]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/fs-writeback.c
writeback: fix queue_io() ordering
[mirror_ubuntu-jammy-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
42
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
45 };
46
47 /*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
56
57 /*
58 * We don't actually have pdflush, but this one is exported though /proc...
59 */
60 int nr_pdflush_threads;
61
62 /**
63 * writeback_in_progress - determine whether there is writeback in progress
64 * @bdi: the device's backing_dev_info structure.
65 *
66 * Determine whether there is writeback waiting to be handled against a
67 * backing device.
68 */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 return !list_empty(&bdi->work_list);
72 }
73
74 static void bdi_queue_work(struct backing_dev_info *bdi,
75 struct wb_writeback_work *work)
76 {
77 trace_writeback_queue(bdi, work);
78
79 spin_lock_bh(&bdi->wb_lock);
80 list_add_tail(&work->list, &bdi->work_list);
81 if (bdi->wb.task) {
82 wake_up_process(bdi->wb.task);
83 } else {
84 /*
85 * The bdi thread isn't there, wake up the forker thread which
86 * will create and run it.
87 */
88 trace_writeback_nothread(bdi, work);
89 wake_up_process(default_backing_dev_info.wb.task);
90 }
91 spin_unlock_bh(&bdi->wb_lock);
92 }
93
94 static void
95 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
96 bool range_cyclic, bool for_background)
97 {
98 struct wb_writeback_work *work;
99
100 /*
101 * This is WB_SYNC_NONE writeback, so if allocation fails just
102 * wakeup the thread for old dirty data writeback
103 */
104 work = kzalloc(sizeof(*work), GFP_ATOMIC);
105 if (!work) {
106 if (bdi->wb.task) {
107 trace_writeback_nowork(bdi);
108 wake_up_process(bdi->wb.task);
109 }
110 return;
111 }
112
113 work->sync_mode = WB_SYNC_NONE;
114 work->nr_pages = nr_pages;
115 work->range_cyclic = range_cyclic;
116 work->for_background = for_background;
117
118 bdi_queue_work(bdi, work);
119 }
120
121 /**
122 * bdi_start_writeback - start writeback
123 * @bdi: the backing device to write from
124 * @nr_pages: the number of pages to write
125 *
126 * Description:
127 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
128 * started when this function returns, we make no guarentees on
129 * completion. Caller need not hold sb s_umount semaphore.
130 *
131 */
132 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
133 {
134 __bdi_start_writeback(bdi, nr_pages, true, false);
135 }
136
137 /**
138 * bdi_start_background_writeback - start background writeback
139 * @bdi: the backing device to write from
140 *
141 * Description:
142 * This does WB_SYNC_NONE background writeback. The IO is only
143 * started when this function returns, we make no guarentees on
144 * completion. Caller need not hold sb s_umount semaphore.
145 */
146 void bdi_start_background_writeback(struct backing_dev_info *bdi)
147 {
148 __bdi_start_writeback(bdi, LONG_MAX, true, true);
149 }
150
151 /*
152 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
153 * furthest end of its superblock's dirty-inode list.
154 *
155 * Before stamping the inode's ->dirtied_when, we check to see whether it is
156 * already the most-recently-dirtied inode on the b_dirty list. If that is
157 * the case then the inode must have been redirtied while it was being written
158 * out and we don't reset its dirtied_when.
159 */
160 static void redirty_tail(struct inode *inode)
161 {
162 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
163
164 if (!list_empty(&wb->b_dirty)) {
165 struct inode *tail;
166
167 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
168 if (time_before(inode->dirtied_when, tail->dirtied_when))
169 inode->dirtied_when = jiffies;
170 }
171 list_move(&inode->i_list, &wb->b_dirty);
172 }
173
174 /*
175 * requeue inode for re-scanning after bdi->b_io list is exhausted.
176 */
177 static void requeue_io(struct inode *inode)
178 {
179 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
180
181 list_move(&inode->i_list, &wb->b_more_io);
182 }
183
184 static void inode_sync_complete(struct inode *inode)
185 {
186 /*
187 * Prevent speculative execution through spin_unlock(&inode_lock);
188 */
189 smp_mb();
190 wake_up_bit(&inode->i_state, __I_SYNC);
191 }
192
193 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
194 {
195 bool ret = time_after(inode->dirtied_when, t);
196 #ifndef CONFIG_64BIT
197 /*
198 * For inodes being constantly redirtied, dirtied_when can get stuck.
199 * It _appears_ to be in the future, but is actually in distant past.
