4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 unsigned long *older_than_this
;
49 enum writeback_sync_modes sync_mode
;
50 unsigned int tagged_writepages
:1;
51 unsigned int for_kupdate
:1;
52 unsigned int range_cyclic
:1;
53 unsigned int for_background
:1;
54 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free
:1; /* free on completion */
56 enum wb_reason reason
; /* why was writeback initiated? */
58 struct list_head list
; /* pending work list */
59 struct wb_completion
*done
; /* set if the caller waits */
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
85 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
87 static inline struct inode
*wb_inode(struct list_head
*head
)
89 return list_entry(head
, struct inode
, i_io_list
);
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
102 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
104 if (wb_has_dirty_io(wb
)) {
107 set_bit(WB_has_dirty_io
, &wb
->state
);
108 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
109 atomic_long_add(wb
->avg_write_bandwidth
,
110 &wb
->bdi
->tot_write_bandwidth
);
115 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
117 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
118 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
119 clear_bit(WB_has_dirty_io
, &wb
->state
);
120 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
121 &wb
->bdi
->tot_write_bandwidth
) < 0);
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
135 static bool inode_io_list_move_locked(struct inode
*inode
,
136 struct bdi_writeback
*wb
,
137 struct list_head
*head
)
139 assert_spin_locked(&wb
->list_lock
);
141 list_move(&inode
->i_io_list
, head
);
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head
!= &wb
->b_dirty_time
)
145 return wb_io_lists_populated(wb
);
147 wb_io_lists_depopulated(wb
);
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
159 static void inode_io_list_del_locked(struct inode
*inode
,
160 struct bdi_writeback
*wb
)
162 assert_spin_locked(&wb
->list_lock
);
164 list_del_init(&inode
->i_io_list
);
165 wb_io_lists_depopulated(wb
);
168 static void wb_wakeup(struct bdi_writeback
*wb
)
170 spin_lock_bh(&wb
->work_lock
);
171 if (test_bit(WB_registered
, &wb
->state
))
172 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
173 spin_unlock_bh(&wb
->work_lock
);
176 static void wb_queue_work(struct bdi_writeback
*wb
,
177 struct wb_writeback_work
*work
)
179 trace_writeback_queue(wb
, work
);
181 spin_lock_bh(&wb
->work_lock
);
182 if (!test_bit(WB_registered
, &wb
->state
))
185 atomic_inc(&work
->done
->cnt
);
186 list_add_tail(&work
->list
, &wb
->work_list
);
187 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
189 spin_unlock_bh(&wb
->work_lock
);
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
203 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
204 struct wb_completion
*done
)
206 atomic_dec(&done
->cnt
); /* put down the initial count */
207 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
210 #ifdef CONFIG_CGROUP_WRITEBACK
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
226 static atomic_t isw_nr_in_flight
= ATOMIC_INIT(0);
227 static struct workqueue_struct
*isw_wq
;
229 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
231 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
232 struct bdi_writeback
*wb
= NULL
;
234 if (inode_cgwb_enabled(inode
)) {
235 struct cgroup_subsys_state
*memcg_css
;
238 memcg_css
= mem_cgroup_css_from_page(page
);
239 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css
= task_get_css(current
, memory_cgrp_id
);
243 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
255 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
267 static struct bdi_writeback
*
268 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
269 __releases(&inode
->i_lock
)
270 __acquires(&wb
->list_lock
)
273 struct bdi_writeback
*wb
= inode_to_wb(inode
);
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
282 spin_unlock(&inode
->i_lock
);
283 spin_lock(&wb
->list_lock
);
285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
286 if (likely(wb
== inode
->i_wb
)) {
287 wb_put(wb
); /* @inode already has ref */
291 spin_unlock(&wb
->list_lock
);
294 spin_lock(&inode
->i_lock
);
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
305 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
306 __acquires(&wb
->list_lock
)
308 spin_lock(&inode
->i_lock
);
309 return locked_inode_to_wb_and_lock_list(inode
);
312 struct inode_switch_wbs_context
{
314 struct bdi_writeback
*new_wb
;
316 struct rcu_head rcu_head
;
317 struct work_struct work
;
320 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
322 struct inode_switch_wbs_context
*isw
=
323 container_of(work
, struct inode_switch_wbs_context
, work
);
324 struct inode
*inode
= isw
->inode
;
325 struct address_space
*mapping
= inode
->i_mapping
;
326 struct bdi_writeback
*old_wb
= inode
->i_wb
;
327 struct bdi_writeback
*new_wb
= isw
->new_wb
;
328 struct radix_tree_iter iter
;
329 bool switched
= false;
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
342 if (old_wb
< new_wb
) {
343 spin_lock(&old_wb
->list_lock
);
344 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
346 spin_lock(&new_wb
->list_lock
);
347 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
349 spin_lock(&inode
->i_lock
);
350 spin_lock_irq(&mapping
->tree_lock
);
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_io_list.
