]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/fs-writeback.c
dpaa2-switch: Fix memory leak in dpaa2_switch_acl_entry_add() and dpaa2_switch_acl_en...
[mirror_ubuntu-jammy-kernel.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124
125 list_move(&inode->i_io_list, head);
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133 }
134
135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137 spin_lock_irq(&wb->work_lock);
138 if (test_bit(WB_registered, &wb->state))
139 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140 spin_unlock_irq(&wb->work_lock);
141 }
142
143 static void finish_writeback_work(struct bdi_writeback *wb,
144 struct wb_writeback_work *work)
145 {
146 struct wb_completion *done = work->done;
147
148 if (work->auto_free)
149 kfree(work);
150 if (done) {
151 wait_queue_head_t *waitq = done->waitq;
152
153 /* @done can't be accessed after the following dec */
154 if (atomic_dec_and_test(&done->cnt))
155 wake_up_all(waitq);
156 }
157 }
158
159 static void wb_queue_work(struct bdi_writeback *wb,
160 struct wb_writeback_work *work)
161 {
162 trace_writeback_queue(wb, work);
163
164 if (work->done)
165 atomic_inc(&work->done->cnt);
166
167 spin_lock_irq(&wb->work_lock);
168
169 if (test_bit(WB_registered, &wb->state)) {
170 list_add_tail(&work->list, &wb->work_list);
171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 } else
173 finish_writeback_work(wb, work);
174
175 spin_unlock_irq(&wb->work_lock);
176 }
177
178 /**
179 * wb_wait_for_completion - wait for completion of bdi_writeback_works
180 * @done: target wb_completion
181 *
182 * Wait for one or more work items issued to @bdi with their ->done field
183 * set to @done, which should have been initialized with
184 * DEFINE_WB_COMPLETION(). This function returns after all such work items
185 * are completed. Work items which are waited upon aren't freed
186 * automatically on completion.
187 */
188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190 atomic_dec(&done->cnt); /* put down the initial count */
191 wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193
194 #ifdef CONFIG_CGROUP_WRITEBACK
195
196 /*
197 * Parameters for foreign inode detection, see wbc_detach_inode() to see
198 * how they're used.
199 *
200 * These paramters are inherently heuristical as the detection target
201 * itself is fuzzy. All we want to do is detaching an inode from the
202 * current owner if it's being written to by some other cgroups too much.
203 *
204 * The current cgroup writeback is built on the assumption that multiple
205 * cgroups writing to the same inode concurrently is very rare and a mode
206 * of operation which isn't well supported. As such, the goal is not
207 * taking too long when a different cgroup takes over an inode while
208 * avoiding too aggressive flip-flops from occasional foreign writes.
209 *
210 * We record, very roughly, 2s worth of IO time history and if more than
211 * half of that is foreign, trigger the switch. The recording is quantized
212 * to 16 slots. To avoid tiny writes from swinging the decision too much,
213 * writes smaller than 1/8 of avg size are ignored.
214 */
215 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
219
220 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
224 /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
228
229 /*
230 * Maximum inodes per isw. A specific value has been chosen to make
231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232 */
233 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234 / sizeof(struct inode *))
235
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238
239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241 struct backing_dev_info *bdi = inode_to_bdi(inode);
242 struct bdi_writeback *wb = NULL;
243
244 if (inode_cgwb_enabled(inode)) {
245 struct cgroup_subsys_state *memcg_css;
246
247 if (page) {
248 memcg_css = mem_cgroup_css_from_page(page);
249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 } else {
251 /* must pin memcg_css, see wb_get_create() */
252 memcg_css = task_get_css(current, memory_cgrp_id);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 css_put(memcg_css);
255 }
256 }
257
258 if (!wb)
259 wb = &bdi->wb;
260
261 /*
262 * There may be multiple instances of this function racing to
263 * update the same inode. Use cmpxchg() to tell the winner.
264 */
265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266 wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269
270 /**
271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272 * @inode: inode of interest with i_lock held
273 * @wb: target bdi_writeback
274 *
275 * Remove the inode from wb's io lists and if necessarily put onto b_attached
276 * list. Only inodes attached to cgwb's are kept on this list.
277 */
278 static void inode_cgwb_move_to_attached(struct inode *inode,
279 struct bdi_writeback *wb)
280 {
281 assert_spin_locked(&wb->list_lock);
282 assert_spin_locked(&inode->i_lock);
283
284 inode->i_state &= ~I_SYNC_QUEUED;
285 if (wb != &wb->bdi->wb)
286 list_move(&inode->i_io_list, &wb->b_attached);
287 else
288 list_del_init(&inode->i_io_list);
289 wb_io_lists_depopulated(wb);
290 }
291
292 /**
293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294 * @inode: inode of interest with i_lock held
295 *
296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
297 * held on entry and is released on return. The returned wb is guaranteed
298 * to stay @inode's associated wb until its list_lock is released.
299 */
300 static struct bdi_writeback *
301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302 __releases(&inode->i_lock)
303 __acquires(&wb->list_lock)
304 {
305 while (true) {
306 struct bdi_writeback *wb = inode_to_wb(inode);
307
308 /*
309 * inode_to_wb() association is protected by both
310 * @inode->i_lock and @wb->list_lock but list_lock nests
311 * outside i_lock. Drop i_lock and verify that the
312 * association hasn't changed after acquiring list_lock.
313 */
314 wb_get(wb);
315 spin_unlock(&inode->i_lock);
316 spin_lock(&wb->list_lock);
317
318 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319 if (likely(wb == inode->i_wb)) {
320 wb_put(wb); /* @inode already has ref */
321 return wb;
322 }
323
324 spin_unlock(&wb->list_lock);
325 wb_put(wb);
326 cpu_relax();
327 spin_lock(&inode->i_lock);
328 }
329 }
330
331 /**
332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333 * @inode: inode of interest
334 *
335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336 * on entry.
337 */
338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 __acquires(&wb->list_lock)
340 {
341 spin_lock(&inode->i_lock);
342 return locked_inode_to_wb_and_lock_list(inode);
343 }
344
345 struct inode_switch_wbs_context {
346 struct rcu_work work;
347
348 /*
349 * Multiple inodes can be switched at once. The switching procedure
350 * consists of two parts, separated by a RCU grace period. To make
351 * sure that the second part is executed for each inode gone through
352 * the first part, all inode pointers are placed into a NULL-terminated
353 * array embedded into struct inode_switch_wbs_context. Otherwise
354 * an inode could be left in a non-consistent state.
355 */
356 struct bdi_writeback *new_wb;
357 struct inode *inodes[];
358 };
359
360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362 down_write(&bdi->wb_switch_rwsem);
363 }
364
365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367 up_write(&bdi->wb_switch_rwsem);
368 }
369
370 static bool inode_do_switch_wbs(struct inode *inode,
371 struct bdi_writeback *old_wb,
372 struct bdi_writeback *new_wb)
373 {
374 struct address_space *mapping = inode->i_mapping;
375 XA_STATE(xas, &mapping->i_pages, 0);
376 struct page *page;
377 bool switched = false;
378
379 spin_lock(&inode->i_lock);
380 xa_lock_irq(&mapping->i_pages);
381
382 /*
383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 * path owns the inode and we shouldn't modify ->i_io_list.
385 */
386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387 goto skip_switch;
388
389 trace_inode_switch_wbs(inode, old_wb, new_wb);
390
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394 * pages actually under writeback.
395 */
396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (PageDirty(page)) {
398 dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 inc_wb_stat(new_wb, WB_RECLAIMABLE);
400 }
401 }
402
403 xas_set(&xas, 0);
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 WARN_ON_ONCE(!PageWriteback(page));
406 dec_wb_stat(old_wb, WB_WRITEBACK);
407 inc_wb_stat(new_wb, WB_WRITEBACK);
408 }
409
410 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
411 atomic_dec(&old_wb->writeback_inodes);
412 atomic_inc(&new_wb->writeback_inodes);
413 }
414
415 wb_get(new_wb);
416
417 /*
418 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
419 * the specific list @inode was on is ignored and the @inode is put on
420 * ->b_dirty which is always correct including from ->b_dirty_time.
421 * The transfer preserves @inode->dirtied_when ordering. If the @inode
422 * was clean, it means it was on the b_attached list, so move it onto
423 * the b_attached list of @new_wb.
424 */
425 if (!list_empty(&inode->i_io_list)) {
426 inode->i_wb = new_wb;
427
428 if (inode->i_state & I_DIRTY_ALL) {
429 struct inode *pos;
430
431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
435 inode_io_list_move_locked(inode, new_wb,
436 pos->i_io_list.prev);
437 } else {
438 inode_cgwb_move_to_attached(inode, new_wb);
439 }
440 } else {
441 inode->i_wb = new_wb;
442 }
443
444 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
445 inode->i_wb_frn_winner = 0;
446 inode->i_wb_frn_avg_time = 0;
447 inode->i_wb_frn_history = 0;
448 switched = true;
449 skip_switch:
450 /*
451 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
452 * ensures that the new wb is visible if they see !I_WB_SWITCH.
453 */
454 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
455
456 xa_unlock_irq(&mapping->i_pages);
457 spin_unlock(&inode->i_lock);
458
459 return switched;
460 }
461
462 static void inode_switch_wbs_work_fn(struct work_struct *work)
463 {
464 struct inode_switch_wbs_context *isw =
465 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
466 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
467 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
468 struct bdi_writeback *new_wb = isw->new_wb;
469 unsigned long nr_switched = 0;
470 struct inode **inodep;
471
472 /*
473 * If @inode switches cgwb membership while sync_inodes_sb() is
474 * being issued, sync_inodes_sb() might miss it. Synchronize.
475 */
476 down_read(&bdi->wb_switch_rwsem);
477
478 /*
479 * By the time control reaches here, RCU grace period has passed
480 * since I_WB_SWITCH assertion and all wb stat update transactions
481 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
482 * synchronizing against the i_pages lock.
483 *
484 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
485 * gives us exclusion against all wb related operations on @inode
486 * including IO list manipulations and stat updates.