200 * This test is necessary to prevent such wrapped-around relative times
201 * from permanently stopping the whole bdi writeback.
202 */
203 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
204 #endif
205 return ret;
206 }
207
208 /*
209 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
210 */
211 static void move_expired_inodes(struct list_head *delaying_queue,
212 struct list_head *dispatch_queue,
213 unsigned long *older_than_this)
214 {
215 LIST_HEAD(tmp);
216 struct list_head *pos, *node;
217 struct super_block *sb = NULL;
218 struct inode *inode;
219 int do_sb_sort = 0;
220
221 while (!list_empty(delaying_queue)) {
222 inode = list_entry(delaying_queue->prev, struct inode, i_list);
223 if (older_than_this &&
224 inode_dirtied_after(inode, *older_than_this))
225 break;
226 if (sb && sb != inode->i_sb)
227 do_sb_sort = 1;
228 sb = inode->i_sb;
229 list_move(&inode->i_list, &tmp);
230 }
231
232 /* just one sb in list, splice to dispatch_queue and we're done */
233 if (!do_sb_sort) {
234 list_splice(&tmp, dispatch_queue);
235 return;
236 }
237
238 /* Move inodes from one superblock together */
239 while (!list_empty(&tmp)) {
240 inode = list_entry(tmp.prev, struct inode, i_list);
241 sb = inode->i_sb;
242 list_for_each_prev_safe(pos, node, &tmp) {
243 inode = list_entry(pos, struct inode, i_list);
244 if (inode->i_sb == sb)
245 list_move(&inode->i_list, dispatch_queue);
246 }
247 }
248 }
249
250 /*
251 * Queue all expired dirty inodes for io, eldest first.
252 * Before
253 * newly dirtied b_dirty b_io b_more_io
254 * =============> gf edc BA
255 * After
256 * newly dirtied b_dirty b_io b_more_io
257 * =============> g fBAedc
258 * |
259 * +--> dequeue for IO
260 */
261 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
262 {
263 list_splice_init(&wb->b_more_io, &wb->b_io);
264 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
265 }
266
267 static int write_inode(struct inode *inode, struct writeback_control *wbc)
268 {
269 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
270 return inode->i_sb->s_op->write_inode(inode, wbc);
271 return 0;
272 }
273
274 /*
275 * Wait for writeback on an inode to complete.
276 */
277 static void inode_wait_for_writeback(struct inode *inode)
278 {
279 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
280 wait_queue_head_t *wqh;
281
282 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
283 while (inode->i_state & I_SYNC) {
284 spin_unlock(&inode_lock);
285 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
286 spin_lock(&inode_lock);
287 }
288 }
289
290 /*
291 * Write out an inode's dirty pages. Called under inode_lock. Either the
292 * caller has ref on the inode (either via __iget or via syscall against an fd)
293 * or the inode has I_WILL_FREE set (via generic_forget_inode)
294 *
295 * If `wait' is set, wait on the writeout.
296 *
297 * The whole writeout design is quite complex and fragile. We want to avoid
298 * starvation of particular inodes when others are being redirtied, prevent
299 * livelocks, etc.
300 *
301 * Called under inode_lock.
302 */
303 static int
304 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
305 {
306 struct address_space *mapping = inode->i_mapping;
307 unsigned dirty;
308 int ret;
309
310 if (!atomic_read(&inode->i_count))
311 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
312 else
313 WARN_ON(inode->i_state & I_WILL_FREE);
314
315 if (inode->i_state & I_SYNC) {
316 /*
317 * If this inode is locked for writeback and we are not doing
318 * writeback-for-data-integrity, move it to b_more_io so that
319 * writeback can proceed with the other inodes on s_io.
320 *
321 * We'll have another go at writing back this inode when we
322 * completed a full scan of b_io.
323 */
324 if (wbc->sync_mode != WB_SYNC_ALL) {
325 requeue_io(inode);
326 return 0;
327 }
328
329 /*
330 * It's a data-integrity sync. We must wait.
331 */
332 inode_wait_for_writeback(inode);
333 }
334
335 BUG_ON(inode->i_state & I_SYNC);
336
337 /* Set I_SYNC, reset I_DIRTY_PAGES */
338 inode->i_state |= I_SYNC;
339 inode->i_state &= ~I_DIRTY_PAGES;
340 spin_unlock(&inode_lock);
341
342 ret = do_writepages(mapping, wbc);
343
344 /*
345 * Make sure to wait on the data before writing out the metadata.
