]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
writeback: the kupdate expire timestamp should be a moving target
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int tagged_writepages:1;
40 unsigned int for_kupdate:1;
41 unsigned int range_cyclic:1;
42 unsigned int for_background:1;
43
44 struct list_head list; /* pending work list */
45 struct completion *done; /* set if the caller waits */
46 };
47
48 /*
49 * Include the creation of the trace points after defining the
50 * wb_writeback_work structure so that the definition remains local to this
51 * file.
52 */
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/writeback.h>
55
56 /*
57 * We don't actually have pdflush, but this one is exported though /proc...
58 */
59 int nr_pdflush_threads;
60
61 /**
62 * writeback_in_progress - determine whether there is writeback in progress
63 * @bdi: the device's backing_dev_info structure.
64 *
65 * Determine whether there is writeback waiting to be handled against a
66 * backing device.
67 */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70 return test_bit(BDI_writeback_running, &bdi->state);
71 }
72
73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 {
75 struct super_block *sb = inode->i_sb;
76
77 if (strcmp(sb->s_type->name, "bdev") == 0)
78 return inode->i_mapping->backing_dev_info;
79
80 return sb->s_bdi;
81 }
82
83 static inline struct inode *wb_inode(struct list_head *head)
84 {
85 return list_entry(head, struct inode, i_wb_list);
86 }
87
88 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
89 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
90 {
91 if (bdi->wb.task) {
92 wake_up_process(bdi->wb.task);
93 } else {
94 /*
95 * The bdi thread isn't there, wake up the forker thread which
96 * will create and run it.
97 */
98 wake_up_process(default_backing_dev_info.wb.task);
99 }
100 }
101
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 struct wb_writeback_work *work)
104 {
105 trace_writeback_queue(bdi, work);
106
107 spin_lock_bh(&bdi->wb_lock);
108 list_add_tail(&work->list, &bdi->work_list);
109 if (!bdi->wb.task)
110 trace_writeback_nothread(bdi, work);
111 bdi_wakeup_flusher(bdi);
112 spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117 bool range_cyclic)
118 {
119 struct wb_writeback_work *work;
120
121 /*
122 * This is WB_SYNC_NONE writeback, so if allocation fails just
123 * wakeup the thread for old dirty data writeback
124 */
125 work = kzalloc(sizeof(*work), GFP_ATOMIC);
126 if (!work) {
127 if (bdi->wb.task) {
128 trace_writeback_nowork(bdi);
129 wake_up_process(bdi->wb.task);
130 }
131 return;
132 }
133
134 work->sync_mode = WB_SYNC_NONE;
135 work->nr_pages = nr_pages;
136 work->range_cyclic = range_cyclic;
137
138 bdi_queue_work(bdi, work);
139 }
140
141 /**
142 * bdi_start_writeback - start writeback
143 * @bdi: the backing device to write from
144 * @nr_pages: the number of pages to write
145 *
146 * Description:
147 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
148 * started when this function returns, we make no guarantees on
149 * completion. Caller need not hold sb s_umount semaphore.
150 *
151 */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
153 {
154 __bdi_start_writeback(bdi, nr_pages, true);
155 }
156
157 /**
158 * bdi_start_background_writeback - start background writeback
159 * @bdi: the backing device to write from
160 *
161 * Description:
162 * This makes sure WB_SYNC_NONE background writeback happens. When
163 * this function returns, it is only guaranteed that for given BDI
164 * some IO is happening if we are over background dirty threshold.
165 * Caller need not hold sb s_umount semaphore.
166 */
167 void bdi_start_background_writeback(struct backing_dev_info *bdi)
168 {
169 /*
170 * We just wake up the flusher thread. It will perform background
171 * writeback as soon as there is no other work to do.
172 */
173 trace_writeback_wake_background(bdi);
174 spin_lock_bh(&bdi->wb_lock);
175 bdi_wakeup_flusher(bdi);
176 spin_unlock_bh(&bdi->wb_lock);
177 }
178
179 /*
180 * Remove the inode from the writeback list it is on.
181 */
182 void inode_wb_list_del(struct inode *inode)
183 {
184 spin_lock(&inode_wb_list_lock);
185 list_del_init(&inode->i_wb_list);
186 spin_unlock(&inode_wb_list_lock);
187 }
188
189
190 /*
191 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
192 * furthest end of its superblock's dirty-inode list.
193 *
194 * Before stamping the inode's ->dirtied_when, we check to see whether it is
195 * already the most-recently-dirtied inode on the b_dirty list. If that is
196 * the case then the inode must have been redirtied while it was being written
197 * out and we don't reset its dirtied_when.
198 */
199 static void redirty_tail(struct inode *inode)
200 {
201 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
202
203 assert_spin_locked(&inode_wb_list_lock);
204 if (!list_empty(&wb->b_dirty)) {
205 struct inode *tail;
206
207 tail = wb_inode(wb->b_dirty.next);
208 if (time_before(inode->dirtied_when, tail->dirtied_when))
209 inode->dirtied_when = jiffies;
210 }
211 list_move(&inode->i_wb_list, &wb->b_dirty);
212 }
213
214 /*
215 * requeue inode for re-scanning after bdi->b_io list is exhausted.
