]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
pnfsblock: cleanup_layoutcommit
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
42
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
45 };
46
47 /*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 /*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58 int nr_pdflush_threads;
59
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 struct super_block *sb = inode->i_sb;
75
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
78
79 return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 return list_entry(head, struct inode, i_wb_list);
85 }
86
87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
89 {
90 if (bdi->wb.task) {
91 wake_up_process(bdi->wb.task);
92 } else {
93 /*
94 * The bdi thread isn't there, wake up the forker thread which
95 * will create and run it.
96 */
97 wake_up_process(default_backing_dev_info.wb.task);
98 }
99 }
100
101 static void bdi_queue_work(struct backing_dev_info *bdi,
102 struct wb_writeback_work *work)
103 {
104 trace_writeback_queue(bdi, work);
105
106 spin_lock_bh(&bdi->wb_lock);
107 list_add_tail(&work->list, &bdi->work_list);
108 if (!bdi->wb.task)
109 trace_writeback_nothread(bdi, work);
110 bdi_wakeup_flusher(bdi);
111 spin_unlock_bh(&bdi->wb_lock);
112 }
113
114 static void
115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
116 bool range_cyclic)
117 {
118 struct wb_writeback_work *work;
119
120 /*
121 * This is WB_SYNC_NONE writeback, so if allocation fails just
122 * wakeup the thread for old dirty data writeback
123 */
124 work = kzalloc(sizeof(*work), GFP_ATOMIC);
125 if (!work) {
126 if (bdi->wb.task) {
127 trace_writeback_nowork(bdi);
128 wake_up_process(bdi->wb.task);
129 }
130 return;
131 }
132
133 work->sync_mode = WB_SYNC_NONE;
134 work->nr_pages = nr_pages;
135 work->range_cyclic = range_cyclic;
136
137 bdi_queue_work(bdi, work);
138 }
139
140 /**
141 * bdi_start_writeback - start writeback
142 * @bdi: the backing device to write from
143 * @nr_pages: the number of pages to write
144 *
145 * Description:
146 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
147 * started when this function returns, we make no guarantees on
148 * completion. Caller need not hold sb s_umount semaphore.
149 *
150 */
151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
152 {
153 __bdi_start_writeback(bdi, nr_pages, true);
154 }
155
156 /**
157 * bdi_start_background_writeback - start background writeback
158 * @bdi: the backing device to write from
159 *
160 * Description:
161 * This makes sure WB_SYNC_NONE background writeback happens. When
162 * this function returns, it is only guaranteed that for given BDI
163 * some IO is happening if we are over background dirty threshold.
164 * Caller need not hold sb s_umount semaphore.
165 */
166 void bdi_start_background_writeback(struct backing_dev_info *bdi)
167 {
168 /*
169 * We just wake up the flusher thread. It will perform background
170 * writeback as soon as there is no other work to do.
171 */
172 trace_writeback_wake_background(bdi);
173 spin_lock_bh(&bdi->wb_lock);
174 bdi_wakeup_flusher(bdi);
175 spin_unlock_bh(&bdi->wb_lock);
176 }
177
178 /*
179 * Remove the inode from the writeback list it is on.
180 */
181 void inode_wb_list_del(struct inode *inode)
182 {
183 spin_lock(&inode_wb_list_lock);
184 list_del_init(&inode->i_wb_list);
185 spin_unlock(&inode_wb_list_lock);
186 }
187
188
189 /*
190 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
191 * furthest end of its superblock's dirty-inode list.
192 *
193 * Before stamping the inode's ->dirtied_when, we check to see whether it is
194 * already the most-recently-dirtied inode on the b_dirty list. If that is
195 * the case then the inode must have been redirtied while it was being written
196 * out and we don't reset its dirtied_when.
197 */
198 static void redirty_tail(struct inode *inode)
199 {
200 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
201
202 assert_spin_locked(&inode_wb_list_lock);
203 if (!list_empty(&wb->b_dirty)) {
204 struct inode *tail;
205
206 tail = wb_inode(wb->b_dirty.next);
207 if (time_before(inode->dirtied_when, tail->dirtied_when))
208 inode->dirtied_when = jiffies;
209 }
210 list_move(&inode->i_wb_list, &wb->b_dirty);
211 }
212
213 /*
214 * requeue inode for re-scanning after bdi->b_io list is exhausted.
