]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
Merge tag 'armsoc-for-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 struct super_block *sb = inode->i_sb;
72
73 if (sb_is_blkdev_sb(sb))
74 return inode->i_mapping->backing_dev_info;
75
76 return sb->s_bdi;
77 }
78
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 return list_entry(head, struct inode, i_wb_list);
82 }
83
84 /*
85 * Include the creation of the trace points after defining the
86 * wb_writeback_work structure and inline functions so that the definition
87 * remains local to this file.
88 */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91
92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
93
94 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
95 {
96 spin_lock_bh(&bdi->wb_lock);
97 if (test_bit(BDI_registered, &bdi->state))
98 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 spin_unlock_bh(&bdi->wb_lock);
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
104 {
105 trace_writeback_queue(bdi, work);
106
107 spin_lock_bh(&bdi->wb_lock);
108 if (!test_bit(BDI_registered, &bdi->state)) {
109 if (work->done)
110 complete(work->done);
111 goto out_unlock;
112 }
113 list_add_tail(&work->list, &bdi->work_list);
114 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115 out_unlock:
116 spin_unlock_bh(&bdi->wb_lock);
117 }
118
119 static void
120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 bool range_cyclic, enum wb_reason reason)
122 {
123 struct wb_writeback_work *work;
124
125 /*
126 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 * wakeup the thread for old dirty data writeback
128 */
129 work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 if (!work) {
131 trace_writeback_nowork(bdi);
132 bdi_wakeup_thread(bdi);
133 return;
134 }
135
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
140
141 bdi_queue_work(bdi, work);
142 }
143
144 /**
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
149 *
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
154 *
155 */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
158 {
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161
162 /**
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
165 *
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
171 */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 /*
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
177 */
178 trace_writeback_wake_background(bdi);
179 bdi_wakeup_thread(bdi);
180 }
181
182 /*
183 * Remove the inode from the writeback list it is on.
184 */
185 void inode_wb_list_del(struct inode *inode)
186 {
187 struct backing_dev_info *bdi = inode_to_bdi(inode);
188
189 spin_lock(&bdi->wb.list_lock);
190 list_del_init(&inode->i_wb_list);
191 spin_unlock(&bdi->wb.list_lock);
192 }
193
194 /*
195 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196 * furthest end of its superblock's dirty-inode list.
197 *
198 * Before stamping the inode's ->dirtied_when, we check to see whether it is
199 * already the most-recently-dirtied inode on the b_dirty list. If that is
200 * the case then the inode must have been redirtied while it was being written
201 * out and we don't reset its dirtied_when.
202 */
203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
204 {
205 assert_spin_locked(&wb->list_lock);
206 if (!list_empty(&wb->b_dirty)) {
207 struct inode *tail;
208
209 tail = wb_inode(wb->b_dirty.next);
210 if (time_before(inode->dirtied_when, tail->dirtied_when))
211 inode->dirtied_when = jiffies;
212 }
213 list_move(&inode->i_wb_list, &wb->b_dirty);
214 }
215
216 /*
217 * requeue inode for re-scanning after bdi->b_io list is exhausted.
218 */
219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
220 {
221 assert_spin_locked(&wb->list_lock);
222 list_move(&inode->i_wb_list, &wb->b_more_io);
223 }
224
225 static void inode_sync_complete(struct inode *inode)
226 {
227 inode->i_state &= ~I_SYNC;
228 /* If inode is clean an unused, put it into LRU now... */
229 inode_add_lru(inode);
230 /* Waiters must see I_SYNC cleared before being woken up */
231 smp_mb();
232 wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 /*
240 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 * It _appears_ to be in the future, but is actually in distant past.
242 * This test is necessary to prevent such wrapped-around relative times
243 * from permanently stopping the whole bdi writeback.
244 */
245 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 return ret;
248 }
249
250 /*
251 * Move expired (dirtied before work->older_than_this) dirty inodes from
252 * @delaying_queue to @dispatch_queue.
253 */
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 struct wb_writeback_work *work)
257 {
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263 int moved = 0;
264
265 while (!list_empty(delaying_queue)) {
266 inode = wb_inode(delaying_queue->prev);
267 if (work->older_than_this &&
268 inode_dirtied_after(inode, *work->older_than_this))
269 break;
270 list_move(&inode->i_wb_list, &tmp);
271 moved++;
272 if (sb_is_blkdev_sb(inode->i_sb))
273 continue;
274 if (sb && sb != inode->i_sb)
275 do_sb_sort = 1;
276 sb = inode->i_sb;
277 }
278
279 /* just one sb in list, splice to dispatch_queue and we're done */
280 if (!do_sb_sort) {
281 list_splice(&tmp, dispatch_queue);
282 goto out;
283 }
284
285 /* Move inodes from one superblock together */
286 while (!list_empty(&tmp)) {
287 sb = wb_inode(tmp.prev)->i_sb;
288 list_for_each_prev_safe(pos, node, &tmp) {
289 inode = wb_inode(pos);
290 if (inode->i_sb == sb)
291 list_move(&inode->i_wb_list, dispatch_queue);
292 }
293 }
294 out:
295 return moved;
296 }
297
298 /*
299 * Queue all expired dirty inodes for io, eldest first.
