]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
Merge branch 'next/fixes2' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/linux...
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 unsigned long *older_than_this;
39 enum writeback_sync_modes sync_mode;
40 unsigned int tagged_writepages:1;
41 unsigned int for_kupdate:1;
42 unsigned int range_cyclic:1;
43 unsigned int for_background:1;
44
45 struct list_head list; /* pending work list */
46 struct completion *done; /* set if the caller waits */
47 };
48
49 /*
50 * Include the creation of the trace points after defining the
51 * wb_writeback_work structure so that the definition remains local to this
52 * file.
53 */
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/writeback.h>
56
57 /*
58 * We don't actually have pdflush, but this one is exported though /proc...
59 */
60 int nr_pdflush_threads;
61
62 /**
63 * writeback_in_progress - determine whether there is writeback in progress
64 * @bdi: the device's backing_dev_info structure.
65 *
66 * Determine whether there is writeback waiting to be handled against a
67 * backing device.
68 */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 return test_bit(BDI_writeback_running, &bdi->state);
72 }
73
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 struct super_block *sb = inode->i_sb;
77
78 if (strcmp(sb->s_type->name, "bdev") == 0)
79 return inode->i_mapping->backing_dev_info;
80
81 return sb->s_bdi;
82 }
83
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 return list_entry(head, struct inode, i_wb_list);
87 }
88
89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
91 {
92 if (bdi->wb.task) {
93 wake_up_process(bdi->wb.task);
94 } else {
95 /*
96 * The bdi thread isn't there, wake up the forker thread which
97 * will create and run it.
98 */
99 wake_up_process(default_backing_dev_info.wb.task);
100 }
101 }
102
103 static void bdi_queue_work(struct backing_dev_info *bdi,
104 struct wb_writeback_work *work)
105 {
106 trace_writeback_queue(bdi, work);
107
108 spin_lock_bh(&bdi->wb_lock);
109 list_add_tail(&work->list, &bdi->work_list);
110 if (!bdi->wb.task)
111 trace_writeback_nothread(bdi, work);
112 bdi_wakeup_flusher(bdi);
113 spin_unlock_bh(&bdi->wb_lock);
114 }
115
116 static void
117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
118 bool range_cyclic)
119 {
120 struct wb_writeback_work *work;
121
122 /*
123 * This is WB_SYNC_NONE writeback, so if allocation fails just
124 * wakeup the thread for old dirty data writeback
125 */
126 work = kzalloc(sizeof(*work), GFP_ATOMIC);
127 if (!work) {
128 if (bdi->wb.task) {
129 trace_writeback_nowork(bdi);
130 wake_up_process(bdi->wb.task);
131 }
132 return;
133 }
134
135 work->sync_mode = WB_SYNC_NONE;
136 work->nr_pages = nr_pages;
137 work->range_cyclic = range_cyclic;
138
139 bdi_queue_work(bdi, work);
140 }
141
142 /**
143 * bdi_start_writeback - start writeback
144 * @bdi: the backing device to write from
145 * @nr_pages: the number of pages to write
146 *
147 * Description:
148 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
149 * started when this function returns, we make no guarantees on
150 * completion. Caller need not hold sb s_umount semaphore.
151 *
152 */
153 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
154 {
155 __bdi_start_writeback(bdi, nr_pages, true);
156 }
157
158 /**
159 * bdi_start_background_writeback - start background writeback
160 * @bdi: the backing device to write from
161 *
162 * Description:
163 * This makes sure WB_SYNC_NONE background writeback happens. When
164 * this function returns, it is only guaranteed that for given BDI
165 * some IO is happening if we are over background dirty threshold.
166 * Caller need not hold sb s_umount semaphore.
167 */
168 void bdi_start_background_writeback(struct backing_dev_info *bdi)
169 {
170 /*
171 * We just wake up the flusher thread. It will perform background
172 * writeback as soon as there is no other work to do.
173 */
174 trace_writeback_wake_background(bdi);
175 spin_lock_bh(&bdi->wb_lock);
176 bdi_wakeup_flusher(bdi);
177 spin_unlock_bh(&bdi->wb_lock);
178 }
179
180 /*
181 * Remove the inode from the writeback list it is on.
182 */
183 void inode_wb_list_del(struct inode *inode)
184 {
185 struct backing_dev_info *bdi = inode_to_bdi(inode);
186
187 spin_lock(&bdi->wb.list_lock);
188 list_del_init(&inode->i_wb_list);
189 spin_unlock(&bdi->wb.list_lock);
190 }
191
192 /*
193 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
194 * furthest end of its superblock's dirty-inode list.
195 *
196 * Before stamping the inode's ->dirtied_when, we check to see whether it is
197 * already the most-recently-dirtied inode on the b_dirty list. If that is
198 * the case then the inode must have been redirtied while it was being written
199 * out and we don't reset its dirtied_when.
200 */
201 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
202 {
203 assert_spin_locked(&wb->list_lock);
204 if (!list_empty(&wb->b_dirty)) {
205 struct inode *tail;
206
207 tail = wb_inode(wb->b_dirty.next);
208 if (time_before(inode->dirtied_when, tail->dirtied_when))
209 inode->dirtied_when = jiffies;
210 }
211 list_move(&inode->i_wb_list, &wb->b_dirty);
212 }
213
214 /*
215 * requeue inode for re-scanning after bdi->b_io list is exhausted.
