]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fs-writeback.c
Merge branch 'for-3.15' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-bionic-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 struct super_block *sb = inode->i_sb;
72
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
75
76 return sb->s_bdi;
77 }
78
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 return list_entry(head, struct inode, i_wb_list);
82 }
83
84 /*
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
88 */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91
92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
93
94 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
95 {
96 spin_lock_bh(&bdi->wb_lock);
97 if (test_bit(BDI_registered, &bdi->state))
98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 spin_unlock_bh(&bdi->wb_lock);
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
104 {
105 trace_writeback_queue(bdi, work);
106
107 spin_lock_bh(&bdi->wb_lock);
108 if (!test_bit(BDI_registered, &bdi->state)) {
109 if (work->done)
110 complete(work->done);
111 goto out_unlock;
112 }
113 list_add_tail(&work->list, &bdi->work_list);
114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115 out_unlock:
116 spin_unlock_bh(&bdi->wb_lock);
117 }
118
119 static void
120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 bool range_cyclic, enum wb_reason reason)
122 {
123 struct wb_writeback_work *work;
124
125 /*
126 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 * wakeup the thread for old dirty data writeback
128 */
129 work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 if (!work) {
131 trace_writeback_nowork(bdi);
132 bdi_wakeup_thread(bdi);
133 return;
134 }
135
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
140
141 bdi_queue_work(bdi, work);
142 }
143
144 /**
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
149 *
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
154 *
155 */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
158 {
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161
162 /**
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
165 *
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
171 */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 /*
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
177 */
178 trace_writeback_wake_background(bdi);
179 bdi_wakeup_thread(bdi);
180 }
181
182 /*
183 * Remove the inode from the writeback list it is on.
184 */
185 void inode_wb_list_del(struct inode *inode)
186 {
187 struct backing_dev_info *bdi = inode_to_bdi(inode);
188
189 spin_lock(&bdi->wb.list_lock);
190 list_del_init(&inode->i_wb_list);
191 spin_unlock(&bdi->wb.list_lock);
192 }
193
194 /*
195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196 * furthest end of its superblock's dirty-inode list.
197 *
198 * Before stamping the inode's ->dirtied_when, we check to see whether it is
199 * already the most-recently-dirtied inode on the b_dirty list. If that is
200 * the case then the inode must have been redirtied while it was being written
201 * out and we don't reset its dirtied_when.
202 */
203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
204 {
205 assert_spin_locked(&wb->list_lock);
206 if (!list_empty(&wb->b_dirty)) {
207 struct inode *tail;
208
209 tail = wb_inode(wb->b_dirty.next);
210 if (time_before(inode->dirtied_when, tail->dirtied_when))
211 inode->dirtied_when = jiffies;
212 }
213 list_move(&inode->i_wb_list, &wb->b_dirty);
214 }
215
216 /*
217 * requeue inode for re-scanning after bdi->b_io list is exhausted.
218 */
219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
220 {
221 assert_spin_locked(&wb->list_lock);
222 list_move(&inode->i_wb_list, &wb->b_more_io);
223 }
224
225 static void inode_sync_complete(struct inode *inode)
226 {
227 inode->i_state &= ~I_SYNC;
228 /* If inode is clean an unused, put it into LRU now... */
229 inode_add_lru(inode);
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 return ret;
248 }
249
250 /*
251 * Move expired (dirtied before work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
253 */
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 struct wb_writeback_work *work)
257 {
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263 int moved = 0;
264
265 while (!list_empty(delaying_queue)) {
266 inode = wb_inode(delaying_queue->prev);
267 if (work->older_than_this &&
268 inode_dirtied_after(inode, *work->older_than_this))
269 break;
270 list_move(&inode->i_wb_list, &tmp);
271 moved++;
272 if (sb_is_blkdev_sb(inode->i_sb))
273 continue;
274 if (sb && sb != inode->i_sb)
275 do_sb_sort = 1;
276 sb = inode->i_sb;
277 }
278
279 /* just one sb in list, splice to dispatch_queue and we're done */
280 if (!do_sb_sort) {
281 list_splice(&tmp, dispatch_queue);
282 goto out;
283 }
284
285 /* Move inodes from one superblock together */
286 while (!list_empty(&tmp)) {
287 sb = wb_inode(tmp.prev)->i_sb;
288 list_for_each_prev_safe(pos, node, &tmp) {
289 inode = wb_inode(pos);
290 if (inode->i_sb == sb)
291 list_move(&inode->i_wb_list, dispatch_queue);
292 }
293 }
294 out:
295 return moved;
296 }
297
298 /*
299 * Queue all expired dirty inodes for io, eldest first.
300 * Before
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> gf edc BA
303 * After
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> g fBAedc
306 * |
307 * +--> dequeue for IO
308 */
309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
310 {
311 int moved;
312 assert_spin_locked(&wb->list_lock);
313 list_splice_init(&wb->b_more_io, &wb->b_io);
314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 trace_writeback_queue_io(wb, work, moved);
316 }
317
318 static int write_inode(struct inode *inode, struct writeback_control *wbc)
319 {
320 int ret;
321
322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
323 trace_writeback_write_inode_start(inode, wbc);
324 ret = inode->i_sb->s_op->write_inode(inode, wbc);
325 trace_writeback_write_inode(inode, wbc);
326 return ret;
327 }
328 return 0;
329 }
330
331 /*
332 * Wait for writeback on an inode to complete. Called with i_lock held.