300 * Before
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> gf edc BA
303 * After
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> g fBAedc
306 * |
307 * +--> dequeue for IO
308 */
309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
310 {
311 int moved;
312 assert_spin_locked(&wb->list_lock);
313 list_splice_init(&wb->b_more_io, &wb->b_io);
314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 trace_writeback_queue_io(wb, work, moved);
316 }
317
318 static int write_inode(struct inode *inode, struct writeback_control *wbc)
319 {
320 int ret;
321
322 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
323 trace_writeback_write_inode_start(inode, wbc);
324 ret = inode->i_sb->s_op->write_inode(inode, wbc);
325 trace_writeback_write_inode(inode, wbc);
326 return ret;
327 }
328 return 0;
329 }
330
331 /*
332 * Wait for writeback on an inode to complete. Called with i_lock held.
333 * Caller must make sure inode cannot go away when we drop i_lock.
334 */
335 static void __inode_wait_for_writeback(struct inode *inode)
336 __releases(inode->i_lock)
337 __acquires(inode->i_lock)
338 {
339 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
340 wait_queue_head_t *wqh;
341
342 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
343 while (inode->i_state & I_SYNC) {
344 spin_unlock(&inode->i_lock);
345 __wait_on_bit(wqh, &wq, bit_wait,
346 TASK_UNINTERRUPTIBLE);
347 spin_lock(&inode->i_lock);
348 }
349 }
350
351 /*
352 * Wait for writeback on an inode to complete. Caller must have inode pinned.
353 */
354 void inode_wait_for_writeback(struct inode *inode)
355 {
356 spin_lock(&inode->i_lock);
357 __inode_wait_for_writeback(inode);
358 spin_unlock(&inode->i_lock);
359 }
360
361 /*
362 * Sleep until I_SYNC is cleared. This function must be called with i_lock
363 * held and drops it. It is aimed for callers not holding any inode reference
364 * so once i_lock is dropped, inode can go away.
365 */
366 static void inode_sleep_on_writeback(struct inode *inode)
367 __releases(inode->i_lock)
368 {
369 DEFINE_WAIT(wait);
370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
371 int sleep;
372
373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
374 sleep = inode->i_state & I_SYNC;
375 spin_unlock(&inode->i_lock);
376 if (sleep)
377 schedule();
378 finish_wait(wqh, &wait);
379 }
380
381 /*
382 * Find proper writeback list for the inode depending on its current state and
383 * possibly also change of its state while we were doing writeback. Here we
384 * handle things such as livelock prevention or fairness of writeback among
385 * inodes. This function can be called only by flusher thread - noone else
386 * processes all inodes in writeback lists and requeueing inodes behind flusher
387 * thread's back can have unexpected consequences.
388 */
389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
390 struct writeback_control *wbc)
391 {
392 if (inode->i_state & I_FREEING)
393 return;
394
395 /*
396 * Sync livelock prevention. Each inode is tagged and synced in one
397 * shot. If still dirty, it will be redirty_tail()'ed below. Update
398 * the dirty time to prevent enqueue and sync it again.
399 */
400 if ((inode->i_state & I_DIRTY) &&
401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
402 inode->dirtied_when = jiffies;
403
404 if (wbc->pages_skipped) {
405 /*
406 * writeback is not making progress due to locked
407 * buffers. Skip this inode for now.
408 */
409 redirty_tail(inode, wb);
410 return;
411 }
412
413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
414 /*
415 * We didn't write back all the pages. nfs_writepages()
416 * sometimes bales out without doing anything.
417 */
418 if (wbc->nr_to_write <= 0) {
419 /* Slice used up. Queue for next turn. */
420 requeue_io(inode, wb);
421 } else {
422 /*
423 * Writeback blocked by something other than
424 * congestion. Delay the inode for some time to
425 * avoid spinning on the CPU (100% iowait)
426 * retrying writeback of the dirty page/inode
427 * that cannot be performed immediately.
428 */
429 redirty_tail(inode, wb);
430 }
431 } else if (inode->i_state & I_DIRTY) {
432 /*
433 * Filesystems can dirty the inode during writeback operations,
434 * such as delayed allocation during submission or metadata
435 * updates after data IO completion.
436 */
437 redirty_tail(inode, wb);
438 } else {
439 /* The inode is clean. Remove from writeback lists. */
440 list_del_init(&inode->i_wb_list);
441 }
442 }
443
444 /*
445 * Write out an inode and its dirty pages. Do not update the writeback list
446 * linkage. That is left to the caller. The caller is also responsible for
447 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
448 */
449 static int
450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
451 {
452 struct address_space *mapping = inode->i_mapping;
453 long nr_to_write = wbc->nr_to_write;
454 unsigned dirty;
455 int ret;
456
457 WARN_ON(!(inode->i_state & I_SYNC));
458
459 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
460
461 ret = do_writepages(mapping, wbc);
462
463 /*
464 * Make sure to wait on the data before writing out the metadata.
465 * This is important for filesystems that modify metadata on data
466 * I/O completion. We don't do it for sync(2) writeback because it has a
467 * separate, external IO completion path and ->sync_fs for guaranteeing
468 * inode metadata is written back correctly.
