]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32 * Passed into wb_writeback(), essentially a subset of writeback_control
33 */
34 struct wb_writeback_work {
35 long nr_pages;
36 struct super_block *sb;
37 unsigned long *older_than_this;
38 enum writeback_sync_modes sync_mode;
39 unsigned int tagged_writepages:1;
40 unsigned int for_kupdate:1;
41 unsigned int range_cyclic:1;
42 unsigned int for_background:1;
43 enum wb_reason reason; /* why was writeback initiated? */
44
45 struct list_head list; /* pending work list */
46 struct completion *done; /* set if the caller waits */
47 };
48
49 /*
50 * Include the creation of the trace points after defining the
51 * wb_writeback_work structure so that the definition remains local to this
52 * file.
53 */
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/writeback.h>
56
57 /*
58 * We don't actually have pdflush, but this one is exported though /proc...
59 */
60 int nr_pdflush_threads;
61
62 /**
63 * writeback_in_progress - determine whether there is writeback in progress
64 * @bdi: the device's backing_dev_info structure.
65 *
66 * Determine whether there is writeback waiting to be handled against a
67 * backing device.
68 */
69 int writeback_in_progress(struct backing_dev_info *bdi)
70 {
71 return test_bit(BDI_writeback_running, &bdi->state);
72 }
73
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 struct super_block *sb = inode->i_sb;
77
78 if (strcmp(sb->s_type->name, "bdev") == 0)
79 return inode->i_mapping->backing_dev_info;
80
81 return sb->s_bdi;
82 }
83
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 return list_entry(head, struct inode, i_wb_list);
87 }
88
89 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
90 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
91 {
92 if (bdi->wb.task) {
93 wake_up_process(bdi->wb.task);
94 } else {
95 /*
96 * The bdi thread isn't there, wake up the forker thread which
97 * will create and run it.
98 */
99 wake_up_process(default_backing_dev_info.wb.task);
100 }
101 }
102
103 static void bdi_queue_work(struct backing_dev_info *bdi,
104 struct wb_writeback_work *work)
105 {
106 trace_writeback_queue(bdi, work);
107
108 spin_lock_bh(&bdi->wb_lock);
109 list_add_tail(&work->list, &bdi->work_list);
110 if (!bdi->wb.task)
111 trace_writeback_nothread(bdi, work);
112 bdi_wakeup_flusher(bdi);
113 spin_unlock_bh(&bdi->wb_lock);
114 }
115
116 static void
117 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
118 bool range_cyclic, enum wb_reason reason)
119 {
120 struct wb_writeback_work *work;
121
122 /*
123 * This is WB_SYNC_NONE writeback, so if allocation fails just
124 * wakeup the thread for old dirty data writeback
125 */
126 work = kzalloc(sizeof(*work), GFP_ATOMIC);
127 if (!work) {
128 if (bdi->wb.task) {
129 trace_writeback_nowork(bdi);
130 wake_up_process(bdi->wb.task);
131 }
132 return;
133 }
134
135 work->sync_mode = WB_SYNC_NONE;
136 work->nr_pages = nr_pages;
137 work->range_cyclic = range_cyclic;
138 work->reason = reason;
139
140 bdi_queue_work(bdi, work);
141 }
142
143 /**
144 * bdi_start_writeback - start writeback
145 * @bdi: the backing device to write from
146 * @nr_pages: the number of pages to write
147 * @reason: reason why some writeback work was initiated
148 *
149 * Description:
150 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
151 * started when this function returns, we make no guarantees on
152 * completion. Caller need not hold sb s_umount semaphore.
153 *
154 */
155 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
156 enum wb_reason reason)
157 {
158 __bdi_start_writeback(bdi, nr_pages, true, reason);
159 }
160
161 /**
162 * bdi_start_background_writeback - start background writeback
163 * @bdi: the backing device to write from
164 *
165 * Description:
166 * This makes sure WB_SYNC_NONE background writeback happens. When
167 * this function returns, it is only guaranteed that for given BDI
168 * some IO is happening if we are over background dirty threshold.
169 * Caller need not hold sb s_umount semaphore.
170 */
171 void bdi_start_background_writeback(struct backing_dev_info *bdi)
172 {
173 /*
174 * We just wake up the flusher thread. It will perform background
175 * writeback as soon as there is no other work to do.
176 */
177 trace_writeback_wake_background(bdi);
178 spin_lock_bh(&bdi->wb_lock);
179 bdi_wakeup_flusher(bdi);
180 spin_unlock_bh(&bdi->wb_lock);
181 }
182
183 /*
184 * Remove the inode from the writeback list it is on.
185 */
186 void inode_wb_list_del(struct inode *inode)
187 {
188 struct backing_dev_info *bdi = inode_to_bdi(inode);
189
190 spin_lock(&bdi->wb.list_lock);
191 list_del_init(&inode->i_wb_list);
192 spin_unlock(&bdi->wb.list_lock);
193 }
194
195 /*
196 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
197 * furthest end of its superblock's dirty-inode list.
198 *
199 * Before stamping the inode's ->dirtied_when, we check to see whether it is
200 * already the most-recently-dirtied inode on the b_dirty list. If that is
201 * the case then the inode must have been redirtied while it was being written
202 * out and we don't reset its dirtied_when.