333 * Caller must make sure inode cannot go away when we drop i_lock.
334 */
335 static void __inode_wait_for_writeback(struct inode *inode)
336 __releases(inode->i_lock)
337 __acquires(inode->i_lock)
338 {
339 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
340 wait_queue_head_t *wqh;
341
342 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
343 while (inode->i_state & I_SYNC) {
344 spin_unlock(&inode->i_lock);
345 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
346 spin_lock(&inode->i_lock);
347 }
348 }
349
350 /*
351 * Wait for writeback on an inode to complete. Caller must have inode pinned.
352 */
353 void inode_wait_for_writeback(struct inode *inode)
354 {
355 spin_lock(&inode->i_lock);
356 __inode_wait_for_writeback(inode);
357 spin_unlock(&inode->i_lock);
358 }
359
360 /*
361 * Sleep until I_SYNC is cleared. This function must be called with i_lock
362 * held and drops it. It is aimed for callers not holding any inode reference
363 * so once i_lock is dropped, inode can go away.
364 */
365 static void inode_sleep_on_writeback(struct inode *inode)
366 __releases(inode->i_lock)
367 {
368 DEFINE_WAIT(wait);
369 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
370 int sleep;
371
372 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
373 sleep = inode->i_state & I_SYNC;
374 spin_unlock(&inode->i_lock);
375 if (sleep)
376 schedule();
377 finish_wait(wqh, &wait);
378 }
379
380 /*
381 * Find proper writeback list for the inode depending on its current state and
382 * possibly also change of its state while we were doing writeback. Here we
383 * handle things such as livelock prevention or fairness of writeback among
384 * inodes. This function can be called only by flusher thread - noone else
385 * processes all inodes in writeback lists and requeueing inodes behind flusher
386 * thread's back can have unexpected consequences.
387 */
388 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
389 struct writeback_control *wbc)
390 {
391 if (inode->i_state & I_FREEING)
392 return;
393
394 /*
395 * Sync livelock prevention. Each inode is tagged and synced in one
396 * shot. If still dirty, it will be redirty_tail()'ed below. Update
397 * the dirty time to prevent enqueue and sync it again.
398 */
399 if ((inode->i_state & I_DIRTY) &&
400 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
401 inode->dirtied_when = jiffies;
402
403 if (wbc->pages_skipped) {
404 /*
405 * writeback is not making progress due to locked
406 * buffers. Skip this inode for now.
407 */
408 redirty_tail(inode, wb);
409 return;
410 }
411
412 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
413 /*
414 * We didn't write back all the pages. nfs_writepages()
415 * sometimes bales out without doing anything.
416 */
417 if (wbc->nr_to_write <= 0) {
418 /* Slice used up. Queue for next turn. */
419 requeue_io(inode, wb);
420 } else {
421 /*
422 * Writeback blocked by something other than
423 * congestion. Delay the inode for some time to
424 * avoid spinning on the CPU (100% iowait)
425 * retrying writeback of the dirty page/inode
426 * that cannot be performed immediately.
427 */
428 redirty_tail(inode, wb);
429 }
430 } else if (inode->i_state & I_DIRTY) {
431 /*
432 * Filesystems can dirty the inode during writeback operations,
433 * such as delayed allocation during submission or metadata
434 * updates after data IO completion.
435 */
436 redirty_tail(inode, wb);
437 } else {
438 /* The inode is clean. Remove from writeback lists. */
439 list_del_init(&inode->i_wb_list);
440 }
441 }
442
443 /*
444 * Write out an inode and its dirty pages. Do not update the writeback list
445 * linkage. That is left to the caller. The caller is also responsible for
446 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
447 */
448 static int
449 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
450 {
451 struct address_space *mapping = inode->i_mapping;
452 long nr_to_write = wbc->nr_to_write;
453 unsigned dirty;
454 int ret;
455
456 WARN_ON(!(inode->i_state & I_SYNC));
457
458 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
459
460 ret = do_writepages(mapping, wbc);
461
462 /*
463 * Make sure to wait on the data before writing out the metadata.
464 * This is important for filesystems that modify metadata on data
465 * I/O completion. We don't do it for sync(2) writeback because it has a
466 * separate, external IO completion path and ->sync_fs for guaranteeing
467 * inode metadata is written back correctly.
468 */
469 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
470 int err = filemap_fdatawait(mapping);
471 if (ret == 0)
472 ret = err;
473 }
474
475 /*
476 * Some filesystems may redirty the inode during the writeback
477 * due to delalloc, clear dirty metadata flags right before
478 * write_inode()
479 */
480 spin_lock(&inode->i_lock);
481 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
482 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
483 inode->i_state &= ~I_DIRTY_PAGES;
484 dirty = inode->i_state & I_DIRTY;
485 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
486 spin_unlock(&inode->i_lock);
487 /* Don't write the inode if only I_DIRTY_PAGES was set */
488 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
489 int err = write_inode(inode, wbc);
490 if (ret == 0)
491 ret = err;
492 }
493 trace_writeback_single_inode(inode, wbc, nr_to_write);
494 return ret;
495 }
496
497 /*
498 * Write out an inode's dirty pages. Either the caller has an active reference
499 * on the inode or the inode has I_WILL_FREE set.