469 */
470 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
471 int err = filemap_fdatawait(mapping);
472 if (ret == 0)
473 ret = err;
474 }
475
476 /*
477 * Some filesystems may redirty the inode during the writeback
478 * due to delalloc, clear dirty metadata flags right before
479 * write_inode()
480 */
481 spin_lock(&inode->i_lock);
482 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
483 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
484 inode->i_state &= ~I_DIRTY_PAGES;
485 dirty = inode->i_state & I_DIRTY;
486 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
487 spin_unlock(&inode->i_lock);
488 /* Don't write the inode if only I_DIRTY_PAGES was set */
489 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
490 int err = write_inode(inode, wbc);
491 if (ret == 0)
492 ret = err;
493 }
494 trace_writeback_single_inode(inode, wbc, nr_to_write);
495 return ret;
496 }
497
498 /*
499 * Write out an inode's dirty pages. Either the caller has an active reference
500 * on the inode or the inode has I_WILL_FREE set.
501 *
502 * This function is designed to be called for writing back one inode which
503 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
504 * and does more profound writeback list handling in writeback_sb_inodes().
505 */
506 static int
507 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
508 struct writeback_control *wbc)
509 {
510 int ret = 0;
511
512 spin_lock(&inode->i_lock);
513 if (!atomic_read(&inode->i_count))
514 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
515 else
516 WARN_ON(inode->i_state & I_WILL_FREE);
517
518 if (inode->i_state & I_SYNC) {
519 if (wbc->sync_mode != WB_SYNC_ALL)
520 goto out;
521 /*
522 * It's a data-integrity sync. We must wait. Since callers hold
523 * inode reference or inode has I_WILL_FREE set, it cannot go
524 * away under us.
525 */
526 __inode_wait_for_writeback(inode);
527 }
528 WARN_ON(inode->i_state & I_SYNC);
529 /*
530 * Skip inode if it is clean and we have no outstanding writeback in
531 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
532 * function since flusher thread may be doing for example sync in
533 * parallel and if we move the inode, it could get skipped. So here we
534 * make sure inode is on some writeback list and leave it there unless
535 * we have completely cleaned the inode.
536 */
537 if (!(inode->i_state & I_DIRTY) &&
538 (wbc->sync_mode != WB_SYNC_ALL ||
539 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
540 goto out;
541 inode->i_state |= I_SYNC;
542 spin_unlock(&inode->i_lock);
543
544 ret = __writeback_single_inode(inode, wbc);
545
546 spin_lock(&wb->list_lock);
547 spin_lock(&inode->i_lock);
548 /*
549 * If inode is clean, remove it from writeback lists. Otherwise don't
550 * touch it. See comment above for explanation.
551 */
552 if (!(inode->i_state & I_DIRTY))
553 list_del_init(&inode->i_wb_list);
554 spin_unlock(&wb->list_lock);
555 inode_sync_complete(inode);
556 out:
557 spin_unlock(&inode->i_lock);
558 return ret;
559 }
560
561 static long writeback_chunk_size(struct backing_dev_info *bdi,
562 struct wb_writeback_work *work)
563 {
564 long pages;
565
566 /*
567 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
568 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
569 * here avoids calling into writeback_inodes_wb() more than once.
570 *
571 * The intended call sequence for WB_SYNC_ALL writeback is:
572 *
573 * wb_writeback()
574 * writeback_sb_inodes() <== called only once
575 * write_cache_pages() <== called once for each inode
576 * (quickly) tag currently dirty pages
577 * (maybe slowly) sync all tagged pages
578 */
579 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
580 pages = LONG_MAX;
581 else {
582 pages = min(bdi->avg_write_bandwidth / 2,
583 global_dirty_limit / DIRTY_SCOPE);
584 pages = min(pages, work->nr_pages);
585 pages = round_down(pages + MIN_WRITEBACK_PAGES,
586 MIN_WRITEBACK_PAGES);
587 }
588
589 return pages;
590 }
591
592 /*
593 * Write a portion of b_io inodes which belong to @sb.
594 *
595 * Return the number of pages and/or inodes written.
596 */
597 static long writeback_sb_inodes(struct super_block *sb,
598 struct bdi_writeback *wb,
599 struct wb_writeback_work *work)
600 {
601 struct writeback_control wbc = {
602 .sync_mode = work->sync_mode,
603 .tagged_writepages = work->tagged_writepages,
604 .for_kupdate = work->for_kupdate,
605 .for_background = work->for_background,
606 .for_sync = work->for_sync,
607 .range_cyclic = work->range_cyclic,
608 .range_start = 0,
609 .range_end = LLONG_MAX,
610 };
611 unsigned long start_time = jiffies;
612 long write_chunk;
613 long wrote = 0; /* count both pages and inodes */
614
615 while (!list_empty(&wb->b_io)) {
616 struct inode *inode = wb_inode(wb->b_io.prev);
617
618 if (inode->i_sb != sb) {
619 if (work->sb) {
620 /*
621 * We only want to write back data for this
622 * superblock, move all inodes not belonging
623 * to it back onto the dirty list.
624 */
625 redirty_tail(inode, wb);
626 continue;
627 }
628
629 /*
630 * The inode belongs to a different superblock.
631 * Bounce back to the caller to unpin this and
632 * pin the next superblock.
