 *
2135 * @inode: inode to mark
2136 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2137 *
2138 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2139 * mark_inode_dirty_sync.
2140 *
2141 * Put the inode on the super block's dirty list.
2142 *
2143 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2144 * dirty list only if it is hashed or if it refers to a blockdev.
2145 * If it was not hashed, it will never be added to the dirty list
2146 * even if it is later hashed, as it will have been marked dirty already.
2147 *
2148 * In short, make sure you hash any inodes _before_ you start marking
2149 * them dirty.
2150 *
2151 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2152 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2153 * the kernel-internal blockdev inode represents the dirtying time of the
2154 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2155 * page->mapping->host, so the page-dirtying time is recorded in the internal
2156 * blockdev inode.
2157 */
2158 void __mark_inode_dirty(struct inode *inode, int flags)
2159 {
2160 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2161 struct super_block *sb = inode->i_sb;
2162 int dirtytime;
2163
2164 trace_writeback_mark_inode_dirty(inode, flags);
2165
2166 /*
2167 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2168 * dirty the inode itself
2169 */
2170 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2171 trace_writeback_dirty_inode_start(inode, flags);
2172
2173 if (sb->s_op->dirty_inode)
2174 sb->s_op->dirty_inode(inode, flags);
2175
2176 trace_writeback_dirty_inode(inode, flags);
2177 }
2178 if (flags & I_DIRTY_INODE)
2179 flags &= ~I_DIRTY_TIME;
2180 dirtytime = flags & I_DIRTY_TIME;
2181
2182 /*
2183 * Paired with smp_mb() in __writeback_single_inode() for the
2184 * following lockless i_state test. See there for details.
2185 */
2186 smp_mb();
2187
2188 if (((inode->i_state & flags) == flags) ||
2189 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2190 return;
2191
2192 if (unlikely(block_dump))
2193 block_dump___mark_inode_dirty(inode);
2194
2195 spin_lock(&inode->i_lock);
2196 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2197 goto out_unlock_inode;
2198 if ((inode->i_state & flags) != flags) {
2199 const int was_dirty = inode->i_state & I_DIRTY;
2200
2201 inode_attach_wb(inode, NULL);
2202
2203 if (flags & I_DIRTY_INODE)
2204 inode->i_state &= ~I_DIRTY_TIME;
2205 inode->i_state |= flags;
2206
2207 /*
2208 * If the inode is being synced, just update its dirty state.
2209 * The unlocker will place the inode on the appropriate
2210 * superblock list, based upon its state.
2211 */
2212 if (inode->i_state & I_SYNC)
2213 goto out_unlock_inode;
2214
2215 /*
2216 * Only add valid (hashed) inodes to the superblock's
2217 * dirty list. Add blockdev inodes as well.
2218 */
2219 if (!S_ISBLK(inode->i_mode)) {
2220 if (inode_unhashed(inode))
2221 goto out_unlock_inode;
2222 }
2223 if (inode->i_state & I_FREEING)
2224 goto out_unlock_inode;
2225
2226 /*
2227 * If the inode was already on b_dirty/b_io/b_more_io, don't
2228 * reposition it (that would break b_dirty time-ordering).
2229 */
2230 if (!was_dirty) {
2231 struct bdi_writeback *wb;
2232 struct list_head *dirty_list;
2233 bool wakeup_bdi = false;
2234
2235 wb = locked_inode_to_wb_and_lock_list(inode);
2236
2237 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2238 !test_bit(WB_registered, &wb->state),
2239 "bdi-%s not registered\n", wb->bdi->name);
2240
2241 inode->dirtied_when = jiffies;
2242 if (dirtytime)
2243 inode->dirtied_time_when = jiffies;
2244
2245 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2246 dirty_list = &wb->b_dirty;
2247 else
2248 dirty_list = &wb->b_dirty_time;
2249
2250 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2251 dirty_list);
2252
2253 spin_unlock(&wb->list_lock);
2254 trace_writeback_dirty_inode_enqueue(inode);
2255
2256 /*
2257 * If this is the first dirty inode for this bdi,
2258 * we have to wake-up the corresponding bdi thread
2259 * to make sure background write-back happens
2260 * later.