356 if (unlikely(inode
->i_state
& I_FREEING
))
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
364 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
365 PAGECACHE_TAG_DIRTY
) {
366 struct page
*page
= radix_tree_deref_slot_protected(slot
,
367 &mapping
->tree_lock
);
368 if (likely(page
) && PageDirty(page
)) {
369 __dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
370 __inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
374 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
375 PAGECACHE_TAG_WRITEBACK
) {
376 struct page
*page
= radix_tree_deref_slot_protected(slot
,
377 &mapping
->tree_lock
);
379 WARN_ON_ONCE(!PageWriteback(page
));
380 __dec_wb_stat(old_wb
, WB_WRITEBACK
);
381 __inc_wb_stat(new_wb
, WB_WRITEBACK
);
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
393 if (!list_empty(&inode
->i_io_list
)) {
396 inode_io_list_del_locked(inode
, old_wb
);
397 inode
->i_wb
= new_wb
;
398 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
399 if (time_after_eq(inode
->dirtied_when
,
402 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
404 inode
->i_wb
= new_wb
;
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode
->i_wb_frn_winner
= 0;
409 inode
->i_wb_frn_avg_time
= 0;
410 inode
->i_wb_frn_history
= 0;
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
417 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
419 spin_unlock_irq(&mapping
->tree_lock
);
420 spin_unlock(&inode
->i_lock
);
421 spin_unlock(&new_wb
->list_lock
);
422 spin_unlock(&old_wb
->list_lock
);
433 atomic_dec(&isw_nr_in_flight
);
436 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
438 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
439 struct inode_switch_wbs_context
, rcu_head
);
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
443 queue_work(isw_wq
, &isw
->work
);
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
454 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
456 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
457 struct cgroup_subsys_state
*memcg_css
;
458 struct inode_switch_wbs_context
*isw
;
460 /* noop if seems to be already in progress */
461 if (inode
->i_state
& I_WB_SWITCH
)
464 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
468 /* find and pin the new wb */
470 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
472 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode
->i_lock
);
479 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
) ||
480 inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
481 inode_to_wb(inode
) == isw
->new_wb
) {
482 spin_unlock(&inode
->i_lock
);
485 inode
->i_state
|= I_WB_SWITCH
;
487 spin_unlock(&inode
->i_lock
);
491 atomic_inc(&isw_nr_in_flight
);
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
499 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
518 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
521 if (!inode_cgwb_enabled(inode
)) {
522 spin_unlock(&inode
->i_lock
);
526 wbc
->wb
= inode_to_wb(inode
);
529 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
530 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
531 wbc
->wb_tcand_id
= 0;
533 wbc
->wb_lcand_bytes
= 0;
534 wbc
->wb_tcand_bytes
= 0;
537 spin_unlock(&inode
->i_lock
);
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
543 if (unlikely(wb_dying(wbc
->wb
)))
544 inode_switch_wbs(inode
, wbc
->wb_id
);
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
584 void wbc_detach_inode(struct writeback_control
*wbc
)
586 struct bdi_writeback
*wb
= wbc
->wb
;
587 struct inode
*inode
= wbc
->inode
;
588 unsigned long avg_time
, max_bytes
, max_time
;
595 history
= inode
->i_wb_frn_history
;
596 avg_time
= inode
->i_wb_frn_avg_time
;
598 /* pick the winner of this round */
599 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
600 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
602 max_bytes
= wbc
->wb_bytes
;
603 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
604 max_id
= wbc
->wb_lcand_id
;
605 max_bytes
= wbc
->wb_lcand_bytes
;
607 max_id
= wbc
->wb_tcand_id
;
608 max_bytes
= wbc
->wb_tcand_bytes
;
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
618 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
619 wb
->avg_write_bandwidth
);
621 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
622 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
624 avg_time
= max_time
; /* immediate catch up on first run */
626 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
637 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
640 if (wbc
->wb_id
!= max_id
)
641 history
|= (1U << slots
) - 1;
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
650 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
651 inode_switch_wbs(inode
, max_id
);
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
658 inode
->i_wb_frn_winner
= max_id
;
659 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
660 inode
->i_wb_frn_history
= history
;
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
676 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
690 id
= mem_cgroup_css_from_page(page
)->id
;
692 if (id
== wbc
->wb_id
) {
693 wbc
->wb_bytes
+= bytes
;
697 if (id
== wbc
->wb_lcand_id
)
698 wbc
->wb_lcand_bytes
+= bytes
;
700 /* Boyer-Moore majority vote algorithm */
701 if (!wbc
->wb_tcand_bytes
)
702 wbc
->wb_tcand_id
= id
;
703 if (id
== wbc
->wb_tcand_id
)
704 wbc
->wb_tcand_bytes
+= bytes
;
706 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
708 EXPORT_SYMBOL_GPL(wbc_account_io
);
711 * inode_congested - test whether an inode is congested
712 * @inode: inode to test for congestion (may be NULL)
713 * @cong_bits: mask of WB_[a]sync_congested bits to test
715 * Tests whether @inode is congested. @cong_bits is the mask of congestion
716 * bits to test and the return value is the mask of set bits.
718 * If cgroup writeback is enabled for @inode, the congestion state is
719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720 * associated with @inode is congested; otherwise, the root wb's congestion
723 * @inode is allowed to be NULL as this function is often called on
724 * mapping->host which is NULL for the swapper space.
726 int inode_congested(struct inode
*inode
, int cong_bits
)
729 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 * Start transaction iff ->i_wb is visible.
732 if (inode
&& inode_to_wb_is_valid(inode
)) {
733 struct bdi_writeback
*wb
;
734 bool locked
, congested
;
736 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
737 congested
= wb_congested(wb
, cong_bits
);
738 unlocked_inode_to_wb_end(inode
, locked
);
742 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
744 EXPORT_SYMBOL_GPL(inode_congested
);
747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748 * @wb: target bdi_writeback to split @nr_pages to
749 * @nr_pages: number of pages to write for the whole bdi
751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
755 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
757 unsigned long this_bw
= wb
->avg_write_bandwidth
;
758 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
760 if (nr_pages
== LONG_MAX
)
764 * This may be called on clean wb's and proportional distribution
765 * may not make sense, just use the original @nr_pages in those
766 * cases. In general, we wanna err on the side of writing more.
768 if (!tot_bw
|| this_bw
>= tot_bw
)
771 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776 * @bdi: target backing_dev_info
777 * @base_work: wb_writeback_work to issue
778 * @skip_if_busy: skip wb's which already have writeback in progress
780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
782 * distributed to the busy wbs according to each wb's proportion in the
783 * total active write bandwidth of @bdi.
785 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
786 struct wb_writeback_work
*base_work
,
789 struct bdi_writeback
*last_wb
= NULL
;
790 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
791 struct bdi_writeback
, bdi_node
);
796 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done
);
798 struct wb_writeback_work fallback_work
;
799 struct wb_writeback_work
*work
;
807 /* SYNC_ALL writes out I_DIRTY_TIME too */
808 if (!wb_has_dirty_io(wb
) &&
809 (base_work
->sync_mode
== WB_SYNC_NONE
||
810 list_empty(&wb
->b_dirty_time
)))
812 if (skip_if_busy
&& writeback_in_progress(wb
))
815 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
817 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
820 work
->nr_pages
= nr_pages
;
822 wb_queue_work(wb
, work
);
826 /* alloc failed, execute synchronously using on-stack fallback */
827 work
= &fallback_work
;
829 work
->nr_pages
= nr_pages
;
831 work
->done
= &fallback_work_done
;
833 wb_queue_work(wb
, work
);
836 * Pin @wb so that it stays on @bdi->wb_list. This allows
837 * continuing iteration from @wb after dropping and
838 * regrabbing rcu read lock.
844 wb_wait_for_completion(bdi
, &fallback_work_done
);
854 * cgroup_writeback_umount - flush inode wb switches for umount
856 * This function is called when a super_block is about to be destroyed and
857 * flushes in-flight inode wb switches. An inode wb switch goes through
858 * RCU and then workqueue, so the two need to be flushed in order to ensure
859 * that all previously scheduled switches are finished. As wb switches are
860 * rare occurrences and synchronize_rcu() can take a while, perform
861 * flushing iff wb switches are in flight.
