]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - fs/fs-writeback.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[mirror_ubuntu-zesty-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * Passed into wb_writeback(), essentially a subset of writeback_control
34 */
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 enum writeback_sync_modes sync_mode;
39 unsigned int for_kupdate:1;
40 unsigned int range_cyclic:1;
41 unsigned int for_background:1;
42
43 struct list_head list; /* pending work list */
44 struct completion *done; /* set if the caller waits */
45 };
46
47 /*
48 * Include the creation of the trace points after defining the
49 * wb_writeback_work structure so that the definition remains local to this
50 * file.
51 */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54
55 /*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58 int nr_pdflush_threads;
59
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 struct super_block *sb = inode->i_sb;
75 struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info;
76
77 /*
78 * For inodes on standard filesystems, we use superblock's bdi. For
79 * inodes on virtual filesystems, we want to use inode mapping's bdi
80 * because they can possibly point to something useful (think about
81 * block_dev filesystem).
82 */
83 if (sb->s_bdi && sb->s_bdi != &noop_backing_dev_info) {
84 /* Some device inodes could play dirty tricks. Catch them... */
85 WARN(bdi != sb->s_bdi && bdi_cap_writeback_dirty(bdi),
86 "Dirtiable inode bdi %s != sb bdi %s\n",
87 bdi->name, sb->s_bdi->name);
88 return sb->s_bdi;
89 }
90 return bdi;
91 }
92
93 static void bdi_queue_work(struct backing_dev_info *bdi,
94 struct wb_writeback_work *work)
95 {
96 trace_writeback_queue(bdi, work);
97
98 spin_lock_bh(&bdi->wb_lock);
99 list_add_tail(&work->list, &bdi->work_list);
100 if (bdi->wb.task) {
101 wake_up_process(bdi->wb.task);
102 } else {
103 /*
104 * The bdi thread isn't there, wake up the forker thread which
105 * will create and run it.
106 */
107 trace_writeback_nothread(bdi, work);
108 wake_up_process(default_backing_dev_info.wb.task);
109 }
110 spin_unlock_bh(&bdi->wb_lock);
111 }
112
113 static void
114 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
115 bool range_cyclic, bool for_background)
116 {
117 struct wb_writeback_work *work;
118
119 /*
120 * This is WB_SYNC_NONE writeback, so if allocation fails just
121 * wakeup the thread for old dirty data writeback
122 */
123 work = kzalloc(sizeof(*work), GFP_ATOMIC);
124 if (!work) {
125 if (bdi->wb.task) {
126 trace_writeback_nowork(bdi);
127 wake_up_process(bdi->wb.task);
128 }
129 return;
130 }
131
132 work->sync_mode = WB_SYNC_NONE;
133 work->nr_pages = nr_pages;
134 work->range_cyclic = range_cyclic;
135 work->for_background = for_background;
136
137 bdi_queue_work(bdi, work);
138 }
139
140 /**
141 * bdi_start_writeback - start writeback
142 * @bdi: the backing device to write from
143 * @nr_pages: the number of pages to write
144 *
145 * Description:
146 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
147 * started when this function returns, we make no guarentees on
148 * completion. Caller need not hold sb s_umount semaphore.
149 *
150 */
151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
152 {
153 __bdi_start_writeback(bdi, nr_pages, true, false);
154 }
155
156 /**
157 * bdi_start_background_writeback - start background writeback
158 * @bdi: the backing device to write from
159 *
160 * Description:
161 * This does WB_SYNC_NONE background writeback. The IO is only
162 * started when this function returns, we make no guarentees on
163 * completion. Caller need not hold sb s_umount semaphore.
164 */
165 void bdi_start_background_writeback(struct backing_dev_info *bdi)
166 {
167 __bdi_start_writeback(bdi, LONG_MAX, true, true);
168 }
169
170 /*
171 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
172 * furthest end of its superblock's dirty-inode list.
173 *
174 * Before stamping the inode's ->dirtied_when, we check to see whether it is
175 * already the most-recently-dirtied inode on the b_dirty list. If that is
176 * the case then the inode must have been redirtied while it was being written
177 * out and we don't reset its dirtied_when.
178 */
179 static void redirty_tail(struct inode *inode)
180 {
181 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
182
183 if (!list_empty(&wb->b_dirty)) {
184 struct inode *tail;
185
186 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
187 if (time_before(inode->dirtied_when, tail->dirtied_when))
188 inode->dirtied_when = jiffies;
189 }
190 list_move(&inode->i_list, &wb->b_dirty);
191 }
192
193 /*
194 * requeue inode for re-scanning after bdi->b_io list is exhausted.