633 */
634 break;
635 }
636
637 /*
638 * Don't bother with new inodes or inodes being freed, first
639 * kind does not need periodic writeout yet, and for the latter
640 * kind writeout is handled by the freer.
641 */
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
645 redirty_tail(inode, wb);
646 continue;
647 }
648 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
649 /*
650 * If this inode is locked for writeback and we are not
651 * doing writeback-for-data-integrity, move it to
652 * b_more_io so that writeback can proceed with the
653 * other inodes on s_io.
654 *
655 * We'll have another go at writing back this inode
656 * when we completed a full scan of b_io.
657 */
658 spin_unlock(&inode->i_lock);
659 requeue_io(inode, wb);
660 trace_writeback_sb_inodes_requeue(inode);
661 continue;
662 }
663 spin_unlock(&wb->list_lock);
664
665 /*
666 * We already requeued the inode if it had I_SYNC set and we
667 * are doing WB_SYNC_NONE writeback. So this catches only the
668 * WB_SYNC_ALL case.
669 */
670 if (inode->i_state & I_SYNC) {
671 /* Wait for I_SYNC. This function drops i_lock... */
672 inode_sleep_on_writeback(inode);
673 /* Inode may be gone, start again */
674 spin_lock(&wb->list_lock);
675 continue;
676 }
677 inode->i_state |= I_SYNC;
678 spin_unlock(&inode->i_lock);
679
680 write_chunk = writeback_chunk_size(wb->bdi, work);
681 wbc.nr_to_write = write_chunk;
682 wbc.pages_skipped = 0;
683
684 /*
685 * We use I_SYNC to pin the inode in memory. While it is set
686 * evict_inode() will wait so the inode cannot be freed.
687 */
688 __writeback_single_inode(inode, &wbc);
689
690 work->nr_pages -= write_chunk - wbc.nr_to_write;
691 wrote += write_chunk - wbc.nr_to_write;
692 spin_lock(&wb->list_lock);
693 spin_lock(&inode->i_lock);
694 if (!(inode->i_state & I_DIRTY))
695 wrote++;
696 requeue_inode(inode, wb, &wbc);
697 inode_sync_complete(inode);
698 spin_unlock(&inode->i_lock);
699 cond_resched_lock(&wb->list_lock);
700 /*
701 * bail out to wb_writeback() often enough to check
702 * background threshold and other termination conditions.
703 */
704 if (wrote) {
705 if (time_is_before_jiffies(start_time + HZ / 10UL))
706 break;
707 if (work->nr_pages <= 0)
708 break;
709 }
710 }
711 return wrote;
712 }
713
714 static long __writeback_inodes_wb(struct bdi_writeback *wb,
715 struct wb_writeback_work *work)
716 {
717 unsigned long start_time = jiffies;
718 long wrote = 0;
719
720 while (!list_empty(&wb->b_io)) {
721 struct inode *inode = wb_inode(wb->b_io.prev);
722 struct super_block *sb = inode->i_sb;
723
724 if (!grab_super_passive(sb)) {
725 /*
726 * grab_super_passive() may fail consistently due to
727 * s_umount being grabbed by someone else. Don't use
728 * requeue_io() to avoid busy retrying the inode/sb.
729 */
730 redirty_tail(inode, wb);
731 continue;
732 }
733 wrote += writeback_sb_inodes(sb, wb, work);
734 drop_super(sb);
735
736 /* refer to the same tests at the end of writeback_sb_inodes */
737 if (wrote) {
738 if (time_is_before_jiffies(start_time + HZ / 10UL))
739 break;
740 if (work->nr_pages <= 0)
741 break;
742 }
743 }
744 /* Leave any unwritten inodes on b_io */
745 return wrote;
746 }
747
748 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
749 enum wb_reason reason)
750 {
751 struct wb_writeback_work work = {
752 .nr_pages = nr_pages,
753 .sync_mode = WB_SYNC_NONE,
754 .range_cyclic = 1,
755 .reason = reason,
756 };
757
758 spin_lock(&wb->list_lock);
759 if (list_empty(&wb->b_io))
760 queue_io(wb, &work);
761 __writeback_inodes_wb(wb, &work);
762 spin_unlock(&wb->list_lock);
763
764 return nr_pages - work.nr_pages;
765 }
766
767 static bool over_bground_thresh(struct backing_dev_info *bdi)
768 {
769 unsigned long background_thresh, dirty_thresh;
770
771 global_dirty_limits(&background_thresh, &dirty_thresh);
772
773 if (global_page_state(NR_FILE_DIRTY) +
774 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
775 return true;
776
777 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
778 bdi_dirty_limit(bdi, background_thresh))
779 return true;
780
781 return false;
782 }
783
784 /*
785 * Called under wb->list_lock. If there are multiple wb per bdi,
786 * only the flusher working on the first wb should do it.
787 */
788 static void wb_update_bandwidth(struct bdi_writeback *wb,
789 unsigned long start_time)
790 {
791 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
792 }
793
794 /*
795 * Explicit flushing or periodic writeback of "old" data.
796 *
797 * Define "old": the first time one of an inode's pages is dirtied, we mark the
798 * dirtying-time in the inode's address_space. So this periodic writeback code
799 * just walks the superblock inode list, writing back any inodes which are
800 * older than a specific point in time.