500 *
501 * This function is designed to be called for writing back one inode which
502 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
503 * and does more profound writeback list handling in writeback_sb_inodes().
504 */
505 static int
506 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
507 struct writeback_control *wbc)
508 {
509 int ret = 0;
510
511 spin_lock(&inode->i_lock);
512 if (!atomic_read(&inode->i_count))
513 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
514 else
515 WARN_ON(inode->i_state & I_WILL_FREE);
516
517 if (inode->i_state & I_SYNC) {
518 if (wbc->sync_mode != WB_SYNC_ALL)
519 goto out;
520 /*
521 * It's a data-integrity sync. We must wait. Since callers hold
522 * inode reference or inode has I_WILL_FREE set, it cannot go
523 * away under us.
524 */
525 __inode_wait_for_writeback(inode);
526 }
527 WARN_ON(inode->i_state & I_SYNC);
528 /*
529 * Skip inode if it is clean and we have no outstanding writeback in
530 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
531 * function since flusher thread may be doing for example sync in
532 * parallel and if we move the inode, it could get skipped. So here we
533 * make sure inode is on some writeback list and leave it there unless
534 * we have completely cleaned the inode.
535 */
536 if (!(inode->i_state & I_DIRTY) &&
537 (wbc->sync_mode != WB_SYNC_ALL ||
538 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
539 goto out;
540 inode->i_state |= I_SYNC;
541 spin_unlock(&inode->i_lock);
542
543 ret = __writeback_single_inode(inode, wbc);
544
545 spin_lock(&wb->list_lock);
546 spin_lock(&inode->i_lock);
547 /*
548 * If inode is clean, remove it from writeback lists. Otherwise don't
549 * touch it. See comment above for explanation.
550 */
551 if (!(inode->i_state & I_DIRTY))
552 list_del_init(&inode->i_wb_list);
553 spin_unlock(&wb->list_lock);
554 inode_sync_complete(inode);
555 out:
556 spin_unlock(&inode->i_lock);
557 return ret;
558 }
559
560 static long writeback_chunk_size(struct backing_dev_info *bdi,
561 struct wb_writeback_work *work)
562 {
563 long pages;
564
565 /*
566 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
567 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
568 * here avoids calling into writeback_inodes_wb() more than once.
569 *
570 * The intended call sequence for WB_SYNC_ALL writeback is:
571 *
572 * wb_writeback()
573 * writeback_sb_inodes() <== called only once
574 * write_cache_pages() <== called once for each inode
575 * (quickly) tag currently dirty pages
576 * (maybe slowly) sync all tagged pages
577 */
578 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
579 pages = LONG_MAX;
580 else {
581 pages = min(bdi->avg_write_bandwidth / 2,
582 global_dirty_limit / DIRTY_SCOPE);
583 pages = min(pages, work->nr_pages);
584 pages = round_down(pages + MIN_WRITEBACK_PAGES,
585 MIN_WRITEBACK_PAGES);
586 }
587
588 return pages;
589 }
590
591 /*
592 * Write a portion of b_io inodes which belong to @sb.
593 *
594 * Return the number of pages and/or inodes written.
595 */
596 static long writeback_sb_inodes(struct super_block *sb,
597 struct bdi_writeback *wb,
598 struct wb_writeback_work *work)
599 {
600 struct writeback_control wbc = {
601 .sync_mode = work->sync_mode,
602 .tagged_writepages = work->tagged_writepages,
603 .for_kupdate = work->for_kupdate,
604 .for_background = work->for_background,
605 .for_sync = work->for_sync,
606 .range_cyclic = work->range_cyclic,
607 .range_start = 0,
608 .range_end = LLONG_MAX,
609 };
610 unsigned long start_time = jiffies;
611 long write_chunk;
612 long wrote = 0; /* count both pages and inodes */
613
614 while (!list_empty(&wb->b_io)) {
615 struct inode *inode = wb_inode(wb->b_io.prev);
616
617 if (inode->i_sb != sb) {
618 if (work->sb) {
619 /*
620 * We only want to write back data for this
621 * superblock, move all inodes not belonging
622 * to it back onto the dirty list.
623 */
624 redirty_tail(inode, wb);
625 continue;
626 }
627
628 /*
629 * The inode belongs to a different superblock.
630 * Bounce back to the caller to unpin this and
631 * pin the next superblock.
632 */
633 break;
634 }
635
636 /*
637 * Don't bother with new inodes or inodes being freed, first
638 * kind does not need periodic writeout yet, and for the latter
639 * kind writeout is handled by the freer.
640 */
641 spin_lock(&inode->i_lock);
642 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
643 spin_unlock(&inode->i_lock);
644 redirty_tail(inode, wb);
645 continue;
646 }
647 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
648 /*
649 * If this inode is locked for writeback and we are not
650 * doing writeback-for-data-integrity, move it to
651 * b_more_io so that writeback can proceed with the
652 * other inodes on s_io.
