]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
writeback: Update dirty flags in two steps
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
30
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
32
33 /*
34 * We don't actually have pdflush, but this one is exported though /proc...
35 */
36 int nr_pdflush_threads;
37
38 /*
39 * Passed into wb_writeback(), essentially a subset of writeback_control
40 */
41 struct wb_writeback_args {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 int for_kupdate:1;
46 int range_cyclic:1;
47 int for_background:1;
48 int sb_pinned:1;
49 };
50
51 /*
52 * Work items for the bdi_writeback threads
53 */
54 struct bdi_work {
55 struct list_head list; /* pending work list */
56 struct rcu_head rcu_head; /* for RCU free/clear of work */
57
58 unsigned long seen; /* threads that have seen this work */
59 atomic_t pending; /* number of threads still to do work */
60
61 struct wb_writeback_args args; /* writeback arguments */
62
63 unsigned long state; /* flag bits, see WS_* */
64 };
65
66 enum {
67 WS_USED_B = 0,
68 WS_ONSTACK_B,
69 };
70
71 #define WS_USED (1 << WS_USED_B)
72 #define WS_ONSTACK (1 << WS_ONSTACK_B)
73
74 static inline bool bdi_work_on_stack(struct bdi_work *work)
75 {
76 return test_bit(WS_ONSTACK_B, &work->state);
77 }
78
79 static inline void bdi_work_init(struct bdi_work *work,
80 struct wb_writeback_args *args)
81 {
82 INIT_RCU_HEAD(&work->rcu_head);
83 work->args = *args;
84 work->state = WS_USED;
85 }
86
87 /**
88 * writeback_in_progress - determine whether there is writeback in progress
89 * @bdi: the device's backing_dev_info structure.
90 *
91 * Determine whether there is writeback waiting to be handled against a
92 * backing device.
93 */
94 int writeback_in_progress(struct backing_dev_info *bdi)
95 {
96 return !list_empty(&bdi->work_list);
97 }
98
99 static void bdi_work_clear(struct bdi_work *work)
100 {
101 clear_bit(WS_USED_B, &work->state);
102 smp_mb__after_clear_bit();
103 /*
104 * work can have disappeared at this point. bit waitq functions
105 * should be able to tolerate this, provided bdi_sched_wait does
106 * not dereference it's pointer argument.
107 */
108 wake_up_bit(&work->state, WS_USED_B);
109 }
110
111 static void bdi_work_free(struct rcu_head *head)
112 {
113 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
114
115 if (!bdi_work_on_stack(work))
116 kfree(work);
117 else
118 bdi_work_clear(work);
119 }
120
121 static void wb_work_complete(struct bdi_work *work)
122 {
123 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
124 int onstack = bdi_work_on_stack(work);
125
126 /*
127 * For allocated work, we can clear the done/seen bit right here.
128 * For on-stack work, we need to postpone both the clear and free
129 * to after the RCU grace period, since the stack could be invalidated
130 * as soon as bdi_work_clear() has done the wakeup.
131 */
132 if (!onstack)
133 bdi_work_clear(work);
134 if (sync_mode == WB_SYNC_NONE || onstack)
135 call_rcu(&work->rcu_head, bdi_work_free);
136 }
137
138 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
139 {
140 /*
141 * The caller has retrieved the work arguments from this work,
142 * drop our reference. If this is the last ref, delete and free it
143 */
144 if (atomic_dec_and_test(&work->pending)) {
145 struct backing_dev_info *bdi = wb->bdi;
146
147 spin_lock(&bdi->wb_lock);
148 list_del_rcu(&work->list);
149 spin_unlock(&bdi->wb_lock);
150
151 wb_work_complete(work);
152 }
153 }
154
155 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
156 {
157 work->seen = bdi->wb_mask;
158 BUG_ON(!work->seen);
159 atomic_set(&work->pending, bdi->wb_cnt);
160 BUG_ON(!bdi->wb_cnt);
161
162 /*
163 * list_add_tail_rcu() contains the necessary barriers to
164 * make sure the above stores are seen before the item is
165 * noticed on the list
166 */
167 spin_lock(&bdi->wb_lock);
168 list_add_tail_rcu(&work->list, &bdi->work_list);
169 spin_unlock(&bdi->wb_lock);
170
171 /*
172 * If the default thread isn't there, make sure we add it. When
173 * it gets created and wakes up, we'll run this work.
174 */
175 if (unlikely(list_empty_careful(&bdi->wb_list)))
176 wake_up_process(default_backing_dev_info.wb.task);
177 else {
178 struct bdi_writeback *wb = &bdi->wb;
179
180 if (wb->task)
181 wake_up_process(wb->task);
182 }
183 }
184
185 /*
186 * Used for on-stack allocated work items. The caller needs to wait until
187 * the wb threads have acked the work before it's safe to continue.