801 *
802 * Try to run once per dirty_writeback_interval. But if a writeback event
803 * takes longer than a dirty_writeback_interval interval, then leave a
804 * one-second gap.
805 *
806 * older_than_this takes precedence over nr_to_write. So we'll only write back
807 * all dirty pages if they are all attached to "old" mappings.
808 */
809 static long wb_writeback(struct bdi_writeback *wb,
810 struct wb_writeback_work *work)
811 {
812 unsigned long wb_start = jiffies;
813 long nr_pages = work->nr_pages;
814 unsigned long oldest_jif;
815 struct inode *inode;
816 long progress;
817
818 oldest_jif = jiffies;
819 work->older_than_this = &oldest_jif;
820
821 spin_lock(&wb->list_lock);
822 for (;;) {
823 /*
824 * Stop writeback when nr_pages has been consumed
825 */
826 if (work->nr_pages <= 0)
827 break;
828
829 /*
830 * Background writeout and kupdate-style writeback may
831 * run forever. Stop them if there is other work to do
832 * so that e.g. sync can proceed. They'll be restarted
833 * after the other works are all done.
834 */
835 if ((work->for_background || work->for_kupdate) &&
836 !list_empty(&wb->bdi->work_list))
837 break;
838
839 /*
840 * For background writeout, stop when we are below the
841 * background dirty threshold
842 */
843 if (work->for_background && !over_bground_thresh(wb->bdi))
844 break;
845
846 /*
847 * Kupdate and background works are special and we want to
848 * include all inodes that need writing. Livelock avoidance is
849 * handled by these works yielding to any other work so we are
850 * safe.
851 */
852 if (work->for_kupdate) {
853 oldest_jif = jiffies -
854 msecs_to_jiffies(dirty_expire_interval * 10);
855 } else if (work->for_background)
856 oldest_jif = jiffies;
857
858 trace_writeback_start(wb->bdi, work);
859 if (list_empty(&wb->b_io))
860 queue_io(wb, work);
861 if (work->sb)
862 progress = writeback_sb_inodes(work->sb, wb, work);
863 else
864 progress = __writeback_inodes_wb(wb, work);
865 trace_writeback_written(wb->bdi, work);
866
867 wb_update_bandwidth(wb, wb_start);
868
869 /*
870 * Did we write something? Try for more
871 *
872 * Dirty inodes are moved to b_io for writeback in batches.
873 * The completion of the current batch does not necessarily
874 * mean the overall work is done. So we keep looping as long
875 * as made some progress on cleaning pages or inodes.
876 */
877 if (progress)
878 continue;
879 /*
880 * No more inodes for IO, bail
881 */
882 if (list_empty(&wb->b_more_io))
883 break;
884 /*
885 * Nothing written. Wait for some inode to
886 * become available for writeback. Otherwise
887 * we'll just busyloop.
888 */
889 if (!list_empty(&wb->b_more_io)) {
890 trace_writeback_wait(wb->bdi, work);
891 inode = wb_inode(wb->b_more_io.prev);
892 spin_lock(&inode->i_lock);
893 spin_unlock(&wb->list_lock);
894 /* This function drops i_lock... */
895 inode_sleep_on_writeback(inode);
896 spin_lock(&wb->list_lock);
897 }
898 }
899 spin_unlock(&wb->list_lock);
900
901 return nr_pages - work->nr_pages;
902 }
903
904 /*
905 * Return the next wb_writeback_work struct that hasn't been processed yet.
906 */
907 static struct wb_writeback_work *
908 get_next_work_item(struct backing_dev_info *bdi)
909 {
910 struct wb_writeback_work *work = NULL;
911
912 spin_lock_bh(&bdi->wb_lock);
913 if (!list_empty(&bdi->work_list)) {
914 work = list_entry(bdi->work_list.next,
915 struct wb_writeback_work, list);
916 list_del_init(&work->list);
917 }
918 spin_unlock_bh(&bdi->wb_lock);
919 return work;
920 }
921
922 /*
923 * Add in the number of potentially dirty inodes, because each inode
924 * write can dirty pagecache in the underlying blockdev.
925 */
926 static unsigned long get_nr_dirty_pages(void)
927 {
928 return global_page_state(NR_FILE_DIRTY) +
929 global_page_state(NR_UNSTABLE_NFS) +
930 get_nr_dirty_inodes();
931 }
932
933 static long wb_check_background_flush(struct bdi_writeback *wb)
934 {
935 if (over_bground_thresh(wb->bdi)) {
936
937 struct wb_writeback_work work = {
938 .nr_pages = LONG_MAX,
939 .sync_mode = WB_SYNC_NONE,
940 .for_background = 1,
941 .range_cyclic = 1,
942 .reason = WB_REASON_BACKGROUND,
943 };
944
945 return wb_writeback(wb, &work);
946 }
947
948 return 0;
949 }
950
951 static long wb_check_old_data_flush(struct bdi_writeback *wb)
952 {
953 unsigned long expired;
954 long nr_pages;
955
956 /*
957 * When set to zero, disable periodic writeback
958 */
959 if (!dirty_writeback_interval)
960 return 0;
961
962 expired = wb->last_old_flush +
963 msecs_to_jiffies(dirty_writeback_interval * 10);
964 if (time_before(jiffies, expired))
965 return 0;
966
967 wb->last_old_flush = jiffies;
968 nr_pages = get_nr_dirty_pages();
969
970 if (nr_pages) {
971 struct wb_writeback_work work = {
972 .nr_pages = nr_pages,
973 .sync_mode = WB_SYNC_NONE,
974 .for_kupdate = 1,
975 .range_cyclic = 1,
976 .reason = WB_REASON_PERIODIC,
977 };
978
979 return wb_writeback(wb, &work);
980 }
981
982 return 0;
983 }
984
985 /*
986 * Retrieve work items and do the writeback they describe
987 */
988 static long wb_do_writeback(struct bdi_writeback *wb)
989 {
990 struct backing_dev_info *bdi = wb->bdi;
991 struct wb_writeback_work *work;
992 long wrote = 0;
993
994 set_bit(BDI_writeback_running, &wb->bdi->state);
995 while ((work = get_next_work_item(bdi)) != NULL) {
996
997 trace_writeback_exec(bdi, work);
998
999 wrote += wb_writeback(wb, work);
1000
1001 /*
1002 * Notify the caller of completion if this is a synchronous
1003 * work item, otherwise just free it.