346 * This is important for filesystems that modify metadata on data
347 * I/O completion.
348 */
349 if (wbc->sync_mode == WB_SYNC_ALL) {
350 int err = filemap_fdatawait(mapping);
351 if (ret == 0)
352 ret = err;
353 }
354
355 /*
356 * Some filesystems may redirty the inode during the writeback
357 * due to delalloc, clear dirty metadata flags right before
358 * write_inode()
359 */
360 spin_lock(&inode_lock);
361 dirty = inode->i_state & I_DIRTY;
362 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
363 spin_unlock(&inode_lock);
364 /* Don't write the inode if only I_DIRTY_PAGES was set */
365 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
366 int err = write_inode(inode, wbc);
367 if (ret == 0)
368 ret = err;
369 }
370
371 spin_lock(&inode_lock);
372 inode->i_state &= ~I_SYNC;
373 if (!(inode->i_state & I_FREEING)) {
374 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
375 /*
376 * We didn't write back all the pages. nfs_writepages()
377 * sometimes bales out without doing anything. Redirty
378 * the inode; Move it from b_io onto b_more_io/b_dirty.
379 */
380 /*
381 * akpm: if the caller was the kupdate function we put
382 * this inode at the head of b_dirty so it gets first
383 * consideration. Otherwise, move it to the tail, for
384 * the reasons described there. I'm not really sure
385 * how much sense this makes. Presumably I had a good
386 * reasons for doing it this way, and I'd rather not
387 * muck with it at present.
388 */
389 if (wbc->for_kupdate) {
390 /*
391 * For the kupdate function we move the inode
392 * to b_more_io so it will get more writeout as
393 * soon as the queue becomes uncongested.
394 */
395 inode->i_state |= I_DIRTY_PAGES;
396 if (wbc->nr_to_write <= 0) {
397 /*
398 * slice used up: queue for next turn
399 */
400 requeue_io(inode);
401 } else {
402 /*
403 * somehow blocked: retry later
404 */
405 redirty_tail(inode);
406 }
407 } else {
408 /*
409 * Otherwise fully redirty the inode so that
410 * other inodes on this superblock will get some
411 * writeout. Otherwise heavy writing to one
412 * file would indefinitely suspend writeout of
413 * all the other files.
414 */
415 inode->i_state |= I_DIRTY_PAGES;
416 redirty_tail(inode);
417 }
418 } else if (inode->i_state & I_DIRTY) {
419 /*
420 * Filesystems can dirty the inode during writeback
421 * operations, such as delayed allocation during
422 * submission or metadata updates after data IO
423 * completion.
424 */
425 redirty_tail(inode);
426 } else if (atomic_read(&inode->i_count)) {
427 /*
428 * The inode is clean, inuse
429 */
430 list_move(&inode->i_list, &inode_in_use);
431 } else {
432 /*
433 * The inode is clean, unused
434 */
435 list_move(&inode->i_list, &inode_unused);
436 }
437 }
438 inode_sync_complete(inode);
439 return ret;
440 }
441
442 /*
443 * For background writeback the caller does not have the sb pinned
444 * before calling writeback. So make sure that we do pin it, so it doesn't
445 * go away while we are writing inodes from it.
446 */
447 static bool pin_sb_for_writeback(struct super_block *sb)
448 {
449 spin_lock(&sb_lock);
450 if (list_empty(&sb->s_instances)) {
451 spin_unlock(&sb_lock);
452 return false;
453 }
454
455 sb->s_count++;
456 spin_unlock(&sb_lock);
457
458 if (down_read_trylock(&sb->s_umount)) {
459 if (sb->s_root)
460 return true;
461 up_read(&sb->s_umount);
462 }
463
464 put_super(sb);
465 return false;
466 }
467
468 /*
469 * Write a portion of b_io inodes which belong to @sb.
470 *
471 * If @only_this_sb is true, then find and write all such
472 * inodes. Otherwise write only ones which go sequentially
473 * in reverse order.
474 *
475 * Return 1, if the caller writeback routine should be
476 * interrupted. Otherwise return 0.
477 */
478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
479 struct writeback_control *wbc, bool only_this_sb)
480 {
481 while (!list_empty(&wb->b_io)) {
482 long pages_skipped;
483 struct inode *inode = list_entry(wb->b_io.prev,
484 struct inode, i_list);
485
486 if (inode->i_sb != sb) {
487 if (only_this_sb) {
488 /*
489 * We only want to write back data for this
490 * superblock, move all inodes not belonging
491 * to it back onto the dirty list.