195 */
196 static void requeue_io(struct inode *inode)
197 {
198 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
199
200 list_move(&inode->i_list, &wb->b_more_io);
201 }
202
203 static void inode_sync_complete(struct inode *inode)
204 {
205 /*
206 * Prevent speculative execution through spin_unlock(&inode_lock);
207 */
208 smp_mb();
209 wake_up_bit(&inode->i_state, __I_SYNC);
210 }
211
212 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
213 {
214 bool ret = time_after(inode->dirtied_when, t);
215 #ifndef CONFIG_64BIT
216 /*
217 * For inodes being constantly redirtied, dirtied_when can get stuck.
218 * It _appears_ to be in the future, but is actually in distant past.
219 * This test is necessary to prevent such wrapped-around relative times
220 * from permanently stopping the whole bdi writeback.
221 */
222 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
223 #endif
224 return ret;
225 }
226
227 /*
228 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
229 */
230 static void move_expired_inodes(struct list_head *delaying_queue,
231 struct list_head *dispatch_queue,
232 unsigned long *older_than_this)
233 {
234 LIST_HEAD(tmp);
235 struct list_head *pos, *node;
236 struct super_block *sb = NULL;
237 struct inode *inode;
238 int do_sb_sort = 0;
239
240 while (!list_empty(delaying_queue)) {
241 inode = list_entry(delaying_queue->prev, struct inode, i_list);
242 if (older_than_this &&
243 inode_dirtied_after(inode, *older_than_this))
244 break;
245 if (sb && sb != inode->i_sb)
246 do_sb_sort = 1;
247 sb = inode->i_sb;
248 list_move(&inode->i_list, &tmp);
249 }
250
251 /* just one sb in list, splice to dispatch_queue and we're done */
252 if (!do_sb_sort) {
253 list_splice(&tmp, dispatch_queue);
254 return;
255 }
256
257 /* Move inodes from one superblock together */
258 while (!list_empty(&tmp)) {
259 inode = list_entry(tmp.prev, struct inode, i_list);
260 sb = inode->i_sb;
261 list_for_each_prev_safe(pos, node, &tmp) {
262 inode = list_entry(pos, struct inode, i_list);
263 if (inode->i_sb == sb)
264 list_move(&inode->i_list, dispatch_queue);
265 }
266 }
267 }
268
269 /*
270 * Queue all expired dirty inodes for io, eldest first.
271 * Before
272 * newly dirtied b_dirty b_io b_more_io
273 * =============> gf edc BA
274 * After
275 * newly dirtied b_dirty b_io b_more_io
276 * =============> g fBAedc
277 * |
278 * +--> dequeue for IO
279 */
280 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
281 {
282 list_splice_init(&wb->b_more_io, &wb->b_io);
283 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
284 }
285
286 static int write_inode(struct inode *inode, struct writeback_control *wbc)
287 {
288 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
289 return inode->i_sb->s_op->write_inode(inode, wbc);
290 return 0;
291 }
292
293 /*
294 * Wait for writeback on an inode to complete.
295 */
296 static void inode_wait_for_writeback(struct inode *inode)
297 {
298 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
299 wait_queue_head_t *wqh;
300
301 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
302 while (inode->i_state & I_SYNC) {
303 spin_unlock(&inode_lock);
304 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
305 spin_lock(&inode_lock);
306 }
307 }
308
309 /*
310 * Write out an inode's dirty pages. Called under inode_lock. Either the
311 * caller has ref on the inode (either via __iget or via syscall against an fd)
312 * or the inode has I_WILL_FREE set (via generic_forget_inode)
313 *
314 * If `wait' is set, wait on the writeout.
315 *
316 * The whole writeout design is quite complex and fragile. We want to avoid
317 * starvation of particular inodes when others are being redirtied, prevent
318 * livelocks, etc.
319 *
320 * Called under inode_lock.
321 */
322 static int
323 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
324 {
325 struct address_space *mapping = inode->i_mapping;
326 unsigned dirty;
327 int ret;
328
329 if (!atomic_read(&inode->i_count))
330 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
331 else
332 WARN_ON(inode->i_state & I_WILL_FREE);
333
334 if (inode->i_state & I_SYNC) {
335 /*
336 * If this inode is locked for writeback and we are not doing
337 * writeback-for-data-integrity, move it to b_more_io so that
338 * writeback can proceed with the other inodes on s_io.