188 */
189 static void bdi_wait_on_work_clear(struct bdi_work *work)
190 {
191 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
192 TASK_UNINTERRUPTIBLE);
193 }
194
195 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
196 struct wb_writeback_args *args)
197 {
198 struct bdi_work *work;
199
200 /*
201 * This is WB_SYNC_NONE writeback, so if allocation fails just
202 * wakeup the thread for old dirty data writeback
203 */
204 work = kmalloc(sizeof(*work), GFP_ATOMIC);
205 if (work) {
206 bdi_work_init(work, args);
207 bdi_queue_work(bdi, work);
208 } else {
209 struct bdi_writeback *wb = &bdi->wb;
210
211 if (wb->task)
212 wake_up_process(wb->task);
213 }
214 }
215
216 /**
217 * bdi_sync_writeback - start and wait for writeback
218 * @bdi: the backing device to write from
219 * @sb: write inodes from this super_block
220 *
221 * Description:
222 * This does WB_SYNC_ALL data integrity writeback and waits for the
223 * IO to complete. Callers must hold the sb s_umount semaphore for
224 * reading, to avoid having the super disappear before we are done.
225 */
226 static void bdi_sync_writeback(struct backing_dev_info *bdi,
227 struct super_block *sb)
228 {
229 struct wb_writeback_args args = {
230 .sb = sb,
231 .sync_mode = WB_SYNC_ALL,
232 .nr_pages = LONG_MAX,
233 .range_cyclic = 0,
234 /*
235 * Setting sb_pinned is not necessary for WB_SYNC_ALL, but
236 * lets make it explicitly clear.
237 */
238 .sb_pinned = 1,
239 };
240 struct bdi_work work;
241
242 bdi_work_init(&work, &args);
243 work.state |= WS_ONSTACK;
244
245 bdi_queue_work(bdi, &work);
246 bdi_wait_on_work_clear(&work);
247 }
248
249 /**
250 * bdi_start_writeback - start writeback
251 * @bdi: the backing device to write from
252 * @sb: write inodes from this super_block
253 * @nr_pages: the number of pages to write
254 * @sb_locked: caller already holds sb umount sem.
255 *
256 * Description:
257 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
258 * started when this function returns, we make no guarentees on
259 * completion. Caller specifies whether sb umount sem is held already or not.
260 *
261 */
262 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
263 long nr_pages, int sb_locked)
264 {
265 struct wb_writeback_args args = {
266 .sb = sb,
267 .sync_mode = WB_SYNC_NONE,
268 .nr_pages = nr_pages,
269 .range_cyclic = 1,
270 .sb_pinned = sb_locked,
271 };
272
273 /*
274 * We treat @nr_pages=0 as the special case to do background writeback,
275 * ie. to sync pages until the background dirty threshold is reached.
276 */
277 if (!nr_pages) {
278 args.nr_pages = LONG_MAX;
279 args.for_background = 1;
280 }
281
282 bdi_alloc_queue_work(bdi, &args);
283 }
284
285 /*
286 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
287 * furthest end of its superblock's dirty-inode list.
288 *
289 * Before stamping the inode's ->dirtied_when, we check to see whether it is
290 * already the most-recently-dirtied inode on the b_dirty list. If that is
291 * the case then the inode must have been redirtied while it was being written
292 * out and we don't reset its dirtied_when.
293 */
294 static void redirty_tail(struct inode *inode)
295 {
296 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
297
298 if (!list_empty(&wb->b_dirty)) {
299 struct inode *tail;
300
301 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
302 if (time_before(inode->dirtied_when, tail->dirtied_when))
303 inode->dirtied_when = jiffies;
304 }
305 list_move(&inode->i_list, &wb->b_dirty);
306 }
307
308 /*
309 * requeue inode for re-scanning after bdi->b_io list is exhausted.
310 */
311 static void requeue_io(struct inode *inode)
312 {
313 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
314
315 list_move(&inode->i_list, &wb->b_more_io);
316 }
317
318 static void inode_sync_complete(struct inode *inode)
319 {
320 /*
321 * Prevent speculative execution through spin_unlock(&inode_lock);
322 */
323 smp_mb();
324 wake_up_bit(&inode->i_state, __I_SYNC);
325 }
326
327 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
328 {
329 bool ret = time_after(inode->dirtied_when, t);
330 #ifndef CONFIG_64BIT
331 /*
332 * For inodes being constantly redirtied, dirtied_when can get stuck.
333 * It _appears_ to be in the future, but is actually in distant past.
334 * This test is necessary to prevent such wrapped-around relative times
335 * from permanently stopping the whole bdi writeback.