492 */
493 redirty_tail(inode);
494 continue;
495 }
496
497 /*
498 * The inode belongs to a different superblock.
499 * Bounce back to the caller to unpin this and
500 * pin the next superblock.
501 */
502 return 0;
503 }
504
505 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
506 requeue_io(inode);
507 continue;
508 }
509 /*
510 * Was this inode dirtied after sync_sb_inodes was called?
511 * This keeps sync from extra jobs and livelock.
512 */
513 if (inode_dirtied_after(inode, wbc->wb_start))
514 return 1;
515
516 BUG_ON(inode->i_state & I_FREEING);
517 __iget(inode);
518 pages_skipped = wbc->pages_skipped;
519 writeback_single_inode(inode, wbc);
520 if (wbc->pages_skipped != pages_skipped) {
521 /*
522 * writeback is not making progress due to locked
523 * buffers. Skip this inode for now.
524 */
525 redirty_tail(inode);
526 }
527 spin_unlock(&inode_lock);
528 iput(inode);
529 cond_resched();
530 spin_lock(&inode_lock);
531 if (wbc->nr_to_write <= 0) {
532 wbc->more_io = 1;
533 return 1;
534 }
535 if (!list_empty(&wb->b_more_io))
536 wbc->more_io = 1;
537 }
538 /* b_io is empty */
539 return 1;
540 }
541
542 void writeback_inodes_wb(struct bdi_writeback *wb,
543 struct writeback_control *wbc)
544 {
545 int ret = 0;
546
547 if (!wbc->wb_start)
548 wbc->wb_start = jiffies; /* livelock avoidance */
549 spin_lock(&inode_lock);
550 if (!wbc->for_kupdate || list_empty(&wb->b_io))
551 queue_io(wb, wbc->older_than_this);
552
553 while (!list_empty(&wb->b_io)) {
554 struct inode *inode = list_entry(wb->b_io.prev,
555 struct inode, i_list);
556 struct super_block *sb = inode->i_sb;
557
558 if (!pin_sb_for_writeback(sb)) {
559 requeue_io(inode);
560 continue;
561 }
562 ret = writeback_sb_inodes(sb, wb, wbc, false);
563 drop_super(sb);
564
565 if (ret)
566 break;
567 }
568 spin_unlock(&inode_lock);
569 /* Leave any unwritten inodes on b_io */
570 }
571
572 static void __writeback_inodes_sb(struct super_block *sb,
573 struct bdi_writeback *wb, struct writeback_control *wbc)
574 {
575 WARN_ON(!rwsem_is_locked(&sb->s_umount));
576
577 spin_lock(&inode_lock);
578 if (!wbc->for_kupdate || list_empty(&wb->b_io))
579 queue_io(wb, wbc->older_than_this);
580 writeback_sb_inodes(sb, wb, wbc, true);
581 spin_unlock(&inode_lock);
582 }
583
584 /*
585 * The maximum number of pages to writeout in a single bdi flush/kupdate
586 * operation. We do this so we don't hold I_SYNC against an inode for
587 * enormous amounts of time, which would block a userspace task which has
588 * been forced to throttle against that inode. Also, the code reevaluates
589 * the dirty each time it has written this many pages.
590 */
591 #define MAX_WRITEBACK_PAGES 1024
592
593 static inline bool over_bground_thresh(void)
594 {
595 unsigned long background_thresh, dirty_thresh;
596
597 global_dirty_limits(&background_thresh, &dirty_thresh);
598
599 return (global_page_state(NR_FILE_DIRTY) +
600 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
601 }
602
603 /*
604 * Explicit flushing or periodic writeback of "old" data.
605 *
606 * Define "old": the first time one of an inode's pages is dirtied, we mark the
607 * dirtying-time in the inode's address_space. So this periodic writeback code
608 * just walks the superblock inode list, writing back any inodes which are
609 * older than a specific point in time.
610 *
611 * Try to run once per dirty_writeback_interval. But if a writeback event
612 * takes longer than a dirty_writeback_interval interval, then leave a
613 * one-second gap.
614 *
615 * older_than_this takes precedence over nr_to_write. So we'll only write back
616 * all dirty pages if they are all attached to "old" mappings.