216 */
217 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
218 {
219 assert_spin_locked(&wb->list_lock);
220 list_move(&inode->i_wb_list, &wb->b_more_io);
221 }
222
223 static void inode_sync_complete(struct inode *inode)
224 {
225 /*
226 * Prevent speculative execution through
227 * spin_unlock(&wb->list_lock);
228 */
229
230 smp_mb();
231 wake_up_bit(&inode->i_state, __I_SYNC);
232 }
233
234 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
235 {
236 bool ret = time_after(inode->dirtied_when, t);
237 #ifndef CONFIG_64BIT
238 /*
239 * For inodes being constantly redirtied, dirtied_when can get stuck.
240 * It _appears_ to be in the future, but is actually in distant past.
241 * This test is necessary to prevent such wrapped-around relative times
242 * from permanently stopping the whole bdi writeback.
243 */
244 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
245 #endif
246 return ret;
247 }
248
249 /*
250 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
251 */
252 static int move_expired_inodes(struct list_head *delaying_queue,
253 struct list_head *dispatch_queue,
254 unsigned long *older_than_this)
255 {
256 LIST_HEAD(tmp);
257 struct list_head *pos, *node;
258 struct super_block *sb = NULL;
259 struct inode *inode;
260 int do_sb_sort = 0;
261 int moved = 0;
262
263 while (!list_empty(delaying_queue)) {
264 inode = wb_inode(delaying_queue->prev);
265 if (older_than_this &&
266 inode_dirtied_after(inode, *older_than_this))
267 break;
268 if (sb && sb != inode->i_sb)
269 do_sb_sort = 1;
270 sb = inode->i_sb;
271 list_move(&inode->i_wb_list, &tmp);
272 moved++;
273 }
274
275 /* just one sb in list, splice to dispatch_queue and we're done */
276 if (!do_sb_sort) {
277 list_splice(&tmp, dispatch_queue);
278 goto out;
279 }
280
281 /* Move inodes from one superblock together */
282 while (!list_empty(&tmp)) {
283 sb = wb_inode(tmp.prev)->i_sb;
284 list_for_each_prev_safe(pos, node, &tmp) {
285 inode = wb_inode(pos);
286 if (inode->i_sb == sb)
287 list_move(&inode->i_wb_list, dispatch_queue);
288 }
289 }
290 out:
291 return moved;
292 }
293
294 /*
295 * Queue all expired dirty inodes for io, eldest first.
296 * Before
297 * newly dirtied b_dirty b_io b_more_io
298 * =============> gf edc BA
299 * After
300 * newly dirtied b_dirty b_io b_more_io
301 * =============> g fBAedc
302 * |
303 * +--> dequeue for IO
304 */
305 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
306 {
307 int moved;
308 assert_spin_locked(&wb->list_lock);
309 list_splice_init(&wb->b_more_io, &wb->b_io);
310 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
311 trace_writeback_queue_io(wb, older_than_this, moved);
312 }
313
314 static int write_inode(struct inode *inode, struct writeback_control *wbc)
315 {
316 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
317 return inode->i_sb->s_op->write_inode(inode, wbc);
318 return 0;
319 }
320
321 /*
322 * Wait for writeback on an inode to complete.
323 */
324 static void inode_wait_for_writeback(struct inode *inode,
325 struct bdi_writeback *wb)
326 {
327 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
328 wait_queue_head_t *wqh;
329
330 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
331 while (inode->i_state & I_SYNC) {
332 spin_unlock(&inode->i_lock);
333 spin_unlock(&wb->list_lock);
334 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
335 spin_lock(&wb->list_lock);
336 spin_lock(&inode->i_lock);
337 }
338 }
339
340 /*
341 * Write out an inode's dirty pages. Called under wb->list_lock and
342 * inode->i_lock. Either the caller has an active reference on the inode or
343 * the inode has I_WILL_FREE set.
344 *
345 * If `wait' is set, wait on the writeout.
346 *
347 * The whole writeout design is quite complex and fragile. We want to avoid
348 * starvation of particular inodes when others are being redirtied, prevent
349 * livelocks, etc.
350 */
351 static int
352 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
353 struct writeback_control *wbc)
354 {
355 struct address_space *mapping = inode->i_mapping;
356 long nr_to_write = wbc->nr_to_write;
357 unsigned dirty;
358 int ret;
359
360 assert_spin_locked(&wb->list_lock);
361 assert_spin_locked(&inode->i_lock);
362
363 if (!atomic_read(&inode->i_count))
364 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
365 else
366 WARN_ON(inode->i_state & I_WILL_FREE);
367
368 if (inode->i_state & I_SYNC) {
369 /*
370 * If this inode is locked for writeback and we are not doing
371 * writeback-for-data-integrity, move it to b_more_io so that
372 * writeback can proceed with the other inodes on s_io.
373 *
374 * We'll have another go at writing back this inode when we
375 * completed a full scan of b_io.
376 */
377 if (wbc->sync_mode != WB_SYNC_ALL) {
378 requeue_io(inode, wb);
379 trace_writeback_single_inode_requeue(inode, wbc,
380 nr_to_write);
381 return 0;
382 }
383
384 /*
385 * It's a data-integrity sync. We must wait.