336 */
337 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
338 #endif
339 return ret;
340 }
341
342 /*
343 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
344 */
345 static void move_expired_inodes(struct list_head *delaying_queue,
346 struct list_head *dispatch_queue,
347 unsigned long *older_than_this)
348 {
349 LIST_HEAD(tmp);
350 struct list_head *pos, *node;
351 struct super_block *sb = NULL;
352 struct inode *inode;
353 int do_sb_sort = 0;
354
355 while (!list_empty(delaying_queue)) {
356 inode = list_entry(delaying_queue->prev, struct inode, i_list);
357 if (older_than_this &&
358 inode_dirtied_after(inode, *older_than_this))
359 break;
360 if (sb && sb != inode->i_sb)
361 do_sb_sort = 1;
362 sb = inode->i_sb;
363 list_move(&inode->i_list, &tmp);
364 }
365
366 /* just one sb in list, splice to dispatch_queue and we're done */
367 if (!do_sb_sort) {
368 list_splice(&tmp, dispatch_queue);
369 return;
370 }
371
372 /* Move inodes from one superblock together */
373 while (!list_empty(&tmp)) {
374 inode = list_entry(tmp.prev, struct inode, i_list);
375 sb = inode->i_sb;
376 list_for_each_prev_safe(pos, node, &tmp) {
377 inode = list_entry(pos, struct inode, i_list);
378 if (inode->i_sb == sb)
379 list_move(&inode->i_list, dispatch_queue);
380 }
381 }
382 }
383
384 /*
385 * Queue all expired dirty inodes for io, eldest first.
386 */
387 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
388 {
389 list_splice_init(&wb->b_more_io, wb->b_io.prev);
390 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
391 }
392
393 static int write_inode(struct inode *inode, struct writeback_control *wbc)
394 {
395 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
396 return inode->i_sb->s_op->write_inode(inode, wbc);
397 return 0;
398 }
399
400 /*
401 * Wait for writeback on an inode to complete.
402 */
403 static void inode_wait_for_writeback(struct inode *inode)
404 {
405 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
406 wait_queue_head_t *wqh;
407
408 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
409 do {
410 spin_unlock(&inode_lock);
411 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
412 spin_lock(&inode_lock);
413 } while (inode->i_state & I_SYNC);
414 }
415
416 /*
417 * Write out an inode's dirty pages. Called under inode_lock. Either the
418 * caller has ref on the inode (either via __iget or via syscall against an fd)
419 * or the inode has I_WILL_FREE set (via generic_forget_inode)
420 *
421 * If `wait' is set, wait on the writeout.
422 *
423 * The whole writeout design is quite complex and fragile. We want to avoid
424 * starvation of particular inodes when others are being redirtied, prevent
425 * livelocks, etc.
426 *
427 * Called under inode_lock.
428 */
429 static int
430 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
431 {
432 struct address_space *mapping = inode->i_mapping;
433 unsigned dirty;
434 int ret;
435
436 if (!atomic_read(&inode->i_count))
437 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
438 else
439 WARN_ON(inode->i_state & I_WILL_FREE);
440
441 if (inode->i_state & I_SYNC) {
442 /*
443 * If this inode is locked for writeback and we are not doing
444 * writeback-for-data-integrity, move it to b_more_io so that
445 * writeback can proceed with the other inodes on s_io.
446 *
447 * We'll have another go at writing back this inode when we
448 * completed a full scan of b_io.
449 */
450 if (wbc->sync_mode != WB_SYNC_ALL) {
451 requeue_io(inode);
452 return 0;
453 }
454
455 /*
456 * It's a data-integrity sync. We must wait.
457 */
458 inode_wait_for_writeback(inode);
459 }
460
461 BUG_ON(inode->i_state & I_SYNC);
462
463 /* Set I_SYNC, reset I_DIRTY_PAGES */
464 inode->i_state |= I_SYNC;
465 inode->i_state &= ~I_DIRTY_PAGES;
466 spin_unlock(&inode_lock);
467
468 ret = do_writepages(mapping, wbc);
469
470 /*
471 * Make sure to wait on the data before writing out the metadata.
472 * This is important for filesystems that modify metadata on data
473 * I/O completion.
474 */
475 if (wbc->sync_mode == WB_SYNC_ALL) {
476 int err = filemap_fdatawait(mapping);
477 if (ret == 0)
478 ret = err;
479 }
480
481 /*
482 * Some filesystems may redirty the inode during the writeback
483 * due to delalloc, clear dirty metadata flags right before
484 * write_inode()
485 */
486 spin_lock(&inode_lock);
487 dirty = inode->i_state & I_DIRTY;
488 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
489 spin_unlock(&inode_lock);
490 /* Don't write the inode if only I_DIRTY_PAGES was set */
491 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
492 int err = write_inode(inode, wbc);
493 if (ret == 0)
494 ret = err;
495 }
496
497 spin_lock(&inode_lock);
498 inode->i_state &= ~I_SYNC;
499 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
500 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
501 /*
502 * More pages get dirtied by a fast dirtier.
503 */
504 goto select_queue;
505 } else if (inode->i_state & I_DIRTY) {
506 /*
507 * At least XFS will redirty the inode during the
508 * writeback (delalloc) and on io completion (isize).
509 */
510 redirty_tail(inode);
511 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
512 /*
513 * We didn't write back all the pages. nfs_writepages()
514 * sometimes bales out without doing anything. Redirty
515 * the inode; Move it from b_io onto b_more_io/b_dirty.