617 */
618 static long wb_writeback(struct bdi_writeback *wb,
619 struct wb_writeback_work *work)
620 {
621 struct writeback_control wbc = {
622 .sync_mode = work->sync_mode,
623 .older_than_this = NULL,
624 .for_kupdate = work->for_kupdate,
625 .for_background = work->for_background,
626 .range_cyclic = work->range_cyclic,
627 };
628 unsigned long oldest_jif;
629 long wrote = 0;
630 struct inode *inode;
631
632 if (wbc.for_kupdate) {
633 wbc.older_than_this = &oldest_jif;
634 oldest_jif = jiffies -
635 msecs_to_jiffies(dirty_expire_interval * 10);
636 }
637 if (!wbc.range_cyclic) {
638 wbc.range_start = 0;
639 wbc.range_end = LLONG_MAX;
640 }
641
642 wbc.wb_start = jiffies; /* livelock avoidance */
643 for (;;) {
644 /*
645 * Stop writeback when nr_pages has been consumed
646 */
647 if (work->nr_pages <= 0)
648 break;
649
650 /*
651 * For background writeout, stop when we are below the
652 * background dirty threshold
653 */
654 if (work->for_background && !over_bground_thresh())
655 break;
656
657 wbc.more_io = 0;
658 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
659 wbc.pages_skipped = 0;
660
661 trace_wbc_writeback_start(&wbc, wb->bdi);
662 if (work->sb)
663 __writeback_inodes_sb(work->sb, wb, &wbc);
664 else
665 writeback_inodes_wb(wb, &wbc);
666 trace_wbc_writeback_written(&wbc, wb->bdi);
667
668 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
669 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
670
671 /*
672 * If we consumed everything, see if we have more
673 */
674 if (wbc.nr_to_write <= 0)
675 continue;
676 /*
677 * Didn't write everything and we don't have more IO, bail
678 */
679 if (!wbc.more_io)
680 break;
681 /*
682 * Did we write something? Try for more
683 */
684 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
685 continue;
686 /*
687 * Nothing written. Wait for some inode to
688 * become available for writeback. Otherwise
689 * we'll just busyloop.
690 */
691 spin_lock(&inode_lock);
692 if (!list_empty(&wb->b_more_io)) {
693 inode = list_entry(wb->b_more_io.prev,
694 struct inode, i_list);
695 trace_wbc_writeback_wait(&wbc, wb->bdi);
696 inode_wait_for_writeback(inode);
697 }
698 spin_unlock(&inode_lock);
699 }
700
701 return wrote;
702 }
703
704 /*
705 * Return the next wb_writeback_work struct that hasn't been processed yet.
706 */
707 static struct wb_writeback_work *
708 get_next_work_item(struct backing_dev_info *bdi)
709 {
710 struct wb_writeback_work *work = NULL;
711
712 spin_lock_bh(&bdi->wb_lock);
713 if (!list_empty(&bdi->work_list)) {
714 work = list_entry(bdi->work_list.next,
715 struct wb_writeback_work, list);
716 list_del_init(&work->list);
717 }
718 spin_unlock_bh(&bdi->wb_lock);
719 return work;
720 }
721
722 static long wb_check_old_data_flush(struct bdi_writeback *wb)
723 {
724 unsigned long expired;
725 long nr_pages;
726
727 /*
728 * When set to zero, disable periodic writeback
729 */
730 if (!dirty_writeback_interval)
731 return 0;
732
733 expired = wb->last_old_flush +
734 msecs_to_jiffies(dirty_writeback_interval * 10);
735 if (time_before(jiffies, expired))
736 return 0;
737
738 wb->last_old_flush = jiffies;
739 nr_pages = global_page_state(NR_FILE_DIRTY) +
740 global_page_state(NR_UNSTABLE_NFS) +
741 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
742
743 if (nr_pages) {
744 struct wb_writeback_work work = {
745 .nr_pages = nr_pages,
746 .sync_mode = WB_SYNC_NONE,
747 .for_kupdate = 1,
748 .range_cyclic = 1,
749 };
750
751 return wb_writeback(wb, &work);
752 }
753
754 return 0;
755 }
756
757 /*
758 * Retrieve work items and do the writeback they describe
759 */
760 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
761 {
762 struct backing_dev_info *bdi = wb->bdi;
763 struct wb_writeback_work *work;
764 long wrote = 0;
765
766 while ((work = get_next_work_item(bdi)) != NULL) {
767 /*
768 * Override sync mode, in case we must wait for completion
769 * because this thread is exiting now.
770 */
771 if (force_wait)
772 work->sync_mode = WB_SYNC_ALL;
773
774 trace_writeback_exec(bdi, work);
775
776 wrote += wb_writeback(wb, work);
777
778 /*
779 * Notify the caller of completion if this is a synchronous
780 * work item, otherwise just free it.
