]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fs-writeback.c
Merge tag 'jfs-3.14' of git://github.com/kleikamp/linux-shaggy
[mirror_ubuntu-bionic-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 /*
44 * Write only inodes dirtied before this time. Don't forget to set
45 * older_than_this_is_set when you set this.
46 */
47 unsigned long older_than_this;
48 enum writeback_sync_modes sync_mode;
49 unsigned int tagged_writepages:1;
50 unsigned int for_kupdate:1;
51 unsigned int range_cyclic:1;
52 unsigned int for_background:1;
53 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
54 unsigned int older_than_this_is_set:1;
55 enum wb_reason reason; /* why was writeback initiated? */
56
57 struct list_head list; /* pending work list */
58 struct completion *done; /* set if the caller waits */
59 };
60
61 /**
62 * writeback_in_progress - determine whether there is writeback in progress
63 * @bdi: the device's backing_dev_info structure.
64 *
65 * Determine whether there is writeback waiting to be handled against a
66 * backing device.
67 */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70 return test_bit(BDI_writeback_running, &bdi->state);
71 }
72 EXPORT_SYMBOL(writeback_in_progress);
73
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 struct super_block *sb = inode->i_sb;
77
78 if (sb_is_blkdev_sb(sb))
79 return inode->i_mapping->backing_dev_info;
80
81 return sb->s_bdi;
82 }
83
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 return list_entry(head, struct inode, i_wb_list);
87 }
88
89 /*
90 * Include the creation of the trace points after defining the
91 * wb_writeback_work structure and inline functions so that the definition
92 * remains local to this file.
93 */
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/writeback.h>
96
97 static void bdi_queue_work(struct backing_dev_info *bdi,
98 struct wb_writeback_work *work)
99 {
100 trace_writeback_queue(bdi, work);
101
102 spin_lock_bh(&bdi->wb_lock);
103 list_add_tail(&work->list, &bdi->work_list);
104 spin_unlock_bh(&bdi->wb_lock);
105
106 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
107 }
108
109 static void
110 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
111 bool range_cyclic, enum wb_reason reason)
112 {
113 struct wb_writeback_work *work;
114
115 /*
116 * This is WB_SYNC_NONE writeback, so if allocation fails just
117 * wakeup the thread for old dirty data writeback
118 */
119 work = kzalloc(sizeof(*work), GFP_ATOMIC);
120 if (!work) {
121 trace_writeback_nowork(bdi);
122 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
123 return;
124 }
125
126 work->sync_mode = WB_SYNC_NONE;
127 work->nr_pages = nr_pages;
128 work->range_cyclic = range_cyclic;
129 work->reason = reason;
130
131 bdi_queue_work(bdi, work);
132 }
133
134 /**
135 * bdi_start_writeback - start writeback
136 * @bdi: the backing device to write from
137 * @nr_pages: the number of pages to write
138 * @reason: reason why some writeback work was initiated
139 *
140 * Description:
141 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
142 * started when this function returns, we make no guarantees on
143 * completion. Caller need not hold sb s_umount semaphore.
144 *
145 */
146 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
147 enum wb_reason reason)
148 {
149 __bdi_start_writeback(bdi, nr_pages, true, reason);
150 }
151
152 /**
153 * bdi_start_background_writeback - start background writeback
154 * @bdi: the backing device to write from
155 *
156 * Description:
157 * This makes sure WB_SYNC_NONE background writeback happens. When
158 * this function returns, it is only guaranteed that for given BDI
159 * some IO is happening if we are over background dirty threshold.
160 * Caller need not hold sb s_umount semaphore.
161 */
162 void bdi_start_background_writeback(struct backing_dev_info *bdi)
163 {
164 /*
165 * We just wake up the flusher thread. It will perform background
166 * writeback as soon as there is no other work to do.
167 */
168 trace_writeback_wake_background(bdi);
169 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
170 }
171
172 /*
173 * Remove the inode from the writeback list it is on.
174 */
175 void inode_wb_list_del(struct inode *inode)
176 {
177 struct backing_dev_info *bdi = inode_to_bdi(inode);
178
179 spin_lock(&bdi->wb.list_lock);
180 list_del_init(&inode->i_wb_list);
181 spin_unlock(&bdi->wb.list_lock);
182 }
183
184 /*
185 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
186 * furthest end of its superblock's dirty-inode list.
187 *
188 * Before stamping the inode's ->dirtied_when, we check to see whether it is
189 * already the most-recently-dirtied inode on the b_dirty list. If that is
190 * the case then the inode must have been redirtied while it was being written
191 * out and we don't reset its dirtied_when.
192 */
193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
194 {
195 assert_spin_locked(&wb->list_lock);
196 if (!list_empty(&wb->b_dirty)) {
197 struct inode *tail;
198
199 tail = wb_inode(wb->b_dirty.next);
200 if (time_before(inode->dirtied_when, tail->dirtied_when))
201 inode->dirtied_when = jiffies;
202 }
203 list_move(&inode->i_wb_list, &wb->b_dirty);
204 }
205
206 /*
207 * requeue inode for re-scanning after bdi->b_io list is exhausted.
208 */
209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
210 {
211 assert_spin_locked(&wb->list_lock);
212 list_move(&inode->i_wb_list, &wb->b_more_io);
213 }
214
215 static void inode_sync_complete(struct inode *inode)
216 {
217 inode->i_state &= ~I_SYNC;
218 /* If inode is clean an unused, put it into LRU now... */
219 inode_add_lru(inode);
220 /* Waiters must see I_SYNC cleared before being woken up */
221 smp_mb();
222 wake_up_bit(&inode->i_state, __I_SYNC);
223 }
224
225 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
226 {
227 bool ret = time_after(inode->dirtied_when, t);
228 #ifndef CONFIG_64BIT
229 /*
230 * For inodes being constantly redirtied, dirtied_when can get stuck.
