]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
Merge branch 'akpm' (patches from Andrew)
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
50 enum wb_reason reason; /* why was writeback initiated? */
51
52 struct list_head list; /* pending work list */
53 struct completion *done; /* set if the caller waits */
54 };
55
56 /**
57 * writeback_in_progress - determine whether there is writeback in progress
58 * @bdi: the device's backing_dev_info structure.
59 *
60 * Determine whether there is writeback waiting to be handled against a
61 * backing device.
62 */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68
69 struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 struct super_block *sb;
72
73 if (!inode)
74 return &noop_backing_dev_info;
75
76 sb = inode->i_sb;
77 #ifdef CONFIG_BLOCK
78 if (sb_is_blkdev_sb(sb))
79 return blk_get_backing_dev_info(I_BDEV(inode));
80 #endif
81 return sb->s_bdi;
82 }
83 EXPORT_SYMBOL_GPL(inode_to_bdi);
84
85 static inline struct inode *wb_inode(struct list_head *head)
86 {
87 return list_entry(head, struct inode, i_wb_list);
88 }
89
90 /*
91 * Include the creation of the trace points after defining the
92 * wb_writeback_work structure and inline functions so that the definition
93 * remains local to this file.
94 */
95 #define CREATE_TRACE_POINTS
96 #include <trace/events/writeback.h>
97
98 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
99
100 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
101 {
102 spin_lock_bh(&bdi->wb_lock);
103 if (test_bit(BDI_registered, &bdi->state))
104 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
105 spin_unlock_bh(&bdi->wb_lock);
106 }
107
108 static void bdi_queue_work(struct backing_dev_info *bdi,
109 struct wb_writeback_work *work)
110 {
111 trace_writeback_queue(bdi, work);
112
113 spin_lock_bh(&bdi->wb_lock);
114 if (!test_bit(BDI_registered, &bdi->state)) {
115 if (work->done)
116 complete(work->done);
117 goto out_unlock;
118 }
119 list_add_tail(&work->list, &bdi->work_list);
120 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
121 out_unlock:
122 spin_unlock_bh(&bdi->wb_lock);
123 }
124
125 static void
126 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
127 bool range_cyclic, enum wb_reason reason)
128 {
129 struct wb_writeback_work *work;
130
131 /*
132 * This is WB_SYNC_NONE writeback, so if allocation fails just
133 * wakeup the thread for old dirty data writeback
134 */
135 work = kzalloc(sizeof(*work), GFP_ATOMIC);
136 if (!work) {
137 trace_writeback_nowork(bdi);
138 bdi_wakeup_thread(bdi);
139 return;
140 }
141
142 work->sync_mode = WB_SYNC_NONE;
143 work->nr_pages = nr_pages;
144 work->range_cyclic = range_cyclic;
145 work->reason = reason;
146
147 bdi_queue_work(bdi, work);
148 }
149
150 /**
151 * bdi_start_writeback - start writeback
152 * @bdi: the backing device to write from
153 * @nr_pages: the number of pages to write
154 * @reason: reason why some writeback work was initiated
155 *
156 * Description:
157 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
158 * started when this function returns, we make no guarantees on
159 * completion. Caller need not hold sb s_umount semaphore.
160 *
161 */
162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
163 enum wb_reason reason)
164 {
165 __bdi_start_writeback(bdi, nr_pages, true, reason);
166 }
167
168 /**
169 * bdi_start_background_writeback - start background writeback
170 * @bdi: the backing device to write from
171 *
172 * Description:
173 * This makes sure WB_SYNC_NONE background writeback happens. When
174 * this function returns, it is only guaranteed that for given BDI
175 * some IO is happening if we are over background dirty threshold.
176 * Caller need not hold sb s_umount semaphore.
177 */
178 void bdi_start_background_writeback(struct backing_dev_info *bdi)
179 {
180 /*
181 * We just wake up the flusher thread. It will perform background
182 * writeback as soon as there is no other work to do.
183 */
184 trace_writeback_wake_background(bdi);
185 bdi_wakeup_thread(bdi);
186 }
187
188 /*
189 * Remove the inode from the writeback list it is on.
190 */
191 void inode_wb_list_del(struct inode *inode)
192 {
193 struct backing_dev_info *bdi = inode_to_bdi(inode);
194
195 spin_lock(&bdi->wb.list_lock);
196 list_del_init(&inode->i_wb_list);
197 spin_unlock(&bdi->wb.list_lock);
198 }
199
200 /*
201 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
202 * furthest end of its superblock's dirty-inode list.
203 *
204 * Before stamping the inode's ->dirtied_when, we check to see whether it is
205 * already the most-recently-dirtied inode on the b_dirty list. If that is
206 * the case then the inode must have been redirtied while it was being written
207 * out and we don't reset its dirtied_when.
208 */
209 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
210 {
211 assert_spin_locked(&wb->list_lock);
212 if (!list_empty(&wb->b_dirty)) {
213 struct inode *tail;
214
215 tail = wb_inode(wb->b_dirty.next);
216 if (time_before(inode->dirtied_when, tail->dirtied_when))
217 inode->dirtied_when = jiffies;
218 }
219 list_move(&inode->i_wb_list, &wb->b_dirty);
220 }
221
222 /*
223 * requeue inode for re-scanning after bdi->b_io list is exhausted.
224 */
225 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
226 {
227 assert_spin_locked(&wb->list_lock);
228 list_move(&inode->i_wb_list, &wb->b_more_io);
229 }
230
231 static void inode_sync_complete(struct inode *inode)
232 {
233 inode->i_state &= ~I_SYNC;
234 /* If inode is clean an unused, put it into LRU now... */
235 inode_add_lru(inode);
236 /* Waiters must see I_SYNC cleared before being woken up */
237 smp_mb();
238 wake_up_bit(&inode->i_state, __I_SYNC);
239 }
240
241 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
242 {
243 bool ret = time_after(inode->dirtied_when, t);
244 #ifndef CONFIG_64BIT
245 /*
246 * For inodes being constantly redirtied, dirtied_when can get stuck.