781 */
782 if (work->done)
783 complete(work->done);
784 else
785 kfree(work);
786 }
787
788 /*
789 * Check for periodic writeback, kupdated() style
790 */
791 wrote += wb_check_old_data_flush(wb);
792
793 return wrote;
794 }
795
796 /*
797 * Handle writeback of dirty data for the device backed by this bdi. Also
798 * wakes up periodically and does kupdated style flushing.
799 */
800 int bdi_writeback_thread(void *data)
801 {
802 struct bdi_writeback *wb = data;
803 struct backing_dev_info *bdi = wb->bdi;
804 long pages_written;
805
806 current->flags |= PF_FLUSHER | PF_SWAPWRITE;
807 set_freezable();
808 wb->last_active = jiffies;
809
810 /*
811 * Our parent may run at a different priority, just set us to normal
812 */
813 set_user_nice(current, 0);
814
815 trace_writeback_thread_start(bdi);
816
817 while (!kthread_should_stop()) {
818 /*
819 * Remove own delayed wake-up timer, since we are already awake
820 * and we'll take care of the preriodic write-back.
821 */
822 del_timer(&wb->wakeup_timer);
823
824 pages_written = wb_do_writeback(wb, 0);
825
826 trace_writeback_pages_written(pages_written);
827
828 if (pages_written)
829 wb->last_active = jiffies;
830
831 set_current_state(TASK_INTERRUPTIBLE);
832 if (!list_empty(&bdi->work_list)) {
833 __set_current_state(TASK_RUNNING);
834 continue;
835 }
836
837 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
838 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
839 else {
840 /*
841 * We have nothing to do, so can go sleep without any
842 * timeout and save power. When a work is queued or
843 * something is made dirty - we will be woken up.
844 */
845 schedule();
846 }
847
848 try_to_freeze();
849 }
850
851 /* Flush any work that raced with us exiting */
852 if (!list_empty(&bdi->work_list))
853 wb_do_writeback(wb, 1);
854
855 trace_writeback_thread_stop(bdi);
856 return 0;
857 }
858
859
860 /*
861 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
862 * the whole world.
863 */
864 void wakeup_flusher_threads(long nr_pages)
865 {
866 struct backing_dev_info *bdi;
867
868 if (!nr_pages) {
869 nr_pages = global_page_state(NR_FILE_DIRTY) +
870 global_page_state(NR_UNSTABLE_NFS);
871 }
872
873 rcu_read_lock();
874 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
875 if (!bdi_has_dirty_io(bdi))
876 continue;
877 __bdi_start_writeback(bdi, nr_pages, false, false);
878 }
879 rcu_read_unlock();
880 }
881
882 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
883 {
884 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
885 struct dentry *dentry;
886 const char *name = "?";
887
888 dentry = d_find_alias(inode);
889 if (dentry) {
890 spin_lock(&dentry->d_lock);
891 name = (const char *) dentry->d_name.name;
892 }
893 printk(KERN_DEBUG
894 "%s(%d): dirtied inode %lu (%s) on %s\n",
895 current->comm, task_pid_nr(current), inode->i_ino,
896 name, inode->i_sb->s_id);
897 if (dentry) {
898 spin_unlock(&dentry->d_lock);
899 dput(dentry);
900 }
901 }
902 }
903
904 /**
905 * __mark_inode_dirty - internal function
906 * @inode: inode to mark
907 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
908 * Mark an inode as dirty. Callers should use mark_inode_dirty or
909 * mark_inode_dirty_sync.
910 *
911 * Put the inode on the super block's dirty list.
912 *
913 * CAREFUL! We mark it dirty unconditionally, but move it onto the
914 * dirty list only if it is hashed or if it refers to a blockdev.
915 * If it was not hashed, it will never be added to the dirty list
916 * even if it is later hashed, as it will have been marked dirty already.
917 *
918 * In short, make sure you hash any inodes _before_ you start marking
919 * them dirty.
920 *
921 * This function *must* be atomic for the I_DIRTY_PAGES case -
922 * set_page_dirty() is called under spinlock in several places.
923 *
924 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
925 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
926 * the kernel-internal blockdev inode represents the dirtying time of the
927 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
928 * page->mapping->host, so the page-dirtying time is recorded in the internal
929 * blockdev inode.