653 *
654 * We'll have another go at writing back this inode
655 * when we completed a full scan of b_io.
656 */
657 spin_unlock(&inode->i_lock);
658 requeue_io(inode, wb);
659 trace_writeback_sb_inodes_requeue(inode);
660 continue;
661 }
662 spin_unlock(&wb->list_lock);
663
664 /*
665 * We already requeued the inode if it had I_SYNC set and we
666 * are doing WB_SYNC_NONE writeback. So this catches only the
667 * WB_SYNC_ALL case.
668 */
669 if (inode->i_state & I_SYNC) {
670 /* Wait for I_SYNC. This function drops i_lock... */
671 inode_sleep_on_writeback(inode);
672 /* Inode may be gone, start again */
673 spin_lock(&wb->list_lock);
674 continue;
675 }
676 inode->i_state |= I_SYNC;
677 spin_unlock(&inode->i_lock);
678
679 write_chunk = writeback_chunk_size(wb->bdi, work);
680 wbc.nr_to_write = write_chunk;
681 wbc.pages_skipped = 0;
682
683 /*
684 * We use I_SYNC to pin the inode in memory. While it is set
685 * evict_inode() will wait so the inode cannot be freed.
686 */
687 __writeback_single_inode(inode, &wbc);
688
689 work->nr_pages -= write_chunk - wbc.nr_to_write;
690 wrote += write_chunk - wbc.nr_to_write;
691 spin_lock(&wb->list_lock);
692 spin_lock(&inode->i_lock);
693 if (!(inode->i_state & I_DIRTY))
694 wrote++;
695 requeue_inode(inode, wb, &wbc);
696 inode_sync_complete(inode);
697 spin_unlock(&inode->i_lock);
698 cond_resched_lock(&wb->list_lock);
699 /*
700 * bail out to wb_writeback() often enough to check
701 * background threshold and other termination conditions.
702 */
703 if (wrote) {
704 if (time_is_before_jiffies(start_time + HZ / 10UL))
705 break;
706 if (work->nr_pages <= 0)
707 break;
708 }
709 }
710 return wrote;
711 }
712
713 static long __writeback_inodes_wb(struct bdi_writeback *wb,
714 struct wb_writeback_work *work)
715 {
716 unsigned long start_time = jiffies;
717 long wrote = 0;
718
719 while (!list_empty(&wb->b_io)) {
720 struct inode *inode = wb_inode(wb->b_io.prev);
721 struct super_block *sb = inode->i_sb;
722
723 if (!grab_super_passive(sb)) {
724 /*
725 * grab_super_passive() may fail consistently due to
726 * s_umount being grabbed by someone else. Don't use
727 * requeue_io() to avoid busy retrying the inode/sb.
728 */
729 redirty_tail(inode, wb);
730 continue;
731 }
732 wrote += writeback_sb_inodes(sb, wb, work);
733 drop_super(sb);
734
735 /* refer to the same tests at the end of writeback_sb_inodes */
736 if (wrote) {
737 if (time_is_before_jiffies(start_time + HZ / 10UL))
738 break;
739 if (work->nr_pages <= 0)
740 break;
741 }
742 }
743 /* Leave any unwritten inodes on b_io */
744 return wrote;
745 }
746
747 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
748 enum wb_reason reason)
749 {
750 struct wb_writeback_work work = {
751 .nr_pages = nr_pages,
752 .sync_mode = WB_SYNC_NONE,
753 .range_cyclic = 1,
754 .reason = reason,
755 };
756
757 spin_lock(&wb->list_lock);
758 if (list_empty(&wb->b_io))
759 queue_io(wb, &work);
760 __writeback_inodes_wb(wb, &work);
761 spin_unlock(&wb->list_lock);
762
763 return nr_pages - work.nr_pages;
764 }
765
766 static bool over_bground_thresh(struct backing_dev_info *bdi)
767 {
768 unsigned long background_thresh, dirty_thresh;
769
770 global_dirty_limits(&background_thresh, &dirty_thresh);
771
772 if (global_page_state(NR_FILE_DIRTY) +
773 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
774 return true;
775
776 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
777 bdi_dirty_limit(bdi, background_thresh))
778 return true;
779
780 return false;
781 }
782
783 /*
784 * Called under wb->list_lock. If there are multiple wb per bdi,
785 * only the flusher working on the first wb should do it.
786 */
787 static void wb_update_bandwidth(struct bdi_writeback *wb,
788 unsigned long start_time)
789 {
790 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
791 }
792
793 /*
794 * Explicit flushing or periodic writeback of "old" data.
795 *
796 * Define "old": the first time one of an inode's pages is dirtied, we mark the
797 * dirtying-time in the inode's address_space. So this periodic writeback code
798 * just walks the superblock inode list, writing back any inodes which are
799 * older than a specific point in time.
800 *
801 * Try to run once per dirty_writeback_interval. But if a writeback event
802 * takes longer than a dirty_writeback_interval interval, then leave a
803 * one-second gap.
804 *
805 * older_than_this takes precedence over nr_to_write. So we'll only write back
806 * all dirty pages if they are all attached to "old" mappings.