203 */
204 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
205 {
206 assert_spin_locked(&wb->list_lock);
207 if (!list_empty(&wb->b_dirty)) {
208 struct inode *tail;
209
210 tail = wb_inode(wb->b_dirty.next);
211 if (time_before(inode->dirtied_when, tail->dirtied_when))
212 inode->dirtied_when = jiffies;
213 }
214 list_move(&inode->i_wb_list, &wb->b_dirty);
215 }
216
217 /*
218 * requeue inode for re-scanning after bdi->b_io list is exhausted.
219 */
220 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
221 {
222 assert_spin_locked(&wb->list_lock);
223 list_move(&inode->i_wb_list, &wb->b_more_io);
224 }
225
226 static void inode_sync_complete(struct inode *inode)
227 {
228 /*
229 * Prevent speculative execution through
230 * spin_unlock(&wb->list_lock);
231 */
232
233 smp_mb();
234 wake_up_bit(&inode->i_state, __I_SYNC);
235 }
236
237 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
238 {
239 bool ret = time_after(inode->dirtied_when, t);
240 #ifndef CONFIG_64BIT
241 /*
242 * For inodes being constantly redirtied, dirtied_when can get stuck.
243 * It _appears_ to be in the future, but is actually in distant past.
244 * This test is necessary to prevent such wrapped-around relative times
245 * from permanently stopping the whole bdi writeback.
246 */
247 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
248 #endif
249 return ret;
250 }
251
252 /*
253 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
254 */
255 static int move_expired_inodes(struct list_head *delaying_queue,
256 struct list_head *dispatch_queue,
257 struct wb_writeback_work *work)
258 {
259 LIST_HEAD(tmp);
260 struct list_head *pos, *node;
261 struct super_block *sb = NULL;
262 struct inode *inode;
263 int do_sb_sort = 0;
264 int moved = 0;
265
266 while (!list_empty(delaying_queue)) {
267 inode = wb_inode(delaying_queue->prev);
268 if (work->older_than_this &&
269 inode_dirtied_after(inode, *work->older_than_this))
270 break;
271 if (sb && sb != inode->i_sb)
272 do_sb_sort = 1;
273 sb = inode->i_sb;
274 list_move(&inode->i_wb_list, &tmp);
275 moved++;
276 }
277
278 /* just one sb in list, splice to dispatch_queue and we're done */
279 if (!do_sb_sort) {
280 list_splice(&tmp, dispatch_queue);
281 goto out;
282 }
283
284 /* Move inodes from one superblock together */
285 while (!list_empty(&tmp)) {
286 sb = wb_inode(tmp.prev)->i_sb;
287 list_for_each_prev_safe(pos, node, &tmp) {
288 inode = wb_inode(pos);
289 if (inode->i_sb == sb)
290 list_move(&inode->i_wb_list, dispatch_queue);
291 }
292 }
293 out:
294 return moved;
295 }
296
297 /*
298 * Queue all expired dirty inodes for io, eldest first.
299 * Before
300 * newly dirtied b_dirty b_io b_more_io
301 * =============> gf edc BA
302 * After
303 * newly dirtied b_dirty b_io b_more_io
304 * =============> g fBAedc
305 * |
306 * +--> dequeue for IO
307 */
308 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
309 {
310 int moved;
311 assert_spin_locked(&wb->list_lock);
312 list_splice_init(&wb->b_more_io, &wb->b_io);
313 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
314 trace_writeback_queue_io(wb, work, moved);
315 }
316
317 static int write_inode(struct inode *inode, struct writeback_control *wbc)
318 {
319 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
320 return inode->i_sb->s_op->write_inode(inode, wbc);
321 return 0;
322 }
323
324 /*
325 * Wait for writeback on an inode to complete.
326 */
327 static void inode_wait_for_writeback(struct inode *inode,
328 struct bdi_writeback *wb)
329 {
330 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
331 wait_queue_head_t *wqh;
332
333 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
334 while (inode->i_state & I_SYNC) {
335 spin_unlock(&inode->i_lock);
336 spin_unlock(&wb->list_lock);
337 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
338 spin_lock(&wb->list_lock);
339 spin_lock(&inode->i_lock);
340 }
341 }
342
343 /*
344 * Write out an inode's dirty pages. Called under wb->list_lock and
345 * inode->i_lock. Either the caller has an active reference on the inode or
346 * the inode has I_WILL_FREE set.
347 *
348 * If `wait' is set, wait on the writeout.
349 *
350 * The whole writeout design is quite complex and fragile. We want to avoid
351 * starvation of particular inodes when others are being redirtied, prevent
352 * livelocks, etc.
353 */
354 static int
355 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
356 struct writeback_control *wbc)
357 {
358 struct address_space *mapping = inode->i_mapping;
359 long nr_to_write = wbc->nr_to_write;
360 unsigned dirty;
361 int ret;
362
363 assert_spin_locked(&wb->list_lock);
364 assert_spin_locked(&inode->i_lock);
365
366 if (!atomic_read(&inode->i_count))
367 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
368 else
369 WARN_ON(inode->i_state & I_WILL_FREE);
370
371 if (inode->i_state & I_SYNC) {
372 /*
373 * If this inode is locked for writeback and we are not doing
374 * writeback-for-data-integrity, move it to b_more_io so that
375 * writeback can proceed with the other inodes on s_io.
376 *
377 * We'll have another go at writing back this inode when we
378 * completed a full scan of b_io.