516 */
517 /*
518 * akpm: if the caller was the kupdate function we put
519 * this inode at the head of b_dirty so it gets first
520 * consideration. Otherwise, move it to the tail, for
521 * the reasons described there. I'm not really sure
522 * how much sense this makes. Presumably I had a good
523 * reasons for doing it this way, and I'd rather not
524 * muck with it at present.
525 */
526 if (wbc->for_kupdate) {
527 /*
528 * For the kupdate function we move the inode
529 * to b_more_io so it will get more writeout as
530 * soon as the queue becomes uncongested.
531 */
532 inode->i_state |= I_DIRTY_PAGES;
533 select_queue:
534 if (wbc->nr_to_write <= 0) {
535 /*
536 * slice used up: queue for next turn
537 */
538 requeue_io(inode);
539 } else {
540 /*
541 * somehow blocked: retry later
542 */
543 redirty_tail(inode);
544 }
545 } else {
546 /*
547 * Otherwise fully redirty the inode so that
548 * other inodes on this superblock will get some
549 * writeout. Otherwise heavy writing to one
550 * file would indefinitely suspend writeout of
551 * all the other files.
552 */
553 inode->i_state |= I_DIRTY_PAGES;
554 redirty_tail(inode);
555 }
556 } else if (atomic_read(&inode->i_count)) {
557 /*
558 * The inode is clean, inuse
559 */
560 list_move(&inode->i_list, &inode_in_use);
561 } else {
562 /*
563 * The inode is clean, unused
564 */
565 list_move(&inode->i_list, &inode_unused);
566 }
567 }
568 inode_sync_complete(inode);
569 return ret;
570 }
571
572 static void unpin_sb_for_writeback(struct super_block *sb)
573 {
574 up_read(&sb->s_umount);
575 put_super(sb);
576 }
577
578 enum sb_pin_state {
579 SB_PINNED,
580 SB_NOT_PINNED,
581 SB_PIN_FAILED
582 };
583
584 /*
585 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
586 * before calling writeback. So make sure that we do pin it, so it doesn't
587 * go away while we are writing inodes from it.
588 */
589 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
590 struct super_block *sb)
591 {
592 /*
593 * Caller must already hold the ref for this
594 */
595 if (wbc->sync_mode == WB_SYNC_ALL || wbc->sb_pinned) {
596 WARN_ON(!rwsem_is_locked(&sb->s_umount));
597 return SB_NOT_PINNED;
598 }
599 spin_lock(&sb_lock);
600 sb->s_count++;
601 if (down_read_trylock(&sb->s_umount)) {
602 if (sb->s_root) {
603 spin_unlock(&sb_lock);
604 return SB_PINNED;
605 }
606 /*
607 * umounted, drop rwsem again and fall through to failure
608 */
609 up_read(&sb->s_umount);
610 }
611 sb->s_count--;
612 spin_unlock(&sb_lock);
613 return SB_PIN_FAILED;
614 }
615
616 /*
617 * Write a portion of b_io inodes which belong to @sb.
618 * If @wbc->sb != NULL, then find and write all such
619 * inodes. Otherwise write only ones which go sequentially
620 * in reverse order.
621 * Return 1, if the caller writeback routine should be
622 * interrupted. Otherwise return 0.
623 */
624 static int writeback_sb_inodes(struct super_block *sb,
625 struct bdi_writeback *wb,
626 struct writeback_control *wbc)
627 {
628 while (!list_empty(&wb->b_io)) {
629 long pages_skipped;
630 struct inode *inode = list_entry(wb->b_io.prev,
631 struct inode, i_list);
632 if (wbc->sb && sb != inode->i_sb) {
633 /* super block given and doesn't
634 match, skip this inode */
635 redirty_tail(inode);
636 continue;
637 }
638 if (sb != inode->i_sb)
639 /* finish with this superblock */
640 return 0;
641 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
642 requeue_io(inode);
643 continue;
644 }
645 /*
646 * Was this inode dirtied after sync_sb_inodes was called?
647 * This keeps sync from extra jobs and livelock.
648 */
649 if (inode_dirtied_after(inode, wbc->wb_start))
650 return 1;
651
652 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
653 __iget(inode);
654 pages_skipped = wbc->pages_skipped;
655 writeback_single_inode(inode, wbc);
656 if (wbc->pages_skipped != pages_skipped) {
657 /*
658 * writeback is not making progress due to locked
659 * buffers. Skip this inode for now.