231 * It _appears_ to be in the future, but is actually in distant past.
232 * This test is necessary to prevent such wrapped-around relative times
233 * from permanently stopping the whole bdi writeback.
234 */
235 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
236 #endif
237 return ret;
238 }
239
240 /*
241 * Move expired (dirtied before work->older_than_this) dirty inodes from
242 * @delaying_queue to @dispatch_queue.
243 */
244 static int move_expired_inodes(struct list_head *delaying_queue,
245 struct list_head *dispatch_queue,
246 struct wb_writeback_work *work)
247 {
248 LIST_HEAD(tmp);
249 struct list_head *pos, *node;
250 struct super_block *sb = NULL;
251 struct inode *inode;
252 int do_sb_sort = 0;
253 int moved = 0;
254
255 WARN_ON_ONCE(!work->older_than_this_is_set);
256 while (!list_empty(delaying_queue)) {
257 inode = wb_inode(delaying_queue->prev);
258 if (inode_dirtied_after(inode, work->older_than_this))
259 break;
260 list_move(&inode->i_wb_list, &tmp);
261 moved++;
262 if (sb_is_blkdev_sb(inode->i_sb))
263 continue;
264 if (sb && sb != inode->i_sb)
265 do_sb_sort = 1;
266 sb = inode->i_sb;
267 }
268
269 /* just one sb in list, splice to dispatch_queue and we're done */
270 if (!do_sb_sort) {
271 list_splice(&tmp, dispatch_queue);
272 goto out;
273 }
274
275 /* Move inodes from one superblock together */
276 while (!list_empty(&tmp)) {
277 sb = wb_inode(tmp.prev)->i_sb;
278 list_for_each_prev_safe(pos, node, &tmp) {
279 inode = wb_inode(pos);
280 if (inode->i_sb == sb)
281 list_move(&inode->i_wb_list, dispatch_queue);
282 }
283 }
284 out:
285 return moved;
286 }
287
288 /*
289 * Queue all expired dirty inodes for io, eldest first.
290 * Before
291 * newly dirtied b_dirty b_io b_more_io
292 * =============> gf edc BA
293 * After
294 * newly dirtied b_dirty b_io b_more_io
295 * =============> g fBAedc
296 * |
297 * +--> dequeue for IO
298 */
299 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
300 {
301 int moved;
302 assert_spin_locked(&wb->list_lock);
303 list_splice_init(&wb->b_more_io, &wb->b_io);
304 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
305 trace_writeback_queue_io(wb, work, moved);
306 }
307
308 static int write_inode(struct inode *inode, struct writeback_control *wbc)
309 {
310 int ret;
311
312 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
313 trace_writeback_write_inode_start(inode, wbc);
314 ret = inode->i_sb->s_op->write_inode(inode, wbc);
315 trace_writeback_write_inode(inode, wbc);
316 return ret;
317 }
318 return 0;
319 }
320
321 /*
322 * Wait for writeback on an inode to complete. Called with i_lock held.
323 * Caller must make sure inode cannot go away when we drop i_lock.
324 */
325 static void __inode_wait_for_writeback(struct inode *inode)
326 __releases(inode->i_lock)
327 __acquires(inode->i_lock)
328 {
329 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
330 wait_queue_head_t *wqh;
331
332 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
333 while (inode->i_state & I_SYNC) {
334 spin_unlock(&inode->i_lock);
335 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
336 spin_lock(&inode->i_lock);
337 }
338 }
339
340 /*
341 * Wait for writeback on an inode to complete. Caller must have inode pinned.
342 */
343 void inode_wait_for_writeback(struct inode *inode)
344 {
345 spin_lock(&inode->i_lock);
346 __inode_wait_for_writeback(inode);
347 spin_unlock(&inode->i_lock);
348 }
349
350 /*
351 * Sleep until I_SYNC is cleared. This function must be called with i_lock
352 * held and drops it. It is aimed for callers not holding any inode reference
353 * so once i_lock is dropped, inode can go away.
354 */
355 static void inode_sleep_on_writeback(struct inode *inode)
356 __releases(inode->i_lock)
357 {
358 DEFINE_WAIT(wait);
359 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
360 int sleep;
361
362 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
363 sleep = inode->i_state & I_SYNC;
364 spin_unlock(&inode->i_lock);
365 if (sleep)
366 schedule();
367 finish_wait(wqh, &wait);
368 }
369
370 /*
371 * Find proper writeback list for the inode depending on its current state and
372 * possibly also change of its state while we were doing writeback. Here we
373 * handle things such as livelock prevention or fairness of writeback among
374 * inodes. This function can be called only by flusher thread - noone else
375 * processes all inodes in writeback lists and requeueing inodes behind flusher
376 * thread's back can have unexpected consequences.
377 */
378 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
379 struct writeback_control *wbc)
380 {
381 if (inode->i_state & I_FREEING)
382 return;
383
384 /*
385 * Sync livelock prevention. Each inode is tagged and synced in one
386 * shot. If still dirty, it will be redirty_tail()'ed below. Update
387 * the dirty time to prevent enqueue and sync it again.
388 */
389 if ((inode->i_state & I_DIRTY) &&
390 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
391 inode->dirtied_when = jiffies;
392
393 if (wbc->pages_skipped) {
394 /*
395 * writeback is not making progress due to locked
396 * buffers. Skip this inode for now.