1004 */
1005 if (work->done)
1006 complete(work->done);
1007 else
1008 kfree(work);
1009 }
1010
1011 /*
1012 * Check for periodic writeback, kupdated() style
1013 */
1014 wrote += wb_check_old_data_flush(wb);
1015 wrote += wb_check_background_flush(wb);
1016 clear_bit(BDI_writeback_running, &wb->bdi->state);
1017
1018 return wrote;
1019 }
1020
1021 /*
1022 * Handle writeback of dirty data for the device backed by this bdi. Also
1023 * reschedules periodically and does kupdated style flushing.
1024 */
1025 void bdi_writeback_workfn(struct work_struct *work)
1026 {
1027 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1028 struct bdi_writeback, dwork);
1029 struct backing_dev_info *bdi = wb->bdi;
1030 long pages_written;
1031
1032 set_worker_desc("flush-%s", dev_name(bdi->dev));
1033 current->flags |= PF_SWAPWRITE;
1034
1035 if (likely(!current_is_workqueue_rescuer() ||
1036 !test_bit(BDI_registered, &bdi->state))) {
1037 /*
1038 * The normal path. Keep writing back @bdi until its
1039 * work_list is empty. Note that this path is also taken
1040 * if @bdi is shutting down even when we're running off the
1041 * rescuer as work_list needs to be drained.
1042 */
1043 do {
1044 pages_written = wb_do_writeback(wb);
1045 trace_writeback_pages_written(pages_written);
1046 } while (!list_empty(&bdi->work_list));
1047 } else {
1048 /*
1049 * bdi_wq can't get enough workers and we're running off
1050 * the emergency worker. Don't hog it. Hopefully, 1024 is
1051 * enough for efficient IO.
1052 */
1053 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1054 WB_REASON_FORKER_THREAD);
1055 trace_writeback_pages_written(pages_written);
1056 }
1057
1058 if (!list_empty(&bdi->work_list))
1059 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1060 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1061 bdi_wakeup_thread_delayed(bdi);
1062
1063 current->flags &= ~PF_SWAPWRITE;
1064 }
1065
1066 /*
1067 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1068 * the whole world.
1069 */
1070 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1071 {
1072 struct backing_dev_info *bdi;
1073
1074 if (!nr_pages)
1075 nr_pages = get_nr_dirty_pages();
1076
1077 rcu_read_lock();
1078 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1079 if (!bdi_has_dirty_io(bdi))
1080 continue;
1081 __bdi_start_writeback(bdi, nr_pages, false, reason);
1082 }
1083 rcu_read_unlock();
1084 }
1085
1086 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1087 {
1088 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1089 struct dentry *dentry;
1090 const char *name = "?";
1091
1092 dentry = d_find_alias(inode);
1093 if (dentry) {
1094 spin_lock(&dentry->d_lock);
1095 name = (const char *) dentry->d_name.name;
1096 }
1097 printk(KERN_DEBUG
1098 "%s(%d): dirtied inode %lu (%s) on %s\n",
1099 current->comm, task_pid_nr(current), inode->i_ino,
1100 name, inode->i_sb->s_id);
1101 if (dentry) {
1102 spin_unlock(&dentry->d_lock);
1103 dput(dentry);
1104 }
1105 }
1106 }
1107
1108 /**
1109 * __mark_inode_dirty - internal function
1110 * @inode: inode to mark
1111 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1112 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1113 * mark_inode_dirty_sync.
1114 *
1115 * Put the inode on the super block's dirty list.
1116 *
1117 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1118 * dirty list only if it is hashed or if it refers to a blockdev.
1119 * If it was not hashed, it will never be added to the dirty list
1120 * even if it is later hashed, as it will have been marked dirty already.
1121 *
1122 * In short, make sure you hash any inodes _before_ you start marking
1123 * them dirty.
1124 *
1125 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1126 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1127 * the kernel-internal blockdev inode represents the dirtying time of the
1128 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1129 * page->mapping->host, so the page-dirtying time is recorded in the internal
1130 * blockdev inode.