660 */
661 redirty_tail(inode);
662 }
663 spin_unlock(&inode_lock);
664 iput(inode);
665 cond_resched();
666 spin_lock(&inode_lock);
667 if (wbc->nr_to_write <= 0) {
668 wbc->more_io = 1;
669 return 1;
670 }
671 if (!list_empty(&wb->b_more_io))
672 wbc->more_io = 1;
673 }
674 /* b_io is empty */
675 return 1;
676 }
677
678 static void writeback_inodes_wb(struct bdi_writeback *wb,
679 struct writeback_control *wbc)
680 {
681 int ret = 0;
682
683 wbc->wb_start = jiffies; /* livelock avoidance */
684 spin_lock(&inode_lock);
685 if (!wbc->for_kupdate || list_empty(&wb->b_io))
686 queue_io(wb, wbc->older_than_this);
687
688 while (!list_empty(&wb->b_io)) {
689 struct inode *inode = list_entry(wb->b_io.prev,
690 struct inode, i_list);
691 struct super_block *sb = inode->i_sb;
692 enum sb_pin_state state;
693
694 if (wbc->sb && sb != wbc->sb) {
695 /* super block given and doesn't
696 match, skip this inode */
697 redirty_tail(inode);
698 continue;
699 }
700 state = pin_sb_for_writeback(wbc, sb);
701
702 if (state == SB_PIN_FAILED) {
703 requeue_io(inode);
704 continue;
705 }
706 ret = writeback_sb_inodes(sb, wb, wbc);
707
708 if (state == SB_PINNED)
709 unpin_sb_for_writeback(sb);
710 if (ret)
711 break;
712 }
713 spin_unlock(&inode_lock);
714 /* Leave any unwritten inodes on b_io */
715 }
716
717 void writeback_inodes_wbc(struct writeback_control *wbc)
718 {
719 struct backing_dev_info *bdi = wbc->bdi;
720
721 writeback_inodes_wb(&bdi->wb, wbc);
722 }
723
724 /*
725 * The maximum number of pages to writeout in a single bdi flush/kupdate
726 * operation. We do this so we don't hold I_SYNC against an inode for
727 * enormous amounts of time, which would block a userspace task which has
728 * been forced to throttle against that inode. Also, the code reevaluates
729 * the dirty each time it has written this many pages.
730 */
731 #define MAX_WRITEBACK_PAGES 1024
732
733 static inline bool over_bground_thresh(void)
734 {
735 unsigned long background_thresh, dirty_thresh;
736
737 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
738
739 return (global_page_state(NR_FILE_DIRTY) +
740 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
741 }
742
743 /*
744 * Explicit flushing or periodic writeback of "old" data.
745 *
746 * Define "old": the first time one of an inode's pages is dirtied, we mark the
747 * dirtying-time in the inode's address_space. So this periodic writeback code
748 * just walks the superblock inode list, writing back any inodes which are
749 * older than a specific point in time.
750 *
751 * Try to run once per dirty_writeback_interval. But if a writeback event
752 * takes longer than a dirty_writeback_interval interval, then leave a
753 * one-second gap.
754 *
755 * older_than_this takes precedence over nr_to_write. So we'll only write back
756 * all dirty pages if they are all attached to "old" mappings.
757 */
758 static long wb_writeback(struct bdi_writeback *wb,
759 struct wb_writeback_args *args)
760 {
761 struct writeback_control wbc = {
762 .bdi = wb->bdi,
763 .sb = args->sb,
764 .sync_mode = args->sync_mode,
765 .older_than_this = NULL,
766 .for_kupdate = args->for_kupdate,
767 .for_background = args->for_background,
768 .range_cyclic = args->range_cyclic,
769 .sb_pinned = args->sb_pinned,
770 };
771 unsigned long oldest_jif;
772 long wrote = 0;
773 struct inode *inode;
774
775 if (wbc.for_kupdate) {
776 wbc.older_than_this = &oldest_jif;
777 oldest_jif = jiffies -
778 msecs_to_jiffies(dirty_expire_interval * 10);
779 }
780 if (!wbc.range_cyclic) {
781 wbc.range_start = 0;
782 wbc.range_end = LLONG_MAX;
783 }
784
785 for (;;) {
786 /*
787 * Stop writeback when nr_pages has been consumed
788 */
789 if (args->nr_pages <= 0)
790 break;
791
792 /*
793 * For background writeout, stop when we are below the
794 * background dirty threshold
795 */
796 if (args->for_background && !over_bground_thresh())
797 break;
798
799 wbc.more_io = 0;
800 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
801 wbc.pages_skipped = 0;
802 writeback_inodes_wb(wb, &wbc);
803 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
804 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
805
806 /*
807 * If we consumed everything, see if we have more
808 */
809 if (wbc.nr_to_write <= 0)
810 continue;
811 /*
812 * Didn't write everything and we don't have more IO, bail
813 */
814 if (!wbc.more_io)
815 break;
816 /*
817 * Did we write something? Try for more
818 */
819 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
820 continue;
821 /*
822 * Nothing written. Wait for some inode to
823 * become available for writeback. Otherwise
824 * we'll just busyloop.
825 */
826 spin_lock(&inode_lock);
827 if (!list_empty(&wb->b_more_io)) {
828 inode = list_entry(wb->b_more_io.prev,
829 struct inode, i_list);
830 inode_wait_for_writeback(inode);
831 }
832 spin_unlock(&inode_lock);
833 }
834
835 return wrote;
836 }
837
838 /*
839 * Return the next bdi_work struct that hasn't been processed by this
840 * wb thread yet. ->seen is initially set for each thread that exists
841 * for this device, when a thread first notices a piece of work it
842 * clears its bit. Depending on writeback type, the thread will notify
843 * completion on either receiving the work (WB_SYNC_NONE) or after
844 * it is done (WB_SYNC_ALL).