386 */
387 inode_wait_for_writeback(inode, wb);
388 }
389
390 BUG_ON(inode->i_state & I_SYNC);
391
392 /* Set I_SYNC, reset I_DIRTY_PAGES */
393 inode->i_state |= I_SYNC;
394 inode->i_state &= ~I_DIRTY_PAGES;
395 spin_unlock(&inode->i_lock);
396 spin_unlock(&wb->list_lock);
397
398 ret = do_writepages(mapping, wbc);
399
400 /*
401 * Make sure to wait on the data before writing out the metadata.
402 * This is important for filesystems that modify metadata on data
403 * I/O completion.
404 */
405 if (wbc->sync_mode == WB_SYNC_ALL) {
406 int err = filemap_fdatawait(mapping);
407 if (ret == 0)
408 ret = err;
409 }
410
411 /*
412 * Some filesystems may redirty the inode during the writeback
413 * due to delalloc, clear dirty metadata flags right before
414 * write_inode()
415 */
416 spin_lock(&inode->i_lock);
417 dirty = inode->i_state & I_DIRTY;
418 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
419 spin_unlock(&inode->i_lock);
420 /* Don't write the inode if only I_DIRTY_PAGES was set */
421 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
422 int err = write_inode(inode, wbc);
423 if (ret == 0)
424 ret = err;
425 }
426
427 spin_lock(&wb->list_lock);
428 spin_lock(&inode->i_lock);
429 inode->i_state &= ~I_SYNC;
430 if (!(inode->i_state & I_FREEING)) {
431 /*
432 * Sync livelock prevention. Each inode is tagged and synced in
433 * one shot. If still dirty, it will be redirty_tail()'ed below.
434 * Update the dirty time to prevent enqueue and sync it again.
435 */
436 if ((inode->i_state & I_DIRTY) &&
437 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
438 inode->dirtied_when = jiffies;
439
440 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
441 /*
442 * We didn't write back all the pages. nfs_writepages()
443 * sometimes bales out without doing anything.
444 */
445 inode->i_state |= I_DIRTY_PAGES;
446 if (wbc->nr_to_write <= 0) {
447 /*
448 * slice used up: queue for next turn
449 */
450 requeue_io(inode, wb);
451 } else {
452 /*
453 * Writeback blocked by something other than
454 * congestion. Delay the inode for some time to
455 * avoid spinning on the CPU (100% iowait)
456 * retrying writeback of the dirty page/inode
457 * that cannot be performed immediately.
458 */
459 redirty_tail(inode, wb);
460 }
461 } else if (inode->i_state & I_DIRTY) {
462 /*
463 * Filesystems can dirty the inode during writeback
464 * operations, such as delayed allocation during
465 * submission or metadata updates after data IO
466 * completion.
467 */
468 redirty_tail(inode, wb);
469 } else {
470 /*
471 * The inode is clean. At this point we either have
472 * a reference to the inode or it's on it's way out.
473 * No need to add it back to the LRU.
474 */
475 list_del_init(&inode->i_wb_list);
476 }
477 }
478 inode_sync_complete(inode);
479 trace_writeback_single_inode(inode, wbc, nr_to_write);
480 return ret;
481 }
482
483 static long writeback_chunk_size(struct backing_dev_info *bdi,
484 struct wb_writeback_work *work)
485 {
486 long pages;
487
488 /*
489 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
490 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
491 * here avoids calling into writeback_inodes_wb() more than once.
492 *
493 * The intended call sequence for WB_SYNC_ALL writeback is:
494 *
495 * wb_writeback()
496 * writeback_sb_inodes() <== called only once
497 * write_cache_pages() <== called once for each inode
498 * (quickly) tag currently dirty pages
499 * (maybe slowly) sync all tagged pages
500 */
501 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
502 pages = LONG_MAX;
503 else {
504 pages = min(bdi->avg_write_bandwidth / 2,
505 global_dirty_limit / DIRTY_SCOPE);
506 pages = min(pages, work->nr_pages);
507 pages = round_down(pages + MIN_WRITEBACK_PAGES,
508 MIN_WRITEBACK_PAGES);
509 }
510
511 return pages;
512 }
513
514 /*
515 * Write a portion of b_io inodes which belong to @sb.
516 *
517 * If @only_this_sb is true, then find and write all such
518 * inodes. Otherwise write only ones which go sequentially
519 * in reverse order.
520 *
521 * Return the number of pages and/or inodes written.
522 */
523 static long writeback_sb_inodes(struct super_block *sb,
524 struct bdi_writeback *wb,
525 struct wb_writeback_work *work)
526 {
527 struct writeback_control wbc = {
528 .sync_mode = work->sync_mode,
529 .tagged_writepages = work->tagged_writepages,
530 .for_kupdate = work->for_kupdate,
531 .for_background = work->for_background,
532 .range_cyclic = work->range_cyclic,
533 .range_start = 0,
534 .range_end = LLONG_MAX,
535 };
536 unsigned long start_time = jiffies;
537 long write_chunk;
538 long wrote = 0; /* count both pages and inodes */
539
540 while (!list_empty(&wb->b_io)) {
541 struct inode *inode = wb_inode(wb->b_io.prev);
542
543 if (inode->i_sb != sb) {
544 if (work->sb) {
545 /*
546 * We only want to write back data for this
547 * superblock, move all inodes not belonging
548 * to it back onto the dirty list.