216 */
217 static void requeue_io(struct inode *inode)
218 {
219 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
220
221 assert_spin_locked(&inode_wb_list_lock);
222 list_move(&inode->i_wb_list, &wb->b_more_io);
223 }
224
225 static void inode_sync_complete(struct inode *inode)
226 {
227 /*
228 * Prevent speculative execution through
229 * spin_unlock(&inode_wb_list_lock);
230 */
231
232 smp_mb();
233 wake_up_bit(&inode->i_state, __I_SYNC);
234 }
235
236 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
237 {
238 bool ret = time_after(inode->dirtied_when, t);
239 #ifndef CONFIG_64BIT
240 /*
241 * For inodes being constantly redirtied, dirtied_when can get stuck.
242 * It _appears_ to be in the future, but is actually in distant past.
243 * This test is necessary to prevent such wrapped-around relative times
244 * from permanently stopping the whole bdi writeback.
245 */
246 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
247 #endif
248 return ret;
249 }
250
251 /*
252 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
253 */
254 static void move_expired_inodes(struct list_head *delaying_queue,
255 struct list_head *dispatch_queue,
256 unsigned long *older_than_this)
257 {
258 LIST_HEAD(tmp);
259 struct list_head *pos, *node;
260 struct super_block *sb = NULL;
261 struct inode *inode;
262 int do_sb_sort = 0;
263
264 while (!list_empty(delaying_queue)) {
265 inode = wb_inode(delaying_queue->prev);
266 if (older_than_this &&
267 inode_dirtied_after(inode, *older_than_this))
268 break;
269 if (sb && sb != inode->i_sb)
270 do_sb_sort = 1;
271 sb = inode->i_sb;
272 list_move(&inode->i_wb_list, &tmp);
273 }
274
275 /* just one sb in list, splice to dispatch_queue and we're done */
276 if (!do_sb_sort) {
277 list_splice(&tmp, dispatch_queue);
278 return;
279 }
280
281 /* Move inodes from one superblock together */
282 while (!list_empty(&tmp)) {
283 sb = wb_inode(tmp.prev)->i_sb;
284 list_for_each_prev_safe(pos, node, &tmp) {
285 inode = wb_inode(pos);
286 if (inode->i_sb == sb)
287 list_move(&inode->i_wb_list, dispatch_queue);
288 }
289 }
290 }
291
292 /*
293 * Queue all expired dirty inodes for io, eldest first.
294 * Before
295 * newly dirtied b_dirty b_io b_more_io
296 * =============> gf edc BA
297 * After
298 * newly dirtied b_dirty b_io b_more_io
299 * =============> g fBAedc
300 * |
301 * +--> dequeue for IO
302 */
303 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
304 {
305 assert_spin_locked(&inode_wb_list_lock);
306 list_splice_init(&wb->b_more_io, &wb->b_io);
307 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
308 }
309
310 static int write_inode(struct inode *inode, struct writeback_control *wbc)
311 {
312 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
313 return inode->i_sb->s_op->write_inode(inode, wbc);
314 return 0;
315 }
316
317 /*
318 * Wait for writeback on an inode to complete.
319 */
320 static void inode_wait_for_writeback(struct inode *inode)
321 {
322 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
323 wait_queue_head_t *wqh;
324
325 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
326 while (inode->i_state & I_SYNC) {
327 spin_unlock(&inode->i_lock);
328 spin_unlock(&inode_wb_list_lock);
329 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
330 spin_lock(&inode_wb_list_lock);
331 spin_lock(&inode->i_lock);
332 }
333 }
334
335 /*
336 * Write out an inode's dirty pages. Called under inode_wb_list_lock and
337 * inode->i_lock. Either the caller has an active reference on the inode or
338 * the inode has I_WILL_FREE set.
339 *
340 * If `wait' is set, wait on the writeout.
341 *
342 * The whole writeout design is quite complex and fragile. We want to avoid
343 * starvation of particular inodes when others are being redirtied, prevent
344 * livelocks, etc.
345 */
346 static int
347 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
348 {
349 struct address_space *mapping = inode->i_mapping;
350 unsigned dirty;
351 int ret;
352
353 assert_spin_locked(&inode_wb_list_lock);
354 assert_spin_locked(&inode->i_lock);
355
356 if (!atomic_read(&inode->i_count))
357 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
358 else
359 WARN_ON(inode->i_state & I_WILL_FREE);
360
361 if (inode->i_state & I_SYNC) {
362 /*
363 * If this inode is locked for writeback and we are not doing
364 * writeback-for-data-integrity, move it to b_more_io so that
365 * writeback can proceed with the other inodes on s_io.
366 *
367 * We'll have another go at writing back this inode when we
368 * completed a full scan of b_io.
369 */
370 if (wbc->sync_mode != WB_SYNC_ALL) {
371 requeue_io(inode);
372 return 0;
373 }
374
375 /*
376 * It's a data-integrity sync. We must wait.
377 */
378 inode_wait_for_writeback(inode);
379 }
380
381 BUG_ON(inode->i_state & I_SYNC);
382
383 /* Set I_SYNC, reset I_DIRTY_PAGES */
384 inode->i_state |= I_SYNC;
385 inode->i_state &= ~I_DIRTY_PAGES;
386 spin_unlock(&inode->i_lock);
387 spin_unlock(&inode_wb_list_lock);
388
389 ret = do_writepages(mapping, wbc);
390
391 /*
392 * Make sure to wait on the data before writing out the metadata.