247 * It _appears_ to be in the future, but is actually in distant past.
248 * This test is necessary to prevent such wrapped-around relative times
249 * from permanently stopping the whole bdi writeback.
250 */
251 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
252 #endif
253 return ret;
254 }
255
256 /*
257 * Move expired (dirtied before work->older_than_this) dirty inodes from
258 * @delaying_queue to @dispatch_queue.
259 */
260 static int move_expired_inodes(struct list_head *delaying_queue,
261 struct list_head *dispatch_queue,
262 struct wb_writeback_work *work)
263 {
264 LIST_HEAD(tmp);
265 struct list_head *pos, *node;
266 struct super_block *sb = NULL;
267 struct inode *inode;
268 int do_sb_sort = 0;
269 int moved = 0;
270
271 while (!list_empty(delaying_queue)) {
272 inode = wb_inode(delaying_queue->prev);
273 if (work->older_than_this &&
274 inode_dirtied_after(inode, *work->older_than_this))
275 break;
276 list_move(&inode->i_wb_list, &tmp);
277 moved++;
278 if (sb_is_blkdev_sb(inode->i_sb))
279 continue;
280 if (sb && sb != inode->i_sb)
281 do_sb_sort = 1;
282 sb = inode->i_sb;
283 }
284
285 /* just one sb in list, splice to dispatch_queue and we're done */
286 if (!do_sb_sort) {
287 list_splice(&tmp, dispatch_queue);
288 goto out;
289 }
290
291 /* Move inodes from one superblock together */
292 while (!list_empty(&tmp)) {
293 sb = wb_inode(tmp.prev)->i_sb;
294 list_for_each_prev_safe(pos, node, &tmp) {
295 inode = wb_inode(pos);
296 if (inode->i_sb == sb)
297 list_move(&inode->i_wb_list, dispatch_queue);
298 }
299 }
300 out:
301 return moved;
302 }
303
304 /*
305 * Queue all expired dirty inodes for io, eldest first.
306 * Before
307 * newly dirtied b_dirty b_io b_more_io
308 * =============> gf edc BA
309 * After
310 * newly dirtied b_dirty b_io b_more_io
311 * =============> g fBAedc
312 * |
313 * +--> dequeue for IO
314 */
315 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
316 {
317 int moved;
318 assert_spin_locked(&wb->list_lock);
319 list_splice_init(&wb->b_more_io, &wb->b_io);
320 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
321 trace_writeback_queue_io(wb, work, moved);
322 }
323
324 static int write_inode(struct inode *inode, struct writeback_control *wbc)
325 {
326 int ret;
327
328 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
329 trace_writeback_write_inode_start(inode, wbc);
330 ret = inode->i_sb->s_op->write_inode(inode, wbc);
331 trace_writeback_write_inode(inode, wbc);
332 return ret;
333 }
334 return 0;
335 }
336
337 /*
338 * Wait for writeback on an inode to complete. Called with i_lock held.
339 * Caller must make sure inode cannot go away when we drop i_lock.
340 */
341 static void __inode_wait_for_writeback(struct inode *inode)
342 __releases(inode->i_lock)
343 __acquires(inode->i_lock)
344 {
345 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
346 wait_queue_head_t *wqh;
347
348 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
349 while (inode->i_state & I_SYNC) {
350 spin_unlock(&inode->i_lock);
351 __wait_on_bit(wqh, &wq, bit_wait,
352 TASK_UNINTERRUPTIBLE);
353 spin_lock(&inode->i_lock);
354 }
355 }
356
357 /*
358 * Wait for writeback on an inode to complete. Caller must have inode pinned.
359 */
360 void inode_wait_for_writeback(struct inode *inode)
361 {
362 spin_lock(&inode->i_lock);
363 __inode_wait_for_writeback(inode);
364 spin_unlock(&inode->i_lock);
365 }
366
367 /*
368 * Sleep until I_SYNC is cleared. This function must be called with i_lock
369 * held and drops it. It is aimed for callers not holding any inode reference
370 * so once i_lock is dropped, inode can go away.
371 */
372 static void inode_sleep_on_writeback(struct inode *inode)
373 __releases(inode->i_lock)
374 {
375 DEFINE_WAIT(wait);
376 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
377 int sleep;
378
379 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
380 sleep = inode->i_state & I_SYNC;
381 spin_unlock(&inode->i_lock);
382 if (sleep)
383 schedule();
384 finish_wait(wqh, &wait);
385 }
386
387 /*
388 * Find proper writeback list for the inode depending on its current state and
389 * possibly also change of its state while we were doing writeback. Here we
390 * handle things such as livelock prevention or fairness of writeback among
391 * inodes. This function can be called only by flusher thread - noone else
392 * processes all inodes in writeback lists and requeueing inodes behind flusher
393 * thread's back can have unexpected consequences.
394 */
395 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
396 struct writeback_control *wbc)
397 {
398 if (inode->i_state & I_FREEING)
399 return;
400
401 /*
402 * Sync livelock prevention. Each inode is tagged and synced in one
403 * shot. If still dirty, it will be redirty_tail()'ed below. Update
404 * the dirty time to prevent enqueue and sync it again.
405 */
406 if ((inode->i_state & I_DIRTY) &&
407 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
408 inode->dirtied_when = jiffies;
409
410 if (wbc->pages_skipped) {
411 /*
412 * writeback is not making progress due to locked
413 * buffers. Skip this inode for now.