863 void cgroup_writeback_umount(void)
865 if (atomic_read(&isw_nr_in_flight
)) {
867 flush_workqueue(isw_wq
);
871 static int __init
cgroup_writeback_init(void)
873 isw_wq
= alloc_workqueue("inode_switch_wbs", 0, 0);
878 fs_initcall(cgroup_writeback_init
);
880 #else /* CONFIG_CGROUP_WRITEBACK */
882 static struct bdi_writeback
*
883 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
884 __releases(&inode
->i_lock
)
885 __acquires(&wb
->list_lock
)
887 struct bdi_writeback
*wb
= inode_to_wb(inode
);
889 spin_unlock(&inode
->i_lock
);
890 spin_lock(&wb
->list_lock
);
894 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
895 __acquires(&wb
->list_lock
)
897 struct bdi_writeback
*wb
= inode_to_wb(inode
);
899 spin_lock(&wb
->list_lock
);
903 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
908 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
909 struct wb_writeback_work
*base_work
,
914 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
915 base_work
->auto_free
= 0;
916 wb_queue_work(&bdi
->wb
, base_work
);
920 #endif /* CONFIG_CGROUP_WRITEBACK */
922 void wb_start_writeback(struct bdi_writeback
*wb
, long nr_pages
,
923 bool range_cyclic
, enum wb_reason reason
)
925 struct wb_writeback_work
*work
;
927 if (!wb_has_dirty_io(wb
))
931 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 * wakeup the thread for old dirty data writeback
934 work
= kzalloc(sizeof(*work
),
935 GFP_NOWAIT
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
937 trace_writeback_nowork(wb
);
942 work
->sync_mode
= WB_SYNC_NONE
;
943 work
->nr_pages
= nr_pages
;
944 work
->range_cyclic
= range_cyclic
;
945 work
->reason
= reason
;
948 wb_queue_work(wb
, work
);
952 * wb_start_background_writeback - start background writeback
953 * @wb: bdi_writback to write from
956 * This makes sure WB_SYNC_NONE background writeback happens. When
957 * this function returns, it is only guaranteed that for given wb
958 * some IO is happening if we are over background dirty threshold.
959 * Caller need not hold sb s_umount semaphore.
961 void wb_start_background_writeback(struct bdi_writeback
*wb
)
964 * We just wake up the flusher thread. It will perform background
965 * writeback as soon as there is no other work to do.
967 trace_writeback_wake_background(wb
);
972 * Remove the inode from the writeback list it is on.
974 void inode_io_list_del(struct inode
*inode
)
976 struct bdi_writeback
*wb
;
978 wb
= inode_to_wb_and_lock_list(inode
);
979 inode_io_list_del_locked(inode
, wb
);
980 spin_unlock(&wb
->list_lock
);
984 * mark an inode as under writeback on the sb
986 void sb_mark_inode_writeback(struct inode
*inode
)
988 struct super_block
*sb
= inode
->i_sb
;
991 if (list_empty(&inode
->i_wb_list
)) {
992 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
993 if (list_empty(&inode
->i_wb_list
)) {
994 list_add_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
995 trace_sb_mark_inode_writeback(inode
);
997 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1002 * clear an inode as under writeback on the sb
1004 void sb_clear_inode_writeback(struct inode
*inode
)
1006 struct super_block
*sb
= inode
->i_sb
;
1007 unsigned long flags
;
1009 if (!list_empty(&inode
->i_wb_list
)) {
1010 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1011 if (!list_empty(&inode
->i_wb_list
)) {
1012 list_del_init(&inode
->i_wb_list
);
1013 trace_sb_clear_inode_writeback(inode
);
1015 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1020 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021 * furthest end of its superblock's dirty-inode list.
1023 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024 * already the most-recently-dirtied inode on the b_dirty list. If that is
1025 * the case then the inode must have been redirtied while it was being written
1026 * out and we don't reset its dirtied_when.
1028 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
1030 if (!list_empty(&wb
->b_dirty
)) {
1033 tail
= wb_inode(wb
->b_dirty
.next
);
1034 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
1035 inode
->dirtied_when
= jiffies
;
1037 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
1041 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1043 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
1045 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
1048 static void inode_sync_complete(struct inode
*inode
)
1050 inode
->i_state
&= ~I_SYNC
;
1051 /* If inode is clean an unused, put it into LRU now... */
1052 inode_add_lru(inode
);
1053 /* Waiters must see I_SYNC cleared before being woken up */
1055 wake_up_bit(&inode
->i_state
, __I_SYNC
);
1058 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
1060 bool ret
= time_after(inode
->dirtied_when
, t
);
1061 #ifndef CONFIG_64BIT
1063 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064 * It _appears_ to be in the future, but is actually in distant past.
1065 * This test is necessary to prevent such wrapped-around relative times
1066 * from permanently stopping the whole bdi writeback.
1068 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1073 #define EXPIRE_DIRTY_ATIME 0x0001
1076 * Move expired (dirtied before work->older_than_this) dirty inodes from
1077 * @delaying_queue to @dispatch_queue.
1079 static int move_expired_inodes(struct list_head
*delaying_queue
,
1080 struct list_head
*dispatch_queue
,
1082 struct wb_writeback_work
*work
)
1084 unsigned long *older_than_this
= NULL
;
1085 unsigned long expire_time
;
1087 struct list_head
*pos
, *node
;
1088 struct super_block
*sb
= NULL
;
1089 struct inode
*inode
;
1093 if ((flags
& EXPIRE_DIRTY_ATIME
) == 0)
1094 older_than_this
= work
->older_than_this
;
1095 else if (!work
->for_sync
) {
1096 expire_time
= jiffies
- (dirtytime_expire_interval
* HZ
);
1097 older_than_this
= &expire_time
;
1099 while (!list_empty(delaying_queue
)) {
1100 inode
= wb_inode(delaying_queue
->prev
);
1101 if (older_than_this
&&
1102 inode_dirtied_after(inode
, *older_than_this
))
1104 list_move(&inode
->i_io_list
, &tmp
);
1106 if (flags
& EXPIRE_DIRTY_ATIME
)
1107 set_bit(__I_DIRTY_TIME_EXPIRED
, &inode
->i_state
);
1108 if (sb_is_blkdev_sb(inode
->i_sb
))
1110 if (sb
&& sb
!= inode
->i_sb
)
1115 /* just one sb in list, splice to dispatch_queue and we're done */
1117 list_splice(&tmp
, dispatch_queue
);
1121 /* Move inodes from one superblock together */
1122 while (!list_empty(&tmp
)) {
1123 sb
= wb_inode(tmp
.prev
)->i_sb
;
1124 list_for_each_prev_safe(pos
, node
, &tmp
) {
1125 inode
= wb_inode(pos
);
1126 if (inode
->i_sb
== sb
)
1127 list_move(&inode
->i_io_list
, dispatch_queue
);
1135 * Queue all expired dirty inodes for io, eldest first.
1137 * newly dirtied b_dirty b_io b_more_io
1138 * =============> gf edc BA
1140 * newly dirtied b_dirty b_io b_more_io
1141 * =============> g fBAedc
1143 * +--> dequeue for IO
1145 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
1149 assert_spin_locked(&wb
->list_lock
);
1150 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1151 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, work
);
1152 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1153 EXPIRE_DIRTY_ATIME
, work
);
1155 wb_io_lists_populated(wb
);
1156 trace_writeback_queue_io(wb
, work
, moved
);
1159 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1163 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1164 trace_writeback_write_inode_start(inode
, wbc
);
1165 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1166 trace_writeback_write_inode(inode
, wbc
);
1173 * Wait for writeback on an inode to complete. Called with i_lock held.