549 */
550 redirty_tail(inode, wb);
551 continue;
552 }
553
554 /*
555 * The inode belongs to a different superblock.
556 * Bounce back to the caller to unpin this and
557 * pin the next superblock.
558 */
559 break;
560 }
561
562 /*
563 * Don't bother with new inodes or inodes beeing freed, first
564 * kind does not need peridic writeout yet, and for the latter
565 * kind writeout is handled by the freer.
566 */
567 spin_lock(&inode->i_lock);
568 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
569 spin_unlock(&inode->i_lock);
570 redirty_tail(inode, wb);
571 continue;
572 }
573 __iget(inode);
574 write_chunk = writeback_chunk_size(wb->bdi, work);
575 wbc.nr_to_write = write_chunk;
576 wbc.pages_skipped = 0;
577
578 writeback_single_inode(inode, wb, &wbc);
579
580 work->nr_pages -= write_chunk - wbc.nr_to_write;
581 wrote += write_chunk - wbc.nr_to_write;
582 if (!(inode->i_state & I_DIRTY))
583 wrote++;
584 if (wbc.pages_skipped) {
585 /*
586 * writeback is not making progress due to locked
587 * buffers. Skip this inode for now.
588 */
589 redirty_tail(inode, wb);
590 }
591 spin_unlock(&inode->i_lock);
592 spin_unlock(&wb->list_lock);
593 iput(inode);
594 cond_resched();
595 spin_lock(&wb->list_lock);
596 /*
597 * bail out to wb_writeback() often enough to check
598 * background threshold and other termination conditions.
599 */
600 if (wrote) {
601 if (time_is_before_jiffies(start_time + HZ / 10UL))
602 break;
603 if (work->nr_pages <= 0)
604 break;
605 }
606 }
607 return wrote;
608 }
609
610 static long __writeback_inodes_wb(struct bdi_writeback *wb,
611 struct wb_writeback_work *work)
612 {
613 unsigned long start_time = jiffies;
614 long wrote = 0;
615
616 while (!list_empty(&wb->b_io)) {
617 struct inode *inode = wb_inode(wb->b_io.prev);
618 struct super_block *sb = inode->i_sb;
619
620 if (!grab_super_passive(sb)) {
621 requeue_io(inode, wb);
622 continue;
623 }
624 wrote += writeback_sb_inodes(sb, wb, work);
625 drop_super(sb);
626
627 /* refer to the same tests at the end of writeback_sb_inodes */
628 if (wrote) {
629 if (time_is_before_jiffies(start_time + HZ / 10UL))
630 break;
631 if (work->nr_pages <= 0)
632 break;
633 }
634 }
635 /* Leave any unwritten inodes on b_io */
636 return wrote;
637 }
638
639 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages)
640 {
641 struct wb_writeback_work work = {
642 .nr_pages = nr_pages,
643 .sync_mode = WB_SYNC_NONE,
644 .range_cyclic = 1,
645 };
646
647 spin_lock(&wb->list_lock);
648 if (list_empty(&wb->b_io))
649 queue_io(wb, NULL);
650 __writeback_inodes_wb(wb, &work);
651 spin_unlock(&wb->list_lock);
652
653 return nr_pages - work.nr_pages;
654 }
655
656 static inline bool over_bground_thresh(void)
657 {
658 unsigned long background_thresh, dirty_thresh;
659
660 global_dirty_limits(&background_thresh, &dirty_thresh);
661
662 return (global_page_state(NR_FILE_DIRTY) +
663 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
664 }
665
666 /*
667 * Called under wb->list_lock. If there are multiple wb per bdi,
668 * only the flusher working on the first wb should do it.
669 */
670 static void wb_update_bandwidth(struct bdi_writeback *wb,
671 unsigned long start_time)
672 {
673 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, start_time);
674 }
675
676 /*
677 * Explicit flushing or periodic writeback of "old" data.
678 *
679 * Define "old": the first time one of an inode's pages is dirtied, we mark the
680 * dirtying-time in the inode's address_space. So this periodic writeback code
681 * just walks the superblock inode list, writing back any inodes which are
682 * older than a specific point in time.
683 *
684 * Try to run once per dirty_writeback_interval. But if a writeback event
685 * takes longer than a dirty_writeback_interval interval, then leave a
686 * one-second gap.
687 *
688 * older_than_this takes precedence over nr_to_write. So we'll only write back
689 * all dirty pages if they are all attached to "old" mappings.
690 */
691 static long wb_writeback(struct bdi_writeback *wb,
692 struct wb_writeback_work *work)
693 {
694 unsigned long wb_start = jiffies;
695 long nr_pages = work->nr_pages;
696 unsigned long oldest_jif;
697 struct inode *inode;
698 long progress;
699
700 oldest_jif = jiffies;
701 work->older_than_this = &oldest_jif;
702
703 spin_lock(&wb->list_lock);
704 for (;;) {
705 /*
706 * Stop writeback when nr_pages has been consumed
707 */
708 if (work->nr_pages <= 0)
709 break;
710
711 /*
712 * Background writeout and kupdate-style writeback may
713 * run forever. Stop them if there is other work to do
714 * so that e.g. sync can proceed. They'll be restarted
715 * after the other works are all done.