393 * This is important for filesystems that modify metadata on data
394 * I/O completion.
395 */
396 if (wbc->sync_mode == WB_SYNC_ALL) {
397 int err = filemap_fdatawait(mapping);
398 if (ret == 0)
399 ret = err;
400 }
401
402 /*
403 * Some filesystems may redirty the inode during the writeback
404 * due to delalloc, clear dirty metadata flags right before
405 * write_inode()
406 */
407 spin_lock(&inode->i_lock);
408 dirty = inode->i_state & I_DIRTY;
409 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
410 spin_unlock(&inode->i_lock);
411 /* Don't write the inode if only I_DIRTY_PAGES was set */
412 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
413 int err = write_inode(inode, wbc);
414 if (ret == 0)
415 ret = err;
416 }
417
418 spin_lock(&inode_wb_list_lock);
419 spin_lock(&inode->i_lock);
420 inode->i_state &= ~I_SYNC;
421 if (!(inode->i_state & I_FREEING)) {
422 /*
423 * Sync livelock prevention. Each inode is tagged and synced in
424 * one shot. If still dirty, it will be redirty_tail()'ed below.
425 * Update the dirty time to prevent enqueue and sync it again.
426 */
427 if ((inode->i_state & I_DIRTY) &&
428 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
429 inode->dirtied_when = jiffies;
430
431 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
432 /*
433 * We didn't write back all the pages. nfs_writepages()
434 * sometimes bales out without doing anything.
435 */
436 inode->i_state |= I_DIRTY_PAGES;
437 if (wbc->nr_to_write <= 0) {
438 /*
439 * slice used up: queue for next turn
440 */
441 requeue_io(inode);
442 } else {
443 /*
444 * Writeback blocked by something other than
445 * congestion. Delay the inode for some time to
446 * avoid spinning on the CPU (100% iowait)
447 * retrying writeback of the dirty page/inode
448 * that cannot be performed immediately.
449 */
450 redirty_tail(inode);
451 }
452 } else if (inode->i_state & I_DIRTY) {
453 /*
454 * Filesystems can dirty the inode during writeback
455 * operations, such as delayed allocation during
456 * submission or metadata updates after data IO
457 * completion.
458 */
459 redirty_tail(inode);
460 } else {
461 /*
462 * The inode is clean. At this point we either have
463 * a reference to the inode or it's on it's way out.
464 * No need to add it back to the LRU.
465 */
466 list_del_init(&inode->i_wb_list);
467 wbc->inodes_written++;
468 }
469 }
470 inode_sync_complete(inode);
471 return ret;
472 }
473
474 /*
475 * For background writeback the caller does not have the sb pinned
476 * before calling writeback. So make sure that we do pin it, so it doesn't
477 * go away while we are writing inodes from it.
478 */
479 static bool pin_sb_for_writeback(struct super_block *sb)
480 {
481 spin_lock(&sb_lock);
482 if (list_empty(&sb->s_instances)) {
483 spin_unlock(&sb_lock);
484 return false;
485 }
486
487 sb->s_count++;
488 spin_unlock(&sb_lock);
489
490 if (down_read_trylock(&sb->s_umount)) {
491 if (sb->s_root)
492 return true;
493 up_read(&sb->s_umount);
494 }
495
496 put_super(sb);
497 return false;
498 }
499
500 /*
501 * Write a portion of b_io inodes which belong to @sb.
502 *
503 * If @only_this_sb is true, then find and write all such
504 * inodes. Otherwise write only ones which go sequentially
505 * in reverse order.
506 *
507 * Return 1, if the caller writeback routine should be
508 * interrupted. Otherwise return 0.
509 */
510 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
511 struct writeback_control *wbc, bool only_this_sb)
512 {
513 while (!list_empty(&wb->b_io)) {
514 long pages_skipped;
515 struct inode *inode = wb_inode(wb->b_io.prev);
516
517 if (inode->i_sb != sb) {
518 if (only_this_sb) {
519 /*
520 * We only want to write back data for this
521 * superblock, move all inodes not belonging
522 * to it back onto the dirty list.
523 */
524 redirty_tail(inode);
525 continue;
526 }
527
528 /*
529 * The inode belongs to a different superblock.
530 * Bounce back to the caller to unpin this and
531 * pin the next superblock.
532 */
533 return 0;
534 }
535
536 /*
537 * Don't bother with new inodes or inodes beeing freed, first
538 * kind does not need peridic writeout yet, and for the latter
539 * kind writeout is handled by the freer.
540 */
541 spin_lock(&inode->i_lock);
542 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
543 spin_unlock(&inode->i_lock);
544 requeue_io(inode);
545 continue;
546 }
547
548 /*
549 * Was this inode dirtied after sync_sb_inodes was called?
550 * This keeps sync from extra jobs and livelock.
551 */
552 if (inode_dirtied_after(inode, wbc->wb_start)) {
553 spin_unlock(&inode->i_lock);
554 return 1;
555 }
556
557 __iget(inode);
558
559 pages_skipped = wbc->pages_skipped;
560 writeback_single_inode(inode, wbc);
561 if (wbc->pages_skipped != pages_skipped) {
562 /*
563 * writeback is not making progress due to locked
564 * buffers. Skip this inode for now.