215 */
216 static void requeue_io(struct inode *inode)
217 {
218 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
219
220 assert_spin_locked(&inode_wb_list_lock);
221 list_move(&inode->i_wb_list, &wb->b_more_io);
222 }
223
224 static void inode_sync_complete(struct inode *inode)
225 {
226 /*
227 * Prevent speculative execution through
228 * spin_unlock(&inode_wb_list_lock);
229 */
230
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 return ret;
248 }
249
250 /*
251 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
252 */
253 static void move_expired_inodes(struct list_head *delaying_queue,
254 struct list_head *dispatch_queue,
255 unsigned long *older_than_this)
256 {
257 LIST_HEAD(tmp);
258 struct list_head *pos, *node;
259 struct super_block *sb = NULL;
260 struct inode *inode;
261 int do_sb_sort = 0;
262
263 while (!list_empty(delaying_queue)) {
264 inode = wb_inode(delaying_queue->prev);
265 if (older_than_this &&
266 inode_dirtied_after(inode, *older_than_this))
267 break;
268 if (sb && sb != inode->i_sb)
269 do_sb_sort = 1;
270 sb = inode->i_sb;
271 list_move(&inode->i_wb_list, &tmp);
272 }
273
274 /* just one sb in list, splice to dispatch_queue and we're done */
275 if (!do_sb_sort) {
276 list_splice(&tmp, dispatch_queue);
277 return;
278 }
279
280 /* Move inodes from one superblock together */
281 while (!list_empty(&tmp)) {
282 sb = wb_inode(tmp.prev)->i_sb;
283 list_for_each_prev_safe(pos, node, &tmp) {
284 inode = wb_inode(pos);
285 if (inode->i_sb == sb)
286 list_move(&inode->i_wb_list, dispatch_queue);
287 }
288 }
289 }
290
291 /*
292 * Queue all expired dirty inodes for io, eldest first.
293 * Before
294 * newly dirtied b_dirty b_io b_more_io
295 * =============> gf edc BA
296 * After
297 * newly dirtied b_dirty b_io b_more_io
298 * =============> g fBAedc
299 * |
300 * +--> dequeue for IO
301 */
302 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
303 {
304 assert_spin_locked(&inode_wb_list_lock);
305 list_splice_init(&wb->b_more_io, &wb->b_io);
306 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
307 }
308
309 static int write_inode(struct inode *inode, struct writeback_control *wbc)
310 {
311 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
312 return inode->i_sb->s_op->write_inode(inode, wbc);
313 return 0;
314 }
315
316 /*
317 * Wait for writeback on an inode to complete.
318 */
319 static void inode_wait_for_writeback(struct inode *inode)
320 {
321 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
322 wait_queue_head_t *wqh;
323
324 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
325 while (inode->i_state & I_SYNC) {
326 spin_unlock(&inode->i_lock);
327 spin_unlock(&inode_wb_list_lock);
328 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
329 spin_lock(&inode_wb_list_lock);
330 spin_lock(&inode->i_lock);
331 }
332 }
333
334 /*
335 * Write out an inode's dirty pages. Called under inode_wb_list_lock and
336 * inode->i_lock. Either the caller has an active reference on the inode or
337 * the inode has I_WILL_FREE set.
338 *
339 * If `wait' is set, wait on the writeout.
340 *
341 * The whole writeout design is quite complex and fragile. We want to avoid
342 * starvation of particular inodes when others are being redirtied, prevent
343 * livelocks, etc.
344 */
345 static int
346 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
347 {
348 struct address_space *mapping = inode->i_mapping;
349 unsigned dirty;
350 int ret;
351
352 assert_spin_locked(&inode_wb_list_lock);
353 assert_spin_locked(&inode->i_lock);
354
355 if (!atomic_read(&inode->i_count))
356 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
357 else
358 WARN_ON(inode->i_state & I_WILL_FREE);
359
360 if (inode->i_state & I_SYNC) {
361 /*
362 * If this inode is locked for writeback and we are not doing
363 * writeback-for-data-integrity, move it to b_more_io so that
364 * writeback can proceed with the other inodes on s_io.
365 *
366 * We'll have another go at writing back this inode when we
367 * completed a full scan of b_io.
368 */
369 if (wbc->sync_mode != WB_SYNC_ALL) {
370 requeue_io(inode);
371 return 0;
372 }
373
374 /*
375 * It's a data-integrity sync. We must wait.
376 */
377 inode_wait_for_writeback(inode);
378 }
379
380 BUG_ON(inode->i_state & I_SYNC);
381
382 /* Set I_SYNC, reset I_DIRTY_PAGES */
383 inode->i_state |= I_SYNC;
384 inode->i_state &= ~I_DIRTY_PAGES;
385 spin_unlock(&inode->i_lock);
386 spin_unlock(&inode_wb_list_lock);
387
388 ret = do_writepages(mapping, wbc);
389
390 /*
391 * Make sure to wait on the data before writing out the metadata.
392 * This is important for filesystems that modify metadata on data
393 * I/O completion.