487 */
488 if (old_wb < new_wb) {
489 spin_lock(&old_wb->list_lock);
490 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
491 } else {
492 spin_lock(&new_wb->list_lock);
493 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
494 }
495
496 for (inodep = isw->inodes; *inodep; inodep++) {
497 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
498 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
499 nr_switched++;
500 }
501
502 spin_unlock(&new_wb->list_lock);
503 spin_unlock(&old_wb->list_lock);
504
505 up_read(&bdi->wb_switch_rwsem);
506
507 if (nr_switched) {
508 wb_wakeup(new_wb);
509 wb_put_many(old_wb, nr_switched);
510 }
511
512 for (inodep = isw->inodes; *inodep; inodep++)
513 iput(*inodep);
514 wb_put(new_wb);
515 kfree(isw);
516 atomic_dec(&isw_nr_in_flight);
517 }
518
519 static bool inode_prepare_wbs_switch(struct inode *inode,
520 struct bdi_writeback *new_wb)
521 {
522 /*
523 * Paired with smp_mb() in cgroup_writeback_umount().
524 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
525 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
526 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
527 */
528 smp_mb();
529
530 if (IS_DAX(inode))
531 return false;
532
533 /* while holding I_WB_SWITCH, no one else can update the association */
534 spin_lock(&inode->i_lock);
535 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
536 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
537 inode_to_wb(inode) == new_wb) {
538 spin_unlock(&inode->i_lock);
539 return false;
540 }
541 inode->i_state |= I_WB_SWITCH;
542 __iget(inode);
543 spin_unlock(&inode->i_lock);
544
545 return true;
546 }
547
548 /**
549 * inode_switch_wbs - change the wb association of an inode
550 * @inode: target inode
551 * @new_wb_id: ID of the new wb
552 *
553 * Switch @inode's wb association to the wb identified by @new_wb_id. The
554 * switching is performed asynchronously and may fail silently.
555 */
556 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
557 {
558 struct backing_dev_info *bdi = inode_to_bdi(inode);
559 struct cgroup_subsys_state *memcg_css;
560 struct inode_switch_wbs_context *isw;
561
562 /* noop if seems to be already in progress */
563 if (inode->i_state & I_WB_SWITCH)
564 return;
565
566 /* avoid queueing a new switch if too many are already in flight */
567 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
568 return;
569
570 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
571 if (!isw)
572 return;
573
574 atomic_inc(&isw_nr_in_flight);
575
576 /* find and pin the new wb */
577 rcu_read_lock();
578 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
579 if (memcg_css && !css_tryget(memcg_css))
580 memcg_css = NULL;
581 rcu_read_unlock();
582 if (!memcg_css)
583 goto out_free;
584
585 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
586 css_put(memcg_css);
587 if (!isw->new_wb)
588 goto out_free;
589
590 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
591 goto out_free;
592
593 isw->inodes[0] = inode;
594
595 /*
596 * In addition to synchronizing among switchers, I_WB_SWITCH tells
597 * the RCU protected stat update paths to grab the i_page
598 * lock so that stat transfer can synchronize against them.
599 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
600 */
601 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
602 queue_rcu_work(isw_wq, &isw->work);
603 return;
604
605 out_free:
606 atomic_dec(&isw_nr_in_flight);
607 if (isw->new_wb)
608 wb_put(isw->new_wb);
609 kfree(isw);
610 }
611
612 /**
613 * cleanup_offline_cgwb - detach associated inodes
614 * @wb: target wb
615 *
616 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
617 * to eventually release the dying @wb. Returns %true if not all inodes were
618 * switched and the function has to be restarted.
619 */
620 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
621 {
622 struct cgroup_subsys_state *memcg_css;
623 struct inode_switch_wbs_context *isw;
624 struct inode *inode;
625 int nr;
626 bool restart = false;
627
628 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
629 sizeof(struct inode *), GFP_KERNEL);
630 if (!isw)
631 return restart;
632
633 atomic_inc(&isw_nr_in_flight);
634
635 for (memcg_css = wb->memcg_css->parent; memcg_css;
636 memcg_css = memcg_css->parent) {
637 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
638 if (isw->new_wb)
639 break;
640 }
641 if (unlikely(!isw->new_wb))
642 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
643
644 nr = 0;
645 spin_lock(&wb->list_lock);
646 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
647 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
648 continue;
649
650 isw->inodes[nr++] = inode;
651
652 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
653 restart = true;
654 break;
655 }
656 }
657 spin_unlock(&wb->list_lock);
658
659 /* no attached inodes? bail out */
660 if (nr == 0) {
661 atomic_dec(&isw_nr_in_flight);
662 wb_put(isw->new_wb);
663 kfree(isw);
664 return restart;
665 }
666
667 /*
668 * In addition to synchronizing among switchers, I_WB_SWITCH tells
669 * the RCU protected stat update paths to grab the i_page
670 * lock so that stat transfer can synchronize against them.
671 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
672 */
673 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
674 queue_rcu_work(isw_wq, &isw->work);
675
676 return restart;
677 }
678
679 /**
680 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
681 * @wbc: writeback_control of interest
682 * @inode: target inode
683 *
684 * @inode is locked and about to be written back under the control of @wbc.
685 * Record @inode's writeback context into @wbc and unlock the i_lock. On
686 * writeback completion, wbc_detach_inode() should be called. This is used
687 * to track the cgroup writeback context.
688 */
689 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
690 struct inode *inode)
691 {
692 if (!inode_cgwb_enabled(inode)) {
693 spin_unlock(&inode->i_lock);
694 return;
695 }
696
697 wbc->wb = inode_to_wb(inode);
698 wbc->inode = inode;
699
700 wbc->wb_id = wbc->wb->memcg_css->id;
701 wbc->wb_lcand_id = inode->i_wb_frn_winner;
702 wbc->wb_tcand_id = 0;
703 wbc->wb_bytes = 0;
704 wbc->wb_lcand_bytes = 0;
705 wbc->wb_tcand_bytes = 0;
706
707 wb_get(wbc->wb);
708 spin_unlock(&inode->i_lock);
709
710 /*
711 * A dying wb indicates that either the blkcg associated with the
712 * memcg changed or the associated memcg is dying. In the first
713 * case, a replacement wb should already be available and we should
714 * refresh the wb immediately. In the second case, trying to
715 * refresh will keep failing.
716 */
717 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
718 inode_switch_wbs(inode, wbc->wb_id);
719 }
720 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
721
722 /**
723 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
724 * @wbc: writeback_control of the just finished writeback
725 *
726 * To be called after a writeback attempt of an inode finishes and undoes
727 * wbc_attach_and_unlock_inode(). Can be called under any context.
728 *
729 * As concurrent write sharing of an inode is expected to be very rare and
730 * memcg only tracks page ownership on first-use basis severely confining
731 * the usefulness of such sharing, cgroup writeback tracks ownership
732 * per-inode. While the support for concurrent write sharing of an inode
733 * is deemed unnecessary, an inode being written to by different cgroups at
734 * different points in time is a lot more common, and, more importantly,
735 * charging only by first-use can too readily lead to grossly incorrect
736 * behaviors (single foreign page can lead to gigabytes of writeback to be
737 * incorrectly attributed).
738 *
739 * To resolve this issue, cgroup writeback detects the majority dirtier of
740 * an inode and transfers the ownership to it. To avoid unnnecessary
741 * oscillation, the detection mechanism keeps track of history and gives
742 * out the switch verdict only if the foreign usage pattern is stable over
743 * a certain amount of time and/or writeback attempts.
744 *
745 * On each writeback attempt, @wbc tries to detect the majority writer
746 * using Boyer-Moore majority vote algorithm. In addition to the byte
747 * count from the majority voting, it also counts the bytes written for the
748 * current wb and the last round's winner wb (max of last round's current
749 * wb, the winner from two rounds ago, and the last round's majority
750 * candidate). Keeping track of the historical winner helps the algorithm
751 * to semi-reliably detect the most active writer even when it's not the
752 * absolute majority.
753 *
754 * Once the winner of the round is determined, whether the winner is
755 * foreign or not and how much IO time the round consumed is recorded in
756 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
757 * over a certain threshold, the switch verdict is given.
758 */
759 void wbc_detach_inode(struct writeback_control *wbc)
760 {
761 struct bdi_writeback *wb = wbc->wb;
762 struct inode *inode = wbc->inode;
763 unsigned long avg_time, max_bytes, max_time;
764 u16 history;
765 int max_id;
766
767 if (!wb)
768 return;
769
770 history = inode->i_wb_frn_history;
771 avg_time = inode->i_wb_frn_avg_time;
772
773 /* pick the winner of this round */
774 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
775 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
776 max_id = wbc->wb_id;
777 max_bytes = wbc->wb_bytes;
778 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
779 max_id = wbc->wb_lcand_id;
780 max_bytes = wbc->wb_lcand_bytes;
781 } else {
782 max_id = wbc->wb_tcand_id;
783 max_bytes = wbc->wb_tcand_bytes;
784 }
785
786 /*
787 * Calculate the amount of IO time the winner consumed and fold it
788 * into the running average kept per inode. If the consumed IO
789 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
790 * deciding whether to switch or not. This is to prevent one-off
791 * small dirtiers from skewing the verdict.
792 */
793 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
794 wb->avg_write_bandwidth);
795 if (avg_time)
796 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
797 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
798 else
799 avg_time = max_time; /* immediate catch up on first run */
800
801 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
802 int slots;
803
804 /*
805 * The switch verdict is reached if foreign wb's consume
806 * more than a certain proportion of IO time in a
807 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
808 * history mask where each bit represents one sixteenth of
809 * the period. Determine the number of slots to shift into
810 * history from @max_time.
811 */
812 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
813 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
814 history <<= slots;
815 if (wbc->wb_id != max_id)
816 history |= (1U << slots) - 1;
817
818 if (history)
819 trace_inode_foreign_history(inode, wbc, history);
820
821 /*
822 * Switch if the current wb isn't the consistent winner.
823 * If there are multiple closely competing dirtiers, the
824 * inode may switch across them repeatedly over time, which
825 * is okay. The main goal is avoiding keeping an inode on
826 * the wrong wb for an extended period of time.
827 */
828 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
829 inode_switch_wbs(inode, max_id);
830 }
831
832 /*
833 * Multiple instances of this function may race to update the
834 * following fields but we don't mind occassional inaccuracies.
835 */
836 inode->i_wb_frn_winner = max_id;
837 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
838 inode->i_wb_frn_history = history;
839
840 wb_put(wbc->wb);
841 wbc->wb = NULL;
842 }
843 EXPORT_SYMBOL_GPL(wbc_detach_inode);
844
845 /**
846 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
847 * @wbc: writeback_control of the writeback in progress
848 * @page: page being written out
849 * @bytes: number of bytes being written out
850 *
851 * @bytes from @page are about to written out during the writeback
852 * controlled by @wbc. Keep the book for foreign inode detection. See
853 * wbc_detach_inode().