565 */
566 redirty_tail(inode);
567 }
568 spin_unlock(&inode->i_lock);
569 spin_unlock(&inode_wb_list_lock);
570 iput(inode);
571 cond_resched();
572 spin_lock(&inode_wb_list_lock);
573 if (wbc->nr_to_write <= 0) {
574 wbc->more_io = 1;
575 return 1;
576 }
577 if (!list_empty(&wb->b_more_io))
578 wbc->more_io = 1;
579 }
580 /* b_io is empty */
581 return 1;
582 }
583
584 void writeback_inodes_wb(struct bdi_writeback *wb,
585 struct writeback_control *wbc)
586 {
587 int ret = 0;
588
589 if (!wbc->wb_start)
590 wbc->wb_start = jiffies; /* livelock avoidance */
591 spin_lock(&inode_wb_list_lock);
592 if (!wbc->for_kupdate || list_empty(&wb->b_io))
593 queue_io(wb, wbc->older_than_this);
594
595 while (!list_empty(&wb->b_io)) {
596 struct inode *inode = wb_inode(wb->b_io.prev);
597 struct super_block *sb = inode->i_sb;
598
599 if (!pin_sb_for_writeback(sb)) {
600 requeue_io(inode);
601 continue;
602 }
603 ret = writeback_sb_inodes(sb, wb, wbc, false);
604 drop_super(sb);
605
606 if (ret)
607 break;
608 }
609 spin_unlock(&inode_wb_list_lock);
610 /* Leave any unwritten inodes on b_io */
611 }
612
613 static void __writeback_inodes_sb(struct super_block *sb,
614 struct bdi_writeback *wb, struct writeback_control *wbc)
615 {
616 WARN_ON(!rwsem_is_locked(&sb->s_umount));
617
618 spin_lock(&inode_wb_list_lock);
619 if (!wbc->for_kupdate || list_empty(&wb->b_io))
620 queue_io(wb, wbc->older_than_this);
621 writeback_sb_inodes(sb, wb, wbc, true);
622 spin_unlock(&inode_wb_list_lock);
623 }
624
625 /*
626 * The maximum number of pages to writeout in a single bdi flush/kupdate
627 * operation. We do this so we don't hold I_SYNC against an inode for
628 * enormous amounts of time, which would block a userspace task which has
629 * been forced to throttle against that inode. Also, the code reevaluates
630 * the dirty each time it has written this many pages.
631 */
632 #define MAX_WRITEBACK_PAGES 1024
633
634 static inline bool over_bground_thresh(void)
635 {
636 unsigned long background_thresh, dirty_thresh;
637
638 global_dirty_limits(&background_thresh, &dirty_thresh);
639
640 return (global_page_state(NR_FILE_DIRTY) +
641 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
642 }
643
644 /*
645 * Explicit flushing or periodic writeback of "old" data.
646 *
647 * Define "old": the first time one of an inode's pages is dirtied, we mark the
648 * dirtying-time in the inode's address_space. So this periodic writeback code
649 * just walks the superblock inode list, writing back any inodes which are
650 * older than a specific point in time.
651 *
652 * Try to run once per dirty_writeback_interval. But if a writeback event
653 * takes longer than a dirty_writeback_interval interval, then leave a
654 * one-second gap.
655 *
656 * older_than_this takes precedence over nr_to_write. So we'll only write back
657 * all dirty pages if they are all attached to "old" mappings.
658 */
659 static long wb_writeback(struct bdi_writeback *wb,
660 struct wb_writeback_work *work)
661 {
662 struct writeback_control wbc = {
663 .sync_mode = work->sync_mode,
664 .tagged_writepages = work->tagged_writepages,
665 .older_than_this = NULL,
666 .for_kupdate = work->for_kupdate,
667 .for_background = work->for_background,
668 .range_cyclic = work->range_cyclic,
669 };
670 unsigned long oldest_jif;
671 long wrote = 0;
672 long write_chunk = MAX_WRITEBACK_PAGES;
673 struct inode *inode;
674
675 if (!wbc.range_cyclic) {
676 wbc.range_start = 0;
677 wbc.range_end = LLONG_MAX;
678 }
679
680 /*
681 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
682 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
683 * here avoids calling into writeback_inodes_wb() more than once.
684 *
685 * The intended call sequence for WB_SYNC_ALL writeback is:
686 *
687 * wb_writeback()
688 * __writeback_inodes_sb() <== called only once
689 * write_cache_pages() <== called once for each inode
690 * (quickly) tag currently dirty pages
691 * (maybe slowly) sync all tagged pages
692 */
693 if (wbc.sync_mode == WB_SYNC_ALL || wbc.tagged_writepages)
694 write_chunk = LONG_MAX;
695
696 wbc.wb_start = jiffies; /* livelock avoidance */
697 for (;;) {
698 /*
699 * Stop writeback when nr_pages has been consumed
700 */
701 if (work->nr_pages <= 0)
702 break;
703
704 /*
705 * Background writeout and kupdate-style writeback may
706 * run forever. Stop them if there is other work to do
707 * so that e.g. sync can proceed. They'll be restarted
708 * after the other works are all done.