339 *
340 * We'll have another go at writing back this inode when we
341 * completed a full scan of b_io.
342 */
343 if (wbc->sync_mode != WB_SYNC_ALL) {
344 requeue_io(inode);
345 return 0;
346 }
347
348 /*
349 * It's a data-integrity sync. We must wait.
350 */
351 inode_wait_for_writeback(inode);
352 }
353
354 BUG_ON(inode->i_state & I_SYNC);
355
356 /* Set I_SYNC, reset I_DIRTY_PAGES */
357 inode->i_state |= I_SYNC;
358 inode->i_state &= ~I_DIRTY_PAGES;
359 spin_unlock(&inode_lock);
360
361 ret = do_writepages(mapping, wbc);
362
363 /*
364 * Make sure to wait on the data before writing out the metadata.
365 * This is important for filesystems that modify metadata on data
366 * I/O completion.
367 */
368 if (wbc->sync_mode == WB_SYNC_ALL) {
369 int err = filemap_fdatawait(mapping);
370 if (ret == 0)
371 ret = err;
372 }
373
374 /*
375 * Some filesystems may redirty the inode during the writeback
376 * due to delalloc, clear dirty metadata flags right before
377 * write_inode()
378 */
379 spin_lock(&inode_lock);
380 dirty = inode->i_state & I_DIRTY;
381 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
382 spin_unlock(&inode_lock);
383 /* Don't write the inode if only I_DIRTY_PAGES was set */
384 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
385 int err = write_inode(inode, wbc);
386 if (ret == 0)
387 ret = err;
388 }
389
390 spin_lock(&inode_lock);
391 inode->i_state &= ~I_SYNC;
392 if (!(inode->i_state & I_FREEING)) {
393 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
394 /*
395 * We didn't write back all the pages. nfs_writepages()
396 * sometimes bales out without doing anything.
397 */
398 inode->i_state |= I_DIRTY_PAGES;
399 if (wbc->nr_to_write <= 0) {
400 /*
401 * slice used up: queue for next turn
402 */
403 requeue_io(inode);
404 } else {
405 /*
406 * Writeback blocked by something other than
407 * congestion. Delay the inode for some time to
408 * avoid spinning on the CPU (100% iowait)
409 * retrying writeback of the dirty page/inode
410 * that cannot be performed immediately.
411 */
412 redirty_tail(inode);
413 }
414 } else if (inode->i_state & I_DIRTY) {
415 /*
416 * Filesystems can dirty the inode during writeback
417 * operations, such as delayed allocation during
418 * submission or metadata updates after data IO
419 * completion.
420 */
421 redirty_tail(inode);
422 } else if (atomic_read(&inode->i_count)) {
423 /*
424 * The inode is clean, inuse
425 */
426 list_move(&inode->i_list, &inode_in_use);
427 } else {
428 /*
429 * The inode is clean, unused
430 */
431 list_move(&inode->i_list, &inode_unused);
432 }
433 }
434 inode_sync_complete(inode);
435 return ret;
436 }
437
438 /*
439 * For background writeback the caller does not have the sb pinned
440 * before calling writeback. So make sure that we do pin it, so it doesn't
441 * go away while we are writing inodes from it.
442 */
443 static bool pin_sb_for_writeback(struct super_block *sb)
444 {
445 spin_lock(&sb_lock);
446 if (list_empty(&sb->s_instances)) {
447 spin_unlock(&sb_lock);
448 return false;
449 }
450
451 sb->s_count++;
452 spin_unlock(&sb_lock);
453
454 if (down_read_trylock(&sb->s_umount)) {
455 if (sb->s_root)
456 return true;
457 up_read(&sb->s_umount);
458 }
459
460 put_super(sb);
461 return false;
462 }
463
464 /*
465 * Write a portion of b_io inodes which belong to @sb.
466 *
467 * If @only_this_sb is true, then find and write all such
468 * inodes. Otherwise write only ones which go sequentially
469 * in reverse order.
470 *
471 * Return 1, if the caller writeback routine should be
472 * interrupted. Otherwise return 0.
473 */
474 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
475 struct writeback_control *wbc, bool only_this_sb)
476 {
477 while (!list_empty(&wb->b_io)) {
478 long pages_skipped;
479 struct inode *inode = list_entry(wb->b_io.prev,
480 struct inode, i_list);
481
482 if (inode->i_sb != sb) {
483 if (only_this_sb) {
484 /*
485 * We only want to write back data for this
486 * superblock, move all inodes not belonging
487 * to it back onto the dirty list.