845 */
846 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
847 struct bdi_writeback *wb)
848 {
849 struct bdi_work *work, *ret = NULL;
850
851 rcu_read_lock();
852
853 list_for_each_entry_rcu(work, &bdi->work_list, list) {
854 if (!test_bit(wb->nr, &work->seen))
855 continue;
856 clear_bit(wb->nr, &work->seen);
857
858 ret = work;
859 break;
860 }
861
862 rcu_read_unlock();
863 return ret;
864 }
865
866 static long wb_check_old_data_flush(struct bdi_writeback *wb)
867 {
868 unsigned long expired;
869 long nr_pages;
870
871 /*
872 * When set to zero, disable periodic writeback
873 */
874 if (!dirty_writeback_interval)
875 return 0;
876
877 expired = wb->last_old_flush +
878 msecs_to_jiffies(dirty_writeback_interval * 10);
879 if (time_before(jiffies, expired))
880 return 0;
881
882 wb->last_old_flush = jiffies;
883 nr_pages = global_page_state(NR_FILE_DIRTY) +
884 global_page_state(NR_UNSTABLE_NFS) +
885 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
886
887 if (nr_pages) {
888 struct wb_writeback_args args = {
889 .nr_pages = nr_pages,
890 .sync_mode = WB_SYNC_NONE,
891 .for_kupdate = 1,
892 .range_cyclic = 1,
893 };
894
895 return wb_writeback(wb, &args);
896 }
897
898 return 0;
899 }
900
901 /*
902 * Retrieve work items and do the writeback they describe
903 */
904 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
905 {
906 struct backing_dev_info *bdi = wb->bdi;
907 struct bdi_work *work;
908 long wrote = 0;
909
910 while ((work = get_next_work_item(bdi, wb)) != NULL) {
911 struct wb_writeback_args args = work->args;
912
913 /*
914 * Override sync mode, in case we must wait for completion
915 */
916 if (force_wait)
917 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
918
919 /*
920 * If this isn't a data integrity operation, just notify
921 * that we have seen this work and we are now starting it.
922 */
923 if (args.sync_mode == WB_SYNC_NONE)
924 wb_clear_pending(wb, work);
925
926 wrote += wb_writeback(wb, &args);
927
928 /*
929 * This is a data integrity writeback, so only do the
930 * notification when we have completed the work.
931 */
932 if (args.sync_mode == WB_SYNC_ALL)
933 wb_clear_pending(wb, work);
934 }
935
936 /*
937 * Check for periodic writeback, kupdated() style
938 */
939 wrote += wb_check_old_data_flush(wb);
940
941 return wrote;
942 }
943
944 /*
945 * Handle writeback of dirty data for the device backed by this bdi. Also
946 * wakes up periodically and does kupdated style flushing.
947 */
948 int bdi_writeback_task(struct bdi_writeback *wb)
949 {
950 unsigned long last_active = jiffies;
951 unsigned long wait_jiffies = -1UL;
952 long pages_written;
953
954 while (!kthread_should_stop()) {
955 pages_written = wb_do_writeback(wb, 0);
956
957 if (pages_written)
958 last_active = jiffies;
959 else if (wait_jiffies != -1UL) {
960 unsigned long max_idle;
961
962 /*
963 * Longest period of inactivity that we tolerate. If we
964 * see dirty data again later, the task will get
965 * recreated automatically.
966 */
967 max_idle = max(5UL * 60 * HZ, wait_jiffies);
968 if (time_after(jiffies, max_idle + last_active))
969 break;
970 }
971
972 if (dirty_writeback_interval) {
973 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
974 schedule_timeout_interruptible(wait_jiffies);
975 } else
976 schedule();
977
978 try_to_freeze();
979 }
980
981 return 0;
982 }
983
984 /*
985 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
986 * writeback, for integrity writeback see bdi_sync_writeback().
987 */
988 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
989 {
990 struct wb_writeback_args args = {
991 .sb = sb,
992 .nr_pages = nr_pages,
993 .sync_mode = WB_SYNC_NONE,
994 };
995 struct backing_dev_info *bdi;
996
997 rcu_read_lock();
998
999 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1000 if (!bdi_has_dirty_io(bdi))
1001 continue;
1002
1003 bdi_alloc_queue_work(bdi, &args);
1004 }
1005
1006 rcu_read_unlock();
1007 }
1008
1009 /*
1010 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1011 * the whole world.