1174 * Caller must make sure inode cannot go away when we drop i_lock.
1176 static void __inode_wait_for_writeback(struct inode
*inode
)
1177 __releases(inode
->i_lock
)
1178 __acquires(inode
->i_lock
)
1180 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1181 wait_queue_head_t
*wqh
;
1183 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1184 while (inode
->i_state
& I_SYNC
) {
1185 spin_unlock(&inode
->i_lock
);
1186 __wait_on_bit(wqh
, &wq
, bit_wait
,
1187 TASK_UNINTERRUPTIBLE
);
1188 spin_lock(&inode
->i_lock
);
1193 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1195 void inode_wait_for_writeback(struct inode
*inode
)
1197 spin_lock(&inode
->i_lock
);
1198 __inode_wait_for_writeback(inode
);
1199 spin_unlock(&inode
->i_lock
);
1203 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204 * held and drops it. It is aimed for callers not holding any inode reference
1205 * so once i_lock is dropped, inode can go away.
1207 static void inode_sleep_on_writeback(struct inode
*inode
)
1208 __releases(inode
->i_lock
)
1211 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1214 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1215 sleep
= inode
->i_state
& I_SYNC
;
1216 spin_unlock(&inode
->i_lock
);
1219 finish_wait(wqh
, &wait
);
1223 * Find proper writeback list for the inode depending on its current state and
1224 * possibly also change of its state while we were doing writeback. Here we
1225 * handle things such as livelock prevention or fairness of writeback among
1226 * inodes. This function can be called only by flusher thread - noone else
1227 * processes all inodes in writeback lists and requeueing inodes behind flusher
1228 * thread's back can have unexpected consequences.
1230 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1231 struct writeback_control
*wbc
)
1233 if (inode
->i_state
& I_FREEING
)
1237 * Sync livelock prevention. Each inode is tagged and synced in one
1238 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1239 * the dirty time to prevent enqueue and sync it again.
1241 if ((inode
->i_state
& I_DIRTY
) &&
1242 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1243 inode
->dirtied_when
= jiffies
;
1245 if (wbc
->pages_skipped
) {
1247 * writeback is not making progress due to locked
1248 * buffers. Skip this inode for now.
1250 redirty_tail(inode
, wb
);
1254 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1256 * We didn't write back all the pages. nfs_writepages()
1257 * sometimes bales out without doing anything.
1259 if (wbc
->nr_to_write
<= 0) {
1260 /* Slice used up. Queue for next turn. */
1261 requeue_io(inode
, wb
);
1264 * Writeback blocked by something other than
1265 * congestion. Delay the inode for some time to
1266 * avoid spinning on the CPU (100% iowait)
1267 * retrying writeback of the dirty page/inode
1268 * that cannot be performed immediately.
1270 redirty_tail(inode
, wb
);
1272 } else if (inode
->i_state
& I_DIRTY
) {
1274 * Filesystems can dirty the inode during writeback operations,
1275 * such as delayed allocation during submission or metadata
1276 * updates after data IO completion.
1278 redirty_tail(inode
, wb
);
1279 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1280 inode
->dirtied_when
= jiffies
;
1281 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1283 /* The inode is clean. Remove from writeback lists. */
1284 inode_io_list_del_locked(inode
, wb
);
1289 * Write out an inode and its dirty pages. Do not update the writeback list
1290 * linkage. That is left to the caller. The caller is also responsible for
1291 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1294 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1296 struct address_space
*mapping
= inode
->i_mapping
;
1297 long nr_to_write
= wbc
->nr_to_write
;
1301 WARN_ON(!(inode
->i_state
& I_SYNC
));
1303 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1305 ret
= do_writepages(mapping
, wbc
);
1308 * Make sure to wait on the data before writing out the metadata.
1309 * This is important for filesystems that modify metadata on data
1310 * I/O completion. We don't do it for sync(2) writeback because it has a
1311 * separate, external IO completion path and ->sync_fs for guaranteeing
1312 * inode metadata is written back correctly.
1314 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1315 int err
= filemap_fdatawait(mapping
);
1321 * Some filesystems may redirty the inode during the writeback
1322 * due to delalloc, clear dirty metadata flags right before
1325 spin_lock(&inode
->i_lock
);
1327 dirty
= inode
->i_state
& I_DIRTY
;
1328 if (inode
->i_state
& I_DIRTY_TIME
) {
1329 if ((dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
1330 wbc
->sync_mode
== WB_SYNC_ALL
||
1331 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1332 unlikely(time_after(jiffies
,
1333 (inode
->dirtied_time_when
+
1334 dirtytime_expire_interval
* HZ
)))) {
1335 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1336 trace_writeback_lazytime(inode
);
1339 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1340 inode
->i_state
&= ~dirty
;
1343 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1344 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345 * either they see the I_DIRTY bits cleared or we see the dirtied
1348 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349 * still has dirty pages. The flag is reinstated after smp_mb() if
1350 * necessary. This guarantees that either __mark_inode_dirty()
1351 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1355 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1356 inode
->i_state
|= I_DIRTY_PAGES
;
1358 spin_unlock(&inode
->i_lock
);
1360 if (dirty
& I_DIRTY_TIME
)
1361 mark_inode_dirty_sync(inode
);
1362 /* Don't write the inode if only I_DIRTY_PAGES was set */
1363 if (dirty
& ~I_DIRTY_PAGES
) {
1364 int err
= write_inode(inode
, wbc
);
1368 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1373 * Write out an inode's dirty pages. Either the caller has an active reference
1374 * on the inode or the inode has I_WILL_FREE set.
1376 * This function is designed to be called for writing back one inode which
1377 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378 * and does more profound writeback list handling in writeback_sb_inodes().
1380 static int writeback_single_inode(struct inode
*inode
,
1381 struct writeback_control
*wbc
)
1383 struct bdi_writeback
*wb
;
1386 spin_lock(&inode
->i_lock
);
1387 if (!atomic_read(&inode
->i_count
))
1388 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1390 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1392 if (inode
->i_state
& I_SYNC
) {
1393 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1396 * It's a data-integrity sync. We must wait. Since callers hold
1397 * inode reference or inode has I_WILL_FREE set, it cannot go
1400 __inode_wait_for_writeback(inode
);
1402 WARN_ON(inode
->i_state
& I_SYNC
);
1404 * Skip inode if it is clean and we have no outstanding writeback in
1405 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406 * function since flusher thread may be doing for example sync in
1407 * parallel and if we move the inode, it could get skipped. So here we
1408 * make sure inode is on some writeback list and leave it there unless
1409 * we have completely cleaned the inode.