397 */
398 redirty_tail(inode, wb);
399 return;
400 }
401
402 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
403 /*
404 * We didn't write back all the pages. nfs_writepages()
405 * sometimes bales out without doing anything.
406 */
407 if (wbc->nr_to_write <= 0) {
408 /* Slice used up. Queue for next turn. */
409 requeue_io(inode, wb);
410 } else {
411 /*
412 * Writeback blocked by something other than
413 * congestion. Delay the inode for some time to
414 * avoid spinning on the CPU (100% iowait)
415 * retrying writeback of the dirty page/inode
416 * that cannot be performed immediately.
417 */
418 redirty_tail(inode, wb);
419 }
420 } else if (inode->i_state & I_DIRTY) {
421 /*
422 * Filesystems can dirty the inode during writeback operations,
423 * such as delayed allocation during submission or metadata
424 * updates after data IO completion.
425 */
426 redirty_tail(inode, wb);
427 } else {
428 /* The inode is clean. Remove from writeback lists. */
429 list_del_init(&inode->i_wb_list);
430 }
431 }
432
433 /*
434 * Write out an inode and its dirty pages. Do not update the writeback list
435 * linkage. That is left to the caller. The caller is also responsible for
436 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
437 */
438 static int
439 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
440 {
441 struct address_space *mapping = inode->i_mapping;
442 long nr_to_write = wbc->nr_to_write;
443 unsigned dirty;
444 int ret;
445
446 WARN_ON(!(inode->i_state & I_SYNC));
447
448 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
449
450 ret = do_writepages(mapping, wbc);
451
452 /*
453 * Make sure to wait on the data before writing out the metadata.
454 * This is important for filesystems that modify metadata on data
455 * I/O completion. We don't do it for sync(2) writeback because it has a
456 * separate, external IO completion path and ->sync_fs for guaranteeing
457 * inode metadata is written back correctly.
458 */
459 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
460 int err = filemap_fdatawait(mapping);
461 if (ret == 0)
462 ret = err;
463 }
464
465 /*
466 * Some filesystems may redirty the inode during the writeback
467 * due to delalloc, clear dirty metadata flags right before
468 * write_inode()
469 */
470 spin_lock(&inode->i_lock);
471 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
472 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
473 inode->i_state &= ~I_DIRTY_PAGES;
474 dirty = inode->i_state & I_DIRTY;
475 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
476 spin_unlock(&inode->i_lock);
477 /* Don't write the inode if only I_DIRTY_PAGES was set */
478 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
479 int err = write_inode(inode, wbc);
480 if (ret == 0)
481 ret = err;
482 }
483 trace_writeback_single_inode(inode, wbc, nr_to_write);
484 return ret;
485 }
486
487 /*
488 * Write out an inode's dirty pages. Either the caller has an active reference
489 * on the inode or the inode has I_WILL_FREE set.
490 *
491 * This function is designed to be called for writing back one inode which
492 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
493 * and does more profound writeback list handling in writeback_sb_inodes().
494 */
495 static int
496 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
497 struct writeback_control *wbc)
498 {
499 int ret = 0;
500
501 spin_lock(&inode->i_lock);
502 if (!atomic_read(&inode->i_count))
503 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
504 else
505 WARN_ON(inode->i_state & I_WILL_FREE);
506
507 if (inode->i_state & I_SYNC) {
508 if (wbc->sync_mode != WB_SYNC_ALL)
509 goto out;
510 /*
511 * It's a data-integrity sync. We must wait. Since callers hold
512 * inode reference or inode has I_WILL_FREE set, it cannot go
513 * away under us.
514 */
515 __inode_wait_for_writeback(inode);
516 }
517 WARN_ON(inode->i_state & I_SYNC);
518 /*
519 * Skip inode if it is clean and we have no outstanding writeback in
520 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
521 * function since flusher thread may be doing for example sync in
522 * parallel and if we move the inode, it could get skipped. So here we
523 * make sure inode is on some writeback list and leave it there unless
524 * we have completely cleaned the inode.
525 */
526 if (!(inode->i_state & I_DIRTY) &&
527 (wbc->sync_mode != WB_SYNC_ALL ||
528 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
529 goto out;
530 inode->i_state |= I_SYNC;
531 spin_unlock(&inode->i_lock);
532
533 ret = __writeback_single_inode(inode, wbc);
534
535 spin_lock(&wb->list_lock);
536 spin_lock(&inode->i_lock);
537 /*
538 * If inode is clean, remove it from writeback lists. Otherwise don't
539 * touch it. See comment above for explanation.
540 */
541 if (!(inode->i_state & I_DIRTY))
542 list_del_init(&inode->i_wb_list);
543 spin_unlock(&wb->list_lock);
544 inode_sync_complete(inode);
545 out:
546 spin_unlock(&inode->i_lock);
547 return ret;
548 }
549
550 static long writeback_chunk_size(struct backing_dev_info *bdi,
551 struct wb_writeback_work *work)
552 {
553 long pages;
554
555 /*
556 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
557 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
558 * here avoids calling into writeback_inodes_wb() more than once.
559 *
560 * The intended call sequence for WB_SYNC_ALL writeback is:
561 *
562 * wb_writeback()
563 * writeback_sb_inodes() <== called only once
564 * write_cache_pages() <== called once for each inode
565 * (quickly) tag currently dirty pages
566 * (maybe slowly) sync all tagged pages
567 */
568 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
569 pages = LONG_MAX;
570 else {
571 pages = min(bdi->avg_write_bandwidth / 2,
572 global_dirty_limit / DIRTY_SCOPE);
573 pages = min(pages, work->nr_pages);
574 pages = round_down(pages + MIN_WRITEBACK_PAGES,
575 MIN_WRITEBACK_PAGES);
576 }
577
578 return pages;
579 }
580
581 /*
582 * Write a portion of b_io inodes which belong to @sb.