854 */
855 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
856 size_t bytes)
857 {
858 struct cgroup_subsys_state *css;
859 int id;
860
861 /*
862 * pageout() path doesn't attach @wbc to the inode being written
863 * out. This is intentional as we don't want the function to block
864 * behind a slow cgroup. Ultimately, we want pageout() to kick off
865 * regular writeback instead of writing things out itself.
866 */
867 if (!wbc->wb || wbc->no_cgroup_owner)
868 return;
869
870 css = mem_cgroup_css_from_page(page);
871 /* dead cgroups shouldn't contribute to inode ownership arbitration */
872 if (!(css->flags & CSS_ONLINE))
873 return;
874
875 id = css->id;
876
877 if (id == wbc->wb_id) {
878 wbc->wb_bytes += bytes;
879 return;
880 }
881
882 if (id == wbc->wb_lcand_id)
883 wbc->wb_lcand_bytes += bytes;
884
885 /* Boyer-Moore majority vote algorithm */
886 if (!wbc->wb_tcand_bytes)
887 wbc->wb_tcand_id = id;
888 if (id == wbc->wb_tcand_id)
889 wbc->wb_tcand_bytes += bytes;
890 else
891 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
892 }
893 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
894
895 /**
896 * inode_congested - test whether an inode is congested
897 * @inode: inode to test for congestion (may be NULL)
898 * @cong_bits: mask of WB_[a]sync_congested bits to test
899 *
900 * Tests whether @inode is congested. @cong_bits is the mask of congestion
901 * bits to test and the return value is the mask of set bits.
902 *
903 * If cgroup writeback is enabled for @inode, the congestion state is
904 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
905 * associated with @inode is congested; otherwise, the root wb's congestion
906 * state is used.
907 *
908 * @inode is allowed to be NULL as this function is often called on
909 * mapping->host which is NULL for the swapper space.
910 */
911 int inode_congested(struct inode *inode, int cong_bits)
912 {
913 /*
914 * Once set, ->i_wb never becomes NULL while the inode is alive.
915 * Start transaction iff ->i_wb is visible.
916 */
917 if (inode && inode_to_wb_is_valid(inode)) {
918 struct bdi_writeback *wb;
919 struct wb_lock_cookie lock_cookie = {};
920 bool congested;
921
922 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
923 congested = wb_congested(wb, cong_bits);
924 unlocked_inode_to_wb_end(inode, &lock_cookie);
925 return congested;
926 }
927
928 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
929 }
930 EXPORT_SYMBOL_GPL(inode_congested);
931
932 /**
933 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
934 * @wb: target bdi_writeback to split @nr_pages to
935 * @nr_pages: number of pages to write for the whole bdi
936 *
937 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
938 * relation to the total write bandwidth of all wb's w/ dirty inodes on
939 * @wb->bdi.
940 */
941 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
942 {
943 unsigned long this_bw = wb->avg_write_bandwidth;
944 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
945
946 if (nr_pages == LONG_MAX)
947 return LONG_MAX;
948
949 /*
950 * This may be called on clean wb's and proportional distribution
951 * may not make sense, just use the original @nr_pages in those
952 * cases. In general, we wanna err on the side of writing more.
953 */
954 if (!tot_bw || this_bw >= tot_bw)
955 return nr_pages;
956 else
957 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
958 }
959
960 /**
961 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
962 * @bdi: target backing_dev_info
963 * @base_work: wb_writeback_work to issue
964 * @skip_if_busy: skip wb's which already have writeback in progress
965 *
966 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
967 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
968 * distributed to the busy wbs according to each wb's proportion in the
969 * total active write bandwidth of @bdi.
970 */
971 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
972 struct wb_writeback_work *base_work,
973 bool skip_if_busy)
974 {
975 struct bdi_writeback *last_wb = NULL;
976 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
977 struct bdi_writeback, bdi_node);
978
979 might_sleep();
980 restart:
981 rcu_read_lock();
982 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
983 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
984 struct wb_writeback_work fallback_work;
985 struct wb_writeback_work *work;
986 long nr_pages;
987
988 if (last_wb) {
989 wb_put(last_wb);
990 last_wb = NULL;
991 }
992
993 /* SYNC_ALL writes out I_DIRTY_TIME too */
994 if (!wb_has_dirty_io(wb) &&
995 (base_work->sync_mode == WB_SYNC_NONE ||
996 list_empty(&wb->b_dirty_time)))
997 continue;
998 if (skip_if_busy && writeback_in_progress(wb))
999 continue;
1000
1001 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1002
1003 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1004 if (work) {
1005 *work = *base_work;
1006 work->nr_pages = nr_pages;
1007 work->auto_free = 1;
1008 wb_queue_work(wb, work);
1009 continue;
1010 }
1011
1012 /* alloc failed, execute synchronously using on-stack fallback */
1013 work = &fallback_work;
1014 *work = *base_work;
1015 work->nr_pages = nr_pages;
1016 work->auto_free = 0;
1017 work->done = &fallback_work_done;
1018
1019 wb_queue_work(wb, work);
1020
1021 /*
1022 * Pin @wb so that it stays on @bdi->wb_list. This allows
1023 * continuing iteration from @wb after dropping and
1024 * regrabbing rcu read lock.
1025 */
1026 wb_get(wb);
1027 last_wb = wb;
1028
1029 rcu_read_unlock();
1030 wb_wait_for_completion(&fallback_work_done);
1031 goto restart;
1032 }
1033 rcu_read_unlock();
1034
1035 if (last_wb)
1036 wb_put(last_wb);
1037 }
1038
1039 /**
1040 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1041 * @bdi_id: target bdi id
1042 * @memcg_id: target memcg css id
1043 * @reason: reason why some writeback work initiated
1044 * @done: target wb_completion
1045 *
1046 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1047 * with the specified parameters.
1048 */
1049 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1050 enum wb_reason reason, struct wb_completion *done)
1051 {
1052 struct backing_dev_info *bdi;
1053 struct cgroup_subsys_state *memcg_css;
1054 struct bdi_writeback *wb;
1055 struct wb_writeback_work *work;
1056 unsigned long dirty;
1057 int ret;
1058
1059 /* lookup bdi and memcg */
1060 bdi = bdi_get_by_id(bdi_id);
1061 if (!bdi)
1062 return -ENOENT;
1063
1064 rcu_read_lock();
1065 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1066 if (memcg_css && !css_tryget(memcg_css))
1067 memcg_css = NULL;
1068 rcu_read_unlock();
1069 if (!memcg_css) {
1070 ret = -ENOENT;
1071 goto out_bdi_put;
1072 }
1073
1074 /*
1075 * And find the associated wb. If the wb isn't there already
1076 * there's nothing to flush, don't create one.
1077 */
1078 wb = wb_get_lookup(bdi, memcg_css);
1079 if (!wb) {
1080 ret = -ENOENT;
1081 goto out_css_put;
1082 }
1083
1084 /*
1085 * The caller is attempting to write out most of
1086 * the currently dirty pages. Let's take the current dirty page
1087 * count and inflate it by 25% which should be large enough to
1088 * flush out most dirty pages while avoiding getting livelocked by
1089 * concurrent dirtiers.
1090 *
1091 * BTW the memcg stats are flushed periodically and this is best-effort
1092 * estimation, so some potential error is ok.
1093 */
1094 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1095 dirty = dirty * 10 / 8;
1096
1097 /* issue the writeback work */
1098 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1099 if (work) {
1100 work->nr_pages = dirty;
1101 work->sync_mode = WB_SYNC_NONE;
1102 work->range_cyclic = 1;
1103 work->reason = reason;
1104 work->done = done;
1105 work->auto_free = 1;
1106 wb_queue_work(wb, work);
1107 ret = 0;
1108 } else {
1109 ret = -ENOMEM;
1110 }
1111
1112 wb_put(wb);
1113 out_css_put:
1114 css_put(memcg_css);
1115 out_bdi_put:
1116 bdi_put(bdi);
1117 return ret;
1118 }
1119
1120 /**
1121 * cgroup_writeback_umount - flush inode wb switches for umount
1122 *
1123 * This function is called when a super_block is about to be destroyed and
1124 * flushes in-flight inode wb switches. An inode wb switch goes through
1125 * RCU and then workqueue, so the two need to be flushed in order to ensure
1126 * that all previously scheduled switches are finished. As wb switches are
1127 * rare occurrences and synchronize_rcu() can take a while, perform
1128 * flushing iff wb switches are in flight.
1129 */
1130 void cgroup_writeback_umount(void)
1131 {
1132 /*
1133 * SB_ACTIVE should be reliably cleared before checking
1134 * isw_nr_in_flight, see generic_shutdown_super().
1135 */
1136 smp_mb();
1137
1138 if (atomic_read(&isw_nr_in_flight)) {
1139 /*
1140 * Use rcu_barrier() to wait for all pending callbacks to
1141 * ensure that all in-flight wb switches are in the workqueue.
1142 */
1143 rcu_barrier();
1144 flush_workqueue(isw_wq);
1145 }
1146 }
1147
1148 static int __init cgroup_writeback_init(void)
1149 {
1150 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1151 if (!isw_wq)
1152 return -ENOMEM;
1153 return 0;
1154 }
1155 fs_initcall(cgroup_writeback_init);
1156
1157 #else /* CONFIG_CGROUP_WRITEBACK */
1158
1159 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1160 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1161
1162 static void inode_cgwb_move_to_attached(struct inode *inode,
1163 struct bdi_writeback *wb)
1164 {
1165 assert_spin_locked(&wb->list_lock);
1166 assert_spin_locked(&inode->i_lock);
1167
1168 inode->i_state &= ~I_SYNC_QUEUED;
1169 list_del_init(&inode->i_io_list);
1170 wb_io_lists_depopulated(wb);
1171 }
1172
1173 static struct bdi_writeback *
1174 locked_inode_to_wb_and_lock_list(struct inode *inode)
1175 __releases(&inode->i_lock)
1176 __acquires(&wb->list_lock)
1177 {
1178 struct bdi_writeback *wb = inode_to_wb(inode);
1179
1180 spin_unlock(&inode->i_lock);
1181 spin_lock(&wb->list_lock);
1182 return wb;
1183 }
1184
1185 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1186 __acquires(&wb->list_lock)
1187 {
1188 struct bdi_writeback *wb = inode_to_wb(inode);
1189
1190 spin_lock(&wb->list_lock);
1191 return wb;
1192 }
1193
1194 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1195 {
1196 return nr_pages;
1197 }
1198
1199 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1200 struct wb_writeback_work *base_work,
1201 bool skip_if_busy)
1202 {
1203 might_sleep();
1204
1205 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1206 base_work->auto_free = 0;
1207 wb_queue_work(&bdi->wb, base_work);
1208 }
1209 }
1210
1211 #endif /* CONFIG_CGROUP_WRITEBACK */
1212
1213 /*
1214 * Add in the number of potentially dirty inodes, because each inode
1215 * write can dirty pagecache in the underlying blockdev.