394 */
395 if (wbc->sync_mode == WB_SYNC_ALL) {
396 int err = filemap_fdatawait(mapping);
397 if (ret == 0)
398 ret = err;
399 }
400
401 /*
402 * Some filesystems may redirty the inode during the writeback
403 * due to delalloc, clear dirty metadata flags right before
404 * write_inode()
405 */
406 spin_lock(&inode->i_lock);
407 dirty = inode->i_state & I_DIRTY;
408 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
409 spin_unlock(&inode->i_lock);
410 /* Don't write the inode if only I_DIRTY_PAGES was set */
411 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
412 int err = write_inode(inode, wbc);
413 if (ret == 0)
414 ret = err;
415 }
416
417 spin_lock(&inode_wb_list_lock);
418 spin_lock(&inode->i_lock);
419 inode->i_state &= ~I_SYNC;
420 if (!(inode->i_state & I_FREEING)) {
421 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
422 /*
423 * We didn't write back all the pages. nfs_writepages()
424 * sometimes bales out without doing anything.
425 */
426 inode->i_state |= I_DIRTY_PAGES;
427 if (wbc->nr_to_write <= 0) {
428 /*
429 * slice used up: queue for next turn
430 */
431 requeue_io(inode);
432 } else {
433 /*
434 * Writeback blocked by something other than
435 * congestion. Delay the inode for some time to
436 * avoid spinning on the CPU (100% iowait)
437 * retrying writeback of the dirty page/inode
438 * that cannot be performed immediately.
439 */
440 redirty_tail(inode);
441 }
442 } else if (inode->i_state & I_DIRTY) {
443 /*
444 * Filesystems can dirty the inode during writeback
445 * operations, such as delayed allocation during
446 * submission or metadata updates after data IO
447 * completion.
448 */
449 redirty_tail(inode);
450 } else {
451 /*
452 * The inode is clean. At this point we either have
453 * a reference to the inode or it's on it's way out.
454 * No need to add it back to the LRU.
455 */
456 list_del_init(&inode->i_wb_list);
457 }
458 }
459 inode_sync_complete(inode);
460 return ret;
461 }
462
463 /*
464 * Write a portion of b_io inodes which belong to @sb.
465 *
466 * If @only_this_sb is true, then find and write all such
467 * inodes. Otherwise write only ones which go sequentially
468 * in reverse order.
469 *
470 * Return 1, if the caller writeback routine should be
471 * interrupted. Otherwise return 0.
472 */
473 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
474 struct writeback_control *wbc, bool only_this_sb)
475 {
476 while (!list_empty(&wb->b_io)) {
477 long pages_skipped;
478 struct inode *inode = wb_inode(wb->b_io.prev);
479
480 if (inode->i_sb != sb) {
481 if (only_this_sb) {
482 /*
483 * We only want to write back data for this
484 * superblock, move all inodes not belonging
485 * to it back onto the dirty list.
486 */
487 redirty_tail(inode);
488 continue;
489 }
490
491 /*
492 * The inode belongs to a different superblock.
493 * Bounce back to the caller to unpin this and
494 * pin the next superblock.
495 */
496 return 0;
497 }
498
499 /*
500 * Don't bother with new inodes or inodes beeing freed, first
501 * kind does not need peridic writeout yet, and for the latter
502 * kind writeout is handled by the freer.
503 */
504 spin_lock(&inode->i_lock);
505 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
506 spin_unlock(&inode->i_lock);
507 requeue_io(inode);
508 continue;
509 }
510
511 /*
512 * Was this inode dirtied after sync_sb_inodes was called?
513 * This keeps sync from extra jobs and livelock.
514 */
515 if (inode_dirtied_after(inode, wbc->wb_start)) {
516 spin_unlock(&inode->i_lock);
517 return 1;
518 }
519
520 __iget(inode);
521
522 pages_skipped = wbc->pages_skipped;
523 writeback_single_inode(inode, wbc);
524 if (wbc->pages_skipped != pages_skipped) {
525 /*
526 * writeback is not making progress due to locked
527 * buffers. Skip this inode for now.
528 */
529 redirty_tail(inode);
530 }
531 spin_unlock(&inode->i_lock);
532 spin_unlock(&inode_wb_list_lock);
533 iput(inode);
534 cond_resched();
535 spin_lock(&inode_wb_list_lock);
536 if (wbc->nr_to_write <= 0) {
537 wbc->more_io = 1;
538 return 1;
539 }
540 if (!list_empty(&wb->b_more_io))
541 wbc->more_io = 1;
542 }
543 /* b_io is empty */
544 return 1;
545 }
546
547 void writeback_inodes_wb(struct bdi_writeback *wb,
548 struct writeback_control *wbc)
549 {
550 int ret = 0;
551
552 if (!wbc->wb_start)
553 wbc->wb_start = jiffies; /* livelock avoidance */
554 spin_lock(&inode_wb_list_lock);
555 if (!wbc->for_kupdate || list_empty(&wb->b_io))
556 queue_io(wb, wbc->older_than_this);
557
558 while (!list_empty(&wb->b_io)) {
559 struct inode *inode = wb_inode(wb->b_io.prev);
560 struct super_block *sb = inode->i_sb;
561
562 if (!grab_super_passive(sb)) {
563 requeue_io(inode);
564 continue;
565 }
566 ret = writeback_sb_inodes(sb, wb, wbc, false);
567 drop_super(sb);
568
569 if (ret)
570 break;
571 }
572 spin_unlock(&inode_wb_list_lock);
573 /* Leave any unwritten inodes on b_io */
574 }
575
576 static void __writeback_inodes_sb(struct super_block *sb,
577 struct bdi_writeback *wb, struct writeback_control *wbc)
578 {
579 WARN_ON(!rwsem_is_locked(&sb->s_umount));
580
581 spin_lock(&inode_wb_list_lock);
582 if (!wbc->for_kupdate || list_empty(&wb->b_io))
583 queue_io(wb, wbc->older_than_this);
584 writeback_sb_inodes(sb, wb, wbc, true);
585 spin_unlock(&inode_wb_list_lock);
586 }
587
588 /*
589 * The maximum number of pages to writeout in a single bdi flush/kupdate
590 * operation. We do this so we don't hold I_SYNC against an inode for
591 * enormous amounts of time, which would block a userspace task which has
592 * been forced to throttle against that inode. Also, the code reevaluates
593 * the dirty each time it has written this many pages.