583 *
584 * Return the number of pages and/or inodes written.
585 */
586 static long writeback_sb_inodes(struct super_block *sb,
587 struct bdi_writeback *wb,
588 struct wb_writeback_work *work)
589 {
590 struct writeback_control wbc = {
591 .sync_mode = work->sync_mode,
592 .tagged_writepages = work->tagged_writepages,
593 .for_kupdate = work->for_kupdate,
594 .for_background = work->for_background,
595 .for_sync = work->for_sync,
596 .range_cyclic = work->range_cyclic,
597 .range_start = 0,
598 .range_end = LLONG_MAX,
599 };
600 unsigned long start_time = jiffies;
601 long write_chunk;
602 long wrote = 0; /* count both pages and inodes */
603
604 while (!list_empty(&wb->b_io)) {
605 struct inode *inode = wb_inode(wb->b_io.prev);
606
607 if (inode->i_sb != sb) {
608 if (work->sb) {
609 /*
610 * We only want to write back data for this
611 * superblock, move all inodes not belonging
612 * to it back onto the dirty list.
613 */
614 redirty_tail(inode, wb);
615 continue;
616 }
617
618 /*
619 * The inode belongs to a different superblock.
620 * Bounce back to the caller to unpin this and
621 * pin the next superblock.
622 */
623 break;
624 }
625
626 /*
627 * Don't bother with new inodes or inodes being freed, first
628 * kind does not need periodic writeout yet, and for the latter
629 * kind writeout is handled by the freer.
630 */
631 spin_lock(&inode->i_lock);
632 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
633 spin_unlock(&inode->i_lock);
634 redirty_tail(inode, wb);
635 continue;
636 }
637 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
638 /*
639 * If this inode is locked for writeback and we are not
640 * doing writeback-for-data-integrity, move it to
641 * b_more_io so that writeback can proceed with the
642 * other inodes on s_io.
643 *
644 * We'll have another go at writing back this inode
645 * when we completed a full scan of b_io.
646 */
647 spin_unlock(&inode->i_lock);
648 requeue_io(inode, wb);
649 trace_writeback_sb_inodes_requeue(inode);
650 continue;
651 }
652 spin_unlock(&wb->list_lock);
653
654 /*
655 * We already requeued the inode if it had I_SYNC set and we
656 * are doing WB_SYNC_NONE writeback. So this catches only the
657 * WB_SYNC_ALL case.
658 */
659 if (inode->i_state & I_SYNC) {
660 /* Wait for I_SYNC. This function drops i_lock... */
661 inode_sleep_on_writeback(inode);
662 /* Inode may be gone, start again */
663 spin_lock(&wb->list_lock);
664 continue;
665 }
666 inode->i_state |= I_SYNC;
667 spin_unlock(&inode->i_lock);
668
669 write_chunk = writeback_chunk_size(wb->bdi, work);
670 wbc.nr_to_write = write_chunk;
671 wbc.pages_skipped = 0;
672
673 /*
674 * We use I_SYNC to pin the inode in memory. While it is set
675 * evict_inode() will wait so the inode cannot be freed.
676 */
677 __writeback_single_inode(inode, &wbc);
678
679 work->nr_pages -= write_chunk - wbc.nr_to_write;
680 wrote += write_chunk - wbc.nr_to_write;
681 spin_lock(&wb->list_lock);
682 spin_lock(&inode->i_lock);
683 if (!(inode->i_state & I_DIRTY))
684 wrote++;
685 requeue_inode(inode, wb, &wbc);
686 inode_sync_complete(inode);
687 spin_unlock(&inode->i_lock);
688 cond_resched_lock(&wb->list_lock);
689 /*
690 * bail out to wb_writeback() often enough to check
691 * background threshold and other termination conditions.
692 */
693 if (wrote) {
694 if (time_is_before_jiffies(start_time + HZ / 10UL))
695 break;
696 if (work->nr_pages <= 0)
697 break;
698 }
699 }
700 return wrote;
701 }
702
703 static long __writeback_inodes_wb(struct bdi_writeback *wb,
704 struct wb_writeback_work *work)
705 {
706 unsigned long start_time = jiffies;
707 long wrote = 0;
708
709 while (!list_empty(&wb->b_io)) {
710 struct inode *inode = wb_inode(wb->b_io.prev);
711 struct super_block *sb = inode->i_sb;
712
713 if (!grab_super_passive(sb)) {
714 /*
715 * grab_super_passive() may fail consistently due to
716 * s_umount being grabbed by someone else. Don't use
717 * requeue_io() to avoid busy retrying the inode/sb.
718 */
719 redirty_tail(inode, wb);
720 continue;
721 }
722 wrote += writeback_sb_inodes(sb, wb, work);
723 drop_super(sb);
724
725 /* refer to the same tests at the end of writeback_sb_inodes */
726 if (wrote) {
727 if (time_is_before_jiffies(start_time + HZ / 10UL))
728 break;
729 if (work->nr_pages <= 0)
730 break;
731 }
732 }
733 /* Leave any unwritten inodes on b_io */
734 return wrote;
735 }
736
737 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
738 enum wb_reason reason)
739 {
740 struct wb_writeback_work work = {
741 .nr_pages = nr_pages,
742 .sync_mode = WB_SYNC_NONE,
743 .range_cyclic = 1,
744 .reason = reason,
745 .older_than_this = jiffies,
746 .older_than_this_is_set = 1,
747 };
748
749 spin_lock(&wb->list_lock);
750 if (list_empty(&wb->b_io))
751 queue_io(wb, &work);
752 __writeback_inodes_wb(wb, &work);
753 spin_unlock(&wb->list_lock);
754
755 return nr_pages - work.nr_pages;
756 }
757
758 static bool over_bground_thresh(struct backing_dev_info *bdi)
759 {
760 unsigned long background_thresh, dirty_thresh;
761
762 global_dirty_limits(&background_thresh, &dirty_thresh);
763
764 if (global_page_state(NR_FILE_DIRTY) +
765 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
766 return true;
767
768 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
769 bdi_dirty_limit(bdi, background_thresh))
770 return true;
771
772 return false;
773 }
774
775 /*
776 * Called under wb->list_lock. If there are multiple wb per bdi,
777 * only the flusher working on the first wb should do it.