1012 */
1013 void wakeup_flusher_threads(long nr_pages)
1014 {
1015 if (nr_pages == 0)
1016 nr_pages = global_page_state(NR_FILE_DIRTY) +
1017 global_page_state(NR_UNSTABLE_NFS);
1018 bdi_writeback_all(NULL, nr_pages);
1019 }
1020
1021 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1022 {
1023 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1024 struct dentry *dentry;
1025 const char *name = "?";
1026
1027 dentry = d_find_alias(inode);
1028 if (dentry) {
1029 spin_lock(&dentry->d_lock);
1030 name = (const char *) dentry->d_name.name;
1031 }
1032 printk(KERN_DEBUG
1033 "%s(%d): dirtied inode %lu (%s) on %s\n",
1034 current->comm, task_pid_nr(current), inode->i_ino,
1035 name, inode->i_sb->s_id);
1036 if (dentry) {
1037 spin_unlock(&dentry->d_lock);
1038 dput(dentry);
1039 }
1040 }
1041 }
1042
1043 /**
1044 * __mark_inode_dirty - internal function
1045 * @inode: inode to mark
1046 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1047 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1048 * mark_inode_dirty_sync.
1049 *
1050 * Put the inode on the super block's dirty list.
1051 *
1052 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1053 * dirty list only if it is hashed or if it refers to a blockdev.
1054 * If it was not hashed, it will never be added to the dirty list
1055 * even if it is later hashed, as it will have been marked dirty already.
1056 *
1057 * In short, make sure you hash any inodes _before_ you start marking
1058 * them dirty.
1059 *
1060 * This function *must* be atomic for the I_DIRTY_PAGES case -
1061 * set_page_dirty() is called under spinlock in several places.
1062 *
1063 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1064 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1065 * the kernel-internal blockdev inode represents the dirtying time of the
1066 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1067 * page->mapping->host, so the page-dirtying time is recorded in the internal
1068 * blockdev inode.
1069 */
1070 void __mark_inode_dirty(struct inode *inode, int flags)
1071 {
1072 struct super_block *sb = inode->i_sb;
1073
1074 /*
1075 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1076 * dirty the inode itself
1077 */
1078 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1079 if (sb->s_op->dirty_inode)
1080 sb->s_op->dirty_inode(inode);
1081 }
1082
1083 /*
1084 * make sure that changes are seen by all cpus before we test i_state
1085 * -- mikulas
1086 */
1087 smp_mb();
1088
1089 /* avoid the locking if we can */
1090 if ((inode->i_state & flags) == flags)
1091 return;
1092
1093 if (unlikely(block_dump))
1094 block_dump___mark_inode_dirty(inode);
1095
1096 spin_lock(&inode_lock);
1097 if ((inode->i_state & flags) != flags) {
1098 const int was_dirty = inode->i_state & I_DIRTY;
1099
1100 inode->i_state |= flags;
1101
1102 /*
1103 * If the inode is being synced, just update its dirty state.
1104 * The unlocker will place the inode on the appropriate
1105 * superblock list, based upon its state.
1106 */
1107 if (inode->i_state & I_SYNC)
1108 goto out;
1109
1110 /*
1111 * Only add valid (hashed) inodes to the superblock's
1112 * dirty list. Add blockdev inodes as well.
1113 */
1114 if (!S_ISBLK(inode->i_mode)) {
1115 if (hlist_unhashed(&inode->i_hash))
1116 goto out;
1117 }
1118 if (inode->i_state & (I_FREEING|I_CLEAR))
1119 goto out;
1120
1121 /*
1122 * If the inode was already on b_dirty/b_io/b_more_io, don't
1123 * reposition it (that would break b_dirty time-ordering).
1124 */
1125 if (!was_dirty) {
1126 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1127 struct backing_dev_info *bdi = wb->bdi;
1128
1129 if (bdi_cap_writeback_dirty(bdi) &&
1130 !test_bit(BDI_registered, &bdi->state)) {
1131 WARN_ON(1);
1132 printk(KERN_ERR "bdi-%s not registered\n",
1133 bdi->name);
1134 }
1135
1136 inode->dirtied_when = jiffies;
1137 list_move(&inode->i_list, &wb->b_dirty);
1138 }
1139 }
1140 out:
1141 spin_unlock(&inode_lock);
1142 }
1143 EXPORT_SYMBOL(__mark_inode_dirty);
1144
1145 /*
1146 * Write out a superblock's list of dirty inodes. A wait will be performed
1147 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1148 *
1149 * If older_than_this is non-NULL, then only write out inodes which
1150 * had their first dirtying at a time earlier than *older_than_this.
1151 *
1152 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1153 * This function assumes that the blockdev superblock's inodes are backed by
1154 * a variety of queues, so all inodes are searched. For other superblocks,
1155 * assume that all inodes are backed by the same queue.
1156 *
1157 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1158 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1159 * on the writer throttling path, and we get decent balancing between many
1160 * throttled threads: we don't want them all piling up on inode_sync_wait.
1161 */
1162 static void wait_sb_inodes(struct super_block *sb)
1163 {
1164 struct inode *inode, *old_inode = NULL;
1165
1166 /*
1167 * We need to be protected against the filesystem going from
1168 * r/o to r/w or vice versa.
1169 */
1170 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1171
1172 spin_lock(&inode_lock);
1173
1174 /*
1175 * Data integrity sync. Must wait for all pages under writeback,
1176 * because there may have been pages dirtied before our sync
1177 * call, but which had writeout started before we write it out.
1178 * In which case, the inode may not be on the dirty list, but
1179 * we still have to wait for that writeout.