1131 */
1132 void __mark_inode_dirty(struct inode *inode, int flags)
1133 {
1134 struct super_block *sb = inode->i_sb;
1135 struct backing_dev_info *bdi = NULL;
1136
1137 /*
1138 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1139 * dirty the inode itself
1140 */
1141 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1142 trace_writeback_dirty_inode_start(inode, flags);
1143
1144 if (sb->s_op->dirty_inode)
1145 sb->s_op->dirty_inode(inode, flags);
1146
1147 trace_writeback_dirty_inode(inode, flags);
1148 }
1149
1150 /*
1151 * make sure that changes are seen by all cpus before we test i_state
1152 * -- mikulas
1153 */
1154 smp_mb();
1155
1156 /* avoid the locking if we can */
1157 if ((inode->i_state & flags) == flags)
1158 return;
1159
1160 if (unlikely(block_dump))
1161 block_dump___mark_inode_dirty(inode);
1162
1163 spin_lock(&inode->i_lock);
1164 if ((inode->i_state & flags) != flags) {
1165 const int was_dirty = inode->i_state & I_DIRTY;
1166
1167 inode->i_state |= flags;
1168
1169 /*
1170 * If the inode is being synced, just update its dirty state.
1171 * The unlocker will place the inode on the appropriate
1172 * superblock list, based upon its state.
1173 */
1174 if (inode->i_state & I_SYNC)
1175 goto out_unlock_inode;
1176
1177 /*
1178 * Only add valid (hashed) inodes to the superblock's
1179 * dirty list. Add blockdev inodes as well.
1180 */
1181 if (!S_ISBLK(inode->i_mode)) {
1182 if (inode_unhashed(inode))
1183 goto out_unlock_inode;
1184 }
1185 if (inode->i_state & I_FREEING)
1186 goto out_unlock_inode;
1187
1188 /*
1189 * If the inode was already on b_dirty/b_io/b_more_io, don't
1190 * reposition it (that would break b_dirty time-ordering).
1191 */
1192 if (!was_dirty) {
1193 bool wakeup_bdi = false;
1194 bdi = inode_to_bdi(inode);
1195
1196 spin_unlock(&inode->i_lock);
1197 spin_lock(&bdi->wb.list_lock);
1198 if (bdi_cap_writeback_dirty(bdi)) {
1199 WARN(!test_bit(BDI_registered, &bdi->state),
1200 "bdi-%s not registered\n", bdi->name);
1201
1202 /*
1203 * If this is the first dirty inode for this
1204 * bdi, we have to wake-up the corresponding
1205 * bdi thread to make sure background
1206 * write-back happens later.
1207 */
1208 if (!wb_has_dirty_io(&bdi->wb))
1209 wakeup_bdi = true;
1210 }
1211
1212 inode->dirtied_when = jiffies;
1213 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1214 spin_unlock(&bdi->wb.list_lock);
1215
1216 if (wakeup_bdi)
1217 bdi_wakeup_thread_delayed(bdi);
1218 return;
1219 }
1220 }
1221 out_unlock_inode:
1222 spin_unlock(&inode->i_lock);
1223
1224 }
1225 EXPORT_SYMBOL(__mark_inode_dirty);
1226
1227 static void wait_sb_inodes(struct super_block *sb)
1228 {
1229 struct inode *inode, *old_inode = NULL;
1230
1231 /*
1232 * We need to be protected against the filesystem going from
1233 * r/o to r/w or vice versa.
1234 */
1235 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1236
1237 spin_lock(&inode_sb_list_lock);
1238
1239 /*
1240 * Data integrity sync. Must wait for all pages under writeback,
1241 * because there may have been pages dirtied before our sync
1242 * call, but which had writeout started before we write it out.
1243 * In which case, the inode may not be on the dirty list, but
1244 * we still have to wait for that writeout.
1245 */
1246 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1247 struct address_space *mapping = inode->i_mapping;
1248
1249 spin_lock(&inode->i_lock);
1250 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1251 (mapping->nrpages == 0)) {
1252 spin_unlock(&inode->i_lock);
1253 continue;
1254 }
1255 __iget(inode);
1256 spin_unlock(&inode->i_lock);
1257 spin_unlock(&inode_sb_list_lock);
1258
1259 /*
1260 * We hold a reference to 'inode' so it couldn't have been
1261 * removed from s_inodes list while we dropped the
1262 * inode_sb_list_lock. We cannot iput the inode now as we can
1263 * be holding the last reference and we cannot iput it under
1264 * inode_sb_list_lock. So we keep the reference and iput it
1265 * later.
1266 */
1267 iput(old_inode);
1268 old_inode = inode;
1269
1270 filemap_fdatawait(mapping);
1271
1272 cond_resched();
1273
1274 spin_lock(&inode_sb_list_lock);
1275 }
1276 spin_unlock(&inode_sb_list_lock);
1277 iput(old_inode);
1278 }
1279
1280 /**
1281 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1282 * @sb: the superblock
1283 * @nr: the number of pages to write
1284 * @reason: reason why some writeback work initiated
1285 *
1286 * Start writeback on some inodes on this super_block. No guarantees are made
1287 * on how many (if any) will be written, and this function does not wait
1288 * for IO completion of submitted IO.