778 */
779 static void wb_update_bandwidth(struct bdi_writeback *wb,
780 unsigned long start_time)
781 {
782 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
783 }
784
785 /*
786 * Explicit flushing or periodic writeback of "old" data.
787 *
788 * Define "old": the first time one of an inode's pages is dirtied, we mark the
789 * dirtying-time in the inode's address_space. So this periodic writeback code
790 * just walks the superblock inode list, writing back any inodes which are
791 * older than a specific point in time.
792 *
793 * Try to run once per dirty_writeback_interval. But if a writeback event
794 * takes longer than a dirty_writeback_interval interval, then leave a
795 * one-second gap.
796 *
797 * older_than_this takes precedence over nr_to_write. So we'll only write back
798 * all dirty pages if they are all attached to "old" mappings.
799 */
800 static long wb_writeback(struct bdi_writeback *wb,
801 struct wb_writeback_work *work)
802 {
803 unsigned long wb_start = jiffies;
804 long nr_pages = work->nr_pages;
805 struct inode *inode;
806 long progress;
807
808 if (!work->older_than_this_is_set) {
809 work->older_than_this = jiffies;
810 work->older_than_this_is_set = 1;
811 }
812
813 spin_lock(&wb->list_lock);
814 for (;;) {
815 /*
816 * Stop writeback when nr_pages has been consumed
817 */
818 if (work->nr_pages <= 0)
819 break;
820
821 /*
822 * Background writeout and kupdate-style writeback may
823 * run forever. Stop them if there is other work to do
824 * so that e.g. sync can proceed. They'll be restarted
825 * after the other works are all done.
826 */
827 if ((work->for_background || work->for_kupdate) &&
828 !list_empty(&wb->bdi->work_list))
829 break;
830
831 /*
832 * For background writeout, stop when we are below the
833 * background dirty threshold
834 */
835 if (work->for_background && !over_bground_thresh(wb->bdi))
836 break;
837
838 /*
839 * Kupdate and background works are special and we want to
840 * include all inodes that need writing. Livelock avoidance is
841 * handled by these works yielding to any other work so we are
842 * safe.
843 */
844 if (work->for_kupdate) {
845 work->older_than_this = jiffies -
846 msecs_to_jiffies(dirty_expire_interval * 10);
847 } else if (work->for_background)
848 work->older_than_this = jiffies;
849
850 trace_writeback_start(wb->bdi, work);
851 if (list_empty(&wb->b_io))
852 queue_io(wb, work);
853 if (work->sb)
854 progress = writeback_sb_inodes(work->sb, wb, work);
855 else
856 progress = __writeback_inodes_wb(wb, work);
857 trace_writeback_written(wb->bdi, work);
858
859 wb_update_bandwidth(wb, wb_start);
860
861 /*
862 * Did we write something? Try for more
863 *
864 * Dirty inodes are moved to b_io for writeback in batches.
865 * The completion of the current batch does not necessarily
866 * mean the overall work is done. So we keep looping as long
867 * as made some progress on cleaning pages or inodes.
868 */
869 if (progress)
870 continue;
871 /*
872 * No more inodes for IO, bail
873 */
874 if (list_empty(&wb->b_more_io))
875 break;
876 /*
877 * Nothing written. Wait for some inode to
878 * become available for writeback. Otherwise
879 * we'll just busyloop.
880 */
881 if (!list_empty(&wb->b_more_io)) {
882 trace_writeback_wait(wb->bdi, work);
883 inode = wb_inode(wb->b_more_io.prev);
884 spin_lock(&inode->i_lock);
885 spin_unlock(&wb->list_lock);
886 /* This function drops i_lock... */
887 inode_sleep_on_writeback(inode);
888 spin_lock(&wb->list_lock);
889 }
890 }
891 spin_unlock(&wb->list_lock);
892
893 return nr_pages - work->nr_pages;
894 }
895
896 /*
897 * Return the next wb_writeback_work struct that hasn't been processed yet.
898 */
899 static struct wb_writeback_work *
900 get_next_work_item(struct backing_dev_info *bdi)
901 {
902 struct wb_writeback_work *work = NULL;
903
904 spin_lock_bh(&bdi->wb_lock);
905 if (!list_empty(&bdi->work_list)) {
906 work = list_entry(bdi->work_list.next,
907 struct wb_writeback_work, list);
908 list_del_init(&work->list);
909 }
910 spin_unlock_bh(&bdi->wb_lock);
911 return work;
912 }
913
914 /*
915 * Add in the number of potentially dirty inodes, because each inode
916 * write can dirty pagecache in the underlying blockdev.