488 */
489 redirty_tail(inode);
490 continue;
491 }
492
493 /*
494 * The inode belongs to a different superblock.
495 * Bounce back to the caller to unpin this and
496 * pin the next superblock.
497 */
498 return 0;
499 }
500
501 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
502 requeue_io(inode);
503 continue;
504 }
505 /*
506 * Was this inode dirtied after sync_sb_inodes was called?
507 * This keeps sync from extra jobs and livelock.
508 */
509 if (inode_dirtied_after(inode, wbc->wb_start))
510 return 1;
511
512 BUG_ON(inode->i_state & I_FREEING);
513 __iget(inode);
514 pages_skipped = wbc->pages_skipped;
515 writeback_single_inode(inode, wbc);
516 if (wbc->pages_skipped != pages_skipped) {
517 /*
518 * writeback is not making progress due to locked
519 * buffers. Skip this inode for now.
520 */
521 redirty_tail(inode);
522 }
523 spin_unlock(&inode_lock);
524 iput(inode);
525 cond_resched();
526 spin_lock(&inode_lock);
527 if (wbc->nr_to_write <= 0) {
528 wbc->more_io = 1;
529 return 1;
530 }
531 if (!list_empty(&wb->b_more_io))
532 wbc->more_io = 1;
533 }
534 /* b_io is empty */
535 return 1;
536 }
537
538 void writeback_inodes_wb(struct bdi_writeback *wb,
539 struct writeback_control *wbc)
540 {
541 int ret = 0;
542
543 if (!wbc->wb_start)
544 wbc->wb_start = jiffies; /* livelock avoidance */
545 spin_lock(&inode_lock);
546 if (!wbc->for_kupdate || list_empty(&wb->b_io))
547 queue_io(wb, wbc->older_than_this);
548
549 while (!list_empty(&wb->b_io)) {
550 struct inode *inode = list_entry(wb->b_io.prev,
551 struct inode, i_list);
552 struct super_block *sb = inode->i_sb;
553
554 if (!pin_sb_for_writeback(sb)) {
555 requeue_io(inode);
556 continue;
557 }
558 ret = writeback_sb_inodes(sb, wb, wbc, false);
559 drop_super(sb);
560
561 if (ret)
562 break;
563 }
564 spin_unlock(&inode_lock);
565 /* Leave any unwritten inodes on b_io */
566 }
567
568 static void __writeback_inodes_sb(struct super_block *sb,
569 struct bdi_writeback *wb, struct writeback_control *wbc)
570 {
571 WARN_ON(!rwsem_is_locked(&sb->s_umount));
572
573 spin_lock(&inode_lock);
574 if (!wbc->for_kupdate || list_empty(&wb->b_io))
575 queue_io(wb, wbc->older_than_this);
576 writeback_sb_inodes(sb, wb, wbc, true);
577 spin_unlock(&inode_lock);
578 }
579
580 /*
581 * The maximum number of pages to writeout in a single bdi flush/kupdate
582 * operation. We do this so we don't hold I_SYNC against an inode for
583 * enormous amounts of time, which would block a userspace task which has
584 * been forced to throttle against that inode. Also, the code reevaluates
585 * the dirty each time it has written this many pages.
586 */
587 #define MAX_WRITEBACK_PAGES 1024
588
589 static inline bool over_bground_thresh(void)
590 {
591 unsigned long background_thresh, dirty_thresh;
592
593 global_dirty_limits(&background_thresh, &dirty_thresh);
594
595 return (global_page_state(NR_FILE_DIRTY) +
596 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
597 }
598
599 /*
600 * Explicit flushing or periodic writeback of "old" data.
601 *
602 * Define "old": the first time one of an inode's pages is dirtied, we mark the
603 * dirtying-time in the inode's address_space. So this periodic writeback code
604 * just walks the superblock inode list, writing back any inodes which are
605 * older than a specific point in time.
606 *
607 * Try to run once per dirty_writeback_interval. But if a writeback event
608 * takes longer than a dirty_writeback_interval interval, then leave a
609 * one-second gap.
610 *
611 * older_than_this takes precedence over nr_to_write. So we'll only write back
612 * all dirty pages if they are all attached to "old" mappings.