709 */
710 if ((work->for_background || work->for_kupdate) &&
711 !list_empty(&wb->bdi->work_list))
712 break;
713
714 /*
715 * For background writeout, stop when we are below the
716 * background dirty threshold
717 */
718 if (work->for_background && !over_bground_thresh())
719 break;
720
721 if (work->for_kupdate) {
722 oldest_jif = jiffies -
723 msecs_to_jiffies(dirty_expire_interval * 10);
724 wbc.older_than_this = &oldest_jif;
725 }
726
727 wbc.more_io = 0;
728 wbc.nr_to_write = write_chunk;
729 wbc.pages_skipped = 0;
730 wbc.inodes_written = 0;
731
732 trace_wbc_writeback_start(&wbc, wb->bdi);
733 if (work->sb)
734 __writeback_inodes_sb(work->sb, wb, &wbc);
735 else
736 writeback_inodes_wb(wb, &wbc);
737 trace_wbc_writeback_written(&wbc, wb->bdi);
738
739 work->nr_pages -= write_chunk - wbc.nr_to_write;
740 wrote += write_chunk - wbc.nr_to_write;
741
742 /*
743 * Did we write something? Try for more
744 *
745 * Dirty inodes are moved to b_io for writeback in batches.
746 * The completion of the current batch does not necessarily
747 * mean the overall work is done. So we keep looping as long
748 * as made some progress on cleaning pages or inodes.
749 */
750 if (wbc.nr_to_write < write_chunk)
751 continue;
752 if (wbc.inodes_written)
753 continue;
754 /*
755 * No more inodes for IO, bail
756 */
757 if (!wbc.more_io)
758 break;
759 /*
760 * Nothing written. Wait for some inode to
761 * become available for writeback. Otherwise
762 * we'll just busyloop.
763 */
764 spin_lock(&inode_wb_list_lock);
765 if (!list_empty(&wb->b_more_io)) {
766 inode = wb_inode(wb->b_more_io.prev);
767 trace_wbc_writeback_wait(&wbc, wb->bdi);
768 spin_lock(&inode->i_lock);
769 inode_wait_for_writeback(inode);
770 spin_unlock(&inode->i_lock);
771 }
772 spin_unlock(&inode_wb_list_lock);
773 }
774
775 return wrote;
776 }
777
778 /*
779 * Return the next wb_writeback_work struct that hasn't been processed yet.
780 */
781 static struct wb_writeback_work *
782 get_next_work_item(struct backing_dev_info *bdi)
783 {
784 struct wb_writeback_work *work = NULL;
785
786 spin_lock_bh(&bdi->wb_lock);
787 if (!list_empty(&bdi->work_list)) {
788 work = list_entry(bdi->work_list.next,
789 struct wb_writeback_work, list);
790 list_del_init(&work->list);
791 }
792 spin_unlock_bh(&bdi->wb_lock);
793 return work;
794 }
795
796 /*
797 * Add in the number of potentially dirty inodes, because each inode
798 * write can dirty pagecache in the underlying blockdev.
799 */
800 static unsigned long get_nr_dirty_pages(void)
801 {
802 return global_page_state(NR_FILE_DIRTY) +
803 global_page_state(NR_UNSTABLE_NFS) +
804 get_nr_dirty_inodes();
805 }
806
807 static long wb_check_background_flush(struct bdi_writeback *wb)
808 {
809 if (over_bground_thresh()) {
810
811 struct wb_writeback_work work = {
812 .nr_pages = LONG_MAX,
813 .sync_mode = WB_SYNC_NONE,
814 .for_background = 1,
815 .range_cyclic = 1,
816 };
817
818 return wb_writeback(wb, &work);
819 }
820
821 return 0;
822 }
823
824 static long wb_check_old_data_flush(struct bdi_writeback *wb)
825 {
826 unsigned long expired;
827 long nr_pages;
828
829 /*
830 * When set to zero, disable periodic writeback
831 */
832 if (!dirty_writeback_interval)
833 return 0;
834
835 expired = wb->last_old_flush +
836 msecs_to_jiffies(dirty_writeback_interval * 10);
837 if (time_before(jiffies, expired))
838 return 0;
839
840 wb->last_old_flush = jiffies;
841 nr_pages = get_nr_dirty_pages();
842
843 if (nr_pages) {
844 struct wb_writeback_work work = {
845 .nr_pages = nr_pages,
846 .sync_mode = WB_SYNC_NONE,
847 .for_kupdate = 1,
848 .range_cyclic = 1,
849 };
850
851 return wb_writeback(wb, &work);
852 }
853
854 return 0;
855 }
856
857 /*
858 * Retrieve work items and do the writeback they describe
859 */
860 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
861 {
862 struct backing_dev_info *bdi = wb->bdi;
863 struct wb_writeback_work *work;
864 long wrote = 0;
865
866 set_bit(BDI_writeback_running, &wb->bdi->state);
867 while ((work = get_next_work_item(bdi)) != NULL) {
868 /*
869 * Override sync mode, in case we must wait for completion
870 * because this thread is exiting now.