2261 */
2262 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2263 wb_wakeup_delayed(wb);
2264 return;
2265 }
2266 }
2267 out_unlock_inode:
2268 spin_unlock(&inode->i_lock);
2269
2270 #undef I_DIRTY_INODE
2271 }
2272 EXPORT_SYMBOL(__mark_inode_dirty);
2273
2274 /*
2275 * The @s_sync_lock is used to serialise concurrent sync operations
2276 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2277 * Concurrent callers will block on the s_sync_lock rather than doing contending
2278 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2279 * has been issued up to the time this function is enter is guaranteed to be
2280 * completed by the time we have gained the lock and waited for all IO that is
2281 * in progress regardless of the order callers are granted the lock.
2282 */
2283 static void wait_sb_inodes(struct super_block *sb)
2284 {
2285 LIST_HEAD(sync_list);
2286
2287 /*
2288 * We need to be protected against the filesystem going from
2289 * r/o to r/w or vice versa.
2290 */
2291 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2292
2293 mutex_lock(&sb->s_sync_lock);
2294
2295 /*
2296 * Splice the writeback list onto a temporary list to avoid waiting on
2297 * inodes that have started writeback after this point.
2298 *
2299 * Use rcu_read_lock() to keep the inodes around until we have a
2300 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2301 * the local list because inodes can be dropped from either by writeback
2302 * completion.
2303 */
2304 rcu_read_lock();
2305 spin_lock_irq(&sb->s_inode_wblist_lock);
2306 list_splice_init(&sb->s_inodes_wb, &sync_list);
2307
2308 /*
2309 * Data integrity sync. Must wait for all pages under writeback, because
2310 * there may have been pages dirtied before our sync call, but which had
2311 * writeout started before we write it out. In which case, the inode
2312 * may not be on the dirty list, but we still have to wait for that
2313 * writeout.
2314 */
2315 while (!list_empty(&sync_list)) {
2316 struct inode *inode = list_first_entry(&sync_list, struct inode,
2317 i_wb_list);
2318 struct address_space *mapping = inode->i_mapping;
2319
2320 /*
2321 * Move each inode back to the wb list before we drop the lock
2322 * to preserve consistency between i_wb_list and the mapping
2323 * writeback tag. Writeback completion is responsible to remove
2324 * the inode from either list once the writeback tag is cleared.
2325 */
2326 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2327
2328 /*
2329 * The mapping can appear untagged while still on-list since we
2330 * do not have the mapping lock. Skip it here, wb completion
2331 * will remove it.
2332 */
2333 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2334 continue;
2335
2336 spin_unlock_irq(&sb->s_inode_wblist_lock);
2337
2338 spin_lock(&inode->i_lock);
2339 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2340 spin_unlock(&inode->i_lock);
2341
2342 spin_lock_irq(&sb->s_inode_wblist_lock);
2343 continue;
2344 }
2345 __iget(inode);
2346 spin_unlock(&inode->i_lock);
2347 rcu_read_unlock();
2348
2349 /*
2350 * We keep the error status of individual mapping so that
2351 * applications can catch the writeback error using fsync(2).
2352 * See filemap_fdatawait_keep_errors() for details.
2353 */
2354 filemap_fdatawait_keep_errors(mapping);
2355
2356 cond_resched();
2357
2358 iput(inode);
2359
2360 rcu_read_lock();
2361 spin_lock_irq(&sb->s_inode_wblist_lock);
2362 }
2363 spin_unlock_irq(&sb->s_inode_wblist_lock);
2364 rcu_read_unlock();
2365 mutex_unlock(&sb->s_sync_lock);
2366 }
2367
2368 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2369 enum wb_reason reason, bool skip_if_busy)
2370 {
2371 DEFINE_WB_COMPLETION_ONSTACK(done);
2372 struct wb_writeback_work work = {
2373 .sb = sb,
2374 .sync_mode = WB_SYNC_NONE,
2375 .tagged_writepages = 1,
2376 .done = &done,
2377 .nr_pages = nr,
2378 .reason = reason,
2379 };
2380 struct backing_dev_info *bdi = sb->s_bdi;
2381
2382 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2383 return;
2384 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2385
2386 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2387 wb_wait_for_completion(bdi, &done);
2388 }
2389
2390 /**
2391 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2392 * @sb: the superblock
2393 * @nr: the number of pages to write
2394 * @reason: reason why some writeback work initiated
2395 *
2396 * Start writeback on some inodes on this super_block. No guarantees are made
2397 * on how many (if any) will be written, and this function does not wait
2398 * for IO completion of submitted IO.