414 */
415 redirty_tail(inode, wb);
416 return;
417 }
418
419 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
420 /*
421 * We didn't write back all the pages. nfs_writepages()
422 * sometimes bales out without doing anything.
423 */
424 if (wbc->nr_to_write <= 0) {
425 /* Slice used up. Queue for next turn. */
426 requeue_io(inode, wb);
427 } else {
428 /*
429 * Writeback blocked by something other than
430 * congestion. Delay the inode for some time to
431 * avoid spinning on the CPU (100% iowait)
432 * retrying writeback of the dirty page/inode
433 * that cannot be performed immediately.
434 */
435 redirty_tail(inode, wb);
436 }
437 } else if (inode->i_state & I_DIRTY) {
438 /*
439 * Filesystems can dirty the inode during writeback operations,
440 * such as delayed allocation during submission or metadata
441 * updates after data IO completion.
442 */
443 redirty_tail(inode, wb);
444 } else {
445 /* The inode is clean. Remove from writeback lists. */
446 list_del_init(&inode->i_wb_list);
447 }
448 }
449
450 /*
451 * Write out an inode and its dirty pages. Do not update the writeback list
452 * linkage. That is left to the caller. The caller is also responsible for
453 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
454 */
455 static int
456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
457 {
458 struct address_space *mapping = inode->i_mapping;
459 long nr_to_write = wbc->nr_to_write;
460 unsigned dirty;
461 int ret;
462
463 WARN_ON(!(inode->i_state & I_SYNC));
464
465 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
466
467 ret = do_writepages(mapping, wbc);
468
469 /*
470 * Make sure to wait on the data before writing out the metadata.
471 * This is important for filesystems that modify metadata on data
472 * I/O completion. We don't do it for sync(2) writeback because it has a
473 * separate, external IO completion path and ->sync_fs for guaranteeing
474 * inode metadata is written back correctly.
475 */
476 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
477 int err = filemap_fdatawait(mapping);
478 if (ret == 0)
479 ret = err;
480 }
481
482 /*
483 * Some filesystems may redirty the inode during the writeback
484 * due to delalloc, clear dirty metadata flags right before
485 * write_inode()
486 */
487 spin_lock(&inode->i_lock);
488
489 dirty = inode->i_state & I_DIRTY;
490 inode->i_state &= ~I_DIRTY;
491
492 /*
493 * Paired with smp_mb() in __mark_inode_dirty(). This allows
494 * __mark_inode_dirty() to test i_state without grabbing i_lock -
495 * either they see the I_DIRTY bits cleared or we see the dirtied
496 * inode.
497 *
498 * I_DIRTY_PAGES is always cleared together above even if @mapping
499 * still has dirty pages. The flag is reinstated after smp_mb() if
500 * necessary. This guarantees that either __mark_inode_dirty()
501 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
502 */
503 smp_mb();
504
505 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
506 inode->i_state |= I_DIRTY_PAGES;
507
508 spin_unlock(&inode->i_lock);
509
510 /* Don't write the inode if only I_DIRTY_PAGES was set */
511 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
512 int err = write_inode(inode, wbc);
513 if (ret == 0)
514 ret = err;
515 }
516 trace_writeback_single_inode(inode, wbc, nr_to_write);
517 return ret;
518 }
519
520 /*
521 * Write out an inode's dirty pages. Either the caller has an active reference
522 * on the inode or the inode has I_WILL_FREE set.
523 *
524 * This function is designed to be called for writing back one inode which
525 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
526 * and does more profound writeback list handling in writeback_sb_inodes().
527 */
528 static int
529 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
530 struct writeback_control *wbc)
531 {
532 int ret = 0;
533
534 spin_lock(&inode->i_lock);
535 if (!atomic_read(&inode->i_count))
536 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
537 else
538 WARN_ON(inode->i_state & I_WILL_FREE);
539
540 if (inode->i_state & I_SYNC) {
541 if (wbc->sync_mode != WB_SYNC_ALL)
542 goto out;
543 /*
544 * It's a data-integrity sync. We must wait. Since callers hold
545 * inode reference or inode has I_WILL_FREE set, it cannot go
546 * away under us.
547 */
548 __inode_wait_for_writeback(inode);
549 }
550 WARN_ON(inode->i_state & I_SYNC);
551 /*
552 * Skip inode if it is clean and we have no outstanding writeback in
553 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
554 * function since flusher thread may be doing for example sync in
555 * parallel and if we move the inode, it could get skipped. So here we
556 * make sure inode is on some writeback list and leave it there unless
557 * we have completely cleaned the inode.
558 */
559 if (!(inode->i_state & I_DIRTY) &&
560 (wbc->sync_mode != WB_SYNC_ALL ||
561 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
562 goto out;
563 inode->i_state |= I_SYNC;
564 spin_unlock(&inode->i_lock);
565
566 ret = __writeback_single_inode(inode, wbc);
567
568 spin_lock(&wb->list_lock);
569 spin_lock(&inode->i_lock);
570 /*
571 * If inode is clean, remove it from writeback lists. Otherwise don't
572 * touch it. See comment above for explanation.
573 */
574 if (!(inode->i_state & I_DIRTY))
575 list_del_init(&inode->i_wb_list);
576 spin_unlock(&wb->list_lock);
577 inode_sync_complete(inode);
578 out:
579 spin_unlock(&inode->i_lock);
580 return ret;
581 }
582
583 static long writeback_chunk_size(struct backing_dev_info *bdi,
584 struct wb_writeback_work *work)
585 {
586 long pages;
587
588 /*
589 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
590 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
591 * here avoids calling into writeback_inodes_wb() more than once.