594 */
595 #define MAX_WRITEBACK_PAGES 1024
596
597 static inline bool over_bground_thresh(void)
598 {
599 unsigned long background_thresh, dirty_thresh;
600
601 global_dirty_limits(&background_thresh, &dirty_thresh);
602
603 return (global_page_state(NR_FILE_DIRTY) +
604 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
605 }
606
607 /*
608 * Explicit flushing or periodic writeback of "old" data.
609 *
610 * Define "old": the first time one of an inode's pages is dirtied, we mark the
611 * dirtying-time in the inode's address_space. So this periodic writeback code
612 * just walks the superblock inode list, writing back any inodes which are
613 * older than a specific point in time.
614 *
615 * Try to run once per dirty_writeback_interval. But if a writeback event
616 * takes longer than a dirty_writeback_interval interval, then leave a
617 * one-second gap.
618 *
619 * older_than_this takes precedence over nr_to_write. So we'll only write back
620 * all dirty pages if they are all attached to "old" mappings.
621 */
622 static long wb_writeback(struct bdi_writeback *wb,
623 struct wb_writeback_work *work)
624 {
625 struct writeback_control wbc = {
626 .sync_mode = work->sync_mode,
627 .older_than_this = NULL,
628 .for_kupdate = work->for_kupdate,
629 .for_background = work->for_background,
630 .range_cyclic = work->range_cyclic,
631 };
632 unsigned long oldest_jif;
633 long wrote = 0;
634 long write_chunk;
635 struct inode *inode;
636
637 if (wbc.for_kupdate) {
638 wbc.older_than_this = &oldest_jif;
639 oldest_jif = jiffies -
640 msecs_to_jiffies(dirty_expire_interval * 10);
641 }
642 if (!wbc.range_cyclic) {
643 wbc.range_start = 0;
644 wbc.range_end = LLONG_MAX;
645 }
646
647 /*
648 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
649 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
650 * here avoids calling into writeback_inodes_wb() more than once.
651 *
652 * The intended call sequence for WB_SYNC_ALL writeback is:
653 *
654 * wb_writeback()
655 * __writeback_inodes_sb() <== called only once
656 * write_cache_pages() <== called once for each inode
657 * (quickly) tag currently dirty pages
658 * (maybe slowly) sync all tagged pages
659 */
660 if (wbc.sync_mode == WB_SYNC_NONE)
661 write_chunk = MAX_WRITEBACK_PAGES;
662 else
663 write_chunk = LONG_MAX;
664
665 wbc.wb_start = jiffies; /* livelock avoidance */
666 for (;;) {
667 /*
668 * Stop writeback when nr_pages has been consumed
669 */
670 if (work->nr_pages <= 0)
671 break;
672
673 /*
674 * Background writeout and kupdate-style writeback may
675 * run forever. Stop them if there is other work to do
676 * so that e.g. sync can proceed. They'll be restarted
677 * after the other works are all done.
678 */
679 if ((work->for_background || work->for_kupdate) &&
680 !list_empty(&wb->bdi->work_list))
681 break;
682
683 /*
684 * For background writeout, stop when we are below the
685 * background dirty threshold
686 */
687 if (work->for_background && !over_bground_thresh())
688 break;
689
690 wbc.more_io = 0;
691 wbc.nr_to_write = write_chunk;
692 wbc.pages_skipped = 0;
693
694 trace_wbc_writeback_start(&wbc, wb->bdi);
695 if (work->sb)
696 __writeback_inodes_sb(work->sb, wb, &wbc);
697 else
698 writeback_inodes_wb(wb, &wbc);
699 trace_wbc_writeback_written(&wbc, wb->bdi);
700
701 work->nr_pages -= write_chunk - wbc.nr_to_write;
702 wrote += write_chunk - wbc.nr_to_write;
703
704 /*
705 * If we consumed everything, see if we have more
706 */
707 if (wbc.nr_to_write <= 0)
708 continue;
709 /*
710 * Didn't write everything and we don't have more IO, bail
711 */
712 if (!wbc.more_io)
713 break;
714 /*
715 * Did we write something? Try for more
716 */
717 if (wbc.nr_to_write < write_chunk)
718 continue;
719 /*
720 * Nothing written. Wait for some inode to
721 * become available for writeback. Otherwise
722 * we'll just busyloop.