716 */
717 if ((work->for_background || work->for_kupdate) &&
718 !list_empty(&wb->bdi->work_list))
719 break;
720
721 /*
722 * For background writeout, stop when we are below the
723 * background dirty threshold
724 */
725 if (work->for_background && !over_bground_thresh())
726 break;
727
728 if (work->for_kupdate) {
729 oldest_jif = jiffies -
730 msecs_to_jiffies(dirty_expire_interval * 10);
731 work->older_than_this = &oldest_jif;
732 }
733
734 trace_writeback_start(wb->bdi, work);
735 if (list_empty(&wb->b_io))
736 queue_io(wb, work->older_than_this);
737 if (work->sb)
738 progress = writeback_sb_inodes(work->sb, wb, work);
739 else
740 progress = __writeback_inodes_wb(wb, work);
741 trace_writeback_written(wb->bdi, work);
742
743 wb_update_bandwidth(wb, wb_start);
744
745 /*
746 * Did we write something? Try for more
747 *
748 * Dirty inodes are moved to b_io for writeback in batches.
749 * The completion of the current batch does not necessarily
750 * mean the overall work is done. So we keep looping as long
751 * as made some progress on cleaning pages or inodes.
752 */
753 if (progress)
754 continue;
755 /*
756 * No more inodes for IO, bail
757 */
758 if (list_empty(&wb->b_more_io))
759 break;
760 /*
761 * Nothing written. Wait for some inode to
762 * become available for writeback. Otherwise
763 * we'll just busyloop.
764 */
765 if (!list_empty(&wb->b_more_io)) {
766 trace_writeback_wait(wb->bdi, work);
767 inode = wb_inode(wb->b_more_io.prev);
768 spin_lock(&inode->i_lock);
769 inode_wait_for_writeback(inode, wb);
770 spin_unlock(&inode->i_lock);
771 }
772 }
773 spin_unlock(&wb->list_lock);
774
775 return nr_pages - work->nr_pages;
776 }
777
778 /*
779 * Return the next wb_writeback_work struct that hasn't been processed yet.
780 */
781 static struct wb_writeback_work *
782 get_next_work_item(struct backing_dev_info *bdi)
783 {
784 struct wb_writeback_work *work = NULL;
785
786 spin_lock_bh(&bdi->wb_lock);
787 if (!list_empty(&bdi->work_list)) {
788 work = list_entry(bdi->work_list.next,
789 struct wb_writeback_work, list);
790 list_del_init(&work->list);
791 }
792 spin_unlock_bh(&bdi->wb_lock);
793 return work;
794 }
795
796 /*
797 * Add in the number of potentially dirty inodes, because each inode
798 * write can dirty pagecache in the underlying blockdev.
799 */
800 static unsigned long get_nr_dirty_pages(void)
801 {
802 return global_page_state(NR_FILE_DIRTY) +
803 global_page_state(NR_UNSTABLE_NFS) +
804 get_nr_dirty_inodes();
805 }
806
807 static long wb_check_background_flush(struct bdi_writeback *wb)
808 {
809 if (over_bground_thresh()) {
810
811 struct wb_writeback_work work = {
812 .nr_pages = LONG_MAX,
813 .sync_mode = WB_SYNC_NONE,
814 .for_background = 1,
815 .range_cyclic = 1,
816 };
817
818 return wb_writeback(wb, &work);
819 }
820
821 return 0;
822 }
823
824 static long wb_check_old_data_flush(struct bdi_writeback *wb)
825 {
826 unsigned long expired;
827 long nr_pages;
828
829 /*
830 * When set to zero, disable periodic writeback
831 */
832 if (!dirty_writeback_interval)
833 return 0;
834
835 expired = wb->last_old_flush +
836 msecs_to_jiffies(dirty_writeback_interval * 10);
837 if (time_before(jiffies, expired))
838 return 0;
839
840 wb->last_old_flush = jiffies;
841 nr_pages = get_nr_dirty_pages();
842
843 if (nr_pages) {
844 struct wb_writeback_work work = {
845 .nr_pages = nr_pages,
846 .sync_mode = WB_SYNC_NONE,
847 .for_kupdate = 1,
848 .range_cyclic = 1,
849 };
850
851 return wb_writeback(wb, &work);
852 }
853
854 return 0;
855 }
856
857 /*
858 * Retrieve work items and do the writeback they describe
859 */
860 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
861 {
862 struct backing_dev_info *bdi = wb->bdi;
863 struct wb_writeback_work *work;
864 long wrote = 0;
865
866 set_bit(BDI_writeback_running, &wb->bdi->state);
867 while ((work = get_next_work_item(bdi)) != NULL) {
868 /*
869 * Override sync mode, in case we must wait for completion
870 * because this thread is exiting now.
871 */
872 if (force_wait)
873 work->sync_mode = WB_SYNC_ALL;
874
875 trace_writeback_exec(bdi, work);
876
877 wrote += wb_writeback(wb, work);
878
879 /*
880 * Notify the caller of completion if this is a synchronous
881 * work item, otherwise just free it.