613 */
614 static long wb_writeback(struct bdi_writeback *wb,
615 struct wb_writeback_work *work)
616 {
617 struct writeback_control wbc = {
618 .sync_mode = work->sync_mode,
619 .older_than_this = NULL,
620 .for_kupdate = work->for_kupdate,
621 .for_background = work->for_background,
622 .range_cyclic = work->range_cyclic,
623 };
624 unsigned long oldest_jif;
625 long wrote = 0;
626 struct inode *inode;
627
628 if (wbc.for_kupdate) {
629 wbc.older_than_this = &oldest_jif;
630 oldest_jif = jiffies -
631 msecs_to_jiffies(dirty_expire_interval * 10);
632 }
633 if (!wbc.range_cyclic) {
634 wbc.range_start = 0;
635 wbc.range_end = LLONG_MAX;
636 }
637
638 wbc.wb_start = jiffies; /* livelock avoidance */
639 for (;;) {
640 /*
641 * Stop writeback when nr_pages has been consumed
642 */
643 if (work->nr_pages <= 0)
644 break;
645
646 /*
647 * For background writeout, stop when we are below the
648 * background dirty threshold
649 */
650 if (work->for_background && !over_bground_thresh())
651 break;
652
653 wbc.more_io = 0;
654 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
655 wbc.pages_skipped = 0;
656
657 trace_wbc_writeback_start(&wbc, wb->bdi);
658 if (work->sb)
659 __writeback_inodes_sb(work->sb, wb, &wbc);
660 else
661 writeback_inodes_wb(wb, &wbc);
662 trace_wbc_writeback_written(&wbc, wb->bdi);
663
664 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
665 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
666
667 /*
668 * If we consumed everything, see if we have more
669 */
670 if (wbc.nr_to_write <= 0)
671 continue;
672 /*
673 * Didn't write everything and we don't have more IO, bail
674 */
675 if (!wbc.more_io)
676 break;
677 /*
678 * Did we write something? Try for more
679 */
680 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
681 continue;
682 /*
683 * Nothing written. Wait for some inode to
684 * become available for writeback. Otherwise
685 * we'll just busyloop.
686 */
687 spin_lock(&inode_lock);
688 if (!list_empty(&wb->b_more_io)) {
689 inode = list_entry(wb->b_more_io.prev,
690 struct inode, i_list);
691 trace_wbc_writeback_wait(&wbc, wb->bdi);
692 inode_wait_for_writeback(inode);
693 }
694 spin_unlock(&inode_lock);
695 }
696
697 return wrote;
698 }
699
700 /*
701 * Return the next wb_writeback_work struct that hasn't been processed yet.
702 */
703 static struct wb_writeback_work *
704 get_next_work_item(struct backing_dev_info *bdi)
705 {
706 struct wb_writeback_work *work = NULL;
707
708 spin_lock_bh(&bdi->wb_lock);
709 if (!list_empty(&bdi->work_list)) {
710 work = list_entry(bdi->work_list.next,
711 struct wb_writeback_work, list);
712 list_del_init(&work->list);
713 }
714 spin_unlock_bh(&bdi->wb_lock);
715 return work;
716 }
717
718 static long wb_check_old_data_flush(struct bdi_writeback *wb)
719 {
720 unsigned long expired;
721 long nr_pages;
722
723 /*
724 * When set to zero, disable periodic writeback
725 */
726 if (!dirty_writeback_interval)
727 return 0;
728
729 expired = wb->last_old_flush +
730 msecs_to_jiffies(dirty_writeback_interval * 10);
731 if (time_before(jiffies, expired))
732 return 0;
733
734 wb->last_old_flush = jiffies;
735 nr_pages = global_page_state(NR_FILE_DIRTY) +
736 global_page_state(NR_UNSTABLE_NFS) +
737 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
738
739 if (nr_pages) {
740 struct wb_writeback_work work = {
741 .nr_pages = nr_pages,
742 .sync_mode = WB_SYNC_NONE,
743 .for_kupdate = 1,
744 .range_cyclic = 1,
745 };
746
747 return wb_writeback(wb, &work);
748 }
749
750 return 0;
751 }
752
753 /*
754 * Retrieve work items and do the writeback they describe
755 */
756 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
757 {
758 struct backing_dev_info *bdi = wb->bdi;
759 struct wb_writeback_work *work;
760 long wrote = 0;
761
762 set_bit(BDI_writeback_running, &wb->bdi->state);
763 while ((work = get_next_work_item(bdi)) != NULL) {
764 /*
765 * Override sync mode, in case we must wait for completion
766 * because this thread is exiting now.
767 */
768 if (force_wait)
769 work->sync_mode = WB_SYNC_ALL;
770
771 trace_writeback_exec(bdi, work);
772
773 wrote += wb_writeback(wb, work);
774
775 /*
776 * Notify the caller of completion if this is a synchronous
777 * work item, otherwise just free it.