1216 */
1217 static unsigned long get_nr_dirty_pages(void)
1218 {
1219 return global_node_page_state(NR_FILE_DIRTY) +
1220 get_nr_dirty_inodes();
1221 }
1222
1223 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1224 {
1225 if (!wb_has_dirty_io(wb))
1226 return;
1227
1228 /*
1229 * All callers of this function want to start writeback of all
1230 * dirty pages. Places like vmscan can call this at a very
1231 * high frequency, causing pointless allocations of tons of
1232 * work items and keeping the flusher threads busy retrieving
1233 * that work. Ensure that we only allow one of them pending and
1234 * inflight at the time.
1235 */
1236 if (test_bit(WB_start_all, &wb->state) ||
1237 test_and_set_bit(WB_start_all, &wb->state))
1238 return;
1239
1240 wb->start_all_reason = reason;
1241 wb_wakeup(wb);
1242 }
1243
1244 /**
1245 * wb_start_background_writeback - start background writeback
1246 * @wb: bdi_writback to write from
1247 *
1248 * Description:
1249 * This makes sure WB_SYNC_NONE background writeback happens. When
1250 * this function returns, it is only guaranteed that for given wb
1251 * some IO is happening if we are over background dirty threshold.
1252 * Caller need not hold sb s_umount semaphore.
1253 */
1254 void wb_start_background_writeback(struct bdi_writeback *wb)
1255 {
1256 /*
1257 * We just wake up the flusher thread. It will perform background
1258 * writeback as soon as there is no other work to do.
1259 */
1260 trace_writeback_wake_background(wb);
1261 wb_wakeup(wb);
1262 }
1263
1264 /*
1265 * Remove the inode from the writeback list it is on.
1266 */
1267 void inode_io_list_del(struct inode *inode)
1268 {
1269 struct bdi_writeback *wb;
1270
1271 wb = inode_to_wb_and_lock_list(inode);
1272 spin_lock(&inode->i_lock);
1273
1274 inode->i_state &= ~I_SYNC_QUEUED;
1275 list_del_init(&inode->i_io_list);
1276 wb_io_lists_depopulated(wb);
1277
1278 spin_unlock(&inode->i_lock);
1279 spin_unlock(&wb->list_lock);
1280 }
1281 EXPORT_SYMBOL(inode_io_list_del);
1282
1283 /*
1284 * mark an inode as under writeback on the sb
1285 */
1286 void sb_mark_inode_writeback(struct inode *inode)
1287 {
1288 struct super_block *sb = inode->i_sb;
1289 unsigned long flags;
1290
1291 if (list_empty(&inode->i_wb_list)) {
1292 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1293 if (list_empty(&inode->i_wb_list)) {
1294 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1295 trace_sb_mark_inode_writeback(inode);
1296 }
1297 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1298 }
1299 }
1300
1301 /*
1302 * clear an inode as under writeback on the sb
1303 */
1304 void sb_clear_inode_writeback(struct inode *inode)
1305 {
1306 struct super_block *sb = inode->i_sb;
1307 unsigned long flags;
1308
1309 if (!list_empty(&inode->i_wb_list)) {
1310 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1311 if (!list_empty(&inode->i_wb_list)) {
1312 list_del_init(&inode->i_wb_list);
1313 trace_sb_clear_inode_writeback(inode);
1314 }
1315 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1316 }
1317 }
1318
1319 /*
1320 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1321 * furthest end of its superblock's dirty-inode list.
1322 *
1323 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1324 * already the most-recently-dirtied inode on the b_dirty list. If that is
1325 * the case then the inode must have been redirtied while it was being written
1326 * out and we don't reset its dirtied_when.
1327 */
1328 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1329 {
1330 assert_spin_locked(&inode->i_lock);
1331
1332 if (!list_empty(&wb->b_dirty)) {
1333 struct inode *tail;
1334
1335 tail = wb_inode(wb->b_dirty.next);
1336 if (time_before(inode->dirtied_when, tail->dirtied_when))
1337 inode->dirtied_when = jiffies;
1338 }
1339 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1340 inode->i_state &= ~I_SYNC_QUEUED;
1341 }
1342
1343 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1344 {
1345 spin_lock(&inode->i_lock);
1346 redirty_tail_locked(inode, wb);
1347 spin_unlock(&inode->i_lock);
1348 }
1349
1350 /*
1351 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1352 */
1353 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1354 {
1355 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1356 }
1357
1358 static void inode_sync_complete(struct inode *inode)
1359 {
1360 inode->i_state &= ~I_SYNC;
1361 /* If inode is clean an unused, put it into LRU now... */
1362 inode_add_lru(inode);
1363 /* Waiters must see I_SYNC cleared before being woken up */
1364 smp_mb();
1365 wake_up_bit(&inode->i_state, __I_SYNC);
1366 }
1367
1368 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1369 {
1370 bool ret = time_after(inode->dirtied_when, t);
1371 #ifndef CONFIG_64BIT
1372 /*
1373 * For inodes being constantly redirtied, dirtied_when can get stuck.
1374 * It _appears_ to be in the future, but is actually in distant past.
1375 * This test is necessary to prevent such wrapped-around relative times
1376 * from permanently stopping the whole bdi writeback.
1377 */
1378 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1379 #endif
1380 return ret;
1381 }
1382
1383 #define EXPIRE_DIRTY_ATIME 0x0001
1384
1385 /*
1386 * Move expired (dirtied before dirtied_before) dirty inodes from
1387 * @delaying_queue to @dispatch_queue.
1388 */
1389 static int move_expired_inodes(struct list_head *delaying_queue,
1390 struct list_head *dispatch_queue,
1391 unsigned long dirtied_before)
1392 {
1393 LIST_HEAD(tmp);
1394 struct list_head *pos, *node;
1395 struct super_block *sb = NULL;
1396 struct inode *inode;
1397 int do_sb_sort = 0;
1398 int moved = 0;
1399
1400 while (!list_empty(delaying_queue)) {
1401 inode = wb_inode(delaying_queue->prev);
1402 if (inode_dirtied_after(inode, dirtied_before))
1403 break;
1404 spin_lock(&inode->i_lock);
1405 list_move(&inode->i_io_list, &tmp);
1406 moved++;
1407 inode->i_state |= I_SYNC_QUEUED;
1408 spin_unlock(&inode->i_lock);
1409 if (sb_is_blkdev_sb(inode->i_sb))
1410 continue;
1411 if (sb && sb != inode->i_sb)
1412 do_sb_sort = 1;
1413 sb = inode->i_sb;
1414 }
1415
1416 /* just one sb in list, splice to dispatch_queue and we're done */
1417 if (!do_sb_sort) {
1418 list_splice(&tmp, dispatch_queue);
1419 goto out;
1420 }
1421
1422 /*
1423 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1424 * we don't take inode->i_lock here because it is just a pointless overhead.
1425 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1426 * fully under our control.
1427 */
1428 while (!list_empty(&tmp)) {
1429 sb = wb_inode(tmp.prev)->i_sb;
1430 list_for_each_prev_safe(pos, node, &tmp) {
1431 inode = wb_inode(pos);
1432 if (inode->i_sb == sb)
1433 list_move(&inode->i_io_list, dispatch_queue);
1434 }
1435 }
1436 out:
1437 return moved;
1438 }
1439
1440 /*
1441 * Queue all expired dirty inodes for io, eldest first.
1442 * Before
1443 * newly dirtied b_dirty b_io b_more_io
1444 * =============> gf edc BA
1445 * After
1446 * newly dirtied b_dirty b_io b_more_io
1447 * =============> g fBAedc
1448 * |
1449 * +--> dequeue for IO
1450 */
1451 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1452 unsigned long dirtied_before)
1453 {
1454 int moved;
1455 unsigned long time_expire_jif = dirtied_before;
1456
1457 assert_spin_locked(&wb->list_lock);
1458 list_splice_init(&wb->b_more_io, &wb->b_io);
1459 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1460 if (!work->for_sync)
1461 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1462 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1463 time_expire_jif);
1464 if (moved)
1465 wb_io_lists_populated(wb);
1466 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1467 }
1468
1469 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1470 {
1471 int ret;
1472
1473 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1474 trace_writeback_write_inode_start(inode, wbc);
1475 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1476 trace_writeback_write_inode(inode, wbc);
1477 return ret;
1478 }
1479 return 0;
1480 }
1481
1482 /*
1483 * Wait for writeback on an inode to complete. Called with i_lock held.
1484 * Caller must make sure inode cannot go away when we drop i_lock.
1485 */
1486 static void __inode_wait_for_writeback(struct inode *inode)
1487 __releases(inode->i_lock)
1488 __acquires(inode->i_lock)
1489 {
1490 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1491 wait_queue_head_t *wqh;
1492
1493 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1494 while (inode->i_state & I_SYNC) {
1495 spin_unlock(&inode->i_lock);
1496 __wait_on_bit(wqh, &wq, bit_wait,
1497 TASK_UNINTERRUPTIBLE);
1498 spin_lock(&inode->i_lock);
1499 }
1500 }
1501
1502 /*
1503 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1504 */
1505 void inode_wait_for_writeback(struct inode *inode)
1506 {
1507 spin_lock(&inode->i_lock);
1508 __inode_wait_for_writeback(inode);
1509 spin_unlock(&inode->i_lock);
1510 }
1511
1512 /*
1513 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1514 * held and drops it. It is aimed for callers not holding any inode reference
1515 * so once i_lock is dropped, inode can go away.