930 */
931 void __mark_inode_dirty(struct inode *inode, int flags)
932 {
933 struct super_block *sb = inode->i_sb;
934 struct backing_dev_info *bdi = NULL;
935 bool wakeup_bdi = false;
936
937 /*
938 * Don't do this for I_DIRTY_PAGES - that doesn't actually
939 * dirty the inode itself
940 */
941 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
942 if (sb->s_op->dirty_inode)
943 sb->s_op->dirty_inode(inode);
944 }
945
946 /*
947 * make sure that changes are seen by all cpus before we test i_state
948 * -- mikulas
949 */
950 smp_mb();
951
952 /* avoid the locking if we can */
953 if ((inode->i_state & flags) == flags)
954 return;
955
956 if (unlikely(block_dump))
957 block_dump___mark_inode_dirty(inode);
958
959 spin_lock(&inode_lock);
960 if ((inode->i_state & flags) != flags) {
961 const int was_dirty = inode->i_state & I_DIRTY;
962
963 inode->i_state |= flags;
964
965 /*
966 * If the inode is being synced, just update its dirty state.
967 * The unlocker will place the inode on the appropriate
968 * superblock list, based upon its state.
969 */
970 if (inode->i_state & I_SYNC)
971 goto out;
972
973 /*
974 * Only add valid (hashed) inodes to the superblock's
975 * dirty list. Add blockdev inodes as well.
976 */
977 if (!S_ISBLK(inode->i_mode)) {
978 if (hlist_unhashed(&inode->i_hash))
979 goto out;
980 }
981 if (inode->i_state & I_FREEING)
982 goto out;
983
984 /*
985 * If the inode was already on b_dirty/b_io/b_more_io, don't
986 * reposition it (that would break b_dirty time-ordering).
987 */
988 if (!was_dirty) {
989 bdi = inode_to_bdi(inode);
990
991 if (bdi_cap_writeback_dirty(bdi)) {
992 WARN(!test_bit(BDI_registered, &bdi->state),
993 "bdi-%s not registered\n", bdi->name);
994
995 /*
996 * If this is the first dirty inode for this
997 * bdi, we have to wake-up the corresponding
998 * bdi thread to make sure background
999 * write-back happens later.
1000 */
1001 if (!wb_has_dirty_io(&bdi->wb))
1002 wakeup_bdi = true;
1003 }
1004
1005 inode->dirtied_when = jiffies;
1006 list_move(&inode->i_list, &bdi->wb.b_dirty);
1007 }
1008 }
1009 out:
1010 spin_unlock(&inode_lock);
1011
1012 if (wakeup_bdi)
1013 bdi_wakeup_thread_delayed(bdi);
1014 }
1015 EXPORT_SYMBOL(__mark_inode_dirty);
1016
1017 /*
1018 * Write out a superblock's list of dirty inodes. A wait will be performed
1019 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1020 *
1021 * If older_than_this is non-NULL, then only write out inodes which
1022 * had their first dirtying at a time earlier than *older_than_this.
1023 *
1024 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1025 * This function assumes that the blockdev superblock's inodes are backed by
1026 * a variety of queues, so all inodes are searched. For other superblocks,
1027 * assume that all inodes are backed by the same queue.
1028 *
1029 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1030 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1031 * on the writer throttling path, and we get decent balancing between many
1032 * throttled threads: we don't want them all piling up on inode_sync_wait.
1033 */
1034 static void wait_sb_inodes(struct super_block *sb)
1035 {
1036 struct inode *inode, *old_inode = NULL;
1037
1038 /*
1039 * We need to be protected against the filesystem going from
1040 * r/o to r/w or vice versa.
1041 */
1042 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1043
1044 spin_lock(&inode_lock);
1045
1046 /*
1047 * Data integrity sync. Must wait for all pages under writeback,
1048 * because there may have been pages dirtied before our sync
1049 * call, but which had writeout started before we write it out.
1050 * In which case, the inode may not be on the dirty list, but
1051 * we still have to wait for that writeout.
1052 */
1053 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1054 struct address_space *mapping;
1055
1056 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1057 continue;
1058 mapping = inode->i_mapping;
1059 if (mapping->nrpages == 0)
1060 continue;
1061 __iget(inode);
1062 spin_unlock(&inode_lock);
1063 /*
1064 * We hold a reference to 'inode' so it couldn't have
1065 * been removed from s_inodes list while we dropped the
1066 * inode_lock. We cannot iput the inode now as we can
1067 * be holding the last reference and we cannot iput it
1068 * under inode_lock. So we keep the reference and iput
1069 * it later.