379 */
380 if (wbc->sync_mode != WB_SYNC_ALL) {
381 requeue_io(inode, wb);
382 trace_writeback_single_inode_requeue(inode, wbc,
383 nr_to_write);
384 return 0;
385 }
386
387 /*
388 * It's a data-integrity sync. We must wait.
389 */
390 inode_wait_for_writeback(inode, wb);
391 }
392
393 BUG_ON(inode->i_state & I_SYNC);
394
395 /* Set I_SYNC, reset I_DIRTY_PAGES */
396 inode->i_state |= I_SYNC;
397 inode->i_state &= ~I_DIRTY_PAGES;
398 spin_unlock(&inode->i_lock);
399 spin_unlock(&wb->list_lock);
400
401 ret = do_writepages(mapping, wbc);
402
403 /*
404 * Make sure to wait on the data before writing out the metadata.
405 * This is important for filesystems that modify metadata on data
406 * I/O completion.
407 */
408 if (wbc->sync_mode == WB_SYNC_ALL) {
409 int err = filemap_fdatawait(mapping);
410 if (ret == 0)
411 ret = err;
412 }
413
414 /*
415 * Some filesystems may redirty the inode during the writeback
416 * due to delalloc, clear dirty metadata flags right before
417 * write_inode()
418 */
419 spin_lock(&inode->i_lock);
420 dirty = inode->i_state & I_DIRTY;
421 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
422 spin_unlock(&inode->i_lock);
423 /* Don't write the inode if only I_DIRTY_PAGES was set */
424 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
425 int err = write_inode(inode, wbc);
426 if (ret == 0)
427 ret = err;
428 }
429
430 spin_lock(&wb->list_lock);
431 spin_lock(&inode->i_lock);
432 inode->i_state &= ~I_SYNC;
433 if (!(inode->i_state & I_FREEING)) {
434 /*
435 * Sync livelock prevention. Each inode is tagged and synced in
436 * one shot. If still dirty, it will be redirty_tail()'ed below.
437 * Update the dirty time to prevent enqueue and sync it again.
438 */
439 if ((inode->i_state & I_DIRTY) &&
440 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
441 inode->dirtied_when = jiffies;
442
443 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
444 /*
445 * We didn't write back all the pages. nfs_writepages()
446 * sometimes bales out without doing anything.
447 */
448 inode->i_state |= I_DIRTY_PAGES;
449 if (wbc->nr_to_write <= 0) {
450 /*
451 * slice used up: queue for next turn
452 */
453 requeue_io(inode, wb);
454 } else {
455 /*
456 * Writeback blocked by something other than
457 * congestion. Delay the inode for some time to
458 * avoid spinning on the CPU (100% iowait)
459 * retrying writeback of the dirty page/inode
460 * that cannot be performed immediately.
461 */
462 redirty_tail(inode, wb);
463 }
464 } else if (inode->i_state & I_DIRTY) {
465 /*
466 * Filesystems can dirty the inode during writeback
467 * operations, such as delayed allocation during
468 * submission or metadata updates after data IO
469 * completion.
470 */
471 redirty_tail(inode, wb);
472 } else {
473 /*
474 * The inode is clean. At this point we either have
475 * a reference to the inode or it's on it's way out.
476 * No need to add it back to the LRU.
477 */
478 list_del_init(&inode->i_wb_list);
479 }
480 }
481 inode_sync_complete(inode);
482 trace_writeback_single_inode(inode, wbc, nr_to_write);
483 return ret;
484 }
485
486 static long writeback_chunk_size(struct backing_dev_info *bdi,
487 struct wb_writeback_work *work)
488 {
489 long pages;
490
491 /*
492 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
493 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
494 * here avoids calling into writeback_inodes_wb() more than once.
495 *
496 * The intended call sequence for WB_SYNC_ALL writeback is:
497 *
498 * wb_writeback()
499 * writeback_sb_inodes() <== called only once
500 * write_cache_pages() <== called once for each inode
501 * (quickly) tag currently dirty pages
502 * (maybe slowly) sync all tagged pages
503 */
504 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
505 pages = LONG_MAX;
506 else {
507 pages = min(bdi->avg_write_bandwidth / 2,
508 global_dirty_limit / DIRTY_SCOPE);
509 pages = min(pages, work->nr_pages);
510 pages = round_down(pages + MIN_WRITEBACK_PAGES,
511 MIN_WRITEBACK_PAGES);
512 }
513
514 return pages;
515 }
516
517 /*
518 * Write a portion of b_io inodes which belong to @sb.
519 *
520 * If @only_this_sb is true, then find and write all such
521 * inodes. Otherwise write only ones which go sequentially
522 * in reverse order.
523 *
524 * Return the number of pages and/or inodes written.
525 */
526 static long writeback_sb_inodes(struct super_block *sb,
527 struct bdi_writeback *wb,
528 struct wb_writeback_work *work)
529 {
530 struct writeback_control wbc = {
531 .sync_mode = work->sync_mode,
532 .tagged_writepages = work->tagged_writepages,
533 .for_kupdate = work->for_kupdate,
534 .for_background = work->for_background,
535 .range_cyclic = work->range_cyclic,
536 .range_start = 0,
537 .range_end = LLONG_MAX,
538 };
539 unsigned long start_time = jiffies;
540 long write_chunk;
541 long wrote = 0; /* count both pages and inodes */
542
543 while (!list_empty(&wb->b_io)) {
544 struct inode *inode = wb_inode(wb->b_io.prev);
545
546 if (inode->i_sb != sb) {
547 if (work->sb) {
548 /*
549 * We only want to write back data for this
550 * superblock, move all inodes not belonging
551 * to it back onto the dirty list.