1516 */
1517 static void inode_sleep_on_writeback(struct inode *inode)
1518 __releases(inode->i_lock)
1519 {
1520 DEFINE_WAIT(wait);
1521 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1522 int sleep;
1523
1524 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1525 sleep = inode->i_state & I_SYNC;
1526 spin_unlock(&inode->i_lock);
1527 if (sleep)
1528 schedule();
1529 finish_wait(wqh, &wait);
1530 }
1531
1532 /*
1533 * Find proper writeback list for the inode depending on its current state and
1534 * possibly also change of its state while we were doing writeback. Here we
1535 * handle things such as livelock prevention or fairness of writeback among
1536 * inodes. This function can be called only by flusher thread - noone else
1537 * processes all inodes in writeback lists and requeueing inodes behind flusher
1538 * thread's back can have unexpected consequences.
1539 */
1540 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1541 struct writeback_control *wbc)
1542 {
1543 if (inode->i_state & I_FREEING)
1544 return;
1545
1546 /*
1547 * Sync livelock prevention. Each inode is tagged and synced in one
1548 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1549 * the dirty time to prevent enqueue and sync it again.
1550 */
1551 if ((inode->i_state & I_DIRTY) &&
1552 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1553 inode->dirtied_when = jiffies;
1554
1555 if (wbc->pages_skipped) {
1556 /*
1557 * writeback is not making progress due to locked
1558 * buffers. Skip this inode for now.
1559 */
1560 redirty_tail_locked(inode, wb);
1561 return;
1562 }
1563
1564 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1565 /*
1566 * We didn't write back all the pages. nfs_writepages()
1567 * sometimes bales out without doing anything.
1568 */
1569 if (wbc->nr_to_write <= 0) {
1570 /* Slice used up. Queue for next turn. */
1571 requeue_io(inode, wb);
1572 } else {
1573 /*
1574 * Writeback blocked by something other than
1575 * congestion. Delay the inode for some time to
1576 * avoid spinning on the CPU (100% iowait)
1577 * retrying writeback of the dirty page/inode
1578 * that cannot be performed immediately.
1579 */
1580 redirty_tail_locked(inode, wb);
1581 }
1582 } else if (inode->i_state & I_DIRTY) {
1583 /*
1584 * Filesystems can dirty the inode during writeback operations,
1585 * such as delayed allocation during submission or metadata
1586 * updates after data IO completion.
1587 */
1588 redirty_tail_locked(inode, wb);
1589 } else if (inode->i_state & I_DIRTY_TIME) {
1590 inode->dirtied_when = jiffies;
1591 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1592 inode->i_state &= ~I_SYNC_QUEUED;
1593 } else {
1594 /* The inode is clean. Remove from writeback lists. */
1595 inode_cgwb_move_to_attached(inode, wb);
1596 }
1597 }
1598
1599 /*
1600 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1601 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1602 *
1603 * This doesn't remove the inode from the writeback list it is on, except
1604 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1605 * expiration. The caller is otherwise responsible for writeback list handling.
1606 *
1607 * The caller is also responsible for setting the I_SYNC flag beforehand and
1608 * calling inode_sync_complete() to clear it afterwards.
1609 */
1610 static int
1611 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1612 {
1613 struct address_space *mapping = inode->i_mapping;
1614 long nr_to_write = wbc->nr_to_write;
1615 unsigned dirty;
1616 int ret;
1617
1618 WARN_ON(!(inode->i_state & I_SYNC));
1619
1620 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1621
1622 ret = do_writepages(mapping, wbc);
1623
1624 /*
1625 * Make sure to wait on the data before writing out the metadata.
1626 * This is important for filesystems that modify metadata on data
1627 * I/O completion. We don't do it for sync(2) writeback because it has a
1628 * separate, external IO completion path and ->sync_fs for guaranteeing
1629 * inode metadata is written back correctly.
1630 */
1631 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1632 int err = filemap_fdatawait(mapping);
1633 if (ret == 0)
1634 ret = err;
1635 }
1636
1637 /*
1638 * If the inode has dirty timestamps and we need to write them, call
1639 * mark_inode_dirty_sync() to notify the filesystem about it and to
1640 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1641 */
1642 if ((inode->i_state & I_DIRTY_TIME) &&
1643 (wbc->sync_mode == WB_SYNC_ALL ||
1644 time_after(jiffies, inode->dirtied_time_when +
1645 dirtytime_expire_interval * HZ))) {
1646 trace_writeback_lazytime(inode);
1647 mark_inode_dirty_sync(inode);
1648 }
1649
1650 /*
1651 * Get and clear the dirty flags from i_state. This needs to be done
1652 * after calling writepages because some filesystems may redirty the
1653 * inode during writepages due to delalloc. It also needs to be done
1654 * after handling timestamp expiration, as that may dirty the inode too.
1655 */
1656 spin_lock(&inode->i_lock);
1657 dirty = inode->i_state & I_DIRTY;
1658 inode->i_state &= ~dirty;
1659
1660 /*
1661 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1662 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1663 * either they see the I_DIRTY bits cleared or we see the dirtied
1664 * inode.
1665 *
1666 * I_DIRTY_PAGES is always cleared together above even if @mapping
1667 * still has dirty pages. The flag is reinstated after smp_mb() if
1668 * necessary. This guarantees that either __mark_inode_dirty()
1669 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1670 */
1671 smp_mb();
1672
1673 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1674 inode->i_state |= I_DIRTY_PAGES;
1675
1676 spin_unlock(&inode->i_lock);
1677
1678 /* Don't write the inode if only I_DIRTY_PAGES was set */
1679 if (dirty & ~I_DIRTY_PAGES) {
1680 int err = write_inode(inode, wbc);
1681 if (ret == 0)
1682 ret = err;
1683 }
1684 trace_writeback_single_inode(inode, wbc, nr_to_write);
1685 return ret;
1686 }
1687
1688 /*
1689 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1690 * the regular batched writeback done by the flusher threads in
1691 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1692 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1693 *
1694 * To prevent the inode from going away, either the caller must have a reference
1695 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1696 */
1697 static int writeback_single_inode(struct inode *inode,
1698 struct writeback_control *wbc)
1699 {
1700 struct bdi_writeback *wb;
1701 int ret = 0;
1702
1703 spin_lock(&inode->i_lock);
1704 if (!atomic_read(&inode->i_count))
1705 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1706 else
1707 WARN_ON(inode->i_state & I_WILL_FREE);
1708
1709 if (inode->i_state & I_SYNC) {
1710 /*
1711 * Writeback is already running on the inode. For WB_SYNC_NONE,
1712 * that's enough and we can just return. For WB_SYNC_ALL, we
1713 * must wait for the existing writeback to complete, then do
1714 * writeback again if there's anything left.
1715 */
1716 if (wbc->sync_mode != WB_SYNC_ALL)
1717 goto out;
1718 __inode_wait_for_writeback(inode);
1719 }
1720 WARN_ON(inode->i_state & I_SYNC);
1721 /*
1722 * If the inode is already fully clean, then there's nothing to do.
1723 *
1724 * For data-integrity syncs we also need to check whether any pages are
1725 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1726 * there are any such pages, we'll need to wait for them.
1727 */
1728 if (!(inode->i_state & I_DIRTY_ALL) &&
1729 (wbc->sync_mode != WB_SYNC_ALL ||
1730 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1731 goto out;
1732 inode->i_state |= I_SYNC;
1733 wbc_attach_and_unlock_inode(wbc, inode);
1734
1735 ret = __writeback_single_inode(inode, wbc);
1736
1737 wbc_detach_inode(wbc);
1738
1739 wb = inode_to_wb_and_lock_list(inode);
1740 spin_lock(&inode->i_lock);
1741 /*
1742 * If the inode is freeing, its i_io_list shoudn't be updated
1743 * as it can be finally deleted at this moment.
1744 */
1745 if (!(inode->i_state & I_FREEING)) {
1746 /*
1747 * If the inode is now fully clean, then it can be safely
1748 * removed from its writeback list (if any). Otherwise the
1749 * flusher threads are responsible for the writeback lists.
1750 */
1751 if (!(inode->i_state & I_DIRTY_ALL))
1752 inode_cgwb_move_to_attached(inode, wb);
1753 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1754 if ((inode->i_state & I_DIRTY))
1755 redirty_tail_locked(inode, wb);
1756 else if (inode->i_state & I_DIRTY_TIME) {
1757 inode->dirtied_when = jiffies;
1758 inode_io_list_move_locked(inode,
1759 wb,
1760 &wb->b_dirty_time);
1761 }
1762 }
1763 }
1764
1765 spin_unlock(&wb->list_lock);
1766 inode_sync_complete(inode);
1767 out:
1768 spin_unlock(&inode->i_lock);
1769 return ret;
1770 }
1771
1772 static long writeback_chunk_size(struct bdi_writeback *wb,
1773 struct wb_writeback_work *work)
1774 {
1775 long pages;
1776
1777 /*
1778 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1779 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1780 * here avoids calling into writeback_inodes_wb() more than once.
1781 *
1782 * The intended call sequence for WB_SYNC_ALL writeback is:
1783 *
1784 * wb_writeback()
1785 * writeback_sb_inodes() <== called only once
1786 * write_cache_pages() <== called once for each inode
1787 * (quickly) tag currently dirty pages
1788 * (maybe slowly) sync all tagged pages
1789 */
1790 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1791 pages = LONG_MAX;
1792 else {
1793 pages = min(wb->avg_write_bandwidth / 2,
1794 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1795 pages = min(pages, work->nr_pages);
1796 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1797 MIN_WRITEBACK_PAGES);
1798 }
1799
1800 return pages;
1801 }
1802
1803 /*
1804 * Write a portion of b_io inodes which belong to @sb.
1805 *
1806 * Return the number of pages and/or inodes written.
1807 *
1808 * NOTE! This is called with wb->list_lock held, and will
1809 * unlock and relock that for each inode it ends up doing
1810 * IO for.
1811 */
1812 static long writeback_sb_inodes(struct super_block *sb,
1813 struct bdi_writeback *wb,
1814 struct wb_writeback_work *work)
1815 {
1816 struct writeback_control wbc = {
1817 .sync_mode = work->sync_mode,
1818 .tagged_writepages = work->tagged_writepages,
1819 .for_kupdate = work->for_kupdate,
1820 .for_background = work->for_background,
1821 .for_sync = work->for_sync,
1822 .range_cyclic = work->range_cyclic,
1823 .range_start = 0,
1824 .range_end = LLONG_MAX,
1825 };
1826 unsigned long start_time = jiffies;
1827 long write_chunk;
1828 long total_wrote = 0; /* count both pages and inodes */
1829
1830 while (!list_empty(&wb->b_io)) {
1831 struct inode *inode = wb_inode(wb->b_io.prev);
1832 struct bdi_writeback *tmp_wb;
1833 long wrote;
1834
1835 if (inode->i_sb != sb) {
1836 if (work->sb) {
1837 /*
1838 * We only want to write back data for this
1839 * superblock, move all inodes not belonging
1840 * to it back onto the dirty list.