807 */
808 static long wb_writeback(struct bdi_writeback *wb,
809 struct wb_writeback_work *work)
810 {
811 unsigned long wb_start = jiffies;
812 long nr_pages = work->nr_pages;
813 unsigned long oldest_jif;
814 struct inode *inode;
815 long progress;
816
817 oldest_jif = jiffies;
818 work->older_than_this = &oldest_jif;
819
820 spin_lock(&wb->list_lock);
821 for (;;) {
822 /*
823 * Stop writeback when nr_pages has been consumed
824 */
825 if (work->nr_pages <= 0)
826 break;
827
828 /*
829 * Background writeout and kupdate-style writeback may
830 * run forever. Stop them if there is other work to do
831 * so that e.g. sync can proceed. They'll be restarted
832 * after the other works are all done.
833 */
834 if ((work->for_background || work->for_kupdate) &&
835 !list_empty(&wb->bdi->work_list))
836 break;
837
838 /*
839 * For background writeout, stop when we are below the
840 * background dirty threshold
841 */
842 if (work->for_background && !over_bground_thresh(wb->bdi))
843 break;
844
845 /*
846 * Kupdate and background works are special and we want to
847 * include all inodes that need writing. Livelock avoidance is
848 * handled by these works yielding to any other work so we are
849 * safe.
850 */
851 if (work->for_kupdate) {
852 oldest_jif = jiffies -
853 msecs_to_jiffies(dirty_expire_interval * 10);
854 } else if (work->for_background)
855 oldest_jif = jiffies;
856
857 trace_writeback_start(wb->bdi, work);
858 if (list_empty(&wb->b_io))
859 queue_io(wb, work);
860 if (work->sb)
861 progress = writeback_sb_inodes(work->sb, wb, work);
862 else
863 progress = __writeback_inodes_wb(wb, work);
864 trace_writeback_written(wb->bdi, work);
865
866 wb_update_bandwidth(wb, wb_start);
867
868 /*
869 * Did we write something? Try for more
870 *
871 * Dirty inodes are moved to b_io for writeback in batches.
872 * The completion of the current batch does not necessarily
873 * mean the overall work is done. So we keep looping as long
874 * as made some progress on cleaning pages or inodes.
875 */
876 if (progress)
877 continue;
878 /*
879 * No more inodes for IO, bail
880 */
881 if (list_empty(&wb->b_more_io))
882 break;
883 /*
884 * Nothing written. Wait for some inode to
885 * become available for writeback. Otherwise
886 * we'll just busyloop.
887 */
888 if (!list_empty(&wb->b_more_io)) {
889 trace_writeback_wait(wb->bdi, work);
890 inode = wb_inode(wb->b_more_io.prev);
891 spin_lock(&inode->i_lock);
892 spin_unlock(&wb->list_lock);
893 /* This function drops i_lock... */
894 inode_sleep_on_writeback(inode);
895 spin_lock(&wb->list_lock);
896 }
897 }
898 spin_unlock(&wb->list_lock);
899
900 return nr_pages - work->nr_pages;
901 }
902
903 /*
904 * Return the next wb_writeback_work struct that hasn't been processed yet.
905 */
906 static struct wb_writeback_work *
907 get_next_work_item(struct backing_dev_info *bdi)
908 {
909 struct wb_writeback_work *work = NULL;
910
911 spin_lock_bh(&bdi->wb_lock);
912 if (!list_empty(&bdi->work_list)) {
913 work = list_entry(bdi->work_list.next,
914 struct wb_writeback_work, list);
915 list_del_init(&work->list);
916 }
917 spin_unlock_bh(&bdi->wb_lock);
918 return work;
919 }
920
921 /*
922 * Add in the number of potentially dirty inodes, because each inode
923 * write can dirty pagecache in the underlying blockdev.
924 */
925 static unsigned long get_nr_dirty_pages(void)
926 {
927 return global_page_state(NR_FILE_DIRTY) +
928 global_page_state(NR_UNSTABLE_NFS) +
929 get_nr_dirty_inodes();
930 }
931
932 static long wb_check_background_flush(struct bdi_writeback *wb)
933 {
934 if (over_bground_thresh(wb->bdi)) {
935
936 struct wb_writeback_work work = {
937 .nr_pages = LONG_MAX,
938 .sync_mode = WB_SYNC_NONE,
939 .for_background = 1,
940 .range_cyclic = 1,
941 .reason = WB_REASON_BACKGROUND,
942 };
943
944 return wb_writeback(wb, &work);
945 }
946
947 return 0;
948 }
949
950 static long wb_check_old_data_flush(struct bdi_writeback *wb)
951 {
952 unsigned long expired;
953 long nr_pages;
954
955 /*
956 * When set to zero, disable periodic writeback
957 */
958 if (!dirty_writeback_interval)
959 return 0;
960
961 expired = wb->last_old_flush +
962 msecs_to_jiffies(dirty_writeback_interval * 10);
963 if (time_before(jiffies, expired))
964 return 0;
965
966 wb->last_old_flush = jiffies;
967 nr_pages = get_nr_dirty_pages();
968
969 if (nr_pages) {
970 struct wb_writeback_work work = {
971 .nr_pages = nr_pages,
972 .sync_mode = WB_SYNC_NONE,
973 .for_kupdate = 1,
974 .range_cyclic = 1,
975 .reason = WB_REASON_PERIODIC,
976 };
977
978 return wb_writeback(wb, &work);
979 }
980
981 return 0;
982 }
983
984 /*
985 * Retrieve work items and do the writeback they describe
986 */
987 static long wb_do_writeback(struct bdi_writeback *wb)
988 {
989 struct backing_dev_info *bdi = wb->bdi;
990 struct wb_writeback_work *work;
991 long wrote = 0;
992
993 set_bit(BDI_writeback_running, &wb->bdi->state);
994 while ((work = get_next_work_item(bdi)) != NULL) {
995
996 trace_writeback_exec(bdi, work);
997
998 wrote += wb_writeback(wb, work);
999
1000 /*
1001 * Notify the caller of completion if this is a synchronous
1002 * work item, otherwise just free it.