778 */
779 if (work->done)
780 complete(work->done);
781 else
782 kfree(work);
783 }
784
785 /*
786 * Check for periodic writeback, kupdated() style
787 */
788 wrote += wb_check_old_data_flush(wb);
789 clear_bit(BDI_writeback_running, &wb->bdi->state);
790
791 return wrote;
792 }
793
794 /*
795 * Handle writeback of dirty data for the device backed by this bdi. Also
796 * wakes up periodically and does kupdated style flushing.
797 */
798 int bdi_writeback_thread(void *data)
799 {
800 struct bdi_writeback *wb = data;
801 struct backing_dev_info *bdi = wb->bdi;
802 long pages_written;
803
804 current->flags |= PF_FLUSHER | PF_SWAPWRITE;
805 set_freezable();
806 wb->last_active = jiffies;
807
808 /*
809 * Our parent may run at a different priority, just set us to normal
810 */
811 set_user_nice(current, 0);
812
813 trace_writeback_thread_start(bdi);
814
815 while (!kthread_should_stop()) {
816 /*
817 * Remove own delayed wake-up timer, since we are already awake
818 * and we'll take care of the preriodic write-back.
819 */
820 del_timer(&wb->wakeup_timer);
821
822 pages_written = wb_do_writeback(wb, 0);
823
824 trace_writeback_pages_written(pages_written);
825
826 if (pages_written)
827 wb->last_active = jiffies;
828
829 set_current_state(TASK_INTERRUPTIBLE);
830 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
831 __set_current_state(TASK_RUNNING);
832 continue;
833 }
834
835 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
836 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
837 else {
838 /*
839 * We have nothing to do, so can go sleep without any
840 * timeout and save power. When a work is queued or
841 * something is made dirty - we will be woken up.
842 */
843 schedule();
844 }
845
846 try_to_freeze();
847 }
848
849 /* Flush any work that raced with us exiting */
850 if (!list_empty(&bdi->work_list))
851 wb_do_writeback(wb, 1);
852
853 trace_writeback_thread_stop(bdi);
854 return 0;
855 }
856
857
858 /*
859 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
860 * the whole world.
861 */
862 void wakeup_flusher_threads(long nr_pages)
863 {
864 struct backing_dev_info *bdi;
865
866 if (!nr_pages) {
867 nr_pages = global_page_state(NR_FILE_DIRTY) +
868 global_page_state(NR_UNSTABLE_NFS);
869 }
870
871 rcu_read_lock();
872 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
873 if (!bdi_has_dirty_io(bdi))
874 continue;
875 __bdi_start_writeback(bdi, nr_pages, false, false);
876 }
877 rcu_read_unlock();
878 }
879
880 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
881 {
882 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
883 struct dentry *dentry;
884 const char *name = "?";
885
886 dentry = d_find_alias(inode);
887 if (dentry) {
888 spin_lock(&dentry->d_lock);
889 name = (const char *) dentry->d_name.name;
890 }
891 printk(KERN_DEBUG
892 "%s(%d): dirtied inode %lu (%s) on %s\n",
893 current->comm, task_pid_nr(current), inode->i_ino,
894 name, inode->i_sb->s_id);
895 if (dentry) {
896 spin_unlock(&dentry->d_lock);
897 dput(dentry);
898 }
899 }
900 }
901
902 /**
903 * __mark_inode_dirty - internal function
904 * @inode: inode to mark
905 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
906 * Mark an inode as dirty. Callers should use mark_inode_dirty or
907 * mark_inode_dirty_sync.
908 *
909 * Put the inode on the super block's dirty list.
910 *
911 * CAREFUL! We mark it dirty unconditionally, but move it onto the
912 * dirty list only if it is hashed or if it refers to a blockdev.
913 * If it was not hashed, it will never be added to the dirty list
914 * even if it is later hashed, as it will have been marked dirty already.
915 *
916 * In short, make sure you hash any inodes _before_ you start marking
917 * them dirty.
918 *
919 * This function *must* be atomic for the I_DIRTY_PAGES case -
920 * set_page_dirty() is called under spinlock in several places.
921 *
922 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
923 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
924 * the kernel-internal blockdev inode represents the dirtying time of the
925 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
926 * page->mapping->host, so the page-dirtying time is recorded in the internal
927 * blockdev inode.