1411 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1412 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1413 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1415 inode
->i_state
|= I_SYNC
;
1416 wbc_attach_and_unlock_inode(wbc
, inode
);
1418 ret
= __writeback_single_inode(inode
, wbc
);
1420 wbc_detach_inode(wbc
);
1422 wb
= inode_to_wb_and_lock_list(inode
);
1423 spin_lock(&inode
->i_lock
);
1425 * If inode is clean, remove it from writeback lists. Otherwise don't
1426 * touch it. See comment above for explanation.
1428 if (!(inode
->i_state
& I_DIRTY_ALL
))
1429 inode_io_list_del_locked(inode
, wb
);
1430 spin_unlock(&wb
->list_lock
);
1431 inode_sync_complete(inode
);
1433 spin_unlock(&inode
->i_lock
);
1437 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1438 struct wb_writeback_work
*work
)
1443 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445 * here avoids calling into writeback_inodes_wb() more than once.
1447 * The intended call sequence for WB_SYNC_ALL writeback is:
1450 * writeback_sb_inodes() <== called only once
1451 * write_cache_pages() <== called once for each inode
1452 * (quickly) tag currently dirty pages
1453 * (maybe slowly) sync all tagged pages
1455 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1458 pages
= min(wb
->avg_write_bandwidth
/ 2,
1459 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1460 pages
= min(pages
, work
->nr_pages
);
1461 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1462 MIN_WRITEBACK_PAGES
);
1469 * Write a portion of b_io inodes which belong to @sb.
1471 * Return the number of pages and/or inodes written.
1473 * NOTE! This is called with wb->list_lock held, and will
1474 * unlock and relock that for each inode it ends up doing
1477 static long writeback_sb_inodes(struct super_block
*sb
,
1478 struct bdi_writeback
*wb
,
1479 struct wb_writeback_work
*work
)
1481 struct writeback_control wbc
= {
1482 .sync_mode
= work
->sync_mode
,
1483 .tagged_writepages
= work
->tagged_writepages
,
1484 .for_kupdate
= work
->for_kupdate
,
1485 .for_background
= work
->for_background
,
1486 .for_sync
= work
->for_sync
,
1487 .range_cyclic
= work
->range_cyclic
,
1489 .range_end
= LLONG_MAX
,
1491 unsigned long start_time
= jiffies
;
1493 long wrote
= 0; /* count both pages and inodes */
1495 while (!list_empty(&wb
->b_io
)) {
1496 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1497 struct bdi_writeback
*tmp_wb
;
1499 if (inode
->i_sb
!= sb
) {
1502 * We only want to write back data for this
1503 * superblock, move all inodes not belonging
1504 * to it back onto the dirty list.
1506 redirty_tail(inode
, wb
);
1511 * The inode belongs to a different superblock.
1512 * Bounce back to the caller to unpin this and
1513 * pin the next superblock.
1519 * Don't bother with new inodes or inodes being freed, first
1520 * kind does not need periodic writeout yet, and for the latter
1521 * kind writeout is handled by the freer.
1523 spin_lock(&inode
->i_lock
);
1524 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1525 spin_unlock(&inode
->i_lock
);
1526 redirty_tail(inode
, wb
);
1529 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1531 * If this inode is locked for writeback and we are not
1532 * doing writeback-for-data-integrity, move it to
1533 * b_more_io so that writeback can proceed with the
1534 * other inodes on s_io.
1536 * We'll have another go at writing back this inode
1537 * when we completed a full scan of b_io.
1539 spin_unlock(&inode
->i_lock
);
1540 requeue_io(inode
, wb
);
1541 trace_writeback_sb_inodes_requeue(inode
);
1544 spin_unlock(&wb
->list_lock
);
1547 * We already requeued the inode if it had I_SYNC set and we
1548 * are doing WB_SYNC_NONE writeback. So this catches only the
1551 if (inode
->i_state
& I_SYNC
) {
1552 /* Wait for I_SYNC. This function drops i_lock... */
1553 inode_sleep_on_writeback(inode
);
1554 /* Inode may be gone, start again */
1555 spin_lock(&wb
->list_lock
);
1558 inode
->i_state
|= I_SYNC
;
1559 wbc_attach_and_unlock_inode(&wbc
, inode
);
1561 write_chunk
= writeback_chunk_size(wb
, work
);
1562 wbc
.nr_to_write
= write_chunk
;
1563 wbc
.pages_skipped
= 0;
1566 * We use I_SYNC to pin the inode in memory. While it is set
1567 * evict_inode() will wait so the inode cannot be freed.
1569 __writeback_single_inode(inode
, &wbc
);
1571 wbc_detach_inode(&wbc
);
1572 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1573 wrote
+= write_chunk
- wbc
.nr_to_write
;
1575 if (need_resched()) {
1577 * We're trying to balance between building up a nice
1578 * long list of IOs to improve our merge rate, and
1579 * getting those IOs out quickly for anyone throttling
1580 * in balance_dirty_pages(). cond_resched() doesn't
1581 * unplug, so get our IOs out the door before we
1584 blk_flush_plug(current
);
1589 * Requeue @inode if still dirty. Be careful as @inode may
1590 * have been switched to another wb in the meantime.
1592 tmp_wb
= inode_to_wb_and_lock_list(inode
);
1593 spin_lock(&inode
->i_lock
);
1594 if (!(inode
->i_state
& I_DIRTY_ALL
))
1596 requeue_inode(inode
, tmp_wb
, &wbc
);
1597 inode_sync_complete(inode
);
1598 spin_unlock(&inode
->i_lock
);
1600 if (unlikely(tmp_wb
!= wb
)) {
1601 spin_unlock(&tmp_wb
->list_lock
);
1602 spin_lock(&wb
->list_lock
);
1606 * bail out to wb_writeback() often enough to check
1607 * background threshold and other termination conditions.
1610 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1612 if (work
->nr_pages
<= 0)
1619 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1620 struct wb_writeback_work
*work
)
1622 unsigned long start_time
= jiffies
;
1625 while (!list_empty(&wb
->b_io
)) {
1626 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1627 struct super_block
*sb
= inode
->i_sb
;
1629 if (!trylock_super(sb
)) {
1631 * trylock_super() may fail consistently due to
1632 * s_umount being grabbed by someone else. Don't use
1633 * requeue_io() to avoid busy retrying the inode/sb.
1635 redirty_tail(inode
, wb
);
1638 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1639 up_read(&sb
->s_umount
);
1641 /* refer to the same tests at the end of writeback_sb_inodes */
1643 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1645 if (work
->nr_pages
<= 0)
1649 /* Leave any unwritten inodes on b_io */
1653 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1654 enum wb_reason reason
)
1656 struct wb_writeback_work work
= {
1657 .nr_pages
= nr_pages
,
1658 .sync_mode
= WB_SYNC_NONE
,
1662 struct blk_plug plug
;
1664 blk_start_plug(&plug
);
1665 spin_lock(&wb
->list_lock
);
1666 if (list_empty(&wb
->b_io
))
1667 queue_io(wb
, &work
);
1668 __writeback_inodes_wb(wb
, &work
);
1669 spin_unlock(&wb
->list_lock
);
1670 blk_finish_plug(&plug
);
1672 return nr_pages
- work
.nr_pages
;
1676 * Explicit flushing or periodic writeback of "old" data.