723 */
724 spin_lock(&inode_wb_list_lock);
725 if (!list_empty(&wb->b_more_io)) {
726 inode = wb_inode(wb->b_more_io.prev);
727 trace_wbc_writeback_wait(&wbc, wb->bdi);
728 spin_lock(&inode->i_lock);
729 inode_wait_for_writeback(inode);
730 spin_unlock(&inode->i_lock);
731 }
732 spin_unlock(&inode_wb_list_lock);
733 }
734
735 return wrote;
736 }
737
738 /*
739 * Return the next wb_writeback_work struct that hasn't been processed yet.
740 */
741 static struct wb_writeback_work *
742 get_next_work_item(struct backing_dev_info *bdi)
743 {
744 struct wb_writeback_work *work = NULL;
745
746 spin_lock_bh(&bdi->wb_lock);
747 if (!list_empty(&bdi->work_list)) {
748 work = list_entry(bdi->work_list.next,
749 struct wb_writeback_work, list);
750 list_del_init(&work->list);
751 }
752 spin_unlock_bh(&bdi->wb_lock);
753 return work;
754 }
755
756 /*
757 * Add in the number of potentially dirty inodes, because each inode
758 * write can dirty pagecache in the underlying blockdev.
759 */
760 static unsigned long get_nr_dirty_pages(void)
761 {
762 return global_page_state(NR_FILE_DIRTY) +
763 global_page_state(NR_UNSTABLE_NFS) +
764 get_nr_dirty_inodes();
765 }
766
767 static long wb_check_background_flush(struct bdi_writeback *wb)
768 {
769 if (over_bground_thresh()) {
770
771 struct wb_writeback_work work = {
772 .nr_pages = LONG_MAX,
773 .sync_mode = WB_SYNC_NONE,
774 .for_background = 1,
775 .range_cyclic = 1,
776 };
777
778 return wb_writeback(wb, &work);
779 }
780
781 return 0;
782 }
783
784 static long wb_check_old_data_flush(struct bdi_writeback *wb)
785 {
786 unsigned long expired;
787 long nr_pages;
788
789 /*
790 * When set to zero, disable periodic writeback
791 */
792 if (!dirty_writeback_interval)
793 return 0;
794
795 expired = wb->last_old_flush +
796 msecs_to_jiffies(dirty_writeback_interval * 10);
797 if (time_before(jiffies, expired))
798 return 0;
799
800 wb->last_old_flush = jiffies;
801 nr_pages = get_nr_dirty_pages();
802
803 if (nr_pages) {
804 struct wb_writeback_work work = {
805 .nr_pages = nr_pages,
806 .sync_mode = WB_SYNC_NONE,
807 .for_kupdate = 1,
808 .range_cyclic = 1,
809 };
810
811 return wb_writeback(wb, &work);
812 }
813
814 return 0;
815 }
816
817 /*
818 * Retrieve work items and do the writeback they describe
819 */
820 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
821 {
822 struct backing_dev_info *bdi = wb->bdi;
823 struct wb_writeback_work *work;
824 long wrote = 0;
825
826 set_bit(BDI_writeback_running, &wb->bdi->state);
827 while ((work = get_next_work_item(bdi)) != NULL) {
828 /*
829 * Override sync mode, in case we must wait for completion
830 * because this thread is exiting now.
831 */
832 if (force_wait)
833 work->sync_mode = WB_SYNC_ALL;
834
835 trace_writeback_exec(bdi, work);
836
837 wrote += wb_writeback(wb, work);
838
839 /*
840 * Notify the caller of completion if this is a synchronous
841 * work item, otherwise just free it.
842 */
843 if (work->done)
844 complete(work->done);
845 else
846 kfree(work);
847 }
848
849 /*
850 * Check for periodic writeback, kupdated() style
851 */
852 wrote += wb_check_old_data_flush(wb);
853 wrote += wb_check_background_flush(wb);
854 clear_bit(BDI_writeback_running, &wb->bdi->state);
855
856 return wrote;
857 }
858
859 /*
860 * Handle writeback of dirty data for the device backed by this bdi. Also
861 * wakes up periodically and does kupdated style flushing.
862 */
863 int bdi_writeback_thread(void *data)
864 {
865 struct bdi_writeback *wb = data;
866 struct backing_dev_info *bdi = wb->bdi;
867 long pages_written;
868
869 current->flags |= PF_SWAPWRITE;
870 set_freezable();
871 wb->last_active = jiffies;
872
873 /*
874 * Our parent may run at a different priority, just set us to normal
875 */
876 set_user_nice(current, 0);
877
878 trace_writeback_thread_start(bdi);
879
880 while (!kthread_should_stop()) {
881 /*
882 * Remove own delayed wake-up timer, since we are already awake
883 * and we'll take care of the preriodic write-back.