917 */
918 static unsigned long get_nr_dirty_pages(void)
919 {
920 return global_page_state(NR_FILE_DIRTY) +
921 global_page_state(NR_UNSTABLE_NFS) +
922 get_nr_dirty_inodes();
923 }
924
925 static long wb_check_background_flush(struct bdi_writeback *wb)
926 {
927 if (over_bground_thresh(wb->bdi)) {
928
929 struct wb_writeback_work work = {
930 .nr_pages = LONG_MAX,
931 .sync_mode = WB_SYNC_NONE,
932 .for_background = 1,
933 .range_cyclic = 1,
934 .reason = WB_REASON_BACKGROUND,
935 };
936
937 return wb_writeback(wb, &work);
938 }
939
940 return 0;
941 }
942
943 static long wb_check_old_data_flush(struct bdi_writeback *wb)
944 {
945 unsigned long expired;
946 long nr_pages;
947
948 /*
949 * When set to zero, disable periodic writeback
950 */
951 if (!dirty_writeback_interval)
952 return 0;
953
954 expired = wb->last_old_flush +
955 msecs_to_jiffies(dirty_writeback_interval * 10);
956 if (time_before(jiffies, expired))
957 return 0;
958
959 wb->last_old_flush = jiffies;
960 nr_pages = get_nr_dirty_pages();
961
962 if (nr_pages) {
963 struct wb_writeback_work work = {
964 .nr_pages = nr_pages,
965 .sync_mode = WB_SYNC_NONE,
966 .for_kupdate = 1,
967 .range_cyclic = 1,
968 .reason = WB_REASON_PERIODIC,
969 };
970
971 return wb_writeback(wb, &work);
972 }
973
974 return 0;
975 }
976
977 /*
978 * Retrieve work items and do the writeback they describe
979 */
980 static long wb_do_writeback(struct bdi_writeback *wb)
981 {
982 struct backing_dev_info *bdi = wb->bdi;
983 struct wb_writeback_work *work;
984 long wrote = 0;
985
986 set_bit(BDI_writeback_running, &wb->bdi->state);
987 while ((work = get_next_work_item(bdi)) != NULL) {
988
989 trace_writeback_exec(bdi, work);
990
991 wrote += wb_writeback(wb, work);
992
993 /*
994 * Notify the caller of completion if this is a synchronous
995 * work item, otherwise just free it.
996 */
997 if (work->done)
998 complete(work->done);
999 else
1000 kfree(work);
1001 }
1002
1003 /*
1004 * Check for periodic writeback, kupdated() style
1005 */
1006 wrote += wb_check_old_data_flush(wb);
1007 wrote += wb_check_background_flush(wb);
1008 clear_bit(BDI_writeback_running, &wb->bdi->state);
1009
1010 return wrote;
1011 }
1012
1013 /*
1014 * Handle writeback of dirty data for the device backed by this bdi. Also
1015 * reschedules periodically and does kupdated style flushing.
1016 */
1017 void bdi_writeback_workfn(struct work_struct *work)
1018 {
1019 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1020 struct bdi_writeback, dwork);
1021 struct backing_dev_info *bdi = wb->bdi;
1022 long pages_written;
1023
1024 set_worker_desc("flush-%s", dev_name(bdi->dev));
1025 current->flags |= PF_SWAPWRITE;
1026
1027 if (likely(!current_is_workqueue_rescuer() ||
1028 list_empty(&bdi->bdi_list))) {
1029 /*
1030 * The normal path. Keep writing back @bdi until its
1031 * work_list is empty. Note that this path is also taken
1032 * if @bdi is shutting down even when we're running off the
1033 * rescuer as work_list needs to be drained.
1034 */
1035 do {
1036 pages_written = wb_do_writeback(wb);
1037 trace_writeback_pages_written(pages_written);
1038 } while (!list_empty(&bdi->work_list));
1039 } else {
1040 /*
1041 * bdi_wq can't get enough workers and we're running off
1042 * the emergency worker. Don't hog it. Hopefully, 1024 is
1043 * enough for efficient IO.
1044 */
1045 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1046 WB_REASON_FORKER_THREAD);
1047 trace_writeback_pages_written(pages_written);
1048 }
1049
1050 if (!list_empty(&bdi->work_list) ||
1051 (wb_has_dirty_io(wb) && dirty_writeback_interval))
1052 queue_delayed_work(bdi_wq, &wb->dwork,
1053 msecs_to_jiffies(dirty_writeback_interval * 10));
1054
1055 current->flags &= ~PF_SWAPWRITE;
1056 }
1057
1058 /*
1059 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1060 * the whole world.
1061 */
1062 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1063 {
1064 struct backing_dev_info *bdi;
1065
1066 if (!nr_pages)
1067 nr_pages = get_nr_dirty_pages();
1068
1069 rcu_read_lock();
1070 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1071 if (!bdi_has_dirty_io(bdi))
1072 continue;
1073 __bdi_start_writeback(bdi, nr_pages, false, reason);
1074 }
1075 rcu_read_unlock();
1076 }
1077
1078 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1079 {
1080 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1081 struct dentry *dentry;
1082 const char *name = "?";
1083
1084 dentry = d_find_alias(inode);
1085 if (dentry) {
1086 spin_lock(&dentry->d_lock);
1087 name = (const char *) dentry->d_name.name;
1088 }
1089 printk(KERN_DEBUG
1090 "%s(%d): dirtied inode %lu (%s) on %s\n",
1091 current->comm, task_pid_nr(current), inode->i_ino,
1092 name, inode->i_sb->s_id);
1093 if (dentry) {
1094 spin_unlock(&dentry->d_lock);
1095 dput(dentry);
1096 }
1097 }
1098 }
1099
1100 /**
1101 * __mark_inode_dirty - internal function
1102 * @inode: inode to mark
1103 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1104 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1105 * mark_inode_dirty_sync.
1106 *
1107 * Put the inode on the super block's dirty list.