871 */
872 if (force_wait)
873 work->sync_mode = WB_SYNC_ALL;
874
875 trace_writeback_exec(bdi, work);
876
877 wrote += wb_writeback(wb, work);
878
879 /*
880 * Notify the caller of completion if this is a synchronous
881 * work item, otherwise just free it.
882 */
883 if (work->done)
884 complete(work->done);
885 else
886 kfree(work);
887 }
888
889 /*
890 * Check for periodic writeback, kupdated() style
891 */
892 wrote += wb_check_old_data_flush(wb);
893 wrote += wb_check_background_flush(wb);
894 clear_bit(BDI_writeback_running, &wb->bdi->state);
895
896 return wrote;
897 }
898
899 /*
900 * Handle writeback of dirty data for the device backed by this bdi. Also
901 * wakes up periodically and does kupdated style flushing.
902 */
903 int bdi_writeback_thread(void *data)
904 {
905 struct bdi_writeback *wb = data;
906 struct backing_dev_info *bdi = wb->bdi;
907 long pages_written;
908
909 current->flags |= PF_SWAPWRITE;
910 set_freezable();
911 wb->last_active = jiffies;
912
913 /*
914 * Our parent may run at a different priority, just set us to normal
915 */
916 set_user_nice(current, 0);
917
918 trace_writeback_thread_start(bdi);
919
920 while (!kthread_should_stop()) {
921 /*
922 * Remove own delayed wake-up timer, since we are already awake
923 * and we'll take care of the preriodic write-back.
924 */
925 del_timer(&wb->wakeup_timer);
926
927 pages_written = wb_do_writeback(wb, 0);
928
929 trace_writeback_pages_written(pages_written);
930
931 if (pages_written)
932 wb->last_active = jiffies;
933
934 set_current_state(TASK_INTERRUPTIBLE);
935 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
936 __set_current_state(TASK_RUNNING);
937 continue;
938 }
939
940 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
941 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
942 else {
943 /*
944 * We have nothing to do, so can go sleep without any
945 * timeout and save power. When a work is queued or
946 * something is made dirty - we will be woken up.
947 */
948 schedule();
949 }
950
951 try_to_freeze();
952 }
953
954 /* Flush any work that raced with us exiting */
955 if (!list_empty(&bdi->work_list))
956 wb_do_writeback(wb, 1);
957
958 trace_writeback_thread_stop(bdi);
959 return 0;
960 }
961
962
963 /*
964 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
965 * the whole world.
966 */
967 void wakeup_flusher_threads(long nr_pages)
968 {
969 struct backing_dev_info *bdi;
970
971 if (!nr_pages) {
972 nr_pages = global_page_state(NR_FILE_DIRTY) +
973 global_page_state(NR_UNSTABLE_NFS);
974 }
975
976 rcu_read_lock();
977 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
978 if (!bdi_has_dirty_io(bdi))
979 continue;
980 __bdi_start_writeback(bdi, nr_pages, false);
981 }
982 rcu_read_unlock();
983 }
984
985 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
986 {
987 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
988 struct dentry *dentry;
989 const char *name = "?";
990
991 dentry = d_find_alias(inode);
992 if (dentry) {
993 spin_lock(&dentry->d_lock);
994 name = (const char *) dentry->d_name.name;
995 }
996 printk(KERN_DEBUG
997 "%s(%d): dirtied inode %lu (%s) on %s\n",
998 current->comm, task_pid_nr(current), inode->i_ino,
999 name, inode->i_sb->s_id);
1000 if (dentry) {
1001 spin_unlock(&dentry->d_lock);
1002 dput(dentry);
1003 }
1004 }
1005 }
1006
1007 /**
1008 * __mark_inode_dirty - internal function
1009 * @inode: inode to mark
1010 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1011 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1012 * mark_inode_dirty_sync.
1013 *
1014 * Put the inode on the super block's dirty list.
1015 *
1016 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1017 * dirty list only if it is hashed or if it refers to a blockdev.
1018 * If it was not hashed, it will never be added to the dirty list
1019 * even if it is later hashed, as it will have been marked dirty already.
1020 *
1021 * In short, make sure you hash any inodes _before_ you start marking
1022 * them dirty.
1023 *
1024 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1025 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1026 * the kernel-internal blockdev inode represents the dirtying time of the
1027 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1028 * page->mapping->host, so the page-dirtying time is recorded in the internal
1029 * blockdev inode.
1030 */
1031 void __mark_inode_dirty(struct inode *inode, int flags)
1032 {
1033 struct super_block *sb = inode->i_sb;
1034 struct backing_dev_info *bdi = NULL;
1035
1036 /*
1037 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1038 * dirty the inode itself
1039 */
1040 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1041 if (sb->s_op->dirty_inode)
1042 sb->s_op->dirty_inode(inode, flags);
1043 }
1044
1045 /*
1046 * make sure that changes are seen by all cpus before we test i_state
1047 * -- mikulas
1048 */
1049 smp_mb();
1050
1051 /* avoid the locking if we can */
1052 if ((inode->i_state & flags) == flags)
1053 return;
1054
1055 if (unlikely(block_dump))
1056 block_dump___mark_inode_dirty(inode);
1057
1058 spin_lock(&inode->i_lock);
1059 if ((inode->i_state & flags) != flags) {
1060 const int was_dirty = inode->i_state & I_DIRTY;
1061
1062 inode->i_state |= flags;
1063
1064 /*
1065 * If the inode is being synced, just update its dirty state.