882 */
883 if (work->done)
884 complete(work->done);
885 else
886 kfree(work);
887 }
888
889 /*
890 * Check for periodic writeback, kupdated() style
891 */
892 wrote += wb_check_old_data_flush(wb);
893 wrote += wb_check_background_flush(wb);
894 clear_bit(BDI_writeback_running, &wb->bdi->state);
895
896 return wrote;
897 }
898
899 /*
900 * Handle writeback of dirty data for the device backed by this bdi. Also
901 * wakes up periodically and does kupdated style flushing.
902 */
903 int bdi_writeback_thread(void *data)
904 {
905 struct bdi_writeback *wb = data;
906 struct backing_dev_info *bdi = wb->bdi;
907 long pages_written;
908
909 current->flags |= PF_SWAPWRITE;
910 set_freezable();
911 wb->last_active = jiffies;
912
913 /*
914 * Our parent may run at a different priority, just set us to normal
915 */
916 set_user_nice(current, 0);
917
918 trace_writeback_thread_start(bdi);
919
920 while (!kthread_should_stop()) {
921 /*
922 * Remove own delayed wake-up timer, since we are already awake
923 * and we'll take care of the preriodic write-back.
924 */
925 del_timer(&wb->wakeup_timer);
926
927 pages_written = wb_do_writeback(wb, 0);
928
929 trace_writeback_pages_written(pages_written);
930
931 if (pages_written)
932 wb->last_active = jiffies;
933
934 set_current_state(TASK_INTERRUPTIBLE);
935 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
936 __set_current_state(TASK_RUNNING);
937 continue;
938 }
939
940 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
941 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
942 else {
943 /*
944 * We have nothing to do, so can go sleep without any
945 * timeout and save power. When a work is queued or
946 * something is made dirty - we will be woken up.
947 */
948 schedule();
949 }
950
951 try_to_freeze();
952 }
953
954 /* Flush any work that raced with us exiting */
955 if (!list_empty(&bdi->work_list))
956 wb_do_writeback(wb, 1);
957
958 trace_writeback_thread_stop(bdi);
959 return 0;
960 }
961
962
963 /*
964 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
965 * the whole world.
966 */
967 void wakeup_flusher_threads(long nr_pages)
968 {
969 struct backing_dev_info *bdi;
970
971 if (!nr_pages) {
972 nr_pages = global_page_state(NR_FILE_DIRTY) +
973 global_page_state(NR_UNSTABLE_NFS);
974 }
975
976 rcu_read_lock();
977 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
978 if (!bdi_has_dirty_io(bdi))
979 continue;
980 __bdi_start_writeback(bdi, nr_pages, false);
981 }
982 rcu_read_unlock();
983 }
984
985 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
986 {
987 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
988 struct dentry *dentry;
989 const char *name = "?";
990
991 dentry = d_find_alias(inode);
992 if (dentry) {
993 spin_lock(&dentry->d_lock);
994 name = (const char *) dentry->d_name.name;
995 }
996 printk(KERN_DEBUG
997 "%s(%d): dirtied inode %lu (%s) on %s\n",
998 current->comm, task_pid_nr(current), inode->i_ino,
999 name, inode->i_sb->s_id);
1000 if (dentry) {
1001 spin_unlock(&dentry->d_lock);
1002 dput(dentry);
1003 }
1004 }
1005 }
1006
1007 /**
1008 * __mark_inode_dirty - internal function
1009 * @inode: inode to mark
1010 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1011 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1012 * mark_inode_dirty_sync.
1013 *
1014 * Put the inode on the super block's dirty list.
1015 *
1016 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1017 * dirty list only if it is hashed or if it refers to a blockdev.
1018 * If it was not hashed, it will never be added to the dirty list
1019 * even if it is later hashed, as it will have been marked dirty already.
1020 *
1021 * In short, make sure you hash any inodes _before_ you start marking
1022 * them dirty.
1023 *
1024 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1025 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1026 * the kernel-internal blockdev inode represents the dirtying time of the
1027 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1028 * page->mapping->host, so the page-dirtying time is recorded in the internal
1029 * blockdev inode.
1030 */
1031 void __mark_inode_dirty(struct inode *inode, int flags)
1032 {
1033 struct super_block *sb = inode->i_sb;
1034 struct backing_dev_info *bdi = NULL;
1035
1036 /*
1037 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1038 * dirty the inode itself
1039 */
1040 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1041 if (sb->s_op->dirty_inode)
1042 sb->s_op->dirty_inode(inode, flags);
1043 }
1044
1045 /*
1046 * make sure that changes are seen by all cpus before we test i_state
1047 * -- mikulas
1048 */
1049 smp_mb();
1050
1051 /* avoid the locking if we can */
1052 if ((inode->i_state & flags) == flags)
1053 return;
1054
1055 if (unlikely(block_dump))
1056 block_dump___mark_inode_dirty(inode);
1057
1058 spin_lock(&inode->i_lock);
1059 if ((inode->i_state & flags) != flags) {
1060 const int was_dirty = inode->i_state & I_DIRTY;
1061
1062 inode->i_state |= flags;
1063
1064 /*
1065 * If the inode is being synced, just update its dirty state.