1003 */
1004 if (work->done)
1005 complete(work->done);
1006 else
1007 kfree(work);
1008 }
1009
1010 /*
1011 * Check for periodic writeback, kupdated() style
1012 */
1013 wrote += wb_check_old_data_flush(wb);
1014 wrote += wb_check_background_flush(wb);
1015 clear_bit(BDI_writeback_running, &wb->bdi->state);
1016
1017 return wrote;
1018 }
1019
1020 /*
1021 * Handle writeback of dirty data for the device backed by this bdi. Also
1022 * reschedules periodically and does kupdated style flushing.
1023 */
1024 void bdi_writeback_workfn(struct work_struct *work)
1025 {
1026 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1027 struct bdi_writeback, dwork);
1028 struct backing_dev_info *bdi = wb->bdi;
1029 long pages_written;
1030
1031 set_worker_desc("flush-%s", dev_name(bdi->dev));
1032 current->flags |= PF_SWAPWRITE;
1033
1034 if (likely(!current_is_workqueue_rescuer() ||
1035 !test_bit(BDI_registered, &bdi->state))) {
1036 /*
1037 * The normal path. Keep writing back @bdi until its
1038 * work_list is empty. Note that this path is also taken
1039 * if @bdi is shutting down even when we're running off the
1040 * rescuer as work_list needs to be drained.
1041 */
1042 do {
1043 pages_written = wb_do_writeback(wb);
1044 trace_writeback_pages_written(pages_written);
1045 } while (!list_empty(&bdi->work_list));
1046 } else {
1047 /*
1048 * bdi_wq can't get enough workers and we're running off
1049 * the emergency worker. Don't hog it. Hopefully, 1024 is
1050 * enough for efficient IO.
1051 */
1052 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1053 WB_REASON_FORKER_THREAD);
1054 trace_writeback_pages_written(pages_written);
1055 }
1056
1057 if (!list_empty(&bdi->work_list))
1058 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1059 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1060 bdi_wakeup_thread_delayed(bdi);
1061
1062 current->flags &= ~PF_SWAPWRITE;
1063 }
1064
1065 /*
1066 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1067 * the whole world.
1068 */
1069 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1070 {
1071 struct backing_dev_info *bdi;
1072
1073 if (!nr_pages)
1074 nr_pages = get_nr_dirty_pages();
1075
1076 rcu_read_lock();
1077 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1078 if (!bdi_has_dirty_io(bdi))
1079 continue;
1080 __bdi_start_writeback(bdi, nr_pages, false, reason);
1081 }
1082 rcu_read_unlock();
1083 }
1084
1085 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1086 {
1087 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1088 struct dentry *dentry;
1089 const char *name = "?";
1090
1091 dentry = d_find_alias(inode);
1092 if (dentry) {
1093 spin_lock(&dentry->d_lock);
1094 name = (const char *) dentry->d_name.name;
1095 }
1096 printk(KERN_DEBUG
1097 "%s(%d): dirtied inode %lu (%s) on %s\n",
1098 current->comm, task_pid_nr(current), inode->i_ino,
1099 name, inode->i_sb->s_id);
1100 if (dentry) {
1101 spin_unlock(&dentry->d_lock);
1102 dput(dentry);
1103 }
1104 }
1105 }
1106
1107 /**
1108 * __mark_inode_dirty - internal function
1109 * @inode: inode to mark
1110 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1111 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1112 * mark_inode_dirty_sync.
1113 *
1114 * Put the inode on the super block's dirty list.
1115 *
1116 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1117 * dirty list only if it is hashed or if it refers to a blockdev.
1118 * If it was not hashed, it will never be added to the dirty list
1119 * even if it is later hashed, as it will have been marked dirty already.
1120 *
1121 * In short, make sure you hash any inodes _before_ you start marking
1122 * them dirty.
1123 *
1124 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1125 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1126 * the kernel-internal blockdev inode represents the dirtying time of the
1127 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1128 * page->mapping->host, so the page-dirtying time is recorded in the internal
1129 * blockdev inode.