552 */
553 redirty_tail(inode, wb);
554 continue;
555 }
556
557 /*
558 * The inode belongs to a different superblock.
559 * Bounce back to the caller to unpin this and
560 * pin the next superblock.
561 */
562 break;
563 }
564
565 /*
566 * Don't bother with new inodes or inodes beeing freed, first
567 * kind does not need peridic writeout yet, and for the latter
568 * kind writeout is handled by the freer.
569 */
570 spin_lock(&inode->i_lock);
571 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
572 spin_unlock(&inode->i_lock);
573 redirty_tail(inode, wb);
574 continue;
575 }
576 __iget(inode);
577 write_chunk = writeback_chunk_size(wb->bdi, work);
578 wbc.nr_to_write = write_chunk;
579 wbc.pages_skipped = 0;
580
581 writeback_single_inode(inode, wb, &wbc);
582
583 work->nr_pages -= write_chunk - wbc.nr_to_write;
584 wrote += write_chunk - wbc.nr_to_write;
585 if (!(inode->i_state & I_DIRTY))
586 wrote++;
587 if (wbc.pages_skipped) {
588 /*
589 * writeback is not making progress due to locked
590 * buffers. Skip this inode for now.
591 */
592 redirty_tail(inode, wb);
593 }
594 spin_unlock(&inode->i_lock);
595 spin_unlock(&wb->list_lock);
596 iput(inode);
597 cond_resched();
598 spin_lock(&wb->list_lock);
599 /*
600 * bail out to wb_writeback() often enough to check
601 * background threshold and other termination conditions.
602 */
603 if (wrote) {
604 if (time_is_before_jiffies(start_time + HZ / 10UL))
605 break;
606 if (work->nr_pages <= 0)
607 break;
608 }
609 }
610 return wrote;
611 }
612
613 static long __writeback_inodes_wb(struct bdi_writeback *wb,
614 struct wb_writeback_work *work)
615 {
616 unsigned long start_time = jiffies;
617 long wrote = 0;
618
619 while (!list_empty(&wb->b_io)) {
620 struct inode *inode = wb_inode(wb->b_io.prev);
621 struct super_block *sb = inode->i_sb;
622
623 if (!grab_super_passive(sb)) {
624 /*
625 * grab_super_passive() may fail consistently due to
626 * s_umount being grabbed by someone else. Don't use
627 * requeue_io() to avoid busy retrying the inode/sb.
628 */
629 redirty_tail(inode, wb);
630 continue;
631 }
632 wrote += writeback_sb_inodes(sb, wb, work);
633 drop_super(sb);
634
635 /* refer to the same tests at the end of writeback_sb_inodes */
636 if (wrote) {
637 if (time_is_before_jiffies(start_time + HZ / 10UL))
638 break;
639 if (work->nr_pages <= 0)
640 break;
641 }
642 }
643 /* Leave any unwritten inodes on b_io */
644 return wrote;
645 }
646
647 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
648 enum wb_reason reason)
649 {
650 struct wb_writeback_work work = {
651 .nr_pages = nr_pages,
652 .sync_mode = WB_SYNC_NONE,
653 .range_cyclic = 1,
654 .reason = reason,
655 };
656
657 spin_lock(&wb->list_lock);
658 if (list_empty(&wb->b_io))
659 queue_io(wb, &work);
660 __writeback_inodes_wb(wb, &work);
661 spin_unlock(&wb->list_lock);
662
663 return nr_pages - work.nr_pages;
664 }
665
666 static bool over_bground_thresh(struct backing_dev_info *bdi)
667 {
668 unsigned long background_thresh, dirty_thresh;
669
670 global_dirty_limits(&background_thresh, &dirty_thresh);
671
672 if (global_page_state(NR_FILE_DIRTY) +
673 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
674 return true;
675
676 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
677 bdi_dirty_limit(bdi, background_thresh))
678 return true;
679
680 return false;
681 }
682
683 /*
684 * Called under wb->list_lock. If there are multiple wb per bdi,
685 * only the flusher working on the first wb should do it.
686 */
687 static void wb_update_bandwidth(struct bdi_writeback *wb,
688 unsigned long start_time)
689 {
690 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
691 }
692
693 /*
694 * Explicit flushing or periodic writeback of "old" data.
695 *
696 * Define "old": the first time one of an inode's pages is dirtied, we mark the
697 * dirtying-time in the inode's address_space. So this periodic writeback code
698 * just walks the superblock inode list, writing back any inodes which are
699 * older than a specific point in time.
700 *
701 * Try to run once per dirty_writeback_interval. But if a writeback event
702 * takes longer than a dirty_writeback_interval interval, then leave a
703 * one-second gap.
704 *
705 * older_than_this takes precedence over nr_to_write. So we'll only write back
706 * all dirty pages if they are all attached to "old" mappings.
