]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/fs-writeback.c
writeback: make writeback_control.nr_to_write straight
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * The maximum number of pages to writeout in a single bdi flush/kupdate
34 * operation. We do this so we don't hold I_SYNC against an inode for
35 * enormous amounts of time, which would block a userspace task which has
36 * been forced to throttle against that inode. Also, the code reevaluates
37 * the dirty each time it has written this many pages.
38 */
39 #define MAX_WRITEBACK_PAGES 1024L
40
41 /*
42 * Passed into wb_writeback(), essentially a subset of writeback_control
43 */
44 struct wb_writeback_work {
45 long nr_pages;
46 struct super_block *sb;
47 unsigned long *older_than_this;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53
54 struct list_head list; /* pending work list */
55 struct completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * Include the creation of the trace points after defining the
60 * wb_writeback_work structure so that the definition remains local to this
61 * file.
62 */
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/writeback.h>
65
66 /*
67 * We don't actually have pdflush, but this one is exported though /proc...
68 */
69 int nr_pdflush_threads;
70
71 /**
72 * writeback_in_progress - determine whether there is writeback in progress
73 * @bdi: the device's backing_dev_info structure.
74 *
75 * Determine whether there is writeback waiting to be handled against a
76 * backing device.
77 */
78 int writeback_in_progress(struct backing_dev_info *bdi)
79 {
80 return test_bit(BDI_writeback_running, &bdi->state);
81 }
82
83 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
84 {
85 struct super_block *sb = inode->i_sb;
86
87 if (strcmp(sb->s_type->name, "bdev") == 0)
88 return inode->i_mapping->backing_dev_info;
89
90 return sb->s_bdi;
91 }
92
93 static inline struct inode *wb_inode(struct list_head *head)
94 {
95 return list_entry(head, struct inode, i_wb_list);
96 }
97
98 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
99 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
100 {
101 if (bdi->wb.task) {
102 wake_up_process(bdi->wb.task);
103 } else {
104 /*
105 * The bdi thread isn't there, wake up the forker thread which
106 * will create and run it.
107 */
108 wake_up_process(default_backing_dev_info.wb.task);
109 }
110 }
111
112 static void bdi_queue_work(struct backing_dev_info *bdi,
113 struct wb_writeback_work *work)
114 {
115 trace_writeback_queue(bdi, work);
116
117 spin_lock_bh(&bdi->wb_lock);
118 list_add_tail(&work->list, &bdi->work_list);
119 if (!bdi->wb.task)
120 trace_writeback_nothread(bdi, work);
121 bdi_wakeup_flusher(bdi);
122 spin_unlock_bh(&bdi->wb_lock);
123 }
124
125 static void
126 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
127 bool range_cyclic)
128 {
129 struct wb_writeback_work *work;
130
131 /*
132 * This is WB_SYNC_NONE writeback, so if allocation fails just
133 * wakeup the thread for old dirty data writeback
134 */
135 work = kzalloc(sizeof(*work), GFP_ATOMIC);
136 if (!work) {
137 if (bdi->wb.task) {
138 trace_writeback_nowork(bdi);
139 wake_up_process(bdi->wb.task);
140 }
141 return;
142 }
143
144 work->sync_mode = WB_SYNC_NONE;
145 work->nr_pages = nr_pages;
146 work->range_cyclic = range_cyclic;
147
148 bdi_queue_work(bdi, work);
149 }
150
151 /**
152 * bdi_start_writeback - start writeback
153 * @bdi: the backing device to write from
154 * @nr_pages: the number of pages to write
155 *
156 * Description:
157 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
158 * started when this function returns, we make no guarantees on
159 * completion. Caller need not hold sb s_umount semaphore.
160 *
161 */
162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
163 {
164 __bdi_start_writeback(bdi, nr_pages, true);
165 }
166
167 /**
168 * bdi_start_background_writeback - start background writeback
169 * @bdi: the backing device to write from
170 *
171 * Description:
172 * This makes sure WB_SYNC_NONE background writeback happens. When
173 * this function returns, it is only guaranteed that for given BDI
174 * some IO is happening if we are over background dirty threshold.
175 * Caller need not hold sb s_umount semaphore.
176 */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 /*
180 * We just wake up the flusher thread. It will perform background
181 * writeback as soon as there is no other work to do.
182 */
183 trace_writeback_wake_background(bdi);
184 spin_lock_bh(&bdi->wb_lock);
185 bdi_wakeup_flusher(bdi);
186 spin_unlock_bh(&bdi->wb_lock);
187 }
188
189 /*
190 * Remove the inode from the writeback list it is on.
191 */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 struct backing_dev_info *bdi = inode_to_bdi(inode);
195
196 spin_lock(&bdi->wb.list_lock);
197 list_del_init(&inode->i_wb_list);
198 spin_unlock(&bdi->wb.list_lock);
199 }
200
201 /*
202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203 * furthest end of its superblock's dirty-inode list.
204 *
205 * Before stamping the inode's ->dirtied_when, we check to see whether it is
206 * already the most-recently-dirtied inode on the b_dirty list. If that is
207 * the case then the inode must have been redirtied while it was being written
208 * out and we don't reset its dirtied_when.