1130 */
1131 void __mark_inode_dirty(struct inode *inode, int flags)
1132 {
1133 struct super_block *sb = inode->i_sb;
1134 struct backing_dev_info *bdi = NULL;
1135
1136 /*
1137 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1138 * dirty the inode itself
1139 */
1140 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1141 trace_writeback_dirty_inode_start(inode, flags);
1142
1143 if (sb->s_op->dirty_inode)
1144 sb->s_op->dirty_inode(inode, flags);
1145
1146 trace_writeback_dirty_inode(inode, flags);
1147 }
1148
1149 /*
1150 * make sure that changes are seen by all cpus before we test i_state
1151 * -- mikulas
1152 */
1153 smp_mb();
1154
1155 /* avoid the locking if we can */
1156 if ((inode->i_state & flags) == flags)
1157 return;
1158
1159 if (unlikely(block_dump))
1160 block_dump___mark_inode_dirty(inode);
1161
1162 spin_lock(&inode->i_lock);
1163 if ((inode->i_state & flags) != flags) {
1164 const int was_dirty = inode->i_state & I_DIRTY;
1165
1166 inode->i_state |= flags;
1167
1168 /*
1169 * If the inode is being synced, just update its dirty state.
1170 * The unlocker will place the inode on the appropriate
1171 * superblock list, based upon its state.
1172 */
1173 if (inode->i_state & I_SYNC)
1174 goto out_unlock_inode;
1175
1176 /*
1177 * Only add valid (hashed) inodes to the superblock's
1178 * dirty list. Add blockdev inodes as well.
1179 */
1180 if (!S_ISBLK(inode->i_mode)) {
1181 if (inode_unhashed(inode))
1182 goto out_unlock_inode;
1183 }
1184 if (inode->i_state & I_FREEING)
1185 goto out_unlock_inode;
1186
1187 /*
1188 * If the inode was already on b_dirty/b_io/b_more_io, don't
1189 * reposition it (that would break b_dirty time-ordering).
1190 */
1191 if (!was_dirty) {
1192 bool wakeup_bdi = false;
1193 bdi = inode_to_bdi(inode);
1194
1195 spin_unlock(&inode->i_lock);
1196 spin_lock(&bdi->wb.list_lock);
1197 if (bdi_cap_writeback_dirty(bdi)) {
1198 WARN(!test_bit(BDI_registered, &bdi->state),
1199 "bdi-%s not registered\n", bdi->name);
1200
1201 /*
1202 * If this is the first dirty inode for this
1203 * bdi, we have to wake-up the corresponding
1204 * bdi thread to make sure background
1205 * write-back happens later.
1206 */
1207 if (!wb_has_dirty_io(&bdi->wb))
1208 wakeup_bdi = true;
1209 }
1210
1211 inode->dirtied_when = jiffies;
1212 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1213 spin_unlock(&bdi->wb.list_lock);
1214
1215 if (wakeup_bdi)
1216 bdi_wakeup_thread_delayed(bdi);
1217 return;
1218 }
1219 }
1220 out_unlock_inode:
1221 spin_unlock(&inode->i_lock);
1222
1223 }
1224 EXPORT_SYMBOL(__mark_inode_dirty);
1225
1226 static void wait_sb_inodes(struct super_block *sb)
1227 {
1228 struct inode *inode, *old_inode = NULL;
1229
1230 /*
1231 * We need to be protected against the filesystem going from
1232 * r/o to r/w or vice versa.
1233 */
1234 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1235
1236 spin_lock(&inode_sb_list_lock);
1237
1238 /*
1239 * Data integrity sync. Must wait for all pages under writeback,
1240 * because there may have been pages dirtied before our sync
1241 * call, but which had writeout started before we write it out.
1242 * In which case, the inode may not be on the dirty list, but
1243 * we still have to wait for that writeout.
1244 */
1245 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1246 struct address_space *mapping = inode->i_mapping;
1247
1248 spin_lock(&inode->i_lock);
1249 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1250 (mapping->nrpages == 0)) {
1251 spin_unlock(&inode->i_lock);
1252 continue;
1253 }
1254 __iget(inode);
1255 spin_unlock(&inode->i_lock);
1256 spin_unlock(&inode_sb_list_lock);
1257
1258 /*
1259 * We hold a reference to 'inode' so it couldn't have been
1260 * removed from s_inodes list while we dropped the
1261 * inode_sb_list_lock. We cannot iput the inode now as we can
1262 * be holding the last reference and we cannot iput it under
1263 * inode_sb_list_lock. So we keep the reference and iput it
1264 * later.
1265 */
1266 iput(old_inode);
1267 old_inode = inode;
1268
1269 filemap_fdatawait(mapping);
1270
1271 cond_resched();
1272
1273 spin_lock(&inode_sb_list_lock);
1274 }
1275 spin_unlock(&inode_sb_list_lock);
1276 iput(old_inode);
1277 }
1278
1279 /**
1280 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1281 * @sb: the superblock
1282 * @nr: the number of pages to write
1283 * @reason: reason why some writeback work initiated
1284 *
1285 * Start writeback on some inodes on this super_block. No guarantees are made
1286 * on how many (if any) will be written, and this function does not wait
1287 * for IO completion of submitted IO.