707 */
708 static long wb_writeback(struct bdi_writeback *wb,
709 struct wb_writeback_work *work)
710 {
711 unsigned long wb_start = jiffies;
712 long nr_pages = work->nr_pages;
713 unsigned long oldest_jif;
714 struct inode *inode;
715 long progress;
716
717 oldest_jif = jiffies;
718 work->older_than_this = &oldest_jif;
719
720 spin_lock(&wb->list_lock);
721 for (;;) {
722 /*
723 * Stop writeback when nr_pages has been consumed
724 */
725 if (work->nr_pages <= 0)
726 break;
727
728 /*
729 * Background writeout and kupdate-style writeback may
730 * run forever. Stop them if there is other work to do
731 * so that e.g. sync can proceed. They'll be restarted
732 * after the other works are all done.
733 */
734 if ((work->for_background || work->for_kupdate) &&
735 !list_empty(&wb->bdi->work_list))
736 break;
737
738 /*
739 * For background writeout, stop when we are below the
740 * background dirty threshold
741 */
742 if (work->for_background && !over_bground_thresh(wb->bdi))
743 break;
744
745 if (work->for_kupdate) {
746 oldest_jif = jiffies -
747 msecs_to_jiffies(dirty_expire_interval * 10);
748 work->older_than_this = &oldest_jif;
749 }
750
751 trace_writeback_start(wb->bdi, work);
752 if (list_empty(&wb->b_io))
753 queue_io(wb, work);
754 if (work->sb)
755 progress = writeback_sb_inodes(work->sb, wb, work);
756 else
757 progress = __writeback_inodes_wb(wb, work);
758 trace_writeback_written(wb->bdi, work);
759
760 wb_update_bandwidth(wb, wb_start);
761
762 /*
763 * Did we write something? Try for more
764 *
765 * Dirty inodes are moved to b_io for writeback in batches.
766 * The completion of the current batch does not necessarily
767 * mean the overall work is done. So we keep looping as long
768 * as made some progress on cleaning pages or inodes.
769 */
770 if (progress)
771 continue;
772 /*
773 * No more inodes for IO, bail
774 */
775 if (list_empty(&wb->b_more_io))
776 break;
777 /*
778 * Nothing written. Wait for some inode to
779 * become available for writeback. Otherwise
780 * we'll just busyloop.
781 */
782 if (!list_empty(&wb->b_more_io)) {
783 trace_writeback_wait(wb->bdi, work);
784 inode = wb_inode(wb->b_more_io.prev);
785 spin_lock(&inode->i_lock);
786 inode_wait_for_writeback(inode, wb);
787 spin_unlock(&inode->i_lock);
788 }
789 }
790 spin_unlock(&wb->list_lock);
791
792 return nr_pages - work->nr_pages;
793 }
794
795 /*
796 * Return the next wb_writeback_work struct that hasn't been processed yet.
797 */
798 static struct wb_writeback_work *
799 get_next_work_item(struct backing_dev_info *bdi)
800 {
801 struct wb_writeback_work *work = NULL;
802
803 spin_lock_bh(&bdi->wb_lock);
804 if (!list_empty(&bdi->work_list)) {
805 work = list_entry(bdi->work_list.next,
806 struct wb_writeback_work, list);
807 list_del_init(&work->list);
808 }
809 spin_unlock_bh(&bdi->wb_lock);
810 return work;
811 }
812
813 /*
814 * Add in the number of potentially dirty inodes, because each inode
815 * write can dirty pagecache in the underlying blockdev.
816 */
817 static unsigned long get_nr_dirty_pages(void)
818 {
819 return global_page_state(NR_FILE_DIRTY) +
820 global_page_state(NR_UNSTABLE_NFS) +
821 get_nr_dirty_inodes();
822 }
823
824 static long wb_check_background_flush(struct bdi_writeback *wb)
825 {
826 if (over_bground_thresh(wb->bdi)) {
827
828 struct wb_writeback_work work = {
829 .nr_pages = LONG_MAX,
830 .sync_mode = WB_SYNC_NONE,
831 .for_background = 1,
832 .range_cyclic = 1,
833 .reason = WB_REASON_BACKGROUND,
834 };
835
836 return wb_writeback(wb, &work);
837 }
838
839 return 0;
840 }
841
842 static long wb_check_old_data_flush(struct bdi_writeback *wb)
843 {
844 unsigned long expired;
845 long nr_pages;
846
847 /*
848 * When set to zero, disable periodic writeback
849 */
850 if (!dirty_writeback_interval)
851 return 0;
852
853 expired = wb->last_old_flush +
854 msecs_to_jiffies(dirty_writeback_interval * 10);
855 if (time_before(jiffies, expired))
856 return 0;
857
858 wb->last_old_flush = jiffies;
859 nr_pages = get_nr_dirty_pages();
860
861 if (nr_pages) {
862 struct wb_writeback_work work = {
863 .nr_pages = nr_pages,
864 .sync_mode = WB_SYNC_NONE,
865 .for_kupdate = 1,
866 .range_cyclic = 1,
867 .reason = WB_REASON_PERIODIC,
868 };
869
870 return wb_writeback(wb, &work);
871 }
872
873 return 0;
874 }
875
876 /*
877 * Retrieve work items and do the writeback they describe
878 */
879 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
880 {
881 struct backing_dev_info *bdi = wb->bdi;
882 struct wb_writeback_work *work;
883 long wrote = 0;
884
885 set_bit(BDI_writeback_running, &wb->bdi->state);
886 while ((work = get_next_work_item(bdi)) != NULL) {
887 /*
888 * Override sync mode, in case we must wait for completion
889 * because this thread is exiting now.