209 */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 assert_spin_locked(&wb->list_lock);
213 if (!list_empty(&wb->b_dirty)) {
214 struct inode *tail;
215
216 tail = wb_inode(wb->b_dirty.next);
217 if (time_before(inode->dirtied_when, tail->dirtied_when))
218 inode->dirtied_when = jiffies;
219 }
220 list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222
223 /*
224 * requeue inode for re-scanning after bdi->b_io list is exhausted.
225 */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 assert_spin_locked(&wb->list_lock);
229 list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231
232 static void inode_sync_complete(struct inode *inode)
233 {
234 /*
235 * Prevent speculative execution through
236 * spin_unlock(&wb->list_lock);
237 */
238
239 smp_mb();
240 wake_up_bit(&inode->i_state, __I_SYNC);
241 }
242
243 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
244 {
245 bool ret = time_after(inode->dirtied_when, t);
246 #ifndef CONFIG_64BIT
247 /*
248 * For inodes being constantly redirtied, dirtied_when can get stuck.
249 * It _appears_ to be in the future, but is actually in distant past.
250 * This test is necessary to prevent such wrapped-around relative times
251 * from permanently stopping the whole bdi writeback.
252 */
253 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
254 #endif
255 return ret;
256 }
257
258 /*
259 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
260 */
261 static int move_expired_inodes(struct list_head *delaying_queue,
262 struct list_head *dispatch_queue,
263 unsigned long *older_than_this)
264 {
265 LIST_HEAD(tmp);
266 struct list_head *pos, *node;
267 struct super_block *sb = NULL;
268 struct inode *inode;
269 int do_sb_sort = 0;
270 int moved = 0;
271
272 while (!list_empty(delaying_queue)) {
273 inode = wb_inode(delaying_queue->prev);
274 if (older_than_this &&
275 inode_dirtied_after(inode, *older_than_this))
276 break;
277 if (sb && sb != inode->i_sb)
278 do_sb_sort = 1;
279 sb = inode->i_sb;
280 list_move(&inode->i_wb_list, &tmp);
281 moved++;
282 }
283
284 /* just one sb in list, splice to dispatch_queue and we're done */
285 if (!do_sb_sort) {
286 list_splice(&tmp, dispatch_queue);
287 goto out;
288 }
289
290 /* Move inodes from one superblock together */
291 while (!list_empty(&tmp)) {
292 sb = wb_inode(tmp.prev)->i_sb;
293 list_for_each_prev_safe(pos, node, &tmp) {
294 inode = wb_inode(pos);
295 if (inode->i_sb == sb)
296 list_move(&inode->i_wb_list, dispatch_queue);
297 }
298 }
299 out:
300 return moved;
301 }
302
303 /*
304 * Queue all expired dirty inodes for io, eldest first.
305 * Before
306 * newly dirtied b_dirty b_io b_more_io
307 * =============> gf edc BA
308 * After
309 * newly dirtied b_dirty b_io b_more_io
310 * =============> g fBAedc
311 * |
312 * +--> dequeue for IO
313 */
314 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
315 {
316 int moved;
317 assert_spin_locked(&wb->list_lock);
318 list_splice_init(&wb->b_more_io, &wb->b_io);
319 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
320 trace_writeback_queue_io(wb, older_than_this, moved);
321 }
322
323 static int write_inode(struct inode *inode, struct writeback_control *wbc)
324 {
325 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
326 return inode->i_sb->s_op->write_inode(inode, wbc);
327 return 0;
328 }
329
330 /*
331 * Wait for writeback on an inode to complete.
332 */
333 static void inode_wait_for_writeback(struct inode *inode,
334 struct bdi_writeback *wb)
335 {
336 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 wait_queue_head_t *wqh;
338
339 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 while (inode->i_state & I_SYNC) {
341 spin_unlock(&inode->i_lock);
342 spin_unlock(&wb->list_lock);
343 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
344 spin_lock(&wb->list_lock);
345 spin_lock(&inode->i_lock);
346 }
347 }
348
349 /*
350 * Write out an inode's dirty pages. Called under wb->list_lock and
351 * inode->i_lock. Either the caller has an active reference on the inode or
352 * the inode has I_WILL_FREE set.
353 *
354 * If `wait' is set, wait on the writeout.
355 *
356 * The whole writeout design is quite complex and fragile. We want to avoid
357 * starvation of particular inodes when others are being redirtied, prevent
358 * livelocks, etc.
359 */
360 static int
361 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
362 struct writeback_control *wbc)
363 {
364 struct address_space *mapping = inode->i_mapping;
365 long nr_to_write = wbc->nr_to_write;
366 unsigned dirty;
367 int ret;
368
369 assert_spin_locked(&wb->list_lock);
370 assert_spin_locked(&inode->i_lock);
371
372 if (!atomic_read(&inode->i_count))
373 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
374 else
375 WARN_ON(inode->i_state & I_WILL_FREE);
376
377 if (inode->i_state & I_SYNC) {
378 /*
379 * If this inode is locked for writeback and we are not doing
380 * writeback-for-data-integrity, move it to b_more_io so that
381 * writeback can proceed with the other inodes on s_io.
382 *
383 * We'll have another go at writing back this inode when we
384 * completed a full scan of b_io.
