]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fs-writeback.c
Merge branch 'timers/core' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic...
[mirror_ubuntu-bionic-kernel.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32 * 4MB minimal write chunk size
33 */
34 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
35
36 /*
37 * Passed into wb_writeback(), essentially a subset of writeback_control
38 */
39 struct wb_writeback_work {
40 long nr_pages;
41 struct super_block *sb;
42 unsigned long *older_than_this;
43 enum writeback_sync_modes sync_mode;
44 unsigned int tagged_writepages:1;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
48 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /**
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
58 *
59 * Determine whether there is writeback waiting to be handled against a
60 * backing device.
61 */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 struct super_block *sb = inode->i_sb;
71
72 if (strcmp(sb->s_type->name, "bdev") == 0)
73 return inode->i_mapping->backing_dev_info;
74
75 return sb->s_bdi;
76 }
77
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 return list_entry(head, struct inode, i_wb_list);
81 }
82
83 /*
84 * Include the creation of the trace points after defining the
85 * wb_writeback_work structure and inline functions so that the definition
86 * remains local to this file.
87 */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90
91 static void bdi_queue_work(struct backing_dev_info *bdi,
92 struct wb_writeback_work *work)
93 {
94 trace_writeback_queue(bdi, work);
95
96 spin_lock_bh(&bdi->wb_lock);
97 list_add_tail(&work->list, &bdi->work_list);
98 spin_unlock_bh(&bdi->wb_lock);
99
100 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
101 }
102
103 static void
104 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
105 bool range_cyclic, enum wb_reason reason)
106 {
107 struct wb_writeback_work *work;
108
109 /*
110 * This is WB_SYNC_NONE writeback, so if allocation fails just
111 * wakeup the thread for old dirty data writeback
112 */
113 work = kzalloc(sizeof(*work), GFP_ATOMIC);
114 if (!work) {
115 trace_writeback_nowork(bdi);
116 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
117 return;
118 }
119
120 work->sync_mode = WB_SYNC_NONE;
121 work->nr_pages = nr_pages;
122 work->range_cyclic = range_cyclic;
123 work->reason = reason;
124
125 bdi_queue_work(bdi, work);
126 }
127
128 /**
129 * bdi_start_writeback - start writeback
130 * @bdi: the backing device to write from
131 * @nr_pages: the number of pages to write
132 * @reason: reason why some writeback work was initiated
133 *
134 * Description:
135 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
136 * started when this function returns, we make no guarantees on
137 * completion. Caller need not hold sb s_umount semaphore.
138 *
139 */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
141 enum wb_reason reason)
142 {
143 __bdi_start_writeback(bdi, nr_pages, true, reason);
144 }
145
146 /**
147 * bdi_start_background_writeback - start background writeback
148 * @bdi: the backing device to write from
149 *
150 * Description:
151 * This makes sure WB_SYNC_NONE background writeback happens. When
152 * this function returns, it is only guaranteed that for given BDI
153 * some IO is happening if we are over background dirty threshold.
154 * Caller need not hold sb s_umount semaphore.
155 */
156 void bdi_start_background_writeback(struct backing_dev_info *bdi)
157 {
158 /*
159 * We just wake up the flusher thread. It will perform background
160 * writeback as soon as there is no other work to do.
161 */
162 trace_writeback_wake_background(bdi);
163 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
164 }
165
166 /*
167 * Remove the inode from the writeback list it is on.
168 */
169 void inode_wb_list_del(struct inode *inode)
170 {
171 struct backing_dev_info *bdi = inode_to_bdi(inode);
172
173 spin_lock(&bdi->wb.list_lock);
174 list_del_init(&inode->i_wb_list);
175 spin_unlock(&bdi->wb.list_lock);
176 }
177
178 /*
179 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
180 * furthest end of its superblock's dirty-inode list.
181 *
182 * Before stamping the inode's ->dirtied_when, we check to see whether it is
183 * already the most-recently-dirtied inode on the b_dirty list. If that is
184 * the case then the inode must have been redirtied while it was being written
185 * out and we don't reset its dirtied_when.
186 */
187 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
188 {
189 assert_spin_locked(&wb->list_lock);
190 if (!list_empty(&wb->b_dirty)) {
191 struct inode *tail;
192
193 tail = wb_inode(wb->b_dirty.next);
194 if (time_before(inode->dirtied_when, tail->dirtied_when))
195 inode->dirtied_when = jiffies;
196 }
197 list_move(&inode->i_wb_list, &wb->b_dirty);
198 }
199
200 /*
201 * requeue inode for re-scanning after bdi->b_io list is exhausted.