890 */
891 if (force_wait)
892 work->sync_mode = WB_SYNC_ALL;
893
894 trace_writeback_exec(bdi, work);
895
896 wrote += wb_writeback(wb, work);
897
898 /*
899 * Notify the caller of completion if this is a synchronous
900 * work item, otherwise just free it.
901 */
902 if (work->done)
903 complete(work->done);
904 else
905 kfree(work);
906 }
907
908 /*
909 * Check for periodic writeback, kupdated() style
910 */
911 wrote += wb_check_old_data_flush(wb);
912 wrote += wb_check_background_flush(wb);
913 clear_bit(BDI_writeback_running, &wb->bdi->state);
914
915 return wrote;
916 }
917
918 /*
919 * Handle writeback of dirty data for the device backed by this bdi. Also
920 * wakes up periodically and does kupdated style flushing.
921 */
922 int bdi_writeback_thread(void *data)
923 {
924 struct bdi_writeback *wb = data;
925 struct backing_dev_info *bdi = wb->bdi;
926 long pages_written;
927
928 current->flags |= PF_SWAPWRITE;
929 set_freezable();
930 wb->last_active = jiffies;
931
932 /*
933 * Our parent may run at a different priority, just set us to normal
934 */
935 set_user_nice(current, 0);
936
937 trace_writeback_thread_start(bdi);
938
939 while (!kthread_freezable_should_stop(NULL)) {
940 /*
941 * Remove own delayed wake-up timer, since we are already awake
942 * and we'll take care of the preriodic write-back.
943 */
944 del_timer(&wb->wakeup_timer);
945
946 pages_written = wb_do_writeback(wb, 0);
947
948 trace_writeback_pages_written(pages_written);
949
950 if (pages_written)
951 wb->last_active = jiffies;
952
953 set_current_state(TASK_INTERRUPTIBLE);
954 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
955 __set_current_state(TASK_RUNNING);
956 continue;
957 }
958
959 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
960 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
961 else {
962 /*
963 * We have nothing to do, so can go sleep without any
964 * timeout and save power. When a work is queued or
965 * something is made dirty - we will be woken up.
966 */
967 schedule();
968 }
969 }
970
971 /* Flush any work that raced with us exiting */
972 if (!list_empty(&bdi->work_list))
973 wb_do_writeback(wb, 1);
974
975 trace_writeback_thread_stop(bdi);
976 return 0;
977 }
978
979
980 /*
981 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
982 * the whole world.
983 */
984 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
985 {
986 struct backing_dev_info *bdi;
987
988 if (!nr_pages) {
989 nr_pages = global_page_state(NR_FILE_DIRTY) +
990 global_page_state(NR_UNSTABLE_NFS);
991 }
992
993 rcu_read_lock();
994 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
995 if (!bdi_has_dirty_io(bdi))
996 continue;
997 __bdi_start_writeback(bdi, nr_pages, false, reason);
998 }
999 rcu_read_unlock();
1000 }
1001
1002 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1003 {
1004 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1005 struct dentry *dentry;
1006 const char *name = "?";
1007
1008 dentry = d_find_alias(inode);
1009 if (dentry) {
1010 spin_lock(&dentry->d_lock);
1011 name = (const char *) dentry->d_name.name;
1012 }
1013 printk(KERN_DEBUG
1014 "%s(%d): dirtied inode %lu (%s) on %s\n",
1015 current->comm, task_pid_nr(current), inode->i_ino,
1016 name, inode->i_sb->s_id);
1017 if (dentry) {
1018 spin_unlock(&dentry->d_lock);
1019 dput(dentry);
1020 }
1021 }
1022 }
1023
1024 /**
1025 * __mark_inode_dirty - internal function
1026 * @inode: inode to mark
1027 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1028 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1029 * mark_inode_dirty_sync.
1030 *
1031 * Put the inode on the super block's dirty list.
1032 *
1033 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1034 * dirty list only if it is hashed or if it refers to a blockdev.
1035 * If it was not hashed, it will never be added to the dirty list
1036 * even if it is later hashed, as it will have been marked dirty already.
1037 *
1038 * In short, make sure you hash any inodes _before_ you start marking
1039 * them dirty.
1040 *
1041 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1042 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1043 * the kernel-internal blockdev inode represents the dirtying time of the
1044 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1045 * page->mapping->host, so the page-dirtying time is recorded in the internal
1046 * blockdev inode.
1047 */
1048 void __mark_inode_dirty(struct inode *inode, int flags)
1049 {
1050 struct super_block *sb = inode->i_sb;
1051 struct backing_dev_info *bdi = NULL;
1052
1053 /*
1054 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1055 * dirty the inode itself
1056 */
1057 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1058 if (sb->s_op->dirty_inode)
1059 sb->s_op->dirty_inode(inode, flags);
1060 }
1061
1062 /*
1063 * make sure that changes are seen by all cpus before we test i_state
1064 * -- mikulas
1065 */
1066 smp_mb();
1067
1068 /* avoid the locking if we can */
1069 if ((inode->i_state & flags) == flags)
1070 return;
1071
1072 if (unlikely(block_dump))
1073 block_dump___mark_inode_dirty(inode);
1074
1075 spin_lock(&inode->i_lock);
1076 if ((inode->i_state & flags) != flags) {
1077 const int was_dirty = inode->i_state & I_DIRTY;
1078
1079 inode->i_state |= flags;
1080
1081 /*
1082 * If the inode is being synced, just update its dirty state.