385 */
386 if (wbc->sync_mode != WB_SYNC_ALL) {
387 requeue_io(inode, wb);
388 trace_writeback_single_inode_requeue(inode, wbc,
389 nr_to_write);
390 return 0;
391 }
392
393 /*
394 * It's a data-integrity sync. We must wait.
395 */
396 inode_wait_for_writeback(inode, wb);
397 }
398
399 BUG_ON(inode->i_state & I_SYNC);
400
401 /* Set I_SYNC, reset I_DIRTY_PAGES */
402 inode->i_state |= I_SYNC;
403 inode->i_state &= ~I_DIRTY_PAGES;
404 spin_unlock(&inode->i_lock);
405 spin_unlock(&wb->list_lock);
406
407 ret = do_writepages(mapping, wbc);
408
409 /*
410 * Make sure to wait on the data before writing out the metadata.
411 * This is important for filesystems that modify metadata on data
412 * I/O completion.
413 */
414 if (wbc->sync_mode == WB_SYNC_ALL) {
415 int err = filemap_fdatawait(mapping);
416 if (ret == 0)
417 ret = err;
418 }
419
420 /*
421 * Some filesystems may redirty the inode during the writeback
422 * due to delalloc, clear dirty metadata flags right before
423 * write_inode()
424 */
425 spin_lock(&inode->i_lock);
426 dirty = inode->i_state & I_DIRTY;
427 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
428 spin_unlock(&inode->i_lock);
429 /* Don't write the inode if only I_DIRTY_PAGES was set */
430 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
431 int err = write_inode(inode, wbc);
432 if (ret == 0)
433 ret = err;
434 }
435
436 spin_lock(&wb->list_lock);
437 spin_lock(&inode->i_lock);
438 inode->i_state &= ~I_SYNC;
439 if (!(inode->i_state & I_FREEING)) {
440 /*
441 * Sync livelock prevention. Each inode is tagged and synced in
442 * one shot. If still dirty, it will be redirty_tail()'ed below.
443 * Update the dirty time to prevent enqueue and sync it again.
444 */
445 if ((inode->i_state & I_DIRTY) &&
446 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
447 inode->dirtied_when = jiffies;
448
449 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
450 /*
451 * We didn't write back all the pages. nfs_writepages()
452 * sometimes bales out without doing anything.
453 */
454 inode->i_state |= I_DIRTY_PAGES;
455 if (wbc->nr_to_write <= 0) {
456 /*
457 * slice used up: queue for next turn
458 */
459 requeue_io(inode, wb);
460 } else {
461 /*
462 * Writeback blocked by something other than
463 * congestion. Delay the inode for some time to
464 * avoid spinning on the CPU (100% iowait)
465 * retrying writeback of the dirty page/inode
466 * that cannot be performed immediately.
467 */
468 redirty_tail(inode, wb);
469 }
470 } else if (inode->i_state & I_DIRTY) {
471 /*
472 * Filesystems can dirty the inode during writeback
473 * operations, such as delayed allocation during
474 * submission or metadata updates after data IO
475 * completion.
476 */
477 redirty_tail(inode, wb);
478 } else {
479 /*
480 * The inode is clean. At this point we either have
481 * a reference to the inode or it's on it's way out.
482 * No need to add it back to the LRU.
483 */
484 list_del_init(&inode->i_wb_list);
485 }
486 }
487 inode_sync_complete(inode);
488 trace_writeback_single_inode(inode, wbc, nr_to_write);
489 return ret;
490 }
491
492 /*
493 * For background writeback the caller does not have the sb pinned
494 * before calling writeback. So make sure that we do pin it, so it doesn't
495 * go away while we are writing inodes from it.
496 */
497 static bool pin_sb_for_writeback(struct super_block *sb)
498 {
499 spin_lock(&sb_lock);
500 if (list_empty(&sb->s_instances)) {
501 spin_unlock(&sb_lock);
502 return false;
503 }
504
505 sb->s_count++;
506 spin_unlock(&sb_lock);
507
508 if (down_read_trylock(&sb->s_umount)) {
509 if (sb->s_root)
510 return true;
511 up_read(&sb->s_umount);
512 }
513
514 put_super(sb);
515 return false;
516 }
517
518 static long writeback_chunk_size(struct wb_writeback_work *work)
519 {
520 long pages;
521
522 /*
523 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
524 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
525 * here avoids calling into writeback_inodes_wb() more than once.
526 *
527 * The intended call sequence for WB_SYNC_ALL writeback is:
528 *
529 * wb_writeback()
530 * writeback_sb_inodes() <== called only once
531 * write_cache_pages() <== called once for each inode
532 * (quickly) tag currently dirty pages
533 * (maybe slowly) sync all tagged pages
534 */
535 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
536 pages = LONG_MAX;
537 else
538 pages = min(MAX_WRITEBACK_PAGES, work->nr_pages);
539
540 return pages;
541 }
542
543 /*
544 * Write a portion of b_io inodes which belong to @sb.
545 *
546 * If @only_this_sb is true, then find and write all such
547 * inodes. Otherwise write only ones which go sequentially
548 * in reverse order.
549 *
550 * Return the number of pages and/or inodes written.