1066 * The unlocker will place the inode on the appropriate
1067 * superblock list, based upon its state.
1068 */
1069 if (inode->i_state & I_SYNC)
1070 goto out_unlock_inode;
1071
1072 /*
1073 * Only add valid (hashed) inodes to the superblock's
1074 * dirty list. Add blockdev inodes as well.
1075 */
1076 if (!S_ISBLK(inode->i_mode)) {
1077 if (inode_unhashed(inode))
1078 goto out_unlock_inode;
1079 }
1080 if (inode->i_state & I_FREEING)
1081 goto out_unlock_inode;
1082
1083 /*
1084 * If the inode was already on b_dirty/b_io/b_more_io, don't
1085 * reposition it (that would break b_dirty time-ordering).
1086 */
1087 if (!was_dirty) {
1088 bool wakeup_bdi = false;
1089 bdi = inode_to_bdi(inode);
1090
1091 if (bdi_cap_writeback_dirty(bdi)) {
1092 WARN(!test_bit(BDI_registered, &bdi->state),
1093 "bdi-%s not registered\n", bdi->name);
1094
1095 /*
1096 * If this is the first dirty inode for this
1097 * bdi, we have to wake-up the corresponding
1098 * bdi thread to make sure background
1099 * write-back happens later.
1100 */
1101 if (!wb_has_dirty_io(&bdi->wb))
1102 wakeup_bdi = true;
1103 }
1104
1105 spin_unlock(&inode->i_lock);
1106 spin_lock(&bdi->wb.list_lock);
1107 inode->dirtied_when = jiffies;
1108 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1109 spin_unlock(&bdi->wb.list_lock);
1110
1111 if (wakeup_bdi)
1112 bdi_wakeup_thread_delayed(bdi);
1113 return;
1114 }
1115 }
1116 out_unlock_inode:
1117 spin_unlock(&inode->i_lock);
1118
1119 }
1120 EXPORT_SYMBOL(__mark_inode_dirty);
1121
1122 /*
1123 * Write out a superblock's list of dirty inodes. A wait will be performed
1124 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1125 *
1126 * If older_than_this is non-NULL, then only write out inodes which
1127 * had their first dirtying at a time earlier than *older_than_this.
1128 *
1129 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1130 * This function assumes that the blockdev superblock's inodes are backed by
1131 * a variety of queues, so all inodes are searched. For other superblocks,
1132 * assume that all inodes are backed by the same queue.
1133 *
1134 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1135 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1136 * on the writer throttling path, and we get decent balancing between many
1137 * throttled threads: we don't want them all piling up on inode_sync_wait.
1138 */
1139 static void wait_sb_inodes(struct super_block *sb)
1140 {
1141 struct inode *inode, *old_inode = NULL;
1142
1143 /*
1144 * We need to be protected against the filesystem going from
1145 * r/o to r/w or vice versa.
1146 */
1147 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1148
1149 spin_lock(&inode_sb_list_lock);
1150
1151 /*
1152 * Data integrity sync. Must wait for all pages under writeback,
1153 * because there may have been pages dirtied before our sync
1154 * call, but which had writeout started before we write it out.
1155 * In which case, the inode may not be on the dirty list, but
1156 * we still have to wait for that writeout.
1157 */
1158 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1159 struct address_space *mapping = inode->i_mapping;
1160
1161 spin_lock(&inode->i_lock);
1162 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1163 (mapping->nrpages == 0)) {
1164 spin_unlock(&inode->i_lock);
1165 continue;
1166 }
1167 __iget(inode);
1168 spin_unlock(&inode->i_lock);
1169 spin_unlock(&inode_sb_list_lock);
1170
1171 /*
1172 * We hold a reference to 'inode' so it couldn't have been
1173 * removed from s_inodes list while we dropped the
1174 * inode_sb_list_lock. We cannot iput the inode now as we can
1175 * be holding the last reference and we cannot iput it under
1176 * inode_sb_list_lock. So we keep the reference and iput it
1177 * later.
1178 */
1179 iput(old_inode);
1180 old_inode = inode;
1181
1182 filemap_fdatawait(mapping);
1183
1184 cond_resched();
1185
1186 spin_lock(&inode_sb_list_lock);
1187 }
1188 spin_unlock(&inode_sb_list_lock);
1189 iput(old_inode);
1190 }
1191
1192 /**
1193 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1194 * @sb: the superblock
1195 * @nr: the number of pages to write
1196 *
1197 * Start writeback on some inodes on this super_block. No guarantees are made
1198 * on how many (if any) will be written, and this function does not wait
1199 * for IO completion of submitted IO.
1200 */
1201 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1202 {
1203 DECLARE_COMPLETION_ONSTACK(done);
1204 struct wb_writeback_work work = {
1205 .sb = sb,
1206 .sync_mode = WB_SYNC_NONE,
1207 .tagged_writepages = 1,
1208 .done = &done,
1209 .nr_pages = nr,
1210 };
1211
1212 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1213 bdi_queue_work(sb->s_bdi, &work);
1214 wait_for_completion(&done);
1215 }
1216 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1217
1218 /**
1219 * writeback_inodes_sb - writeback dirty inodes from given super_block
1220 * @sb: the superblock
1221 *
1222 * Start writeback on some inodes on this super_block. No guarantees are made
1223 * on how many (if any) will be written, and this function does not wait
1224 * for IO completion of submitted IO.