592 *
593 * The intended call sequence for WB_SYNC_ALL writeback is:
594 *
595 * wb_writeback()
596 * writeback_sb_inodes() <== called only once
597 * write_cache_pages() <== called once for each inode
598 * (quickly) tag currently dirty pages
599 * (maybe slowly) sync all tagged pages
600 */
601 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
602 pages = LONG_MAX;
603 else {
604 pages = min(bdi->avg_write_bandwidth / 2,
605 global_dirty_limit / DIRTY_SCOPE);
606 pages = min(pages, work->nr_pages);
607 pages = round_down(pages + MIN_WRITEBACK_PAGES,
608 MIN_WRITEBACK_PAGES);
609 }
610
611 return pages;
612 }
613
614 /*
615 * Write a portion of b_io inodes which belong to @sb.
616 *
617 * Return the number of pages and/or inodes written.
618 */
619 static long writeback_sb_inodes(struct super_block *sb,
620 struct bdi_writeback *wb,
621 struct wb_writeback_work *work)
622 {
623 struct writeback_control wbc = {
624 .sync_mode = work->sync_mode,
625 .tagged_writepages = work->tagged_writepages,
626 .for_kupdate = work->for_kupdate,
627 .for_background = work->for_background,
628 .for_sync = work->for_sync,
629 .range_cyclic = work->range_cyclic,
630 .range_start = 0,
631 .range_end = LLONG_MAX,
632 };
633 unsigned long start_time = jiffies;
634 long write_chunk;
635 long wrote = 0; /* count both pages and inodes */
636
637 while (!list_empty(&wb->b_io)) {
638 struct inode *inode = wb_inode(wb->b_io.prev);
639
640 if (inode->i_sb != sb) {
641 if (work->sb) {
642 /*
643 * We only want to write back data for this
644 * superblock, move all inodes not belonging
645 * to it back onto the dirty list.
646 */
647 redirty_tail(inode, wb);
648 continue;
649 }
650
651 /*
652 * The inode belongs to a different superblock.
653 * Bounce back to the caller to unpin this and
654 * pin the next superblock.
655 */
656 break;
657 }
658
659 /*
660 * Don't bother with new inodes or inodes being freed, first
661 * kind does not need periodic writeout yet, and for the latter
662 * kind writeout is handled by the freer.
663 */
664 spin_lock(&inode->i_lock);
665 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
666 spin_unlock(&inode->i_lock);
667 redirty_tail(inode, wb);
668 continue;
669 }
670 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
671 /*
672 * If this inode is locked for writeback and we are not
673 * doing writeback-for-data-integrity, move it to
674 * b_more_io so that writeback can proceed with the
675 * other inodes on s_io.
676 *
677 * We'll have another go at writing back this inode
678 * when we completed a full scan of b_io.
679 */
680 spin_unlock(&inode->i_lock);
681 requeue_io(inode, wb);
682 trace_writeback_sb_inodes_requeue(inode);
683 continue;
684 }
685 spin_unlock(&wb->list_lock);
686
687 /*
688 * We already requeued the inode if it had I_SYNC set and we
689 * are doing WB_SYNC_NONE writeback. So this catches only the
690 * WB_SYNC_ALL case.
691 */
692 if (inode->i_state & I_SYNC) {
693 /* Wait for I_SYNC. This function drops i_lock... */
694 inode_sleep_on_writeback(inode);
695 /* Inode may be gone, start again */
696 spin_lock(&wb->list_lock);
697 continue;
698 }
699 inode->i_state |= I_SYNC;
700 spin_unlock(&inode->i_lock);
701
702 write_chunk = writeback_chunk_size(wb->bdi, work);
703 wbc.nr_to_write = write_chunk;
704 wbc.pages_skipped = 0;
705
706 /*
707 * We use I_SYNC to pin the inode in memory. While it is set
708 * evict_inode() will wait so the inode cannot be freed.
709 */
710 __writeback_single_inode(inode, &wbc);
711
712 work->nr_pages -= write_chunk - wbc.nr_to_write;
713 wrote += write_chunk - wbc.nr_to_write;
714 spin_lock(&wb->list_lock);
715 spin_lock(&inode->i_lock);
716 if (!(inode->i_state & I_DIRTY))
717 wrote++;
718 requeue_inode(inode, wb, &wbc);
719 inode_sync_complete(inode);
720 spin_unlock(&inode->i_lock);
721 cond_resched_lock(&wb->list_lock);
722 /*
723 * bail out to wb_writeback() often enough to check
724 * background threshold and other termination conditions.
725 */
726 if (wrote) {
727 if (time_is_before_jiffies(start_time + HZ / 10UL))
728 break;
729 if (work->nr_pages <= 0)
730 break;
731 }
732 }
733 return wrote;
734 }
735
736 static long __writeback_inodes_wb(struct bdi_writeback *wb,
737 struct wb_writeback_work *work)
738 {
739 unsigned long start_time = jiffies;
740 long wrote = 0;
741
742 while (!list_empty(&wb->b_io)) {
743 struct inode *inode = wb_inode(wb->b_io.prev);
744 struct super_block *sb = inode->i_sb;
745
746 if (!grab_super_passive(sb)) {
747 /*
748 * grab_super_passive() may fail consistently due to
749 * s_umount being grabbed by someone else. Don't use
750 * requeue_io() to avoid busy retrying the inode/sb.