928 */
929 void __mark_inode_dirty(struct inode *inode, int flags)
930 {
931 struct super_block *sb = inode->i_sb;
932 struct backing_dev_info *bdi = NULL;
933 bool wakeup_bdi = false;
934
935 /*
936 * Don't do this for I_DIRTY_PAGES - that doesn't actually
937 * dirty the inode itself
938 */
939 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
940 if (sb->s_op->dirty_inode)
941 sb->s_op->dirty_inode(inode);
942 }
943
944 /*
945 * make sure that changes are seen by all cpus before we test i_state
946 * -- mikulas
947 */
948 smp_mb();
949
950 /* avoid the locking if we can */
951 if ((inode->i_state & flags) == flags)
952 return;
953
954 if (unlikely(block_dump))
955 block_dump___mark_inode_dirty(inode);
956
957 spin_lock(&inode_lock);
958 if ((inode->i_state & flags) != flags) {
959 const int was_dirty = inode->i_state & I_DIRTY;
960
961 inode->i_state |= flags;
962
963 /*
964 * If the inode is being synced, just update its dirty state.
965 * The unlocker will place the inode on the appropriate
966 * superblock list, based upon its state.
967 */
968 if (inode->i_state & I_SYNC)
969 goto out;
970
971 /*
972 * Only add valid (hashed) inodes to the superblock's
973 * dirty list. Add blockdev inodes as well.
974 */
975 if (!S_ISBLK(inode->i_mode)) {
976 if (hlist_unhashed(&inode->i_hash))
977 goto out;
978 }
979 if (inode->i_state & I_FREEING)
980 goto out;
981
982 /*
983 * If the inode was already on b_dirty/b_io/b_more_io, don't
984 * reposition it (that would break b_dirty time-ordering).
985 */
986 if (!was_dirty) {
987 bdi = inode_to_bdi(inode);
988
989 if (bdi_cap_writeback_dirty(bdi)) {
990 WARN(!test_bit(BDI_registered, &bdi->state),
991 "bdi-%s not registered\n", bdi->name);
992
993 /*
994 * If this is the first dirty inode for this
995 * bdi, we have to wake-up the corresponding
996 * bdi thread to make sure background
997 * write-back happens later.
998 */
999 if (!wb_has_dirty_io(&bdi->wb))
1000 wakeup_bdi = true;
1001 }
1002
1003 inode->dirtied_when = jiffies;
1004 list_move(&inode->i_list, &bdi->wb.b_dirty);
1005 }
1006 }
1007 out:
1008 spin_unlock(&inode_lock);
1009
1010 if (wakeup_bdi)
1011 bdi_wakeup_thread_delayed(bdi);
1012 }
1013 EXPORT_SYMBOL(__mark_inode_dirty);
1014
1015 /*
1016 * Write out a superblock's list of dirty inodes. A wait will be performed
1017 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1018 *
1019 * If older_than_this is non-NULL, then only write out inodes which
1020 * had their first dirtying at a time earlier than *older_than_this.
1021 *
1022 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1023 * This function assumes that the blockdev superblock's inodes are backed by
1024 * a variety of queues, so all inodes are searched. For other superblocks,
1025 * assume that all inodes are backed by the same queue.
1026 *
1027 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1028 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1029 * on the writer throttling path, and we get decent balancing between many
1030 * throttled threads: we don't want them all piling up on inode_sync_wait.
1031 */
1032 static void wait_sb_inodes(struct super_block *sb)
1033 {
1034 struct inode *inode, *old_inode = NULL;
1035
1036 /*
1037 * We need to be protected against the filesystem going from
1038 * r/o to r/w or vice versa.
1039 */
1040 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1041
1042 spin_lock(&inode_lock);
1043
1044 /*
1045 * Data integrity sync. Must wait for all pages under writeback,
1046 * because there may have been pages dirtied before our sync
1047 * call, but which had writeout started before we write it out.
1048 * In which case, the inode may not be on the dirty list, but
1049 * we still have to wait for that writeout.
1050 */
1051 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1052 struct address_space *mapping;
1053
1054 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1055 continue;
1056 mapping = inode->i_mapping;
1057 if (mapping->nrpages == 0)
1058 continue;
1059 __iget(inode);
1060 spin_unlock(&inode_lock);
1061 /*
1062 * We hold a reference to 'inode' so it couldn't have
1063 * been removed from s_inodes list while we dropped the
1064 * inode_lock. We cannot iput the inode now as we can
1065 * be holding the last reference and we cannot iput it
1066 * under inode_lock. So we keep the reference and iput
1067 * it later.