1066 * The unlocker will place the inode on the appropriate
1067 * superblock list, based upon its state.
1068 */
1069 if (inode->i_state & I_SYNC)
1070 goto out_unlock_inode;
1071
1072 /*
1073 * Only add valid (hashed) inodes to the superblock's
1074 * dirty list. Add blockdev inodes as well.
1075 */
1076 if (!S_ISBLK(inode->i_mode)) {
1077 if (inode_unhashed(inode))
1078 goto out_unlock_inode;
1079 }
1080 if (inode->i_state & I_FREEING)
1081 goto out_unlock_inode;
1082
1083 /*
1084 * If the inode was already on b_dirty/b_io/b_more_io, don't
1085 * reposition it (that would break b_dirty time-ordering).
1086 */
1087 if (!was_dirty) {
1088 bool wakeup_bdi = false;
1089 bdi = inode_to_bdi(inode);
1090
1091 if (bdi_cap_writeback_dirty(bdi)) {
1092 WARN(!test_bit(BDI_registered, &bdi->state),
1093 "bdi-%s not registered\n", bdi->name);
1094
1095 /*
1096 * If this is the first dirty inode for this
1097 * bdi, we have to wake-up the corresponding
1098 * bdi thread to make sure background
1099 * write-back happens later.
1100 */
1101 if (!wb_has_dirty_io(&bdi->wb))
1102 wakeup_bdi = true;
1103 }
1104
1105 spin_unlock(&inode->i_lock);
1106 spin_lock(&inode_wb_list_lock);
1107 inode->dirtied_when = jiffies;
1108 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1109 spin_unlock(&inode_wb_list_lock);
1110
1111 if (wakeup_bdi)
1112 bdi_wakeup_thread_delayed(bdi);
1113 return;
1114 }
1115 }
1116 out_unlock_inode:
1117 spin_unlock(&inode->i_lock);
1118
1119 }
1120 EXPORT_SYMBOL(__mark_inode_dirty);
1121
1122 /*
1123 * Write out a superblock's list of dirty inodes. A wait will be performed
1124 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1125 *
1126 * If older_than_this is non-NULL, then only write out inodes which
1127 * had their first dirtying at a time earlier than *older_than_this.
1128 *
1129 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1130 * This function assumes that the blockdev superblock's inodes are backed by
1131 * a variety of queues, so all inodes are searched. For other superblocks,
1132 * assume that all inodes are backed by the same queue.
1133 *
1134 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1135 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1136 * on the writer throttling path, and we get decent balancing between many
1137 * throttled threads: we don't want them all piling up on inode_sync_wait.
1138 */
1139 static void wait_sb_inodes(struct super_block *sb)
1140 {
1141 struct inode *inode, *old_inode = NULL;
1142
1143 /*
1144 * We need to be protected against the filesystem going from
1145 * r/o to r/w or vice versa.
1146 */
1147 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1148
1149 spin_lock(&inode_sb_list_lock);
1150
1151 /*
1152 * Data integrity sync. Must wait for all pages under writeback,
1153 * because there may have been pages dirtied before our sync
1154 * call, but which had writeout started before we write it out.
1155 * In which case, the inode may not be on the dirty list, but
1156 * we still have to wait for that writeout.
1157 */
1158 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1159 struct address_space *mapping = inode->i_mapping;
1160
1161 spin_lock(&inode->i_lock);
1162 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1163 (mapping->nrpages == 0)) {
1164 spin_unlock(&inode->i_lock);
1165 continue;
1166 }
1167 __iget(inode);
1168 spin_unlock(&inode->i_lock);
1169 spin_unlock(&inode_sb_list_lock);
1170
1171 /*
1172 * We hold a reference to 'inode' so it couldn't have been
1173 * removed from s_inodes list while we dropped the
1174 * inode_sb_list_lock. We cannot iput the inode now as we can
1175 * be holding the last reference and we cannot iput it under
1176 * inode_sb_list_lock. So we keep the reference and iput it
1177 * later.
1178 */
1179 iput(old_inode);
1180 old_inode = inode;
1181
1182 filemap_fdatawait(mapping);
1183
1184 cond_resched();
1185
1186 spin_lock(&inode_sb_list_lock);
1187 }
1188 spin_unlock(&inode_sb_list_lock);
1189 iput(old_inode);
1190 }
1191
1192 /**
1193 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1194 * @sb: the superblock
1195 * @nr: the number of pages to write
1196 *
1197 * Start writeback on some inodes on this super_block. No guarantees are made
1198 * on how many (if any) will be written, and this function does not wait
1199 * for IO completion of submitted IO.
1200 */
1201 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1202 {
1203 DECLARE_COMPLETION_ONSTACK(done);
1204 struct wb_writeback_work work = {
1205 .sb = sb,
1206 .sync_mode = WB_SYNC_NONE,
1207 .tagged_writepages = 1,
1208 .done = &done,
1209 .nr_pages = nr,
1210 };
1211
1212 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1213 bdi_queue_work(sb->s_bdi, &work);
1214 wait_for_completion(&done);
1215 }
1216 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1217
1218 /**
1219 * writeback_inodes_sb - writeback dirty inodes from given super_block
1220 * @sb: the superblock
1221 *
1222 * Start writeback on some inodes on this super_block. No guarantees are made
1223 * on how many (if any) will be written, and this function does not wait
1224 * for IO completion of submitted IO.