751 */
752 redirty_tail(inode, wb);
753 continue;
754 }
755 wrote += writeback_sb_inodes(sb, wb, work);
756 drop_super(sb);
757
758 /* refer to the same tests at the end of writeback_sb_inodes */
759 if (wrote) {
760 if (time_is_before_jiffies(start_time + HZ / 10UL))
761 break;
762 if (work->nr_pages <= 0)
763 break;
764 }
765 }
766 /* Leave any unwritten inodes on b_io */
767 return wrote;
768 }
769
770 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
771 enum wb_reason reason)
772 {
773 struct wb_writeback_work work = {
774 .nr_pages = nr_pages,
775 .sync_mode = WB_SYNC_NONE,
776 .range_cyclic = 1,
777 .reason = reason,
778 };
779
780 spin_lock(&wb->list_lock);
781 if (list_empty(&wb->b_io))
782 queue_io(wb, &work);
783 __writeback_inodes_wb(wb, &work);
784 spin_unlock(&wb->list_lock);
785
786 return nr_pages - work.nr_pages;
787 }
788
789 static bool over_bground_thresh(struct backing_dev_info *bdi)
790 {
791 unsigned long background_thresh, dirty_thresh;
792
793 global_dirty_limits(&background_thresh, &dirty_thresh);
794
795 if (global_page_state(NR_FILE_DIRTY) +
796 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
797 return true;
798
799 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
800 bdi_dirty_limit(bdi, background_thresh))
801 return true;
802
803 return false;
804 }
805
806 /*
807 * Called under wb->list_lock. If there are multiple wb per bdi,
808 * only the flusher working on the first wb should do it.
809 */
810 static void wb_update_bandwidth(struct bdi_writeback *wb,
811 unsigned long start_time)
812 {
813 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
814 }
815
816 /*
817 * Explicit flushing or periodic writeback of "old" data.
818 *
819 * Define "old": the first time one of an inode's pages is dirtied, we mark the
820 * dirtying-time in the inode's address_space. So this periodic writeback code
821 * just walks the superblock inode list, writing back any inodes which are
822 * older than a specific point in time.
823 *
824 * Try to run once per dirty_writeback_interval. But if a writeback event
825 * takes longer than a dirty_writeback_interval interval, then leave a
826 * one-second gap.
827 *
828 * older_than_this takes precedence over nr_to_write. So we'll only write back
829 * all dirty pages if they are all attached to "old" mappings.
830 */
831 static long wb_writeback(struct bdi_writeback *wb,
832 struct wb_writeback_work *work)
833 {
834 unsigned long wb_start = jiffies;
835 long nr_pages = work->nr_pages;
836 unsigned long oldest_jif;
837 struct inode *inode;
838 long progress;
839
840 oldest_jif = jiffies;
841 work->older_than_this = &oldest_jif;
842
843 spin_lock(&wb->list_lock);
844 for (;;) {
845 /*
846 * Stop writeback when nr_pages has been consumed
847 */
848 if (work->nr_pages <= 0)
849 break;
850
851 /*
852 * Background writeout and kupdate-style writeback may
853 * run forever. Stop them if there is other work to do
854 * so that e.g. sync can proceed. They'll be restarted
855 * after the other works are all done.
856 */
857 if ((work->for_background || work->for_kupdate) &&
858 !list_empty(&wb->bdi->work_list))
859 break;
860
861 /*
862 * For background writeout, stop when we are below the
863 * background dirty threshold
864 */
865 if (work->for_background && !over_bground_thresh(wb->bdi))
866 break;
867
868 /*
869 * Kupdate and background works are special and we want to
870 * include all inodes that need writing. Livelock avoidance is
871 * handled by these works yielding to any other work so we are
872 * safe.
873 */
874 if (work->for_kupdate) {
875 oldest_jif = jiffies -
876 msecs_to_jiffies(dirty_expire_interval * 10);
877 } else if (work->for_background)
878 oldest_jif = jiffies;
879
880 trace_writeback_start(wb->bdi, work);
881 if (list_empty(&wb->b_io))
882 queue_io(wb, work);
883 if (work->sb)
884 progress = writeback_sb_inodes(work->sb, wb, work);
885 else
886 progress = __writeback_inodes_wb(wb, work);
887 trace_writeback_written(wb->bdi, work);
888
889 wb_update_bandwidth(wb, wb_start);
890
891 /*
892 * Did we write something? Try for more
893 *
894 * Dirty inodes are moved to b_io for writeback in batches.
895 * The completion of the current batch does not necessarily
896 * mean the overall work is done. So we keep looping as long
897 * as made some progress on cleaning pages or inodes.
898 */
899 if (progress)
900 continue;
901 /*
902 * No more inodes for IO, bail
903 */
904 if (list_empty(&wb->b_more_io))
905 break;
906 /*
907 * Nothing written. Wait for some inode to
908 * become available for writeback. Otherwise
909 * we'll just busyloop.
910 */
911 if (!list_empty(&wb->b_more_io)) {
912 trace_writeback_wait(wb->bdi, work);
913 inode = wb_inode(wb->b_more_io.prev);
914 spin_lock(&inode->i_lock);
915 spin_unlock(&wb->list_lock);
916 /* This function drops i_lock... */
917 inode_sleep_on_writeback(inode);
918 spin_lock(&wb->list_lock);
919 }
920 }
921 spin_unlock(&wb->list_lock);
922
923 return nr_pages - work->nr_pages;
924 }
925
926 /*
927 * Return the next wb_writeback_work struct that hasn't been processed yet.
928 */
929 static struct wb_writeback_work *
930 get_next_work_item(struct backing_dev_info *bdi)
931 {
932 struct wb_writeback_work *work = NULL;
933
934 spin_lock_bh(&bdi->wb_lock);
935 if (!list_empty(&bdi->work_list)) {
936 work = list_entry(bdi->work_list.next,
937 struct wb_writeback_work, list);
938 list_del_init(&work->list);
939 }
940 spin_unlock_bh(&bdi->wb_lock);
941 return work;
942 }
943
944 /*
945 * Add in the number of potentially dirty inodes, because each inode
946 * write can dirty pagecache in the underlying blockdev.