884 */
885 del_timer(&wb->wakeup_timer);
886
887 pages_written = wb_do_writeback(wb, 0);
888
889 trace_writeback_pages_written(pages_written);
890
891 if (pages_written)
892 wb->last_active = jiffies;
893
894 set_current_state(TASK_INTERRUPTIBLE);
895 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
896 __set_current_state(TASK_RUNNING);
897 continue;
898 }
899
900 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
901 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
902 else {
903 /*
904 * We have nothing to do, so can go sleep without any
905 * timeout and save power. When a work is queued or
906 * something is made dirty - we will be woken up.
907 */
908 schedule();
909 }
910
911 try_to_freeze();
912 }
913
914 /* Flush any work that raced with us exiting */
915 if (!list_empty(&bdi->work_list))
916 wb_do_writeback(wb, 1);
917
918 trace_writeback_thread_stop(bdi);
919 return 0;
920 }
921
922
923 /*
924 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
925 * the whole world.
926 */
927 void wakeup_flusher_threads(long nr_pages)
928 {
929 struct backing_dev_info *bdi;
930
931 if (!nr_pages) {
932 nr_pages = global_page_state(NR_FILE_DIRTY) +
933 global_page_state(NR_UNSTABLE_NFS);
934 }
935
936 rcu_read_lock();
937 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
938 if (!bdi_has_dirty_io(bdi))
939 continue;
940 __bdi_start_writeback(bdi, nr_pages, false);
941 }
942 rcu_read_unlock();
943 }
944
945 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
946 {
947 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
948 struct dentry *dentry;
949 const char *name = "?";
950
951 dentry = d_find_alias(inode);
952 if (dentry) {
953 spin_lock(&dentry->d_lock);
954 name = (const char *) dentry->d_name.name;
955 }
956 printk(KERN_DEBUG
957 "%s(%d): dirtied inode %lu (%s) on %s\n",
958 current->comm, task_pid_nr(current), inode->i_ino,
959 name, inode->i_sb->s_id);
960 if (dentry) {
961 spin_unlock(&dentry->d_lock);
962 dput(dentry);
963 }
964 }
965 }
966
967 /**
968 * __mark_inode_dirty - internal function
969 * @inode: inode to mark
970 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
971 * Mark an inode as dirty. Callers should use mark_inode_dirty or
972 * mark_inode_dirty_sync.
973 *
974 * Put the inode on the super block's dirty list.
975 *
976 * CAREFUL! We mark it dirty unconditionally, but move it onto the
977 * dirty list only if it is hashed or if it refers to a blockdev.
978 * If it was not hashed, it will never be added to the dirty list
979 * even if it is later hashed, as it will have been marked dirty already.
980 *
981 * In short, make sure you hash any inodes _before_ you start marking
982 * them dirty.
983 *
984 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
985 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
986 * the kernel-internal blockdev inode represents the dirtying time of the
987 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
988 * page->mapping->host, so the page-dirtying time is recorded in the internal
989 * blockdev inode.
990 */
991 void __mark_inode_dirty(struct inode *inode, int flags)
992 {
993 struct super_block *sb = inode->i_sb;
994 struct backing_dev_info *bdi = NULL;
995
996 /*
997 * Don't do this for I_DIRTY_PAGES - that doesn't actually
998 * dirty the inode itself
999 */
1000 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1001 if (sb->s_op->dirty_inode)
1002 sb->s_op->dirty_inode(inode, flags);
1003 }
1004
1005 /*
1006 * make sure that changes are seen by all cpus before we test i_state
1007 * -- mikulas
1008 */
1009 smp_mb();
1010
1011 /* avoid the locking if we can */
1012 if ((inode->i_state & flags) == flags)
1013 return;
1014
1015 if (unlikely(block_dump))
1016 block_dump___mark_inode_dirty(inode);
1017
1018 spin_lock(&inode->i_lock);
1019 if ((inode->i_state & flags) != flags) {
1020 const int was_dirty = inode->i_state & I_DIRTY;
1021
1022 inode->i_state |= flags;
1023
1024 /*
1025 * If the inode is being synced, just update its dirty state.
1026 * The unlocker will place the inode on the appropriate
1027 * superblock list, based upon its state.
1028 */
1029 if (inode->i_state & I_SYNC)
1030 goto out_unlock_inode;
1031
1032 /*
1033 * Only add valid (hashed) inodes to the superblock's
1034 * dirty list. Add blockdev inodes as well.