1678 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679 * dirtying-time in the inode's address_space. So this periodic writeback code
1680 * just walks the superblock inode list, writing back any inodes which are
1681 * older than a specific point in time.
1683 * Try to run once per dirty_writeback_interval. But if a writeback event
1684 * takes longer than a dirty_writeback_interval interval, then leave a
1687 * older_than_this takes precedence over nr_to_write. So we'll only write back
1688 * all dirty pages if they are all attached to "old" mappings.
1690 static long wb_writeback(struct bdi_writeback
*wb
,
1691 struct wb_writeback_work
*work
)
1693 unsigned long wb_start
= jiffies
;
1694 long nr_pages
= work
->nr_pages
;
1695 unsigned long oldest_jif
;
1696 struct inode
*inode
;
1698 struct blk_plug plug
;
1700 oldest_jif
= jiffies
;
1701 work
->older_than_this
= &oldest_jif
;
1703 blk_start_plug(&plug
);
1704 spin_lock(&wb
->list_lock
);
1707 * Stop writeback when nr_pages has been consumed
1709 if (work
->nr_pages
<= 0)
1713 * Background writeout and kupdate-style writeback may
1714 * run forever. Stop them if there is other work to do
1715 * so that e.g. sync can proceed. They'll be restarted
1716 * after the other works are all done.
1718 if ((work
->for_background
|| work
->for_kupdate
) &&
1719 !list_empty(&wb
->work_list
))
1723 * For background writeout, stop when we are below the
1724 * background dirty threshold
1726 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1730 * Kupdate and background works are special and we want to
1731 * include all inodes that need writing. Livelock avoidance is
1732 * handled by these works yielding to any other work so we are
1735 if (work
->for_kupdate
) {
1736 oldest_jif
= jiffies
-
1737 msecs_to_jiffies(dirty_expire_interval
* 10);
1738 } else if (work
->for_background
)
1739 oldest_jif
= jiffies
;
1741 trace_writeback_start(wb
, work
);
1742 if (list_empty(&wb
->b_io
))
1745 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1747 progress
= __writeback_inodes_wb(wb
, work
);
1748 trace_writeback_written(wb
, work
);
1750 wb_update_bandwidth(wb
, wb_start
);
1753 * Did we write something? Try for more
1755 * Dirty inodes are moved to b_io for writeback in batches.
1756 * The completion of the current batch does not necessarily
1757 * mean the overall work is done. So we keep looping as long
1758 * as made some progress on cleaning pages or inodes.
1763 * No more inodes for IO, bail
1765 if (list_empty(&wb
->b_more_io
))
1768 * Nothing written. Wait for some inode to
1769 * become available for writeback. Otherwise
1770 * we'll just busyloop.
1772 if (!list_empty(&wb
->b_more_io
)) {
1773 trace_writeback_wait(wb
, work
);
1774 inode
= wb_inode(wb
->b_more_io
.prev
);
1775 spin_lock(&inode
->i_lock
);
1776 spin_unlock(&wb
->list_lock
);
1777 /* This function drops i_lock... */
1778 inode_sleep_on_writeback(inode
);
1779 spin_lock(&wb
->list_lock
);
1782 spin_unlock(&wb
->list_lock
);
1783 blk_finish_plug(&plug
);
1785 return nr_pages
- work
->nr_pages
;
1789 * Return the next wb_writeback_work struct that hasn't been processed yet.
1791 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1793 struct wb_writeback_work
*work
= NULL
;
1795 spin_lock_bh(&wb
->work_lock
);
1796 if (!list_empty(&wb
->work_list
)) {
1797 work
= list_entry(wb
->work_list
.next
,
1798 struct wb_writeback_work
, list
);
1799 list_del_init(&work
->list
);
1801 spin_unlock_bh(&wb
->work_lock
);
1806 * Add in the number of potentially dirty inodes, because each inode
1807 * write can dirty pagecache in the underlying blockdev.
1809 static unsigned long get_nr_dirty_pages(void)
1811 return global_node_page_state(NR_FILE_DIRTY
) +
1812 global_node_page_state(NR_UNSTABLE_NFS
) +
1813 get_nr_dirty_inodes();
1816 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1818 if (wb_over_bg_thresh(wb
)) {
1820 struct wb_writeback_work work
= {
1821 .nr_pages
= LONG_MAX
,
1822 .sync_mode
= WB_SYNC_NONE
,
1823 .for_background
= 1,
1825 .reason
= WB_REASON_BACKGROUND
,
1828 return wb_writeback(wb
, &work
);
1834 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1836 unsigned long expired
;
1840 * When set to zero, disable periodic writeback
1842 if (!dirty_writeback_interval
)
1845 expired
= wb
->last_old_flush
+
1846 msecs_to_jiffies(dirty_writeback_interval
* 10);
1847 if (time_before(jiffies
, expired
))
1850 wb
->last_old_flush
= jiffies
;
1851 nr_pages
= get_nr_dirty_pages();
1854 struct wb_writeback_work work
= {
1855 .nr_pages
= nr_pages
,
1856 .sync_mode
= WB_SYNC_NONE
,
1859 .reason
= WB_REASON_PERIODIC
,
1862 return wb_writeback(wb
, &work
);
1869 * Retrieve work items and do the writeback they describe
1871 static long wb_do_writeback(struct bdi_writeback
*wb
)
1873 struct wb_writeback_work
*work
;
1876 set_bit(WB_writeback_running
, &wb
->state
);
1877 while ((work
= get_next_work_item(wb
)) != NULL
) {
1878 struct wb_completion
*done
= work
->done
;
1880 trace_writeback_exec(wb
, work
);
1882 wrote
+= wb_writeback(wb
, work
);
1884 if (work
->auto_free
)
1886 if (done
&& atomic_dec_and_test(&done
->cnt
))
1887 wake_up_all(&wb
->bdi
->wb_waitq
);
1891 * Check for periodic writeback, kupdated() style
1893 wrote
+= wb_check_old_data_flush(wb
);
1894 wrote
+= wb_check_background_flush(wb
);
1895 clear_bit(WB_writeback_running
, &wb
->state
);
1901 * Handle writeback of dirty data for the device backed by this bdi. Also
1902 * reschedules periodically and does kupdated style flushing.
1904 void wb_workfn(struct work_struct
*work
)
1906 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1907 struct bdi_writeback
, dwork
);
1910 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1911 current
->flags
|= PF_SWAPWRITE
;
1913 if (likely(!current_is_workqueue_rescuer() ||
1914 !test_bit(WB_registered
, &wb
->state
))) {
1916 * The normal path. Keep writing back @wb until its
1917 * work_list is empty. Note that this path is also taken
1918 * if @wb is shutting down even when we're running off the
1919 * rescuer as work_list needs to be drained.