947 */
948 static unsigned long get_nr_dirty_pages(void)
949 {
950 return global_page_state(NR_FILE_DIRTY) +
951 global_page_state(NR_UNSTABLE_NFS) +
952 get_nr_dirty_inodes();
953 }
954
955 static long wb_check_background_flush(struct bdi_writeback *wb)
956 {
957 if (over_bground_thresh(wb->bdi)) {
958
959 struct wb_writeback_work work = {
960 .nr_pages = LONG_MAX,
961 .sync_mode = WB_SYNC_NONE,
962 .for_background = 1,
963 .range_cyclic = 1,
964 .reason = WB_REASON_BACKGROUND,
965 };
966
967 return wb_writeback(wb, &work);
968 }
969
970 return 0;
971 }
972
973 static long wb_check_old_data_flush(struct bdi_writeback *wb)
974 {
975 unsigned long expired;
976 long nr_pages;
977
978 /*
979 * When set to zero, disable periodic writeback
980 */
981 if (!dirty_writeback_interval)
982 return 0;
983
984 expired = wb->last_old_flush +
985 msecs_to_jiffies(dirty_writeback_interval * 10);
986 if (time_before(jiffies, expired))
987 return 0;
988
989 wb->last_old_flush = jiffies;
990 nr_pages = get_nr_dirty_pages();
991
992 if (nr_pages) {
993 struct wb_writeback_work work = {
994 .nr_pages = nr_pages,
995 .sync_mode = WB_SYNC_NONE,
996 .for_kupdate = 1,
997 .range_cyclic = 1,
998 .reason = WB_REASON_PERIODIC,
999 };
1000
1001 return wb_writeback(wb, &work);
1002 }
1003
1004 return 0;
1005 }
1006
1007 /*
1008 * Retrieve work items and do the writeback they describe
1009 */
1010 static long wb_do_writeback(struct bdi_writeback *wb)
1011 {
1012 struct backing_dev_info *bdi = wb->bdi;
1013 struct wb_writeback_work *work;
1014 long wrote = 0;
1015
1016 set_bit(BDI_writeback_running, &wb->bdi->state);
1017 while ((work = get_next_work_item(bdi)) != NULL) {
1018
1019 trace_writeback_exec(bdi, work);
1020
1021 wrote += wb_writeback(wb, work);
1022
1023 /*
1024 * Notify the caller of completion if this is a synchronous
1025 * work item, otherwise just free it.
1026 */
1027 if (work->done)
1028 complete(work->done);
1029 else
1030 kfree(work);
1031 }
1032
1033 /*
1034 * Check for periodic writeback, kupdated() style
1035 */
1036 wrote += wb_check_old_data_flush(wb);
1037 wrote += wb_check_background_flush(wb);
1038 clear_bit(BDI_writeback_running, &wb->bdi->state);
1039
1040 return wrote;
1041 }
1042
1043 /*
1044 * Handle writeback of dirty data for the device backed by this bdi. Also
1045 * reschedules periodically and does kupdated style flushing.
1046 */
1047 void bdi_writeback_workfn(struct work_struct *work)
1048 {
1049 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1050 struct bdi_writeback, dwork);
1051 struct backing_dev_info *bdi = wb->bdi;
1052 long pages_written;
1053
1054 set_worker_desc("flush-%s", dev_name(bdi->dev));
1055 current->flags |= PF_SWAPWRITE;
1056
1057 if (likely(!current_is_workqueue_rescuer() ||
1058 !test_bit(BDI_registered, &bdi->state))) {
1059 /*
1060 * The normal path. Keep writing back @bdi until its
1061 * work_list is empty. Note that this path is also taken
1062 * if @bdi is shutting down even when we're running off the
1063 * rescuer as work_list needs to be drained.
1064 */
1065 do {
1066 pages_written = wb_do_writeback(wb);
1067 trace_writeback_pages_written(pages_written);
1068 } while (!list_empty(&bdi->work_list));
1069 } else {
1070 /*
1071 * bdi_wq can't get enough workers and we're running off
1072 * the emergency worker. Don't hog it. Hopefully, 1024 is
1073 * enough for efficient IO.
1074 */
1075 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1076 WB_REASON_FORKER_THREAD);
1077 trace_writeback_pages_written(pages_written);
1078 }
1079
1080 if (!list_empty(&bdi->work_list))
1081 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1082 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1083 bdi_wakeup_thread_delayed(bdi);
1084
1085 current->flags &= ~PF_SWAPWRITE;
1086 }
1087
1088 /*
1089 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1090 * the whole world.
1091 */
1092 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1093 {
1094 struct backing_dev_info *bdi;
1095
1096 if (!nr_pages)
1097 nr_pages = get_nr_dirty_pages();
1098
1099 rcu_read_lock();
1100 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1101 if (!bdi_has_dirty_io(bdi))
1102 continue;
1103 __bdi_start_writeback(bdi, nr_pages, false, reason);
1104 }
1105 rcu_read_unlock();
1106 }
1107
1108 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1109 {
1110 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1111 struct dentry *dentry;
1112 const char *name = "?";
1113
1114 dentry = d_find_alias(inode);
1115 if (dentry) {
1116 spin_lock(&dentry->d_lock);
1117 name = (const char *) dentry->d_name.name;
1118 }
1119 printk(KERN_DEBUG
1120 "%s(%d): dirtied inode %lu (%s) on %s\n",
1121 current->comm, task_pid_nr(current), inode->i_ino,
1122 name, inode->i_sb->s_id);
1123 if (dentry) {
1124 spin_unlock(&dentry->d_lock);
1125 dput(dentry);
1126 }
1127 }
1128 }
1129
1130 /**
1131 * __mark_inode_dirty - internal function
1132 * @inode: inode to mark
1133 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1134 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1135 * mark_inode_dirty_sync.