1841 */
1842 redirty_tail(inode, wb);
1843 continue;
1844 }
1845
1846 /*
1847 * The inode belongs to a different superblock.
1848 * Bounce back to the caller to unpin this and
1849 * pin the next superblock.
1850 */
1851 break;
1852 }
1853
1854 /*
1855 * Don't bother with new inodes or inodes being freed, first
1856 * kind does not need periodic writeout yet, and for the latter
1857 * kind writeout is handled by the freer.
1858 */
1859 spin_lock(&inode->i_lock);
1860 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1861 redirty_tail_locked(inode, wb);
1862 spin_unlock(&inode->i_lock);
1863 continue;
1864 }
1865 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1866 /*
1867 * If this inode is locked for writeback and we are not
1868 * doing writeback-for-data-integrity, move it to
1869 * b_more_io so that writeback can proceed with the
1870 * other inodes on s_io.
1871 *
1872 * We'll have another go at writing back this inode
1873 * when we completed a full scan of b_io.
1874 */
1875 requeue_io(inode, wb);
1876 spin_unlock(&inode->i_lock);
1877 trace_writeback_sb_inodes_requeue(inode);
1878 continue;
1879 }
1880 spin_unlock(&wb->list_lock);
1881
1882 /*
1883 * We already requeued the inode if it had I_SYNC set and we
1884 * are doing WB_SYNC_NONE writeback. So this catches only the
1885 * WB_SYNC_ALL case.
1886 */
1887 if (inode->i_state & I_SYNC) {
1888 /* Wait for I_SYNC. This function drops i_lock... */
1889 inode_sleep_on_writeback(inode);
1890 /* Inode may be gone, start again */
1891 spin_lock(&wb->list_lock);
1892 continue;
1893 }
1894 inode->i_state |= I_SYNC;
1895 wbc_attach_and_unlock_inode(&wbc, inode);
1896
1897 write_chunk = writeback_chunk_size(wb, work);
1898 wbc.nr_to_write = write_chunk;
1899 wbc.pages_skipped = 0;
1900
1901 /*
1902 * We use I_SYNC to pin the inode in memory. While it is set
1903 * evict_inode() will wait so the inode cannot be freed.
1904 */
1905 __writeback_single_inode(inode, &wbc);
1906
1907 wbc_detach_inode(&wbc);
1908 work->nr_pages -= write_chunk - wbc.nr_to_write;
1909 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1910 wrote = wrote < 0 ? 0 : wrote;
1911 total_wrote += wrote;
1912
1913 if (need_resched()) {
1914 /*
1915 * We're trying to balance between building up a nice
1916 * long list of IOs to improve our merge rate, and
1917 * getting those IOs out quickly for anyone throttling
1918 * in balance_dirty_pages(). cond_resched() doesn't
1919 * unplug, so get our IOs out the door before we
1920 * give up the CPU.
1921 */
1922 blk_flush_plug(current);
1923 cond_resched();
1924 }
1925
1926 /*
1927 * Requeue @inode if still dirty. Be careful as @inode may
1928 * have been switched to another wb in the meantime.
1929 */
1930 tmp_wb = inode_to_wb_and_lock_list(inode);
1931 spin_lock(&inode->i_lock);
1932 if (!(inode->i_state & I_DIRTY_ALL))
1933 total_wrote++;
1934 requeue_inode(inode, tmp_wb, &wbc);
1935 inode_sync_complete(inode);
1936 spin_unlock(&inode->i_lock);
1937
1938 if (unlikely(tmp_wb != wb)) {
1939 spin_unlock(&tmp_wb->list_lock);
1940 spin_lock(&wb->list_lock);
1941 }
1942
1943 /*
1944 * bail out to wb_writeback() often enough to check
1945 * background threshold and other termination conditions.
1946 */
1947 if (total_wrote) {
1948 if (time_is_before_jiffies(start_time + HZ / 10UL))
1949 break;
1950 if (work->nr_pages <= 0)
1951 break;
1952 }
1953 }
1954 return total_wrote;
1955 }
1956
1957 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1958 struct wb_writeback_work *work)
1959 {
1960 unsigned long start_time = jiffies;
1961 long wrote = 0;
1962
1963 while (!list_empty(&wb->b_io)) {
1964 struct inode *inode = wb_inode(wb->b_io.prev);
1965 struct super_block *sb = inode->i_sb;
1966
1967 if (!trylock_super(sb)) {
1968 /*
1969 * trylock_super() may fail consistently due to
1970 * s_umount being grabbed by someone else. Don't use
1971 * requeue_io() to avoid busy retrying the inode/sb.
1972 */
1973 redirty_tail(inode, wb);
1974 continue;
1975 }
1976 wrote += writeback_sb_inodes(sb, wb, work);
1977 up_read(&sb->s_umount);
1978
1979 /* refer to the same tests at the end of writeback_sb_inodes */
1980 if (wrote) {
1981 if (time_is_before_jiffies(start_time + HZ / 10UL))
1982 break;
1983 if (work->nr_pages <= 0)
1984 break;
1985 }
1986 }
1987 /* Leave any unwritten inodes on b_io */
1988 return wrote;
1989 }
1990
1991 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1992 enum wb_reason reason)
1993 {
1994 struct wb_writeback_work work = {
1995 .nr_pages = nr_pages,
1996 .sync_mode = WB_SYNC_NONE,
1997 .range_cyclic = 1,
1998 .reason = reason,
1999 };
2000 struct blk_plug plug;
2001
2002 blk_start_plug(&plug);
2003 spin_lock(&wb->list_lock);
2004 if (list_empty(&wb->b_io))
2005 queue_io(wb, &work, jiffies);
2006 __writeback_inodes_wb(wb, &work);
2007 spin_unlock(&wb->list_lock);
2008 blk_finish_plug(&plug);
2009
2010 return nr_pages - work.nr_pages;
2011 }
2012
2013 /*
2014 * Explicit flushing or periodic writeback of "old" data.
2015 *
2016 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2017 * dirtying-time in the inode's address_space. So this periodic writeback code
2018 * just walks the superblock inode list, writing back any inodes which are
2019 * older than a specific point in time.
2020 *
2021 * Try to run once per dirty_writeback_interval. But if a writeback event
2022 * takes longer than a dirty_writeback_interval interval, then leave a
2023 * one-second gap.
2024 *
2025 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2026 * all dirty pages if they are all attached to "old" mappings.
2027 */
2028 static long wb_writeback(struct bdi_writeback *wb,
2029 struct wb_writeback_work *work)
2030 {
2031 long nr_pages = work->nr_pages;
2032 unsigned long dirtied_before = jiffies;
2033 struct inode *inode;
2034 long progress;
2035 struct blk_plug plug;
2036
2037 blk_start_plug(&plug);
2038 spin_lock(&wb->list_lock);
2039 for (;;) {
2040 /*
2041 * Stop writeback when nr_pages has been consumed
2042 */
2043 if (work->nr_pages <= 0)
2044 break;
2045
2046 /*
2047 * Background writeout and kupdate-style writeback may
2048 * run forever. Stop them if there is other work to do
2049 * so that e.g. sync can proceed. They'll be restarted
2050 * after the other works are all done.
2051 */
2052 if ((work->for_background || work->for_kupdate) &&
2053 !list_empty(&wb->work_list))
2054 break;
2055
2056 /*
2057 * For background writeout, stop when we are below the
2058 * background dirty threshold
2059 */
2060 if (work->for_background && !wb_over_bg_thresh(wb))
2061 break;
2062
2063 /*
2064 * Kupdate and background works are special and we want to
2065 * include all inodes that need writing. Livelock avoidance is
2066 * handled by these works yielding to any other work so we are
2067 * safe.
2068 */
2069 if (work->for_kupdate) {
2070 dirtied_before = jiffies -
2071 msecs_to_jiffies(dirty_expire_interval * 10);
2072 } else if (work->for_background)
2073 dirtied_before = jiffies;
2074
2075 trace_writeback_start(wb, work);
2076 if (list_empty(&wb->b_io))
2077 queue_io(wb, work, dirtied_before);
2078 if (work->sb)
2079 progress = writeback_sb_inodes(work->sb, wb, work);
2080 else
2081 progress = __writeback_inodes_wb(wb, work);
2082 trace_writeback_written(wb, work);
2083
2084 /*
2085 * Did we write something? Try for more
2086 *
2087 * Dirty inodes are moved to b_io for writeback in batches.
2088 * The completion of the current batch does not necessarily
2089 * mean the overall work is done. So we keep looping as long
2090 * as made some progress on cleaning pages or inodes.
2091 */
2092 if (progress)
2093 continue;
2094 /*
2095 * No more inodes for IO, bail
2096 */
2097 if (list_empty(&wb->b_more_io))
2098 break;
2099 /*
2100 * Nothing written. Wait for some inode to
2101 * become available for writeback. Otherwise
2102 * we'll just busyloop.
2103 */
2104 trace_writeback_wait(wb, work);
2105 inode = wb_inode(wb->b_more_io.prev);
2106 spin_lock(&inode->i_lock);
2107 spin_unlock(&wb->list_lock);
2108 /* This function drops i_lock... */
2109 inode_sleep_on_writeback(inode);
2110 spin_lock(&wb->list_lock);
2111 }
2112 spin_unlock(&wb->list_lock);
2113 blk_finish_plug(&plug);
2114
2115 return nr_pages - work->nr_pages;
2116 }
2117
2118 /*
2119 * Return the next wb_writeback_work struct that hasn't been processed yet.