551 */
552 static long writeback_sb_inodes(struct super_block *sb,
553 struct bdi_writeback *wb,
554 struct wb_writeback_work *work)
555 {
556 struct writeback_control wbc = {
557 .sync_mode = work->sync_mode,
558 .tagged_writepages = work->tagged_writepages,
559 .for_kupdate = work->for_kupdate,
560 .for_background = work->for_background,
561 .range_cyclic = work->range_cyclic,
562 .range_start = 0,
563 .range_end = LLONG_MAX,
564 };
565 unsigned long start_time = jiffies;
566 long write_chunk;
567 long wrote = 0; /* count both pages and inodes */
568
569 while (!list_empty(&wb->b_io)) {
570 struct inode *inode = wb_inode(wb->b_io.prev);
571
572 if (inode->i_sb != sb) {
573 if (work->sb) {
574 /*
575 * We only want to write back data for this
576 * superblock, move all inodes not belonging
577 * to it back onto the dirty list.
578 */
579 redirty_tail(inode, wb);
580 continue;
581 }
582
583 /*
584 * The inode belongs to a different superblock.
585 * Bounce back to the caller to unpin this and
586 * pin the next superblock.
587 */
588 break;
589 }
590
591 /*
592 * Don't bother with new inodes or inodes beeing freed, first
593 * kind does not need peridic writeout yet, and for the latter
594 * kind writeout is handled by the freer.
595 */
596 spin_lock(&inode->i_lock);
597 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
598 spin_unlock(&inode->i_lock);
599 requeue_io(inode, wb);
600 continue;
601 }
602 __iget(inode);
603 write_chunk = writeback_chunk_size(work);
604 wbc.nr_to_write = write_chunk;
605 wbc.pages_skipped = 0;
606
607 writeback_single_inode(inode, wb, &wbc);
608
609 work->nr_pages -= write_chunk - wbc.nr_to_write;
610 wrote += write_chunk - wbc.nr_to_write;
611 if (!(inode->i_state & I_DIRTY))
612 wrote++;
613 if (wbc.pages_skipped) {
614 /*
615 * writeback is not making progress due to locked
616 * buffers. Skip this inode for now.
617 */
618 redirty_tail(inode, wb);
619 }
620 spin_unlock(&inode->i_lock);
621 spin_unlock(&wb->list_lock);
622 iput(inode);
623 cond_resched();
624 spin_lock(&wb->list_lock);
625 /*
626 * bail out to wb_writeback() often enough to check
627 * background threshold and other termination conditions.
628 */
629 if (wrote) {
630 if (time_is_before_jiffies(start_time + HZ / 10UL))
631 break;
632 if (work->nr_pages <= 0)
633 break;
634 }
635 }
636 return wrote;
637 }
638
639 static long __writeback_inodes_wb(struct bdi_writeback *wb,
640 struct wb_writeback_work *work)
641 {
642 unsigned long start_time = jiffies;
643 long wrote = 0;
644
645 while (!list_empty(&wb->b_io)) {
646 struct inode *inode = wb_inode(wb->b_io.prev);
647 struct super_block *sb = inode->i_sb;
648
649 if (!pin_sb_for_writeback(sb)) {
650 requeue_io(inode, wb);
651 continue;
652 }
653 wrote += writeback_sb_inodes(sb, wb, work);
654 drop_super(sb);
655
656 /* refer to the same tests at the end of writeback_sb_inodes */
657 if (wrote) {
658 if (time_is_before_jiffies(start_time + HZ / 10UL))
659 break;
660 if (work->nr_pages <= 0)
661 break;
662 }
663 }
664 /* Leave any unwritten inodes on b_io */
665 return wrote;
666 }
667
668 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages)
669 {
670 struct wb_writeback_work work = {
671 .nr_pages = nr_pages,
672 .sync_mode = WB_SYNC_NONE,
673 .range_cyclic = 1,
674 };
675
676 spin_lock(&wb->list_lock);
677 if (list_empty(&wb->b_io))
678 queue_io(wb, NULL);
679 __writeback_inodes_wb(wb, &work);
680 spin_unlock(&wb->list_lock);
681
682 return nr_pages - work.nr_pages;
683 }
684
685 static inline bool over_bground_thresh(void)
686 {
687 unsigned long background_thresh, dirty_thresh;
688
689 global_dirty_limits(&background_thresh, &dirty_thresh);
690
691 return (global_page_state(NR_FILE_DIRTY) +
692 global_page_state(NR_UNSTABLE_NFS) > background_thresh);
693 }
694
695 /*
696 * Explicit flushing or periodic writeback of "old" data.
697 *
698 * Define "old": the first time one of an inode's pages is dirtied, we mark the
699 * dirtying-time in the inode's address_space. So this periodic writeback code
700 * just walks the superblock inode list, writing back any inodes which are
701 * older than a specific point in time.
702 *
703 * Try to run once per dirty_writeback_interval. But if a writeback event
704 * takes longer than a dirty_writeback_interval interval, then leave a
705 * one-second gap.
706 *
707 * older_than_this takes precedence over nr_to_write. So we'll only write back
708 * all dirty pages if they are all attached to "old" mappings.