1136 *
1137 * Put the inode on the super block's dirty list.
1138 *
1139 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1140 * dirty list only if it is hashed or if it refers to a blockdev.
1141 * If it was not hashed, it will never be added to the dirty list
1142 * even if it is later hashed, as it will have been marked dirty already.
1143 *
1144 * In short, make sure you hash any inodes _before_ you start marking
1145 * them dirty.
1146 *
1147 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1148 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1149 * the kernel-internal blockdev inode represents the dirtying time of the
1150 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1151 * page->mapping->host, so the page-dirtying time is recorded in the internal
1152 * blockdev inode.
1153 */
1154 void __mark_inode_dirty(struct inode *inode, int flags)
1155 {
1156 struct super_block *sb = inode->i_sb;
1157 struct backing_dev_info *bdi = NULL;
1158
1159 /*
1160 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1161 * dirty the inode itself
1162 */
1163 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1164 trace_writeback_dirty_inode_start(inode, flags);
1165
1166 if (sb->s_op->dirty_inode)
1167 sb->s_op->dirty_inode(inode, flags);
1168
1169 trace_writeback_dirty_inode(inode, flags);
1170 }
1171
1172 /*
1173 * Paired with smp_mb() in __writeback_single_inode() for the
1174 * following lockless i_state test. See there for details.
1175 */
1176 smp_mb();
1177
1178 if ((inode->i_state & flags) == flags)
1179 return;
1180
1181 if (unlikely(block_dump))
1182 block_dump___mark_inode_dirty(inode);
1183
1184 spin_lock(&inode->i_lock);
1185 if ((inode->i_state & flags) != flags) {
1186 const int was_dirty = inode->i_state & I_DIRTY;
1187
1188 inode->i_state |= flags;
1189
1190 /*
1191 * If the inode is being synced, just update its dirty state.
1192 * The unlocker will place the inode on the appropriate
1193 * superblock list, based upon its state.
1194 */
1195 if (inode->i_state & I_SYNC)
1196 goto out_unlock_inode;
1197
1198 /*
1199 * Only add valid (hashed) inodes to the superblock's
1200 * dirty list. Add blockdev inodes as well.
1201 */
1202 if (!S_ISBLK(inode->i_mode)) {
1203 if (inode_unhashed(inode))
1204 goto out_unlock_inode;
1205 }
1206 if (inode->i_state & I_FREEING)
1207 goto out_unlock_inode;
1208
1209 /*
1210 * If the inode was already on b_dirty/b_io/b_more_io, don't
1211 * reposition it (that would break b_dirty time-ordering).
1212 */
1213 if (!was_dirty) {
1214 bool wakeup_bdi = false;
1215 bdi = inode_to_bdi(inode);
1216
1217 spin_unlock(&inode->i_lock);
1218 spin_lock(&bdi->wb.list_lock);
1219 if (bdi_cap_writeback_dirty(bdi)) {
1220 WARN(!test_bit(BDI_registered, &bdi->state),
1221 "bdi-%s not registered\n", bdi->name);
1222
1223 /*
1224 * If this is the first dirty inode for this
1225 * bdi, we have to wake-up the corresponding
1226 * bdi thread to make sure background
1227 * write-back happens later.
1228 */
1229 if (!wb_has_dirty_io(&bdi->wb))
1230 wakeup_bdi = true;
1231 }
1232
1233 inode->dirtied_when = jiffies;
1234 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1235 spin_unlock(&bdi->wb.list_lock);
1236
1237 if (wakeup_bdi)
1238 bdi_wakeup_thread_delayed(bdi);
1239 return;
1240 }
1241 }
1242 out_unlock_inode:
1243 spin_unlock(&inode->i_lock);
1244
1245 }
1246 EXPORT_SYMBOL(__mark_inode_dirty);
1247
1248 static void wait_sb_inodes(struct super_block *sb)
1249 {
1250 struct inode *inode, *old_inode = NULL;
1251
1252 /*
1253 * We need to be protected against the filesystem going from
1254 * r/o to r/w or vice versa.
1255 */
1256 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1257
1258 spin_lock(&inode_sb_list_lock);
1259
1260 /*
1261 * Data integrity sync. Must wait for all pages under writeback,
1262 * because there may have been pages dirtied before our sync
1263 * call, but which had writeout started before we write it out.
1264 * In which case, the inode may not be on the dirty list, but
1265 * we still have to wait for that writeout.
1266 */
1267 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1268 struct address_space *mapping = inode->i_mapping;
1269
1270 spin_lock(&inode->i_lock);
1271 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1272 (mapping->nrpages == 0)) {
1273 spin_unlock(&inode->i_lock);
1274 continue;
1275 }
1276 __iget(inode);
1277 spin_unlock(&inode->i_lock);
1278 spin_unlock(&inode_sb_list_lock);
1279
1280 /*
1281 * We hold a reference to 'inode' so it couldn't have been
1282 * removed from s_inodes list while we dropped the
1283 * inode_sb_list_lock. We cannot iput the inode now as we can
1284 * be holding the last reference and we cannot iput it under
1285 * inode_sb_list_lock. So we keep the reference and iput it
1286 * later.