2399 */
2400 void writeback_inodes_sb_nr(struct super_block *sb,
2401 unsigned long nr,
2402 enum wb_reason reason)
2403 {
2404 __writeback_inodes_sb_nr(sb, nr, reason, false);
2405 }
2406 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2407
2408 /**
2409 * writeback_inodes_sb - writeback dirty inodes from given super_block
2410 * @sb: the superblock
2411 * @reason: reason why some writeback work was initiated
2412 *
2413 * Start writeback on some inodes on this super_block. No guarantees are made
2414 * on how many (if any) will be written, and this function does not wait
2415 * for IO completion of submitted IO.
2416 */
2417 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2418 {
2419 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2420 }
2421 EXPORT_SYMBOL(writeback_inodes_sb);
2422
2423 /**
2424 * try_to_writeback_inodes_sb - try to start writeback if none underway
2425 * @sb: the superblock
2426 * @reason: reason why some writeback work was initiated
2427 *
2428 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2429 */
2430 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2431 {
2432 if (!down_read_trylock(&sb->s_umount))
2433 return;
2434
2435 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2436 up_read(&sb->s_umount);
2437 }
2438 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2439
2440 /**
2441 * sync_inodes_sb - sync sb inode pages
2442 * @sb: the superblock
2443 *
2444 * This function writes and waits on any dirty inode belonging to this
2445 * super_block.
2446 */
2447 void sync_inodes_sb(struct super_block *sb)
2448 {
2449 DEFINE_WB_COMPLETION_ONSTACK(done);
2450 struct wb_writeback_work work = {
2451 .sb = sb,
2452 .sync_mode = WB_SYNC_ALL,
2453 .nr_pages = LONG_MAX,
2454 .range_cyclic = 0,
2455 .done = &done,
2456 .reason = WB_REASON_SYNC,
2457 .for_sync = 1,
2458 };
2459 struct backing_dev_info *bdi = sb->s_bdi;
2460
2461 /*
2462 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2463 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2464 * bdi_has_dirty() need to be written out too.
2465 */
2466 if (bdi == &noop_backing_dev_info)
2467 return;
2468 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2469
2470 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2471 bdi_down_write_wb_switch_rwsem(bdi);
2472 bdi_split_work_to_wbs(bdi, &work, false);
2473 wb_wait_for_completion(bdi, &done);
2474 bdi_up_write_wb_switch_rwsem(bdi);
2475
2476 wait_sb_inodes(sb);
2477 }
2478 EXPORT_SYMBOL(sync_inodes_sb);
2479
2480 /**
2481 * write_inode_now - write an inode to disk
2482 * @inode: inode to write to disk
2483 * @sync: whether the write should be synchronous or not
2484 *
2485 * This function commits an inode to disk immediately if it is dirty. This is
2486 * primarily needed by knfsd.
2487 *
2488 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2489 */
2490 int write_inode_now(struct inode *inode, int sync)
2491 {
2492 struct writeback_control wbc = {
2493 .nr_to_write = LONG_MAX,
2494 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2495 .range_start = 0,
2496 .range_end = LLONG_MAX,
2497 };
2498
2499 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2500 wbc.nr_to_write = 0;
2501
2502 might_sleep();
2503 return writeback_single_inode(inode, &wbc);
2504 }
2505 EXPORT_SYMBOL(write_inode_now);
2506
2507 /**
2508 * sync_inode - write an inode and its pages to disk.
2509 * @inode: the inode to sync
2510 * @wbc: controls the writeback mode
2511 *
2512 * sync_inode() will write an inode and its pages to disk. It will also
2513 * correctly update the inode on its superblock's dirty inode lists and will
2514 * update inode->i_state.
2515 *
2516 * The caller must have a ref on the inode.
2517 */
2518 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2519 {
2520 return writeback_single_inode(inode, wbc);
2521 }
2522 EXPORT_SYMBOL(sync_inode);
2523
2524 /**
2525 * sync_inode_metadata - write an inode to disk
2526 * @inode: the inode to sync
2527 * @wait: wait for I/O to complete.
2528 *
2529 * Write an inode to disk and adjust its dirty state after completion.
2530 *
2531 * Note: only writes the actual inode, no associated data or other metadata.
2532 */
2533 int sync_inode_metadata(struct inode *inode, int wait)
2534 {
2535 struct writeback_control wbc = {
2536 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2537 .nr_to_write = 0, /* metadata-only */
2538 };
2539
2540 return sync_inode(inode, &wbc);
2541 }
2542 EXPORT_SYMBOL(sync_inode_metadata);