709 */
710 static long wb_writeback(struct bdi_writeback *wb,
711 struct wb_writeback_work *work)
712 {
713 long nr_pages = work->nr_pages;
714 unsigned long oldest_jif;
715 struct inode *inode;
716 long progress;
717
718 oldest_jif = jiffies;
719 work->older_than_this = &oldest_jif;
720
721 spin_lock(&wb->list_lock);
722 for (;;) {
723 /*
724 * Stop writeback when nr_pages has been consumed
725 */
726 if (work->nr_pages <= 0)
727 break;
728
729 /*
730 * Background writeout and kupdate-style writeback may
731 * run forever. Stop them if there is other work to do
732 * so that e.g. sync can proceed. They'll be restarted
733 * after the other works are all done.
734 */
735 if ((work->for_background || work->for_kupdate) &&
736 !list_empty(&wb->bdi->work_list))
737 break;
738
739 /*
740 * For background writeout, stop when we are below the
741 * background dirty threshold
742 */
743 if (work->for_background && !over_bground_thresh())
744 break;
745
746 if (work->for_kupdate) {
747 oldest_jif = jiffies -
748 msecs_to_jiffies(dirty_expire_interval * 10);
749 work->older_than_this = &oldest_jif;
750 }
751
752 trace_writeback_start(wb->bdi, work);
753 if (list_empty(&wb->b_io))
754 queue_io(wb, work->older_than_this);
755 if (work->sb)
756 progress = writeback_sb_inodes(work->sb, wb, work);
757 else
758 progress = __writeback_inodes_wb(wb, work);
759 trace_writeback_written(wb->bdi, work);
760
761 /*
762 * Did we write something? Try for more
763 *
764 * Dirty inodes are moved to b_io for writeback in batches.
765 * The completion of the current batch does not necessarily
766 * mean the overall work is done. So we keep looping as long
767 * as made some progress on cleaning pages or inodes.
768 */
769 if (progress)
770 continue;
771 /*
772 * No more inodes for IO, bail
773 */
774 if (list_empty(&wb->b_more_io))
775 break;
776 /*
777 * Nothing written. Wait for some inode to
778 * become available for writeback. Otherwise
779 * we'll just busyloop.
780 */
781 if (!list_empty(&wb->b_more_io)) {
782 trace_writeback_wait(wb->bdi, work);
783 inode = wb_inode(wb->b_more_io.prev);
784 spin_lock(&inode->i_lock);
785 inode_wait_for_writeback(inode, wb);
786 spin_unlock(&inode->i_lock);
787 }
788 }
789 spin_unlock(&wb->list_lock);
790
791 return nr_pages - work->nr_pages;
792 }
793
794 /*
795 * Return the next wb_writeback_work struct that hasn't been processed yet.
796 */
797 static struct wb_writeback_work *
798 get_next_work_item(struct backing_dev_info *bdi)
799 {
800 struct wb_writeback_work *work = NULL;
801
802 spin_lock_bh(&bdi->wb_lock);
803 if (!list_empty(&bdi->work_list)) {
804 work = list_entry(bdi->work_list.next,
805 struct wb_writeback_work, list);
806 list_del_init(&work->list);
807 }
808 spin_unlock_bh(&bdi->wb_lock);
809 return work;
810 }
811
812 /*
813 * Add in the number of potentially dirty inodes, because each inode
814 * write can dirty pagecache in the underlying blockdev.
815 */
816 static unsigned long get_nr_dirty_pages(void)
817 {
818 return global_page_state(NR_FILE_DIRTY) +
819 global_page_state(NR_UNSTABLE_NFS) +
820 get_nr_dirty_inodes();
821 }
822
823 static long wb_check_background_flush(struct bdi_writeback *wb)
824 {
825 if (over_bground_thresh()) {
826
827 struct wb_writeback_work work = {
828 .nr_pages = LONG_MAX,
829 .sync_mode = WB_SYNC_NONE,
830 .for_background = 1,
831 .range_cyclic = 1,
832 };
833
834 return wb_writeback(wb, &work);
835 }
836
837 return 0;
838 }
839
840 static long wb_check_old_data_flush(struct bdi_writeback *wb)
841 {
842 unsigned long expired;
843 long nr_pages;
844
845 /*
846 * When set to zero, disable periodic writeback
847 */
848 if (!dirty_writeback_interval)
849 return 0;
850
851 expired = wb->last_old_flush +
852 msecs_to_jiffies(dirty_writeback_interval * 10);
853 if (time_before(jiffies, expired))
854 return 0;
855
856 wb->last_old_flush = jiffies;
857 nr_pages = get_nr_dirty_pages();
858
859 if (nr_pages) {
860 struct wb_writeback_work work = {
861 .nr_pages = nr_pages,
862 .sync_mode = WB_SYNC_NONE,
863 .for_kupdate = 1,
864 .range_cyclic = 1,
865 };
866
867 return wb_writeback(wb, &work);
868 }
869
870 return 0;
871 }
872
873 /*
874 * Retrieve work items and do the writeback they describe
875 */
876 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
877 {
878 struct backing_dev_info *bdi = wb->bdi;
879 struct wb_writeback_work *work;
880 long wrote = 0;
881
882 set_bit(BDI_writeback_running, &wb->bdi->state);
883 while ((work = get_next_work_item(bdi)) != NULL) {
884 /*
885 * Override sync mode, in case we must wait for completion
886 * because this thread is exiting now.