1288 */
1289 void writeback_inodes_sb_nr(struct super_block *sb,
1290 unsigned long nr,
1291 enum wb_reason reason)
1292 {
1293 DECLARE_COMPLETION_ONSTACK(done);
1294 struct wb_writeback_work work = {
1295 .sb = sb,
1296 .sync_mode = WB_SYNC_NONE,
1297 .tagged_writepages = 1,
1298 .done = &done,
1299 .nr_pages = nr,
1300 .reason = reason,
1301 };
1302
1303 if (sb->s_bdi == &noop_backing_dev_info)
1304 return;
1305 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1306 bdi_queue_work(sb->s_bdi, &work);
1307 wait_for_completion(&done);
1308 }
1309 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1310
1311 /**
1312 * writeback_inodes_sb - writeback dirty inodes from given super_block
1313 * @sb: the superblock
1314 * @reason: reason why some writeback work was initiated
1315 *
1316 * Start writeback on some inodes on this super_block. No guarantees are made
1317 * on how many (if any) will be written, and this function does not wait
1318 * for IO completion of submitted IO.
1319 */
1320 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1321 {
1322 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1323 }
1324 EXPORT_SYMBOL(writeback_inodes_sb);
1325
1326 /**
1327 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1328 * @sb: the superblock
1329 * @nr: the number of pages to write
1330 * @reason: the reason of writeback
1331 *
1332 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1333 * Returns 1 if writeback was started, 0 if not.
1334 */
1335 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1336 unsigned long nr,
1337 enum wb_reason reason)
1338 {
1339 if (writeback_in_progress(sb->s_bdi))
1340 return 1;
1341
1342 if (!down_read_trylock(&sb->s_umount))
1343 return 0;
1344
1345 writeback_inodes_sb_nr(sb, nr, reason);
1346 up_read(&sb->s_umount);
1347 return 1;
1348 }
1349 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1350
1351 /**
1352 * try_to_writeback_inodes_sb - try to start writeback if none underway
1353 * @sb: the superblock
1354 * @reason: reason why some writeback work was initiated
1355 *
1356 * Implement by try_to_writeback_inodes_sb_nr()
1357 * Returns 1 if writeback was started, 0 if not.
1358 */
1359 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1360 {
1361 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1362 }
1363 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1364
1365 /**
1366 * sync_inodes_sb - sync sb inode pages
1367 * @sb: the superblock
1368 *
1369 * This function writes and waits on any dirty inode belonging to this
1370 * super_block.
1371 */
1372 void sync_inodes_sb(struct super_block *sb)
1373 {
1374 DECLARE_COMPLETION_ONSTACK(done);
1375 struct wb_writeback_work work = {
1376 .sb = sb,
1377 .sync_mode = WB_SYNC_ALL,
1378 .nr_pages = LONG_MAX,
1379 .range_cyclic = 0,
1380 .done = &done,
1381 .reason = WB_REASON_SYNC,
1382 .for_sync = 1,
1383 };
1384
1385 /* Nothing to do? */
1386 if (sb->s_bdi == &noop_backing_dev_info)
1387 return;
1388 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1389
1390 bdi_queue_work(sb->s_bdi, &work);
1391 wait_for_completion(&done);
1392
1393 wait_sb_inodes(sb);
1394 }
1395 EXPORT_SYMBOL(sync_inodes_sb);
1396
1397 /**
1398 * write_inode_now - write an inode to disk
1399 * @inode: inode to write to disk
1400 * @sync: whether the write should be synchronous or not
1401 *
1402 * This function commits an inode to disk immediately if it is dirty. This is
1403 * primarily needed by knfsd.
1404 *
1405 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1406 */
1407 int write_inode_now(struct inode *inode, int sync)
1408 {
1409 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1410 struct writeback_control wbc = {
1411 .nr_to_write = LONG_MAX,
1412 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1413 .range_start = 0,
1414 .range_end = LLONG_MAX,
1415 };
1416
1417 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1418 wbc.nr_to_write = 0;
1419
1420 might_sleep();
1421 return writeback_single_inode(inode, wb, &wbc);
1422 }
1423 EXPORT_SYMBOL(write_inode_now);
1424
1425 /**
1426 * sync_inode - write an inode and its pages to disk.
1427 * @inode: the inode to sync
1428 * @wbc: controls the writeback mode
1429 *
1430 * sync_inode() will write an inode and its pages to disk. It will also
1431 * correctly update the inode on its superblock's dirty inode lists and will
1432 * update inode->i_state.
1433 *
1434 * The caller must have a ref on the inode.
1435 */
1436 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1437 {
1438 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1439 }
1440 EXPORT_SYMBOL(sync_inode);
1441
1442 /**
1443 * sync_inode_metadata - write an inode to disk
1444 * @inode: the inode to sync
1445 * @wait: wait for I/O to complete.
1446 *
1447 * Write an inode to disk and adjust its dirty state after completion.
1448 *
1449 * Note: only writes the actual inode, no associated data or other metadata.
1450 */
1451 int sync_inode_metadata(struct inode *inode, int wait)
1452 {
1453 struct writeback_control wbc = {
1454 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1455 .nr_to_write = 0, /* metadata-only */
1456 };
1457
1458 return sync_inode(inode, &wbc);
1459 }
1460 EXPORT_SYMBOL(sync_inode_metadata);