2120 */
2121 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2122 {
2123 struct wb_writeback_work *work = NULL;
2124
2125 spin_lock_irq(&wb->work_lock);
2126 if (!list_empty(&wb->work_list)) {
2127 work = list_entry(wb->work_list.next,
2128 struct wb_writeback_work, list);
2129 list_del_init(&work->list);
2130 }
2131 spin_unlock_irq(&wb->work_lock);
2132 return work;
2133 }
2134
2135 static long wb_check_background_flush(struct bdi_writeback *wb)
2136 {
2137 if (wb_over_bg_thresh(wb)) {
2138
2139 struct wb_writeback_work work = {
2140 .nr_pages = LONG_MAX,
2141 .sync_mode = WB_SYNC_NONE,
2142 .for_background = 1,
2143 .range_cyclic = 1,
2144 .reason = WB_REASON_BACKGROUND,
2145 };
2146
2147 return wb_writeback(wb, &work);
2148 }
2149
2150 return 0;
2151 }
2152
2153 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2154 {
2155 unsigned long expired;
2156 long nr_pages;
2157
2158 /*
2159 * When set to zero, disable periodic writeback
2160 */
2161 if (!dirty_writeback_interval)
2162 return 0;
2163
2164 expired = wb->last_old_flush +
2165 msecs_to_jiffies(dirty_writeback_interval * 10);
2166 if (time_before(jiffies, expired))
2167 return 0;
2168
2169 wb->last_old_flush = jiffies;
2170 nr_pages = get_nr_dirty_pages();
2171
2172 if (nr_pages) {
2173 struct wb_writeback_work work = {
2174 .nr_pages = nr_pages,
2175 .sync_mode = WB_SYNC_NONE,
2176 .for_kupdate = 1,
2177 .range_cyclic = 1,
2178 .reason = WB_REASON_PERIODIC,
2179 };
2180
2181 return wb_writeback(wb, &work);
2182 }
2183
2184 return 0;
2185 }
2186
2187 static long wb_check_start_all(struct bdi_writeback *wb)
2188 {
2189 long nr_pages;
2190
2191 if (!test_bit(WB_start_all, &wb->state))
2192 return 0;
2193
2194 nr_pages = get_nr_dirty_pages();
2195 if (nr_pages) {
2196 struct wb_writeback_work work = {
2197 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2198 .sync_mode = WB_SYNC_NONE,
2199 .range_cyclic = 1,
2200 .reason = wb->start_all_reason,
2201 };
2202
2203 nr_pages = wb_writeback(wb, &work);
2204 }
2205
2206 clear_bit(WB_start_all, &wb->state);
2207 return nr_pages;
2208 }
2209
2210
2211 /*
2212 * Retrieve work items and do the writeback they describe
2213 */
2214 static long wb_do_writeback(struct bdi_writeback *wb)
2215 {
2216 struct wb_writeback_work *work;
2217 long wrote = 0;
2218
2219 set_bit(WB_writeback_running, &wb->state);
2220 while ((work = get_next_work_item(wb)) != NULL) {
2221 trace_writeback_exec(wb, work);
2222 wrote += wb_writeback(wb, work);
2223 finish_writeback_work(wb, work);
2224 }
2225
2226 /*
2227 * Check for a flush-everything request
2228 */
2229 wrote += wb_check_start_all(wb);
2230
2231 /*
2232 * Check for periodic writeback, kupdated() style
2233 */
2234 wrote += wb_check_old_data_flush(wb);
2235 wrote += wb_check_background_flush(wb);
2236 clear_bit(WB_writeback_running, &wb->state);
2237
2238 return wrote;
2239 }
2240
2241 /*
2242 * Handle writeback of dirty data for the device backed by this bdi. Also
2243 * reschedules periodically and does kupdated style flushing.
2244 */
2245 void wb_workfn(struct work_struct *work)
2246 {
2247 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2248 struct bdi_writeback, dwork);
2249 long pages_written;
2250
2251 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2252 current->flags |= PF_SWAPWRITE;
2253
2254 if (likely(!current_is_workqueue_rescuer() ||
2255 !test_bit(WB_registered, &wb->state))) {
2256 /*
2257 * The normal path. Keep writing back @wb until its
2258 * work_list is empty. Note that this path is also taken
2259 * if @wb is shutting down even when we're running off the
2260 * rescuer as work_list needs to be drained.
2261 */
2262 do {
2263 pages_written = wb_do_writeback(wb);
2264 trace_writeback_pages_written(pages_written);
2265 } while (!list_empty(&wb->work_list));
2266 } else {
2267 /*
2268 * bdi_wq can't get enough workers and we're running off
2269 * the emergency worker. Don't hog it. Hopefully, 1024 is
2270 * enough for efficient IO.
2271 */
2272 pages_written = writeback_inodes_wb(wb, 1024,
2273 WB_REASON_FORKER_THREAD);
2274 trace_writeback_pages_written(pages_written);
2275 }
2276
2277 if (!list_empty(&wb->work_list))
2278 wb_wakeup(wb);
2279 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2280 wb_wakeup_delayed(wb);
2281
2282 current->flags &= ~PF_SWAPWRITE;
2283 }
2284
2285 /*
2286 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2287 * write back the whole world.
2288 */
2289 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2290 enum wb_reason reason)
2291 {
2292 struct bdi_writeback *wb;
2293
2294 if (!bdi_has_dirty_io(bdi))
2295 return;
2296
2297 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2298 wb_start_writeback(wb, reason);
2299 }
2300
2301 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2302 enum wb_reason reason)
2303 {
2304 rcu_read_lock();
2305 __wakeup_flusher_threads_bdi(bdi, reason);
2306 rcu_read_unlock();
2307 }
2308
2309 /*
2310 * Wakeup the flusher threads to start writeback of all currently dirty pages
2311 */
2312 void wakeup_flusher_threads(enum wb_reason reason)
2313 {
2314 struct backing_dev_info *bdi;
2315
2316 /*
2317 * If we are expecting writeback progress we must submit plugged IO.
2318 */
2319 if (blk_needs_flush_plug(current))
2320 blk_schedule_flush_plug(current);
2321
2322 rcu_read_lock();
2323 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2324 __wakeup_flusher_threads_bdi(bdi, reason);
2325 rcu_read_unlock();
2326 }
2327
2328 /*
2329 * Wake up bdi's periodically to make sure dirtytime inodes gets
2330 * written back periodically. We deliberately do *not* check the
2331 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2332 * kernel to be constantly waking up once there are any dirtytime
2333 * inodes on the system. So instead we define a separate delayed work
2334 * function which gets called much more rarely. (By default, only
2335 * once every 12 hours.)
2336 *
2337 * If there is any other write activity going on in the file system,
2338 * this function won't be necessary. But if the only thing that has
2339 * happened on the file system is a dirtytime inode caused by an atime
2340 * update, we need this infrastructure below to make sure that inode
2341 * eventually gets pushed out to disk.
2342 */
2343 static void wakeup_dirtytime_writeback(struct work_struct *w);
2344 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2345
2346 static void wakeup_dirtytime_writeback(struct work_struct *w)
2347 {
2348 struct backing_dev_info *bdi;
2349
2350 rcu_read_lock();
2351 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2352 struct bdi_writeback *wb;
2353
2354 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2355 if (!list_empty(&wb->b_dirty_time))
2356 wb_wakeup(wb);
2357 }
2358 rcu_read_unlock();
2359 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2360 }
2361
2362 static int __init start_dirtytime_writeback(void)
2363 {
2364 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2365 return 0;
2366 }
2367 __initcall(start_dirtytime_writeback);
2368
2369 int dirtytime_interval_handler(struct ctl_table *table, int write,
2370 void *buffer, size_t *lenp, loff_t *ppos)
2371 {
2372 int ret;
2373
2374 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2375 if (ret == 0 && write)
2376 mod_delayed_work(system_wq, &dirtytime_work, 0);
2377 return ret;
2378 }
2379
2380 /**
2381 * __mark_inode_dirty - internal function to mark an inode dirty
2382 *
2383 * @inode: inode to mark
2384 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2385 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2386 * with I_DIRTY_PAGES.
2387 *
2388 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2389 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2390 *
2391 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2392 * instead of calling this directly.
2393 *
2394 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2395 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2396 * even if they are later hashed, as they will have been marked dirty already.
2397 *
2398 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2399 *
2400 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2401 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2402 * the kernel-internal blockdev inode represents the dirtying time of the
2403 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2404 * page->mapping->host, so the page-dirtying time is recorded in the internal
2405 * blockdev inode.
2406 */
2407 void __mark_inode_dirty(struct inode *inode, int flags)
2408 {
2409 struct super_block *sb = inode->i_sb;
2410 int dirtytime = 0;
2411 struct bdi_writeback *wb = NULL;
2412
2413 trace_writeback_mark_inode_dirty(inode, flags);
2414
2415 if (flags & I_DIRTY_INODE) {
2416 /*
2417 * Inode timestamp update will piggback on this dirtying.
2418 * We tell ->dirty_inode callback that timestamps need to
2419 * be updated by setting I_DIRTY_TIME in flags.
2420 */
2421 if (inode->i_state & I_DIRTY_TIME) {
2422 spin_lock(&inode->i_lock);
2423 if (inode->i_state & I_DIRTY_TIME) {
2424 inode->i_state &= ~I_DIRTY_TIME;
2425 flags |= I_DIRTY_TIME;
2426 }
2427 spin_unlock(&inode->i_lock);
2428 }
2429
2430 /*
2431 * Notify the filesystem about the inode being dirtied, so that
2432 * (if needed) it can update on-disk fields and journal the
2433 * inode. This is only needed when the inode itself is being
2434 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2435 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2436 */
2437 trace_writeback_dirty_inode_start(inode, flags);
2438 if (sb->s_op->dirty_inode)
2439 sb->s_op->dirty_inode(inode,
2440 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2441 trace_writeback_dirty_inode(inode, flags);
2442
2443 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2444 flags &= ~I_DIRTY_TIME;
2445 } else {
2446 /*
2447 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2448 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2449 * in one call to __mark_inode_dirty().)
2450 */
2451 dirtytime = flags & I_DIRTY_TIME;
2452 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2453 }
2454
2455 /*
2456 * Paired with smp_mb() in __writeback_single_inode() for the
2457 * following lockless i_state test. See there for details.
2458 */
2459 smp_mb();
2460
2461 if ((inode->i_state & flags) == flags)
2462 return;
2463
2464 spin_lock(&inode->i_lock);
2465 if ((inode->i_state & flags) != flags) {
2466 const int was_dirty = inode->i_state & I_DIRTY;
2467
2468 inode_attach_wb(inode, NULL);
2469
2470 inode->i_state |= flags;
2471
2472 /*
2473 * Grab inode's wb early because it requires dropping i_lock and we
2474 * need to make sure following checks happen atomically with dirty
2475 * list handling so that we don't move inodes under flush worker's
2476 * hands.