887 */
888 if (force_wait)
889 work->sync_mode = WB_SYNC_ALL;
890
891 trace_writeback_exec(bdi, work);
892
893 wrote += wb_writeback(wb, work);
894
895 /*
896 * Notify the caller of completion if this is a synchronous
897 * work item, otherwise just free it.
898 */
899 if (work->done)
900 complete(work->done);
901 else
902 kfree(work);
903 }
904
905 /*
906 * Check for periodic writeback, kupdated() style
907 */
908 wrote += wb_check_old_data_flush(wb);
909 wrote += wb_check_background_flush(wb);
910 clear_bit(BDI_writeback_running, &wb->bdi->state);
911
912 return wrote;
913 }
914
915 /*
916 * Handle writeback of dirty data for the device backed by this bdi. Also
917 * wakes up periodically and does kupdated style flushing.
918 */
919 int bdi_writeback_thread(void *data)
920 {
921 struct bdi_writeback *wb = data;
922 struct backing_dev_info *bdi = wb->bdi;
923 long pages_written;
924
925 current->flags |= PF_SWAPWRITE;
926 set_freezable();
927 wb->last_active = jiffies;
928
929 /*
930 * Our parent may run at a different priority, just set us to normal
931 */
932 set_user_nice(current, 0);
933
934 trace_writeback_thread_start(bdi);
935
936 while (!kthread_should_stop()) {
937 /*
938 * Remove own delayed wake-up timer, since we are already awake
939 * and we'll take care of the preriodic write-back.
940 */
941 del_timer(&wb->wakeup_timer);
942
943 pages_written = wb_do_writeback(wb, 0);
944
945 trace_writeback_pages_written(pages_written);
946
947 if (pages_written)
948 wb->last_active = jiffies;
949
950 set_current_state(TASK_INTERRUPTIBLE);
951 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
952 __set_current_state(TASK_RUNNING);
953 continue;
954 }
955
956 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
957 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
958 else {
959 /*
960 * We have nothing to do, so can go sleep without any
961 * timeout and save power. When a work is queued or
962 * something is made dirty - we will be woken up.
963 */
964 schedule();
965 }
966
967 try_to_freeze();
968 }
969
970 /* Flush any work that raced with us exiting */
971 if (!list_empty(&bdi->work_list))
972 wb_do_writeback(wb, 1);
973
974 trace_writeback_thread_stop(bdi);
975 return 0;
976 }
977
978
979 /*
980 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
981 * the whole world.
982 */
983 void wakeup_flusher_threads(long nr_pages)
984 {
985 struct backing_dev_info *bdi;
986
987 if (!nr_pages) {
988 nr_pages = global_page_state(NR_FILE_DIRTY) +
989 global_page_state(NR_UNSTABLE_NFS);
990 }
991
992 rcu_read_lock();
993 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
994 if (!bdi_has_dirty_io(bdi))
995 continue;
996 __bdi_start_writeback(bdi, nr_pages, false);
997 }
998 rcu_read_unlock();
999 }
1000
1001 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1002 {
1003 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1004 struct dentry *dentry;
1005 const char *name = "?";
1006
1007 dentry = d_find_alias(inode);
1008 if (dentry) {
1009 spin_lock(&dentry->d_lock);
1010 name = (const char *) dentry->d_name.name;
1011 }
1012 printk(KERN_DEBUG
1013 "%s(%d): dirtied inode %lu (%s) on %s\n",
1014 current->comm, task_pid_nr(current), inode->i_ino,
1015 name, inode->i_sb->s_id);
1016 if (dentry) {
1017 spin_unlock(&dentry->d_lock);
1018 dput(dentry);
1019 }
1020 }
1021 }
1022
1023 /**
1024 * __mark_inode_dirty - internal function
1025 * @inode: inode to mark
1026 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1027 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1028 * mark_inode_dirty_sync.
1029 *
1030 * Put the inode on the super block's dirty list.
1031 *
1032 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1033 * dirty list only if it is hashed or if it refers to a blockdev.
1034 * If it was not hashed, it will never be added to the dirty list
1035 * even if it is later hashed, as it will have been marked dirty already.
1036 *
1037 * In short, make sure you hash any inodes _before_ you start marking
1038 * them dirty.
1039 *
1040 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1041 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1042 * the kernel-internal blockdev inode represents the dirtying time of the
1043 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1044 * page->mapping->host, so the page-dirtying time is recorded in the internal
1045 * blockdev inode.
1046 */
1047 void __mark_inode_dirty(struct inode *inode, int flags)
1048 {
1049 struct super_block *sb = inode->i_sb;
1050 struct backing_dev_info *bdi = NULL;
1051
1052 /*
1053 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1054 * dirty the inode itself
1055 */
1056 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1057 if (sb->s_op->dirty_inode)
1058 sb->s_op->dirty_inode(inode, flags);
1059 }
1060
1061 /*
1062 * make sure that changes are seen by all cpus before we test i_state
1063 * -- mikulas
1064 */
1065 smp_mb();
1066
1067 /* avoid the locking if we can */
1068 if ((inode->i_state & flags) == flags)
1069 return;
1070
1071 if (unlikely(block_dump))
1072 block_dump___mark_inode_dirty(inode);
1073
1074 spin_lock(&inode->i_lock);
1075 if ((inode->i_state & flags) != flags) {
1076 const int was_dirty = inode->i_state & I_DIRTY;
1077
1078 inode->i_state |= flags;
1079
1080 /*
1081 * If the inode is being synced, just update its dirty state.