1289 */
1290 void writeback_inodes_sb_nr(struct super_block *sb,
1291 unsigned long nr,
1292 enum wb_reason reason)
1293 {
1294 DECLARE_COMPLETION_ONSTACK(done);
1295 struct wb_writeback_work work = {
1296 .sb = sb,
1297 .sync_mode = WB_SYNC_NONE,
1298 .tagged_writepages = 1,
1299 .done = &done,
1300 .nr_pages = nr,
1301 .reason = reason,
1302 };
1303
1304 if (sb->s_bdi == &noop_backing_dev_info)
1305 return;
1306 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1307 bdi_queue_work(sb->s_bdi, &work);
1308 wait_for_completion(&done);
1309 }
1310 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1311
1312 /**
1313 * writeback_inodes_sb - writeback dirty inodes from given super_block
1314 * @sb: the superblock
1315 * @reason: reason why some writeback work was initiated
1316 *
1317 * Start writeback on some inodes on this super_block. No guarantees are made
1318 * on how many (if any) will be written, and this function does not wait
1319 * for IO completion of submitted IO.
1320 */
1321 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1322 {
1323 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1324 }
1325 EXPORT_SYMBOL(writeback_inodes_sb);
1326
1327 /**
1328 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1329 * @sb: the superblock
1330 * @nr: the number of pages to write
1331 * @reason: the reason of writeback
1332 *
1333 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1334 * Returns 1 if writeback was started, 0 if not.
1335 */
1336 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1337 unsigned long nr,
1338 enum wb_reason reason)
1339 {
1340 if (writeback_in_progress(sb->s_bdi))
1341 return 1;
1342
1343 if (!down_read_trylock(&sb->s_umount))
1344 return 0;
1345
1346 writeback_inodes_sb_nr(sb, nr, reason);
1347 up_read(&sb->s_umount);
1348 return 1;
1349 }
1350 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1351
1352 /**
1353 * try_to_writeback_inodes_sb - try to start writeback if none underway
1354 * @sb: the superblock
1355 * @reason: reason why some writeback work was initiated
1356 *
1357 * Implement by try_to_writeback_inodes_sb_nr()
1358 * Returns 1 if writeback was started, 0 if not.
1359 */
1360 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1361 {
1362 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1363 }
1364 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1365
1366 /**
1367 * sync_inodes_sb - sync sb inode pages
1368 * @sb: the superblock
1369 *
1370 * This function writes and waits on any dirty inode belonging to this
1371 * super_block.
1372 */
1373 void sync_inodes_sb(struct super_block *sb)
1374 {
1375 DECLARE_COMPLETION_ONSTACK(done);
1376 struct wb_writeback_work work = {
1377 .sb = sb,
1378 .sync_mode = WB_SYNC_ALL,
1379 .nr_pages = LONG_MAX,
1380 .range_cyclic = 0,
1381 .done = &done,
1382 .reason = WB_REASON_SYNC,
1383 .for_sync = 1,
1384 };
1385
1386 /* Nothing to do? */
1387 if (sb->s_bdi == &noop_backing_dev_info)
1388 return;
1389 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1390
1391 bdi_queue_work(sb->s_bdi, &work);
1392 wait_for_completion(&done);
1393
1394 wait_sb_inodes(sb);
1395 }
1396 EXPORT_SYMBOL(sync_inodes_sb);
1397
1398 /**
1399 * write_inode_now - write an inode to disk
1400 * @inode: inode to write to disk
1401 * @sync: whether the write should be synchronous or not
1402 *
1403 * This function commits an inode to disk immediately if it is dirty. This is
1404 * primarily needed by knfsd.
1405 *
1406 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1407 */
1408 int write_inode_now(struct inode *inode, int sync)
1409 {
1410 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1411 struct writeback_control wbc = {
1412 .nr_to_write = LONG_MAX,
1413 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1414 .range_start = 0,
1415 .range_end = LLONG_MAX,
1416 };
1417
1418 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1419 wbc.nr_to_write = 0;
1420
1421 might_sleep();
1422 return writeback_single_inode(inode, wb, &wbc);
1423 }
1424 EXPORT_SYMBOL(write_inode_now);
1425
1426 /**
1427 * sync_inode - write an inode and its pages to disk.
1428 * @inode: the inode to sync
1429 * @wbc: controls the writeback mode
1430 *
1431 * sync_inode() will write an inode and its pages to disk. It will also
1432 * correctly update the inode on its superblock's dirty inode lists and will
1433 * update inode->i_state.
1434 *
1435 * The caller must have a ref on the inode.
1436 */
1437 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1438 {
1439 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1440 }
1441 EXPORT_SYMBOL(sync_inode);
1442
1443 /**
1444 * sync_inode_metadata - write an inode to disk
1445 * @inode: the inode to sync
1446 * @wait: wait for I/O to complete.
1447 *
1448 * Write an inode to disk and adjust its dirty state after completion.
1449 *
1450 * Note: only writes the actual inode, no associated data or other metadata.
1451 */
1452 int sync_inode_metadata(struct inode *inode, int wait)
1453 {
1454 struct writeback_control wbc = {
1455 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1456 .nr_to_write = 0, /* metadata-only */
1457 };
1458
1459 return sync_inode(inode, &wbc);
1460 }
1461 EXPORT_SYMBOL(sync_inode_metadata);