2477 */
2478 if (!was_dirty) {
2479 wb = locked_inode_to_wb_and_lock_list(inode);
2480 spin_lock(&inode->i_lock);
2481 }
2482
2483 /*
2484 * If the inode is queued for writeback by flush worker, just
2485 * update its dirty state. Once the flush worker is done with
2486 * the inode it will place it on the appropriate superblock
2487 * list, based upon its state.
2488 */
2489 if (inode->i_state & I_SYNC_QUEUED)
2490 goto out_unlock;
2491
2492 /*
2493 * Only add valid (hashed) inodes to the superblock's
2494 * dirty list. Add blockdev inodes as well.
2495 */
2496 if (!S_ISBLK(inode->i_mode)) {
2497 if (inode_unhashed(inode))
2498 goto out_unlock;
2499 }
2500 if (inode->i_state & I_FREEING)
2501 goto out_unlock;
2502
2503 /*
2504 * If the inode was already on b_dirty/b_io/b_more_io, don't
2505 * reposition it (that would break b_dirty time-ordering).
2506 */
2507 if (!was_dirty) {
2508 struct list_head *dirty_list;
2509 bool wakeup_bdi = false;
2510
2511 inode->dirtied_when = jiffies;
2512 if (dirtytime)
2513 inode->dirtied_time_when = jiffies;
2514
2515 if (inode->i_state & I_DIRTY)
2516 dirty_list = &wb->b_dirty;
2517 else
2518 dirty_list = &wb->b_dirty_time;
2519
2520 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2521 dirty_list);
2522
2523 spin_unlock(&wb->list_lock);
2524 spin_unlock(&inode->i_lock);
2525 trace_writeback_dirty_inode_enqueue(inode);
2526
2527 /*
2528 * If this is the first dirty inode for this bdi,
2529 * we have to wake-up the corresponding bdi thread
2530 * to make sure background write-back happens
2531 * later.
2532 */
2533 if (wakeup_bdi &&
2534 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2535 wb_wakeup_delayed(wb);
2536 return;
2537 }
2538 }
2539 out_unlock:
2540 if (wb)
2541 spin_unlock(&wb->list_lock);
2542 spin_unlock(&inode->i_lock);
2543 }
2544 EXPORT_SYMBOL(__mark_inode_dirty);
2545
2546 /*
2547 * The @s_sync_lock is used to serialise concurrent sync operations
2548 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2549 * Concurrent callers will block on the s_sync_lock rather than doing contending
2550 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2551 * has been issued up to the time this function is enter is guaranteed to be
2552 * completed by the time we have gained the lock and waited for all IO that is
2553 * in progress regardless of the order callers are granted the lock.
2554 */
2555 static void wait_sb_inodes(struct super_block *sb)
2556 {
2557 LIST_HEAD(sync_list);
2558
2559 /*
2560 * We need to be protected against the filesystem going from
2561 * r/o to r/w or vice versa.
2562 */
2563 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2564
2565 mutex_lock(&sb->s_sync_lock);
2566
2567 /*
2568 * Splice the writeback list onto a temporary list to avoid waiting on
2569 * inodes that have started writeback after this point.
2570 *
2571 * Use rcu_read_lock() to keep the inodes around until we have a
2572 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2573 * the local list because inodes can be dropped from either by writeback
2574 * completion.
2575 */
2576 rcu_read_lock();
2577 spin_lock_irq(&sb->s_inode_wblist_lock);
2578 list_splice_init(&sb->s_inodes_wb, &sync_list);
2579
2580 /*
2581 * Data integrity sync. Must wait for all pages under writeback, because
2582 * there may have been pages dirtied before our sync call, but which had
2583 * writeout started before we write it out. In which case, the inode
2584 * may not be on the dirty list, but we still have to wait for that
2585 * writeout.
2586 */
2587 while (!list_empty(&sync_list)) {
2588 struct inode *inode = list_first_entry(&sync_list, struct inode,
2589 i_wb_list);
2590 struct address_space *mapping = inode->i_mapping;
2591
2592 /*
2593 * Move each inode back to the wb list before we drop the lock
2594 * to preserve consistency between i_wb_list and the mapping
2595 * writeback tag. Writeback completion is responsible to remove
2596 * the inode from either list once the writeback tag is cleared.
2597 */
2598 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2599
2600 /*
2601 * The mapping can appear untagged while still on-list since we
2602 * do not have the mapping lock. Skip it here, wb completion
2603 * will remove it.
2604 */
2605 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2606 continue;
2607
2608 spin_unlock_irq(&sb->s_inode_wblist_lock);
2609
2610 spin_lock(&inode->i_lock);
2611 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2612 spin_unlock(&inode->i_lock);
2613
2614 spin_lock_irq(&sb->s_inode_wblist_lock);
2615 continue;
2616 }
2617 __iget(inode);
2618 spin_unlock(&inode->i_lock);
2619 rcu_read_unlock();
2620
2621 /*
2622 * We keep the error status of individual mapping so that
2623 * applications can catch the writeback error using fsync(2).
2624 * See filemap_fdatawait_keep_errors() for details.
2625 */
2626 filemap_fdatawait_keep_errors(mapping);
2627
2628 cond_resched();
2629
2630 iput(inode);
2631
2632 rcu_read_lock();
2633 spin_lock_irq(&sb->s_inode_wblist_lock);
2634 }
2635 spin_unlock_irq(&sb->s_inode_wblist_lock);
2636 rcu_read_unlock();
2637 mutex_unlock(&sb->s_sync_lock);
2638 }
2639
2640 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2641 enum wb_reason reason, bool skip_if_busy)
2642 {
2643 struct backing_dev_info *bdi = sb->s_bdi;
2644 DEFINE_WB_COMPLETION(done, bdi);
2645 struct wb_writeback_work work = {
2646 .sb = sb,
2647 .sync_mode = WB_SYNC_NONE,
2648 .tagged_writepages = 1,
2649 .done = &done,
2650 .nr_pages = nr,
2651 .reason = reason,
2652 };
2653
2654 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2655 return;
2656 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2657
2658 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2659 wb_wait_for_completion(&done);
2660 }
2661
2662 /**
2663 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2664 * @sb: the superblock
2665 * @nr: the number of pages to write
2666 * @reason: reason why some writeback work initiated
2667 *
2668 * Start writeback on some inodes on this super_block. No guarantees are made
2669 * on how many (if any) will be written, and this function does not wait
2670 * for IO completion of submitted IO.
2671 */
2672 void writeback_inodes_sb_nr(struct super_block *sb,
2673 unsigned long nr,
2674 enum wb_reason reason)
2675 {
2676 __writeback_inodes_sb_nr(sb, nr, reason, false);
2677 }
2678 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2679
2680 /**
2681 * writeback_inodes_sb - writeback dirty inodes from given super_block
2682 * @sb: the superblock
2683 * @reason: reason why some writeback work was initiated
2684 *
2685 * Start writeback on some inodes on this super_block. No guarantees are made
2686 * on how many (if any) will be written, and this function does not wait
2687 * for IO completion of submitted IO.
2688 */
2689 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2690 {
2691 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2692 }
2693 EXPORT_SYMBOL(writeback_inodes_sb);
2694
2695 /**
2696 * try_to_writeback_inodes_sb - try to start writeback if none underway
2697 * @sb: the superblock
2698 * @reason: reason why some writeback work was initiated
2699 *
2700 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2701 */
2702 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2703 {
2704 if (!down_read_trylock(&sb->s_umount))
2705 return;
2706
2707 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2708 up_read(&sb->s_umount);
2709 }
2710 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2711
2712 /**
2713 * sync_inodes_sb - sync sb inode pages
2714 * @sb: the superblock
2715 *
2716 * This function writes and waits on any dirty inode belonging to this
2717 * super_block.
2718 */
2719 void sync_inodes_sb(struct super_block *sb)
2720 {
2721 struct backing_dev_info *bdi = sb->s_bdi;
2722 DEFINE_WB_COMPLETION(done, bdi);
2723 struct wb_writeback_work work = {
2724 .sb = sb,
2725 .sync_mode = WB_SYNC_ALL,
2726 .nr_pages = LONG_MAX,
2727 .range_cyclic = 0,
2728 .done = &done,
2729 .reason = WB_REASON_SYNC,
2730 .for_sync = 1,
2731 };
2732
2733 /*
2734 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2735 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2736 * bdi_has_dirty() need to be written out too.
2737 */
2738 if (bdi == &noop_backing_dev_info)
2739 return;
2740 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2741
2742 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2743 bdi_down_write_wb_switch_rwsem(bdi);
2744 bdi_split_work_to_wbs(bdi, &work, false);
2745 wb_wait_for_completion(&done);
2746 bdi_up_write_wb_switch_rwsem(bdi);
2747
2748 wait_sb_inodes(sb);
2749 }
2750 EXPORT_SYMBOL(sync_inodes_sb);
2751
2752 /**
2753 * write_inode_now - write an inode to disk
2754 * @inode: inode to write to disk
2755 * @sync: whether the write should be synchronous or not
2756 *
2757 * This function commits an inode to disk immediately if it is dirty. This is
2758 * primarily needed by knfsd.
2759 *
2760 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2761 */
2762 int write_inode_now(struct inode *inode, int sync)
2763 {
2764 struct writeback_control wbc = {
2765 .nr_to_write = LONG_MAX,
2766 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2767 .range_start = 0,
2768 .range_end = LLONG_MAX,
2769 };
2770
2771 if (!mapping_can_writeback(inode->i_mapping))
2772 wbc.nr_to_write = 0;
2773
2774 might_sleep();
2775 return writeback_single_inode(inode, &wbc);
2776 }
2777 EXPORT_SYMBOL(write_inode_now);
2778
2779 /**
2780 * sync_inode_metadata - write an inode to disk
2781 * @inode: the inode to sync
2782 * @wait: wait for I/O to complete.
2783 *
2784 * Write an inode to disk and adjust its dirty state after completion.
2785 *
2786 * Note: only writes the actual inode, no associated data or other metadata.
2787 */
2788 int sync_inode_metadata(struct inode *inode, int wait)
2789 {
2790 struct writeback_control wbc = {
2791 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2792 .nr_to_write = 0, /* metadata-only */
2793 };
2794
2795 return writeback_single_inode(inode, &wbc);
2796 }
2797 EXPORT_SYMBOL(sync_inode_metadata);