1035 */
1036 if (!S_ISBLK(inode->i_mode)) {
1037 if (inode_unhashed(inode))
1038 goto out_unlock_inode;
1039 }
1040 if (inode->i_state & I_FREEING)
1041 goto out_unlock_inode;
1042
1043 /*
1044 * If the inode was already on b_dirty/b_io/b_more_io, don't
1045 * reposition it (that would break b_dirty time-ordering).
1046 */
1047 if (!was_dirty) {
1048 bool wakeup_bdi = false;
1049 bdi = inode_to_bdi(inode);
1050
1051 if (bdi_cap_writeback_dirty(bdi)) {
1052 WARN(!test_bit(BDI_registered, &bdi->state),
1053 "bdi-%s not registered\n", bdi->name);
1054
1055 /*
1056 * If this is the first dirty inode for this
1057 * bdi, we have to wake-up the corresponding
1058 * bdi thread to make sure background
1059 * write-back happens later.
1060 */
1061 if (!wb_has_dirty_io(&bdi->wb))
1062 wakeup_bdi = true;
1063 }
1064
1065 spin_unlock(&inode->i_lock);
1066 spin_lock(&inode_wb_list_lock);
1067 inode->dirtied_when = jiffies;
1068 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1069 spin_unlock(&inode_wb_list_lock);
1070
1071 if (wakeup_bdi)
1072 bdi_wakeup_thread_delayed(bdi);
1073 return;
1074 }
1075 }
1076 out_unlock_inode:
1077 spin_unlock(&inode->i_lock);
1078
1079 }
1080 EXPORT_SYMBOL(__mark_inode_dirty);
1081
1082 /*
1083 * Write out a superblock's list of dirty inodes. A wait will be performed
1084 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1085 *
1086 * If older_than_this is non-NULL, then only write out inodes which
1087 * had their first dirtying at a time earlier than *older_than_this.
1088 *
1089 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1090 * This function assumes that the blockdev superblock's inodes are backed by
1091 * a variety of queues, so all inodes are searched. For other superblocks,
1092 * assume that all inodes are backed by the same queue.
1093 *
1094 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1095 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1096 * on the writer throttling path, and we get decent balancing between many
1097 * throttled threads: we don't want them all piling up on inode_sync_wait.
1098 */
1099 static void wait_sb_inodes(struct super_block *sb)
1100 {
1101 struct inode *inode, *old_inode = NULL;
1102
1103 /*
1104 * We need to be protected against the filesystem going from
1105 * r/o to r/w or vice versa.
1106 */
1107 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1108
1109 spin_lock(&inode_sb_list_lock);
1110
1111 /*
1112 * Data integrity sync. Must wait for all pages under writeback,
1113 * because there may have been pages dirtied before our sync
1114 * call, but which had writeout started before we write it out.
1115 * In which case, the inode may not be on the dirty list, but
1116 * we still have to wait for that writeout.
1117 */
1118 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1119 struct address_space *mapping = inode->i_mapping;
1120
1121 spin_lock(&inode->i_lock);
1122 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1123 (mapping->nrpages == 0)) {
1124 spin_unlock(&inode->i_lock);
1125 continue;
1126 }
1127 __iget(inode);
1128 spin_unlock(&inode->i_lock);
1129 spin_unlock(&inode_sb_list_lock);
1130
1131 /*
1132 * We hold a reference to 'inode' so it couldn't have been
1133 * removed from s_inodes list while we dropped the
1134 * inode_sb_list_lock. We cannot iput the inode now as we can
1135 * be holding the last reference and we cannot iput it under
1136 * inode_sb_list_lock. So we keep the reference and iput it
1137 * later.
1138 */
1139 iput(old_inode);
1140 old_inode = inode;
1141
1142 filemap_fdatawait(mapping);
1143
1144 cond_resched();
1145
1146 spin_lock(&inode_sb_list_lock);
1147 }
1148 spin_unlock(&inode_sb_list_lock);
1149 iput(old_inode);
1150 }
1151
1152 /**
1153 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1154 * @sb: the superblock
1155 * @nr: the number of pages to write
1156 *
1157 * Start writeback on some inodes on this super_block. No guarantees are made
1158 * on how many (if any) will be written, and this function does not wait
1159 * for IO completion of submitted IO.
1160 */
1161 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1162 {
1163 DECLARE_COMPLETION_ONSTACK(done);
1164 struct wb_writeback_work work = {
1165 .sb = sb,
1166 .sync_mode = WB_SYNC_NONE,
1167 .done = &done,
1168 .nr_pages = nr,
1169 };
1170
1171 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1172 bdi_queue_work(sb->s_bdi, &work);
1173 wait_for_completion(&done);
1174 }
1175 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1176
1177 /**
1178 * writeback_inodes_sb - writeback dirty inodes from given super_block
1179 * @sb: the superblock
1180 *
1181 * Start writeback on some inodes on this super_block. No guarantees are made
1182 * on how many (if any) will be written, and this function does not wait
1183 * for IO completion of submitted IO.