1083 * The unlocker will place the inode on the appropriate
1084 * superblock list, based upon its state.
1085 */
1086 if (inode->i_state & I_SYNC)
1087 goto out_unlock_inode;
1088
1089 /*
1090 * Only add valid (hashed) inodes to the superblock's
1091 * dirty list. Add blockdev inodes as well.
1092 */
1093 if (!S_ISBLK(inode->i_mode)) {
1094 if (inode_unhashed(inode))
1095 goto out_unlock_inode;
1096 }
1097 if (inode->i_state & I_FREEING)
1098 goto out_unlock_inode;
1099
1100 /*
1101 * If the inode was already on b_dirty/b_io/b_more_io, don't
1102 * reposition it (that would break b_dirty time-ordering).
1103 */
1104 if (!was_dirty) {
1105 bool wakeup_bdi = false;
1106 bdi = inode_to_bdi(inode);
1107
1108 if (bdi_cap_writeback_dirty(bdi)) {
1109 WARN(!test_bit(BDI_registered, &bdi->state),
1110 "bdi-%s not registered\n", bdi->name);
1111
1112 /*
1113 * If this is the first dirty inode for this
1114 * bdi, we have to wake-up the corresponding
1115 * bdi thread to make sure background
1116 * write-back happens later.
1117 */
1118 if (!wb_has_dirty_io(&bdi->wb))
1119 wakeup_bdi = true;
1120 }
1121
1122 spin_unlock(&inode->i_lock);
1123 spin_lock(&bdi->wb.list_lock);
1124 inode->dirtied_when = jiffies;
1125 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1126 spin_unlock(&bdi->wb.list_lock);
1127
1128 if (wakeup_bdi)
1129 bdi_wakeup_thread_delayed(bdi);
1130 return;
1131 }
1132 }
1133 out_unlock_inode:
1134 spin_unlock(&inode->i_lock);
1135
1136 }
1137 EXPORT_SYMBOL(__mark_inode_dirty);
1138
1139 /*
1140 * Write out a superblock's list of dirty inodes. A wait will be performed
1141 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1142 *
1143 * If older_than_this is non-NULL, then only write out inodes which
1144 * had their first dirtying at a time earlier than *older_than_this.
1145 *
1146 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1147 * This function assumes that the blockdev superblock's inodes are backed by
1148 * a variety of queues, so all inodes are searched. For other superblocks,
1149 * assume that all inodes are backed by the same queue.
1150 *
1151 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1152 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1153 * on the writer throttling path, and we get decent balancing between many
1154 * throttled threads: we don't want them all piling up on inode_sync_wait.
1155 */
1156 static void wait_sb_inodes(struct super_block *sb)
1157 {
1158 struct inode *inode, *old_inode = NULL;
1159
1160 /*
1161 * We need to be protected against the filesystem going from
1162 * r/o to r/w or vice versa.
1163 */
1164 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1165
1166 spin_lock(&inode_sb_list_lock);
1167
1168 /*
1169 * Data integrity sync. Must wait for all pages under writeback,
1170 * because there may have been pages dirtied before our sync
1171 * call, but which had writeout started before we write it out.
1172 * In which case, the inode may not be on the dirty list, but
1173 * we still have to wait for that writeout.
1174 */
1175 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1176 struct address_space *mapping = inode->i_mapping;
1177
1178 spin_lock(&inode->i_lock);
1179 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1180 (mapping->nrpages == 0)) {
1181 spin_unlock(&inode->i_lock);
1182 continue;
1183 }
1184 __iget(inode);
1185 spin_unlock(&inode->i_lock);
1186 spin_unlock(&inode_sb_list_lock);
1187
1188 /*
1189 * We hold a reference to 'inode' so it couldn't have been
1190 * removed from s_inodes list while we dropped the
1191 * inode_sb_list_lock. We cannot iput the inode now as we can
1192 * be holding the last reference and we cannot iput it under
1193 * inode_sb_list_lock. So we keep the reference and iput it
1194 * later.
1195 */
1196 iput(old_inode);
1197 old_inode = inode;
1198
1199 filemap_fdatawait(mapping);
1200
1201 cond_resched();
1202
1203 spin_lock(&inode_sb_list_lock);
1204 }
1205 spin_unlock(&inode_sb_list_lock);
1206 iput(old_inode);
1207 }
1208
1209 /**
1210 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1211 * @sb: the superblock
1212 * @nr: the number of pages to write
1213 * @reason: reason why some writeback work initiated
1214 *
1215 * Start writeback on some inodes on this super_block. No guarantees are made
1216 * on how many (if any) will be written, and this function does not wait
1217 * for IO completion of submitted IO.
1218 */
1219 void writeback_inodes_sb_nr(struct super_block *sb,
1220 unsigned long nr,
1221 enum wb_reason reason)
1222 {
1223 DECLARE_COMPLETION_ONSTACK(done);
1224 struct wb_writeback_work work = {
1225 .sb = sb,
1226 .sync_mode = WB_SYNC_NONE,
1227 .tagged_writepages = 1,
1228 .done = &done,
1229 .nr_pages = nr,
1230 .reason = reason,
1231 };
1232
1233 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1234 bdi_queue_work(sb->s_bdi, &work);
1235 wait_for_completion(&done);
1236 }
1237 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1238
1239 /**
1240 * writeback_inodes_sb - writeback dirty inodes from given super_block
1241 * @sb: the superblock
1242 * @reason: reason why some writeback work was initiated
1243 *
1244 * Start writeback on some inodes on this super_block. No guarantees are made
1245 * on how many (if any) will be written, and this function does not wait
1246 * for IO completion of submitted IO.