1287 */
1288 iput(old_inode);
1289 old_inode = inode;
1290
1291 filemap_fdatawait(mapping);
1292
1293 cond_resched();
1294
1295 spin_lock(&inode_sb_list_lock);
1296 }
1297 spin_unlock(&inode_sb_list_lock);
1298 iput(old_inode);
1299 }
1300
1301 /**
1302 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1303 * @sb: the superblock
1304 * @nr: the number of pages to write
1305 * @reason: reason why some writeback work initiated
1306 *
1307 * Start writeback on some inodes on this super_block. No guarantees are made
1308 * on how many (if any) will be written, and this function does not wait
1309 * for IO completion of submitted IO.
1310 */
1311 void writeback_inodes_sb_nr(struct super_block *sb,
1312 unsigned long nr,
1313 enum wb_reason reason)
1314 {
1315 DECLARE_COMPLETION_ONSTACK(done);
1316 struct wb_writeback_work work = {
1317 .sb = sb,
1318 .sync_mode = WB_SYNC_NONE,
1319 .tagged_writepages = 1,
1320 .done = &done,
1321 .nr_pages = nr,
1322 .reason = reason,
1323 };
1324
1325 if (sb->s_bdi == &noop_backing_dev_info)
1326 return;
1327 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1328 bdi_queue_work(sb->s_bdi, &work);
1329 wait_for_completion(&done);
1330 }
1331 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1332
1333 /**
1334 * writeback_inodes_sb - writeback dirty inodes from given super_block
1335 * @sb: the superblock
1336 * @reason: reason why some writeback work was initiated
1337 *
1338 * Start writeback on some inodes on this super_block. No guarantees are made
1339 * on how many (if any) will be written, and this function does not wait
1340 * for IO completion of submitted IO.
1341 */
1342 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1343 {
1344 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1345 }
1346 EXPORT_SYMBOL(writeback_inodes_sb);
1347
1348 /**
1349 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1350 * @sb: the superblock
1351 * @nr: the number of pages to write
1352 * @reason: the reason of writeback
1353 *
1354 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1355 * Returns 1 if writeback was started, 0 if not.
1356 */
1357 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1358 unsigned long nr,
1359 enum wb_reason reason)
1360 {
1361 if (writeback_in_progress(sb->s_bdi))
1362 return 1;
1363
1364 if (!down_read_trylock(&sb->s_umount))
1365 return 0;
1366
1367 writeback_inodes_sb_nr(sb, nr, reason);
1368 up_read(&sb->s_umount);
1369 return 1;
1370 }
1371 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1372
1373 /**
1374 * try_to_writeback_inodes_sb - try to start writeback if none underway
1375 * @sb: the superblock
1376 * @reason: reason why some writeback work was initiated
1377 *
1378 * Implement by try_to_writeback_inodes_sb_nr()
1379 * Returns 1 if writeback was started, 0 if not.
1380 */
1381 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1382 {
1383 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1384 }
1385 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1386
1387 /**
1388 * sync_inodes_sb - sync sb inode pages
1389 * @sb: the superblock
1390 *
1391 * This function writes and waits on any dirty inode belonging to this
1392 * super_block.
1393 */
1394 void sync_inodes_sb(struct super_block *sb)
1395 {
1396 DECLARE_COMPLETION_ONSTACK(done);
1397 struct wb_writeback_work work = {
1398 .sb = sb,
1399 .sync_mode = WB_SYNC_ALL,
1400 .nr_pages = LONG_MAX,
1401 .range_cyclic = 0,
1402 .done = &done,
1403 .reason = WB_REASON_SYNC,
1404 .for_sync = 1,
1405 };
1406
1407 /* Nothing to do? */
1408 if (sb->s_bdi == &noop_backing_dev_info)
1409 return;
1410 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1411
1412 bdi_queue_work(sb->s_bdi, &work);
1413 wait_for_completion(&done);
1414
1415 wait_sb_inodes(sb);
1416 }
1417 EXPORT_SYMBOL(sync_inodes_sb);
1418
1419 /**
1420 * write_inode_now - write an inode to disk
1421 * @inode: inode to write to disk
1422 * @sync: whether the write should be synchronous or not
1423 *
1424 * This function commits an inode to disk immediately if it is dirty. This is
1425 * primarily needed by knfsd.
1426 *
1427 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1428 */
1429 int write_inode_now(struct inode *inode, int sync)
1430 {
1431 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1432 struct writeback_control wbc = {
1433 .nr_to_write = LONG_MAX,
1434 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1435 .range_start = 0,
1436 .range_end = LLONG_MAX,
1437 };
1438
1439 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1440 wbc.nr_to_write = 0;
1441
1442 might_sleep();
1443 return writeback_single_inode(inode, wb, &wbc);
1444 }
1445 EXPORT_SYMBOL(write_inode_now);
1446
1447 /**
1448 * sync_inode - write an inode and its pages to disk.
1449 * @inode: the inode to sync
1450 * @wbc: controls the writeback mode
1451 *
1452 * sync_inode() will write an inode and its pages to disk. It will also
1453 * correctly update the inode on its superblock's dirty inode lists and will
1454 * update inode->i_state.
1455 *
1456 * The caller must have a ref on the inode.
1457 */
1458 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1459 {
1460 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1461 }
1462 EXPORT_SYMBOL(sync_inode);
1463
1464 /**
1465 * sync_inode_metadata - write an inode to disk
1466 * @inode: the inode to sync
1467 * @wait: wait for I/O to complete.
1468 *
1469 * Write an inode to disk and adjust its dirty state after completion.
1470 *
1471 * Note: only writes the actual inode, no associated data or other metadata.
1472 */
1473 int sync_inode_metadata(struct inode *inode, int wait)
1474 {
1475 struct writeback_control wbc = {
1476 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1477 .nr_to_write = 0, /* metadata-only */
1478 };
1479
1480 return sync_inode(inode, &wbc);
1481 }
1482 EXPORT_SYMBOL(sync_inode_metadata);