1082 * The unlocker will place the inode on the appropriate
1083 * superblock list, based upon its state.
1084 */
1085 if (inode->i_state & I_SYNC)
1086 goto out_unlock_inode;
1087
1088 /*
1089 * Only add valid (hashed) inodes to the superblock's
1090 * dirty list. Add blockdev inodes as well.
1091 */
1092 if (!S_ISBLK(inode->i_mode)) {
1093 if (inode_unhashed(inode))
1094 goto out_unlock_inode;
1095 }
1096 if (inode->i_state & I_FREEING)
1097 goto out_unlock_inode;
1098
1099 /*
1100 * If the inode was already on b_dirty/b_io/b_more_io, don't
1101 * reposition it (that would break b_dirty time-ordering).
1102 */
1103 if (!was_dirty) {
1104 bool wakeup_bdi = false;
1105 bdi = inode_to_bdi(inode);
1106
1107 if (bdi_cap_writeback_dirty(bdi)) {
1108 WARN(!test_bit(BDI_registered, &bdi->state),
1109 "bdi-%s not registered\n", bdi->name);
1110
1111 /*
1112 * If this is the first dirty inode for this
1113 * bdi, we have to wake-up the corresponding
1114 * bdi thread to make sure background
1115 * write-back happens later.
1116 */
1117 if (!wb_has_dirty_io(&bdi->wb))
1118 wakeup_bdi = true;
1119 }
1120
1121 spin_unlock(&inode->i_lock);
1122 spin_lock(&bdi->wb.list_lock);
1123 inode->dirtied_when = jiffies;
1124 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1125 spin_unlock(&bdi->wb.list_lock);
1126
1127 if (wakeup_bdi)
1128 bdi_wakeup_thread_delayed(bdi);
1129 return;
1130 }
1131 }
1132 out_unlock_inode:
1133 spin_unlock(&inode->i_lock);
1134
1135 }
1136 EXPORT_SYMBOL(__mark_inode_dirty);
1137
1138 /*
1139 * Write out a superblock's list of dirty inodes. A wait will be performed
1140 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1141 *
1142 * If older_than_this is non-NULL, then only write out inodes which
1143 * had their first dirtying at a time earlier than *older_than_this.
1144 *
1145 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1146 * This function assumes that the blockdev superblock's inodes are backed by
1147 * a variety of queues, so all inodes are searched. For other superblocks,
1148 * assume that all inodes are backed by the same queue.
1149 *
1150 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1151 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1152 * on the writer throttling path, and we get decent balancing between many
1153 * throttled threads: we don't want them all piling up on inode_sync_wait.
1154 */
1155 static void wait_sb_inodes(struct super_block *sb)
1156 {
1157 struct inode *inode, *old_inode = NULL;
1158
1159 /*
1160 * We need to be protected against the filesystem going from
1161 * r/o to r/w or vice versa.
1162 */
1163 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1164
1165 spin_lock(&inode_sb_list_lock);
1166
1167 /*
1168 * Data integrity sync. Must wait for all pages under writeback,
1169 * because there may have been pages dirtied before our sync
1170 * call, but which had writeout started before we write it out.
1171 * In which case, the inode may not be on the dirty list, but
1172 * we still have to wait for that writeout.
1173 */
1174 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1175 struct address_space *mapping = inode->i_mapping;
1176
1177 spin_lock(&inode->i_lock);
1178 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1179 (mapping->nrpages == 0)) {
1180 spin_unlock(&inode->i_lock);
1181 continue;
1182 }
1183 __iget(inode);
1184 spin_unlock(&inode->i_lock);
1185 spin_unlock(&inode_sb_list_lock);
1186
1187 /*
1188 * We hold a reference to 'inode' so it couldn't have been
1189 * removed from s_inodes list while we dropped the
1190 * inode_sb_list_lock. We cannot iput the inode now as we can
1191 * be holding the last reference and we cannot iput it under
1192 * inode_sb_list_lock. So we keep the reference and iput it
1193 * later.
1194 */
1195 iput(old_inode);
1196 old_inode = inode;
1197
1198 filemap_fdatawait(mapping);
1199
1200 cond_resched();
1201
1202 spin_lock(&inode_sb_list_lock);
1203 }
1204 spin_unlock(&inode_sb_list_lock);
1205 iput(old_inode);
1206 }
1207
1208 /**
1209 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1210 * @sb: the superblock
1211 * @nr: the number of pages to write
1212 *
1213 * Start writeback on some inodes on this super_block. No guarantees are made
1214 * on how many (if any) will be written, and this function does not wait
1215 * for IO completion of submitted IO.
1216 */
1217 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1218 {
1219 DECLARE_COMPLETION_ONSTACK(done);
1220 struct wb_writeback_work work = {
1221 .sb = sb,
1222 .sync_mode = WB_SYNC_NONE,
1223 .tagged_writepages = 1,
1224 .done = &done,
1225 .nr_pages = nr,
1226 };
1227
1228 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1229 bdi_queue_work(sb->s_bdi, &work);
1230 wait_for_completion(&done);
1231 }
1232 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1233
1234 /**
1235 * writeback_inodes_sb - writeback dirty inodes from given super_block
1236 * @sb: the superblock
1237 *
1238 * Start writeback on some inodes on this super_block. No guarantees are made
1239 * on how many (if any) will be written, and this function does not wait
1240 * for IO completion of submitted IO.