1180 */
1181 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1182 struct address_space *mapping;
1183
1184 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1185 continue;
1186 mapping = inode->i_mapping;
1187 if (mapping->nrpages == 0)
1188 continue;
1189 __iget(inode);
1190 spin_unlock(&inode_lock);
1191 /*
1192 * We hold a reference to 'inode' so it couldn't have
1193 * been removed from s_inodes list while we dropped the
1194 * inode_lock. We cannot iput the inode now as we can
1195 * be holding the last reference and we cannot iput it
1196 * under inode_lock. So we keep the reference and iput
1197 * it later.
1198 */
1199 iput(old_inode);
1200 old_inode = inode;
1201
1202 filemap_fdatawait(mapping);
1203
1204 cond_resched();
1205
1206 spin_lock(&inode_lock);
1207 }
1208 spin_unlock(&inode_lock);
1209 iput(old_inode);
1210 }
1211
1212 static void __writeback_inodes_sb(struct super_block *sb, int sb_locked)
1213 {
1214 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1215 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1216 long nr_to_write;
1217
1218 nr_to_write = nr_dirty + nr_unstable +
1219 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1220
1221 bdi_start_writeback(sb->s_bdi, sb, nr_to_write, sb_locked);
1222 }
1223
1224 /**
1225 * writeback_inodes_sb - writeback dirty inodes from given super_block
1226 * @sb: the superblock
1227 *
1228 * Start writeback on some inodes on this super_block. No guarantees are made
1229 * on how many (if any) will be written, and this function does not wait
1230 * for IO completion of submitted IO. The number of pages submitted is
1231 * returned.
1232 */
1233 void writeback_inodes_sb(struct super_block *sb)
1234 {
1235 __writeback_inodes_sb(sb, 0);
1236 }
1237 EXPORT_SYMBOL(writeback_inodes_sb);
1238
1239 /**
1240 * writeback_inodes_sb_locked - writeback dirty inodes from given super_block
1241 * @sb: the superblock
1242 *
1243 * Like writeback_inodes_sb(), except the caller already holds the
1244 * sb umount sem.
1245 */
1246 void writeback_inodes_sb_locked(struct super_block *sb)
1247 {
1248 __writeback_inodes_sb(sb, 1);
1249 }
1250
1251 /**
1252 * writeback_inodes_sb_if_idle - start writeback if none underway
1253 * @sb: the superblock
1254 *
1255 * Invoke writeback_inodes_sb if no writeback is currently underway.
1256 * Returns 1 if writeback was started, 0 if not.
1257 */
1258 int writeback_inodes_sb_if_idle(struct super_block *sb)
1259 {
1260 if (!writeback_in_progress(sb->s_bdi)) {
1261 writeback_inodes_sb(sb);
1262 return 1;
1263 } else
1264 return 0;
1265 }
1266 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1267
1268 /**
1269 * sync_inodes_sb - sync sb inode pages
1270 * @sb: the superblock
1271 *
1272 * This function writes and waits on any dirty inode belonging to this
1273 * super_block. The number of pages synced is returned.
1274 */
1275 void sync_inodes_sb(struct super_block *sb)
1276 {
1277 bdi_sync_writeback(sb->s_bdi, sb);
1278 wait_sb_inodes(sb);
1279 }
1280 EXPORT_SYMBOL(sync_inodes_sb);
1281
1282 /**
1283 * write_inode_now - write an inode to disk
1284 * @inode: inode to write to disk
1285 * @sync: whether the write should be synchronous or not
1286 *
1287 * This function commits an inode to disk immediately if it is dirty. This is
1288 * primarily needed by knfsd.
1289 *
1290 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1291 */
1292 int write_inode_now(struct inode *inode, int sync)
1293 {
1294 int ret;
1295 struct writeback_control wbc = {
1296 .nr_to_write = LONG_MAX,
1297 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1298 .range_start = 0,
1299 .range_end = LLONG_MAX,
1300 };
1301
1302 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1303 wbc.nr_to_write = 0;
1304
1305 might_sleep();
1306 spin_lock(&inode_lock);
1307 ret = writeback_single_inode(inode, &wbc);
1308 spin_unlock(&inode_lock);
1309 if (sync)
1310 inode_sync_wait(inode);
1311 return ret;
1312 }
1313 EXPORT_SYMBOL(write_inode_now);
1314
1315 /**
1316 * sync_inode - write an inode and its pages to disk.
1317 * @inode: the inode to sync
1318 * @wbc: controls the writeback mode
1319 *
1320 * sync_inode() will write an inode and its pages to disk. It will also
1321 * correctly update the inode on its superblock's dirty inode lists and will
1322 * update inode->i_state.
1323 *
1324 * The caller must have a ref on the inode.
1325 */
1326 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1327 {
1328 int ret;
1329
1330 spin_lock(&inode_lock);
1331 ret = writeback_single_inode(inode, wbc);
1332 spin_unlock(&inode_lock);
1333 return ret;
1334 }
1335 EXPORT_SYMBOL(sync_inode);