1225 */
1226 void writeback_inodes_sb(struct super_block *sb)
1227 {
1228 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1229 }
1230 EXPORT_SYMBOL(writeback_inodes_sb);
1231
1232 /**
1233 * writeback_inodes_sb_if_idle - start writeback if none underway
1234 * @sb: the superblock
1235 *
1236 * Invoke writeback_inodes_sb if no writeback is currently underway.
1237 * Returns 1 if writeback was started, 0 if not.
1238 */
1239 int writeback_inodes_sb_if_idle(struct super_block *sb)
1240 {
1241 if (!writeback_in_progress(sb->s_bdi)) {
1242 down_read(&sb->s_umount);
1243 writeback_inodes_sb(sb);
1244 up_read(&sb->s_umount);
1245 return 1;
1246 } else
1247 return 0;
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1250
1251 /**
1252 * writeback_inodes_sb_if_idle - start writeback if none underway
1253 * @sb: the superblock
1254 * @nr: the number of pages to write
1255 *
1256 * Invoke writeback_inodes_sb if no writeback is currently underway.
1257 * Returns 1 if writeback was started, 0 if not.
1258 */
1259 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1260 unsigned long nr)
1261 {
1262 if (!writeback_in_progress(sb->s_bdi)) {
1263 down_read(&sb->s_umount);
1264 writeback_inodes_sb_nr(sb, nr);
1265 up_read(&sb->s_umount);
1266 return 1;
1267 } else
1268 return 0;
1269 }
1270 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1271
1272 /**
1273 * sync_inodes_sb - sync sb inode pages
1274 * @sb: the superblock
1275 *
1276 * This function writes and waits on any dirty inode belonging to this
1277 * super_block.
1278 */
1279 void sync_inodes_sb(struct super_block *sb)
1280 {
1281 DECLARE_COMPLETION_ONSTACK(done);
1282 struct wb_writeback_work work = {
1283 .sb = sb,
1284 .sync_mode = WB_SYNC_ALL,
1285 .nr_pages = LONG_MAX,
1286 .range_cyclic = 0,
1287 .done = &done,
1288 };
1289
1290 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1291
1292 bdi_queue_work(sb->s_bdi, &work);
1293 wait_for_completion(&done);
1294
1295 wait_sb_inodes(sb);
1296 }
1297 EXPORT_SYMBOL(sync_inodes_sb);
1298
1299 /**
1300 * write_inode_now - write an inode to disk
1301 * @inode: inode to write to disk
1302 * @sync: whether the write should be synchronous or not
1303 *
1304 * This function commits an inode to disk immediately if it is dirty. This is
1305 * primarily needed by knfsd.
1306 *
1307 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1308 */
1309 int write_inode_now(struct inode *inode, int sync)
1310 {
1311 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1312 int ret;
1313 struct writeback_control wbc = {
1314 .nr_to_write = LONG_MAX,
1315 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1316 .range_start = 0,
1317 .range_end = LLONG_MAX,
1318 };
1319
1320 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1321 wbc.nr_to_write = 0;
1322
1323 might_sleep();
1324 spin_lock(&wb->list_lock);
1325 spin_lock(&inode->i_lock);
1326 ret = writeback_single_inode(inode, wb, &wbc);
1327 spin_unlock(&inode->i_lock);
1328 spin_unlock(&wb->list_lock);
1329 if (sync)
1330 inode_sync_wait(inode);
1331 return ret;
1332 }
1333 EXPORT_SYMBOL(write_inode_now);
1334
1335 /**
1336 * sync_inode - write an inode and its pages to disk.
1337 * @inode: the inode to sync
1338 * @wbc: controls the writeback mode
1339 *
1340 * sync_inode() will write an inode and its pages to disk. It will also
1341 * correctly update the inode on its superblock's dirty inode lists and will
1342 * update inode->i_state.
1343 *
1344 * The caller must have a ref on the inode.
1345 */
1346 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1347 {
1348 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1349 int ret;
1350
1351 spin_lock(&wb->list_lock);
1352 spin_lock(&inode->i_lock);
1353 ret = writeback_single_inode(inode, wb, wbc);
1354 spin_unlock(&inode->i_lock);
1355 spin_unlock(&wb->list_lock);
1356 return ret;
1357 }
1358 EXPORT_SYMBOL(sync_inode);
1359
1360 /**
1361 * sync_inode_metadata - write an inode to disk
1362 * @inode: the inode to sync
1363 * @wait: wait for I/O to complete.
1364 *
1365 * Write an inode to disk and adjust its dirty state after completion.
1366 *
1367 * Note: only writes the actual inode, no associated data or other metadata.
1368 */
1369 int sync_inode_metadata(struct inode *inode, int wait)
1370 {
1371 struct writeback_control wbc = {
1372 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1373 .nr_to_write = 0, /* metadata-only */
1374 };
1375
1376 return sync_inode(inode, &wbc);
1377 }
1378 EXPORT_SYMBOL(sync_inode_metadata);