1922 pages_written
= wb_do_writeback(wb
);
1923 trace_writeback_pages_written(pages_written
);
1924 } while (!list_empty(&wb
->work_list
));
1927 * bdi_wq can't get enough workers and we're running off
1928 * the emergency worker. Don't hog it. Hopefully, 1024 is
1929 * enough for efficient IO.
1931 pages_written
= writeback_inodes_wb(wb
, 1024,
1932 WB_REASON_FORKER_THREAD
);
1933 trace_writeback_pages_written(pages_written
);
1936 if (!list_empty(&wb
->work_list
))
1937 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
1938 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1939 wb_wakeup_delayed(wb
);
1941 current
->flags
&= ~PF_SWAPWRITE
;
1945 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1948 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1950 struct backing_dev_info
*bdi
;
1953 * If we are expecting writeback progress we must submit plugged IO.
1955 if (blk_needs_flush_plug(current
))
1956 blk_schedule_flush_plug(current
);
1959 nr_pages
= get_nr_dirty_pages();
1962 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1963 struct bdi_writeback
*wb
;
1965 if (!bdi_has_dirty_io(bdi
))
1968 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1969 wb_start_writeback(wb
, wb_split_bdi_pages(wb
, nr_pages
),
1976 * Wake up bdi's periodically to make sure dirtytime inodes gets
1977 * written back periodically. We deliberately do *not* check the
1978 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1979 * kernel to be constantly waking up once there are any dirtytime
1980 * inodes on the system. So instead we define a separate delayed work
1981 * function which gets called much more rarely. (By default, only
1982 * once every 12 hours.)
1984 * If there is any other write activity going on in the file system,
1985 * this function won't be necessary. But if the only thing that has
1986 * happened on the file system is a dirtytime inode caused by an atime
1987 * update, we need this infrastructure below to make sure that inode
1988 * eventually gets pushed out to disk.
1990 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
1991 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
1993 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
1995 struct backing_dev_info
*bdi
;
1998 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1999 struct bdi_writeback
*wb
;
2001 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2002 if (!list_empty(&wb
->b_dirty_time
))
2006 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2009 static int __init
start_dirtytime_writeback(void)
2011 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2014 __initcall(start_dirtytime_writeback
);
2016 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
2017 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2021 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
2022 if (ret
== 0 && write
)
2023 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
2027 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
2029 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
2030 struct dentry
*dentry
;
2031 const char *name
= "?";
2033 dentry
= d_find_alias(inode
);
2035 spin_lock(&dentry
->d_lock
);
2036 name
= (const char *) dentry
->d_name
.name
;
2039 "%s(%d): dirtied inode %lu (%s) on %s\n",
2040 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
2041 name
, inode
->i_sb
->s_id
);
2043 spin_unlock(&dentry
->d_lock
);
2050 * __mark_inode_dirty - internal function
2051 * @inode: inode to mark
2052 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2053 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2054 * mark_inode_dirty_sync.
2056 * Put the inode on the super block's dirty list.
2058 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2059 * dirty list only if it is hashed or if it refers to a blockdev.
2060 * If it was not hashed, it will never be added to the dirty list
2061 * even if it is later hashed, as it will have been marked dirty already.
2063 * In short, make sure you hash any inodes _before_ you start marking
2066 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2067 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2068 * the kernel-internal blockdev inode represents the dirtying time of the
2069 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2070 * page->mapping->host, so the page-dirtying time is recorded in the internal
2073 void __mark_inode_dirty(struct inode
*inode
, int flags
)
2075 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2076 struct super_block
*sb
= inode
->i_sb
;
2079 trace_writeback_mark_inode_dirty(inode
, flags
);
2082 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2083 * dirty the inode itself
2085 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
| I_DIRTY_TIME
)) {
2086 trace_writeback_dirty_inode_start(inode
, flags
);
2088 if (sb
->s_op
->dirty_inode
)
2089 sb
->s_op
->dirty_inode(inode
, flags
);
2091 trace_writeback_dirty_inode(inode
, flags
);
2093 if (flags
& I_DIRTY_INODE
)
2094 flags
&= ~I_DIRTY_TIME
;
2095 dirtytime
= flags
& I_DIRTY_TIME
;
2098 * Paired with smp_mb() in __writeback_single_inode() for the
2099 * following lockless i_state test. See there for details.
2103 if (((inode
->i_state
& flags
) == flags
) ||
2104 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2107 if (unlikely(block_dump
))
2108 block_dump___mark_inode_dirty(inode
);
2110 spin_lock(&inode
->i_lock
);
2111 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2112 goto out_unlock_inode
;
2113 if ((inode
->i_state
& flags
) != flags
) {
2114 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2116 inode_attach_wb(inode
, NULL
);
2118 if (flags
& I_DIRTY_INODE
)
2119 inode
->i_state
&= ~I_DIRTY_TIME
;
2120 inode
->i_state
|= flags
;
2123 * If the inode is being synced, just update its dirty state.
2124 * The unlocker will place the inode on the appropriate
2125 * superblock list, based upon its state.
2127 if (inode
->i_state
& I_SYNC
)
2128 goto out_unlock_inode
;
2131 * Only add valid (hashed) inodes to the superblock's
2132 * dirty list. Add blockdev inodes as well.
2134 if (!S_ISBLK(inode
->i_mode
)) {
2135 if (inode_unhashed(inode
))
2136 goto out_unlock_inode
;
2138 if (inode
->i_state
& I_FREEING
)
2139 goto out_unlock_inode
;
2142 * If the inode was already on b_dirty/b_io/b_more_io, don't
2143 * reposition it (that would break b_dirty time-ordering).
2146 struct bdi_writeback
*wb
;
2147 struct list_head
*dirty_list
;
2148 bool wakeup_bdi
= false;
2150 wb
= locked_inode_to_wb_and_lock_list(inode
);
2152 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2153 !test_bit(WB_registered
, &wb
->state
),
2154 "bdi-%s not registered\n", wb
->bdi
->name
);
2156 inode
->dirtied_when
= jiffies
;
2158 inode
->dirtied_time_when
= jiffies
;
2160 if (inode
->i_state
& (I_DIRTY_INODE
| I_DIRTY_PAGES
))
2161 dirty_list
= &wb
->b_dirty
;
2163 dirty_list
= &wb
->b_dirty_time
;
2165 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2168 spin_unlock(&wb
->list_lock
);
2169 trace_writeback_dirty_inode_enqueue(inode
);
2172 * If this is the first dirty inode for this bdi,
2173 * we have to wake-up the corresponding bdi thread
2174 * to make sure background write-back happens
2177 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2178 wb_wakeup_delayed(wb
);
2183 spin_unlock(&inode
->i_lock
);
2185 #undef I_DIRTY_INODE
2187 EXPORT_SYMBOL(__mark_inode_dirty
);
2190 * The @s_sync_lock is used to serialise concurrent sync operations
2191 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2192 * Concurrent callers will block on the s_sync_lock rather than doing contending
2193 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2194 * has been issued up to the time this function is enter is guaranteed to be
2195 * completed by the time we have gained the lock and waited for all IO that is
2196 * in progress regardless of the order callers are granted the lock.