1184 */
1185 void writeback_inodes_sb(struct super_block *sb)
1186 {
1187 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1188 }
1189 EXPORT_SYMBOL(writeback_inodes_sb);
1190
1191 /**
1192 * writeback_inodes_sb_if_idle - start writeback if none underway
1193 * @sb: the superblock
1194 *
1195 * Invoke writeback_inodes_sb if no writeback is currently underway.
1196 * Returns 1 if writeback was started, 0 if not.
1197 */
1198 int writeback_inodes_sb_if_idle(struct super_block *sb)
1199 {
1200 if (!writeback_in_progress(sb->s_bdi)) {
1201 down_read(&sb->s_umount);
1202 writeback_inodes_sb(sb);
1203 up_read(&sb->s_umount);
1204 return 1;
1205 } else
1206 return 0;
1207 }
1208 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1209
1210 /**
1211 * writeback_inodes_sb_if_idle - start writeback if none underway
1212 * @sb: the superblock
1213 * @nr: the number of pages to write
1214 *
1215 * Invoke writeback_inodes_sb if no writeback is currently underway.
1216 * Returns 1 if writeback was started, 0 if not.
1217 */
1218 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1219 unsigned long nr)
1220 {
1221 if (!writeback_in_progress(sb->s_bdi)) {
1222 down_read(&sb->s_umount);
1223 writeback_inodes_sb_nr(sb, nr);
1224 up_read(&sb->s_umount);
1225 return 1;
1226 } else
1227 return 0;
1228 }
1229 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1230
1231 /**
1232 * sync_inodes_sb - sync sb inode pages
1233 * @sb: the superblock
1234 *
1235 * This function writes and waits on any dirty inode belonging to this
1236 * super_block.
1237 */
1238 void sync_inodes_sb(struct super_block *sb)
1239 {
1240 DECLARE_COMPLETION_ONSTACK(done);
1241 struct wb_writeback_work work = {
1242 .sb = sb,
1243 .sync_mode = WB_SYNC_ALL,
1244 .nr_pages = LONG_MAX,
1245 .range_cyclic = 0,
1246 .done = &done,
1247 };
1248
1249 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1250
1251 bdi_queue_work(sb->s_bdi, &work);
1252 wait_for_completion(&done);
1253
1254 wait_sb_inodes(sb);
1255 }
1256 EXPORT_SYMBOL(sync_inodes_sb);
1257
1258 /**
1259 * write_inode_now - write an inode to disk
1260 * @inode: inode to write to disk
1261 * @sync: whether the write should be synchronous or not
1262 *
1263 * This function commits an inode to disk immediately if it is dirty. This is
1264 * primarily needed by knfsd.
1265 *
1266 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1267 */
1268 int write_inode_now(struct inode *inode, int sync)
1269 {
1270 int ret;
1271 struct writeback_control wbc = {
1272 .nr_to_write = LONG_MAX,
1273 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1274 .range_start = 0,
1275 .range_end = LLONG_MAX,
1276 };
1277
1278 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1279 wbc.nr_to_write = 0;
1280
1281 might_sleep();
1282 spin_lock(&inode_wb_list_lock);
1283 spin_lock(&inode->i_lock);
1284 ret = writeback_single_inode(inode, &wbc);
1285 spin_unlock(&inode->i_lock);
1286 spin_unlock(&inode_wb_list_lock);
1287 if (sync)
1288 inode_sync_wait(inode);
1289 return ret;
1290 }
1291 EXPORT_SYMBOL(write_inode_now);
1292
1293 /**
1294 * sync_inode - write an inode and its pages to disk.
1295 * @inode: the inode to sync
1296 * @wbc: controls the writeback mode
1297 *
1298 * sync_inode() will write an inode and its pages to disk. It will also
1299 * correctly update the inode on its superblock's dirty inode lists and will
1300 * update inode->i_state.
1301 *
1302 * The caller must have a ref on the inode.
1303 */
1304 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1305 {
1306 int ret;
1307
1308 spin_lock(&inode_wb_list_lock);
1309 spin_lock(&inode->i_lock);
1310 ret = writeback_single_inode(inode, wbc);
1311 spin_unlock(&inode->i_lock);
1312 spin_unlock(&inode_wb_list_lock);
1313 return ret;
1314 }
1315 EXPORT_SYMBOL(sync_inode);
1316
1317 /**
1318 * sync_inode_metadata - write an inode to disk
1319 * @inode: the inode to sync
1320 * @wait: wait for I/O to complete.
1321 *
1322 * Write an inode to disk and adjust its dirty state after completion.
1323 *
1324 * Note: only writes the actual inode, no associated data or other metadata.
1325 */
1326 int sync_inode_metadata(struct inode *inode, int wait)
1327 {
1328 struct writeback_control wbc = {
1329 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1330 .nr_to_write = 0, /* metadata-only */
1331 };
1332
1333 return sync_inode(inode, &wbc);
1334 }
1335 EXPORT_SYMBOL(sync_inode_metadata);