1225 */
1226 void writeback_inodes_sb(struct super_block *sb)
1227 {
1228 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1229 }
1230 EXPORT_SYMBOL(writeback_inodes_sb);
1231
1232 /**
1233 * writeback_inodes_sb_if_idle - start writeback if none underway
1234 * @sb: the superblock
1235 *
1236 * Invoke writeback_inodes_sb if no writeback is currently underway.
1237 * Returns 1 if writeback was started, 0 if not.
1238 */
1239 int writeback_inodes_sb_if_idle(struct super_block *sb)
1240 {
1241 if (!writeback_in_progress(sb->s_bdi)) {
1242 down_read(&sb->s_umount);
1243 writeback_inodes_sb(sb);
1244 up_read(&sb->s_umount);
1245 return 1;
1246 } else
1247 return 0;
1248 }
1249 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1250
1251 /**
1252 * writeback_inodes_sb_if_idle - start writeback if none underway
1253 * @sb: the superblock
1254 * @nr: the number of pages to write
1255 *
1256 * Invoke writeback_inodes_sb if no writeback is currently underway.
1257 * Returns 1 if writeback was started, 0 if not.
1258 */
1259 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1260 unsigned long nr)
1261 {
1262 if (!writeback_in_progress(sb->s_bdi)) {
1263 down_read(&sb->s_umount);
1264 writeback_inodes_sb_nr(sb, nr);
1265 up_read(&sb->s_umount);
1266 return 1;
1267 } else
1268 return 0;
1269 }
1270 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1271
1272 /**
1273 * sync_inodes_sb - sync sb inode pages
1274 * @sb: the superblock
1275 *
1276 * This function writes and waits on any dirty inode belonging to this
1277 * super_block.
1278 */
1279 void sync_inodes_sb(struct super_block *sb)
1280 {
1281 DECLARE_COMPLETION_ONSTACK(done);
1282 struct wb_writeback_work work = {
1283 .sb = sb,
1284 .sync_mode = WB_SYNC_ALL,
1285 .nr_pages = LONG_MAX,
1286 .range_cyclic = 0,
1287 .done = &done,
1288 };
1289
1290 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1291
1292 bdi_queue_work(sb->s_bdi, &work);
1293 wait_for_completion(&done);
1294
1295 wait_sb_inodes(sb);
1296 }
1297 EXPORT_SYMBOL(sync_inodes_sb);
1298
1299 /**
1300 * write_inode_now - write an inode to disk
1301 * @inode: inode to write to disk
1302 * @sync: whether the write should be synchronous or not
1303 *
1304 * This function commits an inode to disk immediately if it is dirty. This is
1305 * primarily needed by knfsd.
1306 *
1307 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1308 */
1309 int write_inode_now(struct inode *inode, int sync)
1310 {
1311 int ret;
1312 struct writeback_control wbc = {
1313 .nr_to_write = LONG_MAX,
1314 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1315 .range_start = 0,
1316 .range_end = LLONG_MAX,
1317 };
1318
1319 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1320 wbc.nr_to_write = 0;
1321
1322 might_sleep();
1323 spin_lock(&inode_wb_list_lock);
1324 spin_lock(&inode->i_lock);
1325 ret = writeback_single_inode(inode, &wbc);
1326 spin_unlock(&inode->i_lock);
1327 spin_unlock(&inode_wb_list_lock);
1328 if (sync)
1329 inode_sync_wait(inode);
1330 return ret;
1331 }
1332 EXPORT_SYMBOL(write_inode_now);
1333
1334 /**
1335 * sync_inode - write an inode and its pages to disk.
1336 * @inode: the inode to sync
1337 * @wbc: controls the writeback mode
1338 *
1339 * sync_inode() will write an inode and its pages to disk. It will also
1340 * correctly update the inode on its superblock's dirty inode lists and will
1341 * update inode->i_state.
1342 *
1343 * The caller must have a ref on the inode.
1344 */
1345 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1346 {
1347 int ret;
1348
1349 spin_lock(&inode_wb_list_lock);
1350 spin_lock(&inode->i_lock);
1351 ret = writeback_single_inode(inode, wbc);
1352 spin_unlock(&inode->i_lock);
1353 spin_unlock(&inode_wb_list_lock);
1354 return ret;
1355 }
1356 EXPORT_SYMBOL(sync_inode);
1357
1358 /**
1359 * sync_inode_metadata - write an inode to disk
1360 * @inode: the inode to sync
1361 * @wait: wait for I/O to complete.
1362 *
1363 * Write an inode to disk and adjust its dirty state after completion.
1364 *
1365 * Note: only writes the actual inode, no associated data or other metadata.
1366 */
1367 int sync_inode_metadata(struct inode *inode, int wait)
1368 {
1369 struct writeback_control wbc = {
1370 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1371 .nr_to_write = 0, /* metadata-only */
1372 };
1373
1374 return sync_inode(inode, &wbc);
1375 }
1376 EXPORT_SYMBOL(sync_inode_metadata);