1241 */
1242 void writeback_inodes_sb(struct super_block *sb)
1243 {
1244 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1245 }
1246 EXPORT_SYMBOL(writeback_inodes_sb);
1247
1248 /**
1249 * writeback_inodes_sb_if_idle - start writeback if none underway
1250 * @sb: the superblock
1251 *
1252 * Invoke writeback_inodes_sb if no writeback is currently underway.
1253 * Returns 1 if writeback was started, 0 if not.
1254 */
1255 int writeback_inodes_sb_if_idle(struct super_block *sb)
1256 {
1257 if (!writeback_in_progress(sb->s_bdi)) {
1258 down_read(&sb->s_umount);
1259 writeback_inodes_sb(sb);
1260 up_read(&sb->s_umount);
1261 return 1;
1262 } else
1263 return 0;
1264 }
1265 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1266
1267 /**
1268 * writeback_inodes_sb_if_idle - start writeback if none underway
1269 * @sb: the superblock
1270 * @nr: the number of pages to write
1271 *
1272 * Invoke writeback_inodes_sb if no writeback is currently underway.
1273 * Returns 1 if writeback was started, 0 if not.
1274 */
1275 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1276 unsigned long nr)
1277 {
1278 if (!writeback_in_progress(sb->s_bdi)) {
1279 down_read(&sb->s_umount);
1280 writeback_inodes_sb_nr(sb, nr);
1281 up_read(&sb->s_umount);
1282 return 1;
1283 } else
1284 return 0;
1285 }
1286 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1287
1288 /**
1289 * sync_inodes_sb - sync sb inode pages
1290 * @sb: the superblock
1291 *
1292 * This function writes and waits on any dirty inode belonging to this
1293 * super_block.
1294 */
1295 void sync_inodes_sb(struct super_block *sb)
1296 {
1297 DECLARE_COMPLETION_ONSTACK(done);
1298 struct wb_writeback_work work = {
1299 .sb = sb,
1300 .sync_mode = WB_SYNC_ALL,
1301 .nr_pages = LONG_MAX,
1302 .range_cyclic = 0,
1303 .done = &done,
1304 };
1305
1306 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1307
1308 bdi_queue_work(sb->s_bdi, &work);
1309 wait_for_completion(&done);
1310
1311 wait_sb_inodes(sb);
1312 }
1313 EXPORT_SYMBOL(sync_inodes_sb);
1314
1315 /**
1316 * write_inode_now - write an inode to disk
1317 * @inode: inode to write to disk
1318 * @sync: whether the write should be synchronous or not
1319 *
1320 * This function commits an inode to disk immediately if it is dirty. This is
1321 * primarily needed by knfsd.
1322 *
1323 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1324 */
1325 int write_inode_now(struct inode *inode, int sync)
1326 {
1327 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1328 int ret;
1329 struct writeback_control wbc = {
1330 .nr_to_write = LONG_MAX,
1331 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1332 .range_start = 0,
1333 .range_end = LLONG_MAX,
1334 };
1335
1336 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1337 wbc.nr_to_write = 0;
1338
1339 might_sleep();
1340 spin_lock(&wb->list_lock);
1341 spin_lock(&inode->i_lock);
1342 ret = writeback_single_inode(inode, wb, &wbc);
1343 spin_unlock(&inode->i_lock);
1344 spin_unlock(&wb->list_lock);
1345 if (sync)
1346 inode_sync_wait(inode);
1347 return ret;
1348 }
1349 EXPORT_SYMBOL(write_inode_now);
1350
1351 /**
1352 * sync_inode - write an inode and its pages to disk.
1353 * @inode: the inode to sync
1354 * @wbc: controls the writeback mode
1355 *
1356 * sync_inode() will write an inode and its pages to disk. It will also
1357 * correctly update the inode on its superblock's dirty inode lists and will
1358 * update inode->i_state.
1359 *
1360 * The caller must have a ref on the inode.
1361 */
1362 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1363 {
1364 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1365 int ret;
1366
1367 spin_lock(&wb->list_lock);
1368 spin_lock(&inode->i_lock);
1369 ret = writeback_single_inode(inode, wb, wbc);
1370 spin_unlock(&inode->i_lock);
1371 spin_unlock(&wb->list_lock);
1372 return ret;
1373 }
1374 EXPORT_SYMBOL(sync_inode);
1375
1376 /**
1377 * sync_inode_metadata - write an inode to disk
1378 * @inode: the inode to sync
1379 * @wait: wait for I/O to complete.
1380 *
1381 * Write an inode to disk and adjust its dirty state after completion.
1382 *
1383 * Note: only writes the actual inode, no associated data or other metadata.
1384 */
1385 int sync_inode_metadata(struct inode *inode, int wait)
1386 {
1387 struct writeback_control wbc = {
1388 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1389 .nr_to_write = 0, /* metadata-only */
1390 };
1391
1392 return sync_inode(inode, &wbc);
1393 }
1394 EXPORT_SYMBOL(sync_inode_metadata);