2198 static void wait_sb_inodes(struct super_block
*sb
)
2200 LIST_HEAD(sync_list
);
2203 * We need to be protected against the filesystem going from
2204 * r/o to r/w or vice versa.
2206 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2208 mutex_lock(&sb
->s_sync_lock
);
2211 * Splice the writeback list onto a temporary list to avoid waiting on
2212 * inodes that have started writeback after this point.
2214 * Use rcu_read_lock() to keep the inodes around until we have a
2215 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2216 * the local list because inodes can be dropped from either by writeback
2220 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2221 list_splice_init(&sb
->s_inodes_wb
, &sync_list
);
2224 * Data integrity sync. Must wait for all pages under writeback, because
2225 * there may have been pages dirtied before our sync call, but which had
2226 * writeout started before we write it out. In which case, the inode
2227 * may not be on the dirty list, but we still have to wait for that
2230 while (!list_empty(&sync_list
)) {
2231 struct inode
*inode
= list_first_entry(&sync_list
, struct inode
,
2233 struct address_space
*mapping
= inode
->i_mapping
;
2236 * Move each inode back to the wb list before we drop the lock
2237 * to preserve consistency between i_wb_list and the mapping
2238 * writeback tag. Writeback completion is responsible to remove
2239 * the inode from either list once the writeback tag is cleared.
2241 list_move_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
2244 * The mapping can appear untagged while still on-list since we
2245 * do not have the mapping lock. Skip it here, wb completion
2248 if (!mapping_tagged(mapping
, PAGECACHE_TAG_WRITEBACK
))
2251 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2253 spin_lock(&inode
->i_lock
);
2254 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) {
2255 spin_unlock(&inode
->i_lock
);
2257 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2261 spin_unlock(&inode
->i_lock
);
2265 * We keep the error status of individual mapping so that
2266 * applications can catch the writeback error using fsync(2).
2267 * See filemap_fdatawait_keep_errors() for details.
2269 filemap_fdatawait_keep_errors(mapping
);
2276 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2278 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2280 mutex_unlock(&sb
->s_sync_lock
);
2283 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2284 enum wb_reason reason
, bool skip_if_busy
)
2286 DEFINE_WB_COMPLETION_ONSTACK(done
);
2287 struct wb_writeback_work work
= {
2289 .sync_mode
= WB_SYNC_NONE
,
2290 .tagged_writepages
= 1,
2295 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2297 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2299 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2301 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2302 wb_wait_for_completion(bdi
, &done
);
2306 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2307 * @sb: the superblock
2308 * @nr: the number of pages to write
2309 * @reason: reason why some writeback work initiated
2311 * Start writeback on some inodes on this super_block. No guarantees are made
2312 * on how many (if any) will be written, and this function does not wait
2313 * for IO completion of submitted IO.
2315 void writeback_inodes_sb_nr(struct super_block
*sb
,
2317 enum wb_reason reason
)
2319 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2321 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2324 * writeback_inodes_sb - writeback dirty inodes from given super_block
2325 * @sb: the superblock
2326 * @reason: reason why some writeback work was initiated
2328 * Start writeback on some inodes on this super_block. No guarantees are made
2329 * on how many (if any) will be written, and this function does not wait
2330 * for IO completion of submitted IO.
2332 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2334 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2336 EXPORT_SYMBOL(writeback_inodes_sb
);
2339 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2340 * @sb: the superblock
2341 * @nr: the number of pages to write
2342 * @reason: the reason of writeback
2344 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2345 * Returns 1 if writeback was started, 0 if not.
2347 bool try_to_writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2348 enum wb_reason reason
)
2350 if (!down_read_trylock(&sb
->s_umount
))
2353 __writeback_inodes_sb_nr(sb
, nr
, reason
, true);
2354 up_read(&sb
->s_umount
);
2357 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
2360 * try_to_writeback_inodes_sb - try to start writeback if none underway
2361 * @sb: the superblock
2362 * @reason: reason why some writeback work was initiated
2364 * Implement by try_to_writeback_inodes_sb_nr()
2365 * Returns 1 if writeback was started, 0 if not.
2367 bool try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2369 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2371 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2374 * sync_inodes_sb - sync sb inode pages
2375 * @sb: the superblock
2377 * This function writes and waits on any dirty inode belonging to this
2380 void sync_inodes_sb(struct super_block
*sb
)
2382 DEFINE_WB_COMPLETION_ONSTACK(done
);
2383 struct wb_writeback_work work
= {
2385 .sync_mode
= WB_SYNC_ALL
,
2386 .nr_pages
= LONG_MAX
,
2389 .reason
= WB_REASON_SYNC
,
2392 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2395 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2396 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2397 * bdi_has_dirty() need to be written out too.
2399 if (bdi
== &noop_backing_dev_info
)
2401 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2403 bdi_split_work_to_wbs(bdi
, &work
, false);
2404 wb_wait_for_completion(bdi
, &done
);
2408 EXPORT_SYMBOL(sync_inodes_sb
);
2411 * write_inode_now - write an inode to disk
2412 * @inode: inode to write to disk
2413 * @sync: whether the write should be synchronous or not
2415 * This function commits an inode to disk immediately if it is dirty. This is
2416 * primarily needed by knfsd.
2418 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2420 int write_inode_now(struct inode
*inode
, int sync
)
2422 struct writeback_control wbc
= {
2423 .nr_to_write
= LONG_MAX
,
2424 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2426 .range_end
= LLONG_MAX
,
2429 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2430 wbc
.nr_to_write
= 0;
2433 return writeback_single_inode(inode
, &wbc
);
2435 EXPORT_SYMBOL(write_inode_now
);
2438 * sync_inode - write an inode and its pages to disk.
2439 * @inode: the inode to sync
2440 * @wbc: controls the writeback mode
2442 * sync_inode() will write an inode and its pages to disk. It will also
2443 * correctly update the inode on its superblock's dirty inode lists and will
2444 * update inode->i_state.
2446 * The caller must have a ref on the inode.
2448 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2450 return writeback_single_inode(inode
, wbc
);
2452 EXPORT_SYMBOL(sync_inode
);
2455 * sync_inode_metadata - write an inode to disk
2456 * @inode: the inode to sync
2457 * @wait: wait for I/O to complete.
2459 * Write an inode to disk and adjust its dirty state after completion.
2461 * Note: only writes the actual inode, no associated data or other metadata.
2463 int sync_inode_metadata(struct inode
*inode
, int wait
)
2465 struct writeback_control wbc
= {
2466 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2467 .nr_to_write
= 0, /* metadata-only */
2470 return sync_inode(inode
, &wbc
);
2472 EXPORT_SYMBOL(sync_inode_metadata
);