1108 *
1109 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1110 * dirty list only if it is hashed or if it refers to a blockdev.
1111 * If it was not hashed, it will never be added to the dirty list
1112 * even if it is later hashed, as it will have been marked dirty already.
1113 *
1114 * In short, make sure you hash any inodes _before_ you start marking
1115 * them dirty.
1116 *
1117 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1118 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1119 * the kernel-internal blockdev inode represents the dirtying time of the
1120 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1121 * page->mapping->host, so the page-dirtying time is recorded in the internal
1122 * blockdev inode.
1123 */
1124 void __mark_inode_dirty(struct inode *inode, int flags)
1125 {
1126 struct super_block *sb = inode->i_sb;
1127 struct backing_dev_info *bdi = NULL;
1128
1129 /*
1130 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1131 * dirty the inode itself
1132 */
1133 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1134 trace_writeback_dirty_inode_start(inode, flags);
1135
1136 if (sb->s_op->dirty_inode)
1137 sb->s_op->dirty_inode(inode, flags);
1138
1139 trace_writeback_dirty_inode(inode, flags);
1140 }
1141
1142 /*
1143 * make sure that changes are seen by all cpus before we test i_state
1144 * -- mikulas
1145 */
1146 smp_mb();
1147
1148 /* avoid the locking if we can */
1149 if ((inode->i_state & flags) == flags)
1150 return;
1151
1152 if (unlikely(block_dump))
1153 block_dump___mark_inode_dirty(inode);
1154
1155 spin_lock(&inode->i_lock);
1156 if ((inode->i_state & flags) != flags) {
1157 const int was_dirty = inode->i_state & I_DIRTY;
1158
1159 inode->i_state |= flags;
1160
1161 /*
1162 * If the inode is being synced, just update its dirty state.
1163 * The unlocker will place the inode on the appropriate
1164 * superblock list, based upon its state.
1165 */
1166 if (inode->i_state & I_SYNC)
1167 goto out_unlock_inode;
1168
1169 /*
1170 * Only add valid (hashed) inodes to the superblock's
1171 * dirty list. Add blockdev inodes as well.
1172 */
1173 if (!S_ISBLK(inode->i_mode)) {
1174 if (inode_unhashed(inode))
1175 goto out_unlock_inode;
1176 }
1177 if (inode->i_state & I_FREEING)
1178 goto out_unlock_inode;
1179
1180 /*
1181 * If the inode was already on b_dirty/b_io/b_more_io, don't
1182 * reposition it (that would break b_dirty time-ordering).
1183 */
1184 if (!was_dirty) {
1185 bool wakeup_bdi = false;
1186 bdi = inode_to_bdi(inode);
1187
1188 spin_unlock(&inode->i_lock);
1189 spin_lock(&bdi->wb.list_lock);
1190 if (bdi_cap_writeback_dirty(bdi)) {
1191 WARN(!test_bit(BDI_registered, &bdi->state),
1192 "bdi-%s not registered\n", bdi->name);
1193
1194 /*
1195 * If this is the first dirty inode for this
1196 * bdi, we have to wake-up the corresponding
1197 * bdi thread to make sure background
1198 * write-back happens later.
1199 */
1200 if (!wb_has_dirty_io(&bdi->wb))
1201 wakeup_bdi = true;
1202 }
1203
1204 inode->dirtied_when = jiffies;
1205 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1206 spin_unlock(&bdi->wb.list_lock);
1207
1208 if (wakeup_bdi)
1209 bdi_wakeup_thread_delayed(bdi);
1210 return;
1211 }
1212 }
1213 out_unlock_inode:
1214 spin_unlock(&inode->i_lock);
1215
1216 }
1217 EXPORT_SYMBOL(__mark_inode_dirty);
1218
1219 static void wait_sb_inodes(struct super_block *sb)
1220 {
1221 struct inode *inode, *old_inode = NULL;
1222
1223 /*
1224 * We need to be protected against the filesystem going from
1225 * r/o to r/w or vice versa.
1226 */
1227 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1228
1229 spin_lock(&inode_sb_list_lock);
1230
1231 /*
1232 * Data integrity sync. Must wait for all pages under writeback,
1233 * because there may have been pages dirtied before our sync
1234 * call, but which had writeout started before we write it out.
1235 * In which case, the inode may not be on the dirty list, but
1236 * we still have to wait for that writeout.
1237 */
1238 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1239 struct address_space *mapping = inode->i_mapping;
1240
1241 spin_lock(&inode->i_lock);
1242 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1243 (mapping->nrpages == 0)) {
1244 spin_unlock(&inode->i_lock);
1245 continue;
1246 }
1247 __iget(inode);
1248 spin_unlock(&inode->i_lock);
1249 spin_unlock(&inode_sb_list_lock);
1250
1251 /*
1252 * We hold a reference to 'inode' so it couldn't have been
1253 * removed from s_inodes list while we dropped the
1254 * inode_sb_list_lock. We cannot iput the inode now as we can
1255 * be holding the last reference and we cannot iput it under
1256 * inode_sb_list_lock. So we keep the reference and iput it
1257 * later.
1258 */
1259 iput(old_inode);
1260 old_inode = inode;
1261
1262 filemap_fdatawait(mapping);
1263
1264 cond_resched();
1265
1266 spin_lock(&inode_sb_list_lock);
1267 }
1268 spin_unlock(&inode_sb_list_lock);
1269 iput(old_inode);
1270 }
1271
1272 /**
1273 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1274 * @sb: the superblock
1275 * @nr: the number of pages to write
1276 * @reason: reason why some writeback work initiated
1277 *
1278 * Start writeback on some inodes on this super_block. No guarantees are made
1279 * on how many (if any) will be written, and this function does not wait
1280 * for IO completion of submitted IO.