1068 */
1069 iput(old_inode);
1070 old_inode = inode;
1071
1072 filemap_fdatawait(mapping);
1073
1074 cond_resched();
1075
1076 spin_lock(&inode_lock);
1077 }
1078 spin_unlock(&inode_lock);
1079 iput(old_inode);
1080 }
1081
1082 /**
1083 * writeback_inodes_sb - writeback dirty inodes from given super_block
1084 * @sb: the superblock
1085 *
1086 * Start writeback on some inodes on this super_block. No guarantees are made
1087 * on how many (if any) will be written, and this function does not wait
1088 * for IO completion of submitted IO. The number of pages submitted is
1089 * returned.
1090 */
1091 void writeback_inodes_sb(struct super_block *sb)
1092 {
1093 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1094 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1095 DECLARE_COMPLETION_ONSTACK(done);
1096 struct wb_writeback_work work = {
1097 .sb = sb,
1098 .sync_mode = WB_SYNC_NONE,
1099 .done = &done,
1100 };
1101
1102 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1103
1104 work.nr_pages = nr_dirty + nr_unstable +
1105 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1106
1107 bdi_queue_work(sb->s_bdi, &work);
1108 wait_for_completion(&done);
1109 }
1110 EXPORT_SYMBOL(writeback_inodes_sb);
1111
1112 /**
1113 * writeback_inodes_sb_if_idle - start writeback if none underway
1114 * @sb: the superblock
1115 *
1116 * Invoke writeback_inodes_sb if no writeback is currently underway.
1117 * Returns 1 if writeback was started, 0 if not.
1118 */
1119 int writeback_inodes_sb_if_idle(struct super_block *sb)
1120 {
1121 if (!writeback_in_progress(sb->s_bdi)) {
1122 down_read(&sb->s_umount);
1123 writeback_inodes_sb(sb);
1124 up_read(&sb->s_umount);
1125 return 1;
1126 } else
1127 return 0;
1128 }
1129 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1130
1131 /**
1132 * sync_inodes_sb - sync sb inode pages
1133 * @sb: the superblock
1134 *
1135 * This function writes and waits on any dirty inode belonging to this
1136 * super_block. The number of pages synced is returned.
1137 */
1138 void sync_inodes_sb(struct super_block *sb)
1139 {
1140 DECLARE_COMPLETION_ONSTACK(done);
1141 struct wb_writeback_work work = {
1142 .sb = sb,
1143 .sync_mode = WB_SYNC_ALL,
1144 .nr_pages = LONG_MAX,
1145 .range_cyclic = 0,
1146 .done = &done,
1147 };
1148
1149 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1150
1151 bdi_queue_work(sb->s_bdi, &work);
1152 wait_for_completion(&done);
1153
1154 wait_sb_inodes(sb);
1155 }
1156 EXPORT_SYMBOL(sync_inodes_sb);
1157
1158 /**
1159 * write_inode_now - write an inode to disk
1160 * @inode: inode to write to disk
1161 * @sync: whether the write should be synchronous or not
1162 *
1163 * This function commits an inode to disk immediately if it is dirty. This is
1164 * primarily needed by knfsd.
1165 *
1166 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1167 */
1168 int write_inode_now(struct inode *inode, int sync)
1169 {
1170 int ret;
1171 struct writeback_control wbc = {
1172 .nr_to_write = LONG_MAX,
1173 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1174 .range_start = 0,
1175 .range_end = LLONG_MAX,
1176 };
1177
1178 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1179 wbc.nr_to_write = 0;
1180
1181 might_sleep();
1182 spin_lock(&inode_lock);
1183 ret = writeback_single_inode(inode, &wbc);
1184 spin_unlock(&inode_lock);
1185 if (sync)
1186 inode_sync_wait(inode);
1187 return ret;
1188 }
1189 EXPORT_SYMBOL(write_inode_now);
1190
1191 /**
1192 * sync_inode - write an inode and its pages to disk.
1193 * @inode: the inode to sync
1194 * @wbc: controls the writeback mode
1195 *
1196 * sync_inode() will write an inode and its pages to disk. It will also
1197 * correctly update the inode on its superblock's dirty inode lists and will
1198 * update inode->i_state.
1199 *
1200 * The caller must have a ref on the inode.
1201 */
1202 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1203 {
1204 int ret;
1205
1206 spin_lock(&inode_lock);
1207 ret = writeback_single_inode(inode, wbc);
1208 spin_unlock(&inode_lock);
1209 return ret;
1210 }
1211 EXPORT_SYMBOL(sync_inode);