1247 */
1248 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1249 {
1250 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1251 }
1252 EXPORT_SYMBOL(writeback_inodes_sb);
1253
1254 /**
1255 * writeback_inodes_sb_if_idle - start writeback if none underway
1256 * @sb: the superblock
1257 * @reason: reason why some writeback work was initiated
1258 *
1259 * Invoke writeback_inodes_sb if no writeback is currently underway.
1260 * Returns 1 if writeback was started, 0 if not.
1261 */
1262 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1263 {
1264 if (!writeback_in_progress(sb->s_bdi)) {
1265 down_read(&sb->s_umount);
1266 writeback_inodes_sb(sb, reason);
1267 up_read(&sb->s_umount);
1268 return 1;
1269 } else
1270 return 0;
1271 }
1272 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1273
1274 /**
1275 * writeback_inodes_sb_if_idle - start writeback if none underway
1276 * @sb: the superblock
1277 * @nr: the number of pages to write
1278 * @reason: reason why some writeback work was initiated
1279 *
1280 * Invoke writeback_inodes_sb if no writeback is currently underway.
1281 * Returns 1 if writeback was started, 0 if not.
1282 */
1283 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1284 unsigned long nr,
1285 enum wb_reason reason)
1286 {
1287 if (!writeback_in_progress(sb->s_bdi)) {
1288 down_read(&sb->s_umount);
1289 writeback_inodes_sb_nr(sb, nr, reason);
1290 up_read(&sb->s_umount);
1291 return 1;
1292 } else
1293 return 0;
1294 }
1295 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1296
1297 /**
1298 * sync_inodes_sb - sync sb inode pages
1299 * @sb: the superblock
1300 *
1301 * This function writes and waits on any dirty inode belonging to this
1302 * super_block.
1303 */
1304 void sync_inodes_sb(struct super_block *sb)
1305 {
1306 DECLARE_COMPLETION_ONSTACK(done);
1307 struct wb_writeback_work work = {
1308 .sb = sb,
1309 .sync_mode = WB_SYNC_ALL,
1310 .nr_pages = LONG_MAX,
1311 .range_cyclic = 0,
1312 .done = &done,
1313 .reason = WB_REASON_SYNC,
1314 };
1315
1316 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1317
1318 bdi_queue_work(sb->s_bdi, &work);
1319 wait_for_completion(&done);
1320
1321 wait_sb_inodes(sb);
1322 }
1323 EXPORT_SYMBOL(sync_inodes_sb);
1324
1325 /**
1326 * write_inode_now - write an inode to disk
1327 * @inode: inode to write to disk
1328 * @sync: whether the write should be synchronous or not
1329 *
1330 * This function commits an inode to disk immediately if it is dirty. This is
1331 * primarily needed by knfsd.
1332 *
1333 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1334 */
1335 int write_inode_now(struct inode *inode, int sync)
1336 {
1337 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1338 int ret;
1339 struct writeback_control wbc = {
1340 .nr_to_write = LONG_MAX,
1341 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1342 .range_start = 0,
1343 .range_end = LLONG_MAX,
1344 };
1345
1346 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1347 wbc.nr_to_write = 0;
1348
1349 might_sleep();
1350 spin_lock(&wb->list_lock);
1351 spin_lock(&inode->i_lock);
1352 ret = writeback_single_inode(inode, wb, &wbc);
1353 spin_unlock(&inode->i_lock);
1354 spin_unlock(&wb->list_lock);
1355 if (sync)
1356 inode_sync_wait(inode);
1357 return ret;
1358 }
1359 EXPORT_SYMBOL(write_inode_now);
1360
1361 /**
1362 * sync_inode - write an inode and its pages to disk.
1363 * @inode: the inode to sync
1364 * @wbc: controls the writeback mode
1365 *
1366 * sync_inode() will write an inode and its pages to disk. It will also
1367 * correctly update the inode on its superblock's dirty inode lists and will
1368 * update inode->i_state.
1369 *
1370 * The caller must have a ref on the inode.
1371 */
1372 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1373 {
1374 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1375 int ret;
1376
1377 spin_lock(&wb->list_lock);
1378 spin_lock(&inode->i_lock);
1379 ret = writeback_single_inode(inode, wb, wbc);
1380 spin_unlock(&inode->i_lock);
1381 spin_unlock(&wb->list_lock);
1382 return ret;
1383 }
1384 EXPORT_SYMBOL(sync_inode);
1385
1386 /**
1387 * sync_inode_metadata - write an inode to disk
1388 * @inode: the inode to sync
1389 * @wait: wait for I/O to complete.
1390 *
1391 * Write an inode to disk and adjust its dirty state after completion.
1392 *
1393 * Note: only writes the actual inode, no associated data or other metadata.
1394 */
1395 int sync_inode_metadata(struct inode *inode, int wait)
1396 {
1397 struct writeback_control wbc = {
1398 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1399 .nr_to_write = 0, /* metadata-only */
1400 };
1401
1402 return sync_inode(inode, &wbc);
1403 }
1404 EXPORT_SYMBOL(sync_inode_metadata);