1281 */
1282 void writeback_inodes_sb_nr(struct super_block *sb,
1283 unsigned long nr,
1284 enum wb_reason reason)
1285 {
1286 DECLARE_COMPLETION_ONSTACK(done);
1287 struct wb_writeback_work work = {
1288 .sb = sb,
1289 .sync_mode = WB_SYNC_NONE,
1290 .tagged_writepages = 1,
1291 .done = &done,
1292 .nr_pages = nr,
1293 .reason = reason,
1294 };
1295
1296 if (sb->s_bdi == &noop_backing_dev_info)
1297 return;
1298 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1299 bdi_queue_work(sb->s_bdi, &work);
1300 wait_for_completion(&done);
1301 }
1302 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1303
1304 /**
1305 * writeback_inodes_sb - writeback dirty inodes from given super_block
1306 * @sb: the superblock
1307 * @reason: reason why some writeback work was initiated
1308 *
1309 * Start writeback on some inodes on this super_block. No guarantees are made
1310 * on how many (if any) will be written, and this function does not wait
1311 * for IO completion of submitted IO.
1312 */
1313 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1314 {
1315 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1316 }
1317 EXPORT_SYMBOL(writeback_inodes_sb);
1318
1319 /**
1320 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1321 * @sb: the superblock
1322 * @nr: the number of pages to write
1323 * @reason: the reason of writeback
1324 *
1325 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1326 * Returns 1 if writeback was started, 0 if not.
1327 */
1328 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1329 unsigned long nr,
1330 enum wb_reason reason)
1331 {
1332 if (writeback_in_progress(sb->s_bdi))
1333 return 1;
1334
1335 if (!down_read_trylock(&sb->s_umount))
1336 return 0;
1337
1338 writeback_inodes_sb_nr(sb, nr, reason);
1339 up_read(&sb->s_umount);
1340 return 1;
1341 }
1342 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1343
1344 /**
1345 * try_to_writeback_inodes_sb - try to start writeback if none underway
1346 * @sb: the superblock
1347 * @reason: reason why some writeback work was initiated
1348 *
1349 * Implement by try_to_writeback_inodes_sb_nr()
1350 * Returns 1 if writeback was started, 0 if not.
1351 */
1352 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1353 {
1354 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1355 }
1356 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1357
1358 /**
1359 * sync_inodes_sb - sync sb inode pages
1360 * @sb: the superblock
1361 * @older_than_this: timestamp
1362 *
1363 * This function writes and waits on any dirty inode belonging to this
1364 * superblock that has been dirtied before given timestamp.
1365 */
1366 void sync_inodes_sb(struct super_block *sb, unsigned long older_than_this)
1367 {
1368 DECLARE_COMPLETION_ONSTACK(done);
1369 struct wb_writeback_work work = {
1370 .sb = sb,
1371 .sync_mode = WB_SYNC_ALL,
1372 .nr_pages = LONG_MAX,
1373 .older_than_this = older_than_this,
1374 .older_than_this_is_set = 1,
1375 .range_cyclic = 0,
1376 .done = &done,
1377 .reason = WB_REASON_SYNC,
1378 .for_sync = 1,
1379 };
1380
1381 /* Nothing to do? */
1382 if (sb->s_bdi == &noop_backing_dev_info)
1383 return;
1384 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1385
1386 bdi_queue_work(sb->s_bdi, &work);
1387 wait_for_completion(&done);
1388
1389 wait_sb_inodes(sb);
1390 }
1391 EXPORT_SYMBOL(sync_inodes_sb);
1392
1393 /**
1394 * write_inode_now - write an inode to disk
1395 * @inode: inode to write to disk
1396 * @sync: whether the write should be synchronous or not
1397 *
1398 * This function commits an inode to disk immediately if it is dirty. This is
1399 * primarily needed by knfsd.
1400 *
1401 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1402 */
1403 int write_inode_now(struct inode *inode, int sync)
1404 {
1405 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1406 struct writeback_control wbc = {
1407 .nr_to_write = LONG_MAX,
1408 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1409 .range_start = 0,
1410 .range_end = LLONG_MAX,
1411 };
1412
1413 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1414 wbc.nr_to_write = 0;
1415
1416 might_sleep();
1417 return writeback_single_inode(inode, wb, &wbc);
1418 }
1419 EXPORT_SYMBOL(write_inode_now);
1420
1421 /**
1422 * sync_inode - write an inode and its pages to disk.
1423 * @inode: the inode to sync
1424 * @wbc: controls the writeback mode
1425 *
1426 * sync_inode() will write an inode and its pages to disk. It will also
1427 * correctly update the inode on its superblock's dirty inode lists and will
1428 * update inode->i_state.
1429 *
1430 * The caller must have a ref on the inode.
1431 */
1432 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1433 {
1434 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1435 }
1436 EXPORT_SYMBOL(sync_inode);
1437
1438 /**
1439 * sync_inode_metadata - write an inode to disk
1440 * @inode: the inode to sync
1441 * @wait: wait for I/O to complete.
1442 *
1443 * Write an inode to disk and adjust its dirty state after completion.
1444 *
1445 * Note: only writes the actual inode, no associated data or other metadata.
1446 */
1447 int sync_inode_metadata(struct inode *inode, int wait)
1448 {
1449 struct writeback_control wbc = {
1450 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1451 .nr_to_write = 0, /* metadata-only */
1452 };
1453
1454 return sync_inode(inode, &wbc);
1455 }
1456 EXPORT_SYMBOL(sync_inode_metadata);