1070 */
1071 iput(old_inode);
1072 old_inode = inode;
1073
1074 filemap_fdatawait(mapping);
1075
1076 cond_resched();
1077
1078 spin_lock(&inode_lock);
1079 }
1080 spin_unlock(&inode_lock);
1081 iput(old_inode);
1082 }
1083
1084 /**
1085 * writeback_inodes_sb - writeback dirty inodes from given super_block
1086 * @sb: the superblock
1087 *
1088 * Start writeback on some inodes on this super_block. No guarantees are made
1089 * on how many (if any) will be written, and this function does not wait
1090 * for IO completion of submitted IO. The number of pages submitted is
1091 * returned.
1092 */
1093 void writeback_inodes_sb(struct super_block *sb)
1094 {
1095 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1096 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1097 DECLARE_COMPLETION_ONSTACK(done);
1098 struct wb_writeback_work work = {
1099 .sb = sb,
1100 .sync_mode = WB_SYNC_NONE,
1101 .done = &done,
1102 };
1103
1104 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1105
1106 work.nr_pages = nr_dirty + nr_unstable +
1107 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1108
1109 bdi_queue_work(sb->s_bdi, &work);
1110 wait_for_completion(&done);
1111 }
1112 EXPORT_SYMBOL(writeback_inodes_sb);
1113
1114 /**
1115 * writeback_inodes_sb_if_idle - start writeback if none underway
1116 * @sb: the superblock
1117 *
1118 * Invoke writeback_inodes_sb if no writeback is currently underway.
1119 * Returns 1 if writeback was started, 0 if not.
1120 */
1121 int writeback_inodes_sb_if_idle(struct super_block *sb)
1122 {
1123 if (!writeback_in_progress(sb->s_bdi)) {
1124 down_read(&sb->s_umount);
1125 writeback_inodes_sb(sb);
1126 up_read(&sb->s_umount);
1127 return 1;
1128 } else
1129 return 0;
1130 }
1131 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1132
1133 /**
1134 * sync_inodes_sb - sync sb inode pages
1135 * @sb: the superblock
1136 *
1137 * This function writes and waits on any dirty inode belonging to this
1138 * super_block. The number of pages synced is returned.
1139 */
1140 void sync_inodes_sb(struct super_block *sb)
1141 {
1142 DECLARE_COMPLETION_ONSTACK(done);
1143 struct wb_writeback_work work = {
1144 .sb = sb,
1145 .sync_mode = WB_SYNC_ALL,
1146 .nr_pages = LONG_MAX,
1147 .range_cyclic = 0,
1148 .done = &done,
1149 };
1150
1151 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1152
1153 bdi_queue_work(sb->s_bdi, &work);
1154 wait_for_completion(&done);
1155
1156 wait_sb_inodes(sb);
1157 }
1158 EXPORT_SYMBOL(sync_inodes_sb);
1159
1160 /**
1161 * write_inode_now - write an inode to disk
1162 * @inode: inode to write to disk
1163 * @sync: whether the write should be synchronous or not
1164 *
1165 * This function commits an inode to disk immediately if it is dirty. This is
1166 * primarily needed by knfsd.
1167 *
1168 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1169 */
1170 int write_inode_now(struct inode *inode, int sync)
1171 {
1172 int ret;
1173 struct writeback_control wbc = {
1174 .nr_to_write = LONG_MAX,
1175 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1176 .range_start = 0,
1177 .range_end = LLONG_MAX,
1178 };
1179
1180 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1181 wbc.nr_to_write = 0;
1182
1183 might_sleep();
1184 spin_lock(&inode_lock);
1185 ret = writeback_single_inode(inode, &wbc);
1186 spin_unlock(&inode_lock);
1187 if (sync)
1188 inode_sync_wait(inode);
1189 return ret;
1190 }
1191 EXPORT_SYMBOL(write_inode_now);
1192
1193 /**
1194 * sync_inode - write an inode and its pages to disk.
1195 * @inode: the inode to sync
1196 * @wbc: controls the writeback mode
1197 *
1198 * sync_inode() will write an inode and its pages to disk. It will also
1199 * correctly update the inode on its superblock's dirty inode lists and will
1200 * update inode->i_state.
1201 *
1202 * The caller must have a ref on the inode.
1203 */
1204 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1205 {
1206 int ret;
1207
1208 spin_lock(&inode_lock);
1209 ret = writeback_single_inode(inode, wbc);
1210 spin_unlock(&inode_lock);
1211 return ret;
1212 }
1213 EXPORT_SYMBOL(sync_inode);