202 */
203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
204 {
205 assert_spin_locked(&wb->list_lock);
206 list_move(&inode->i_wb_list, &wb->b_more_io);
207 }
208
209 static void inode_sync_complete(struct inode *inode)
210 {
211 inode->i_state &= ~I_SYNC;
212 /* If inode is clean an unused, put it into LRU now... */
213 inode_add_lru(inode);
214 /* Waiters must see I_SYNC cleared before being woken up */
215 smp_mb();
216 wake_up_bit(&inode->i_state, __I_SYNC);
217 }
218
219 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
220 {
221 bool ret = time_after(inode->dirtied_when, t);
222 #ifndef CONFIG_64BIT
223 /*
224 * For inodes being constantly redirtied, dirtied_when can get stuck.
225 * It _appears_ to be in the future, but is actually in distant past.
226 * This test is necessary to prevent such wrapped-around relative times
227 * from permanently stopping the whole bdi writeback.
228 */
229 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
230 #endif
231 return ret;
232 }
233
234 /*
235 * Move expired (dirtied before work->older_than_this) dirty inodes from
236 * @delaying_queue to @dispatch_queue.
237 */
238 static int move_expired_inodes(struct list_head *delaying_queue,
239 struct list_head *dispatch_queue,
240 struct wb_writeback_work *work)
241 {
242 LIST_HEAD(tmp);
243 struct list_head *pos, *node;
244 struct super_block *sb = NULL;
245 struct inode *inode;
246 int do_sb_sort = 0;
247 int moved = 0;
248
249 while (!list_empty(delaying_queue)) {
250 inode = wb_inode(delaying_queue->prev);
251 if (work->older_than_this &&
252 inode_dirtied_after(inode, *work->older_than_this))
253 break;
254 if (sb && sb != inode->i_sb)
255 do_sb_sort = 1;
256 sb = inode->i_sb;
257 list_move(&inode->i_wb_list, &tmp);
258 moved++;
259 }
260
261 /* just one sb in list, splice to dispatch_queue and we're done */
262 if (!do_sb_sort) {
263 list_splice(&tmp, dispatch_queue);
264 goto out;
265 }
266
267 /* Move inodes from one superblock together */
268 while (!list_empty(&tmp)) {
269 sb = wb_inode(tmp.prev)->i_sb;
270 list_for_each_prev_safe(pos, node, &tmp) {
271 inode = wb_inode(pos);
272 if (inode->i_sb == sb)
273 list_move(&inode->i_wb_list, dispatch_queue);
274 }
275 }
276 out:
277 return moved;
278 }
279
280 /*
281 * Queue all expired dirty inodes for io, eldest first.
282 * Before
283 * newly dirtied b_dirty b_io b_more_io
284 * =============> gf edc BA
285 * After
286 * newly dirtied b_dirty b_io b_more_io
287 * =============> g fBAedc
288 * |
289 * +--> dequeue for IO
290 */
291 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
292 {
293 int moved;
294 assert_spin_locked(&wb->list_lock);
295 list_splice_init(&wb->b_more_io, &wb->b_io);
296 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
297 trace_writeback_queue_io(wb, work, moved);
298 }
299
300 static int write_inode(struct inode *inode, struct writeback_control *wbc)
301 {
302 int ret;
303
304 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
305 trace_writeback_write_inode_start(inode, wbc);
306 ret = inode->i_sb->s_op->write_inode(inode, wbc);
307 trace_writeback_write_inode(inode, wbc);
308 return ret;
309 }
310 return 0;
311 }
312
313 /*
314 * Wait for writeback on an inode to complete. Called with i_lock held.
315 * Caller must make sure inode cannot go away when we drop i_lock.
316 */
317 static void __inode_wait_for_writeback(struct inode *inode)
318 __releases(inode->i_lock)
319 __acquires(inode->i_lock)
320 {
321 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
322 wait_queue_head_t *wqh;
323
324 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
325 while (inode->i_state & I_SYNC) {
326 spin_unlock(&inode->i_lock);
327 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
328 spin_lock(&inode->i_lock);
329 }
330 }
331
332 /*
333 * Wait for writeback on an inode to complete. Caller must have inode pinned.
334 */
335 void inode_wait_for_writeback(struct inode *inode)
336 {
337 spin_lock(&inode->i_lock);
338 __inode_wait_for_writeback(inode);
339 spin_unlock(&inode->i_lock);
340 }
341
342 /*
343 * Sleep until I_SYNC is cleared. This function must be called with i_lock
344 * held and drops it. It is aimed for callers not holding any inode reference
345 * so once i_lock is dropped, inode can go away.
346 */
347 static void inode_sleep_on_writeback(struct inode *inode)
348 __releases(inode->i_lock)
349 {
350 DEFINE_WAIT(wait);
351 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
352 int sleep;
353
354 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
355 sleep = inode->i_state & I_SYNC;
356 spin_unlock(&inode->i_lock);
357 if (sleep)
358 schedule();
359 finish_wait(wqh, &wait);
360 }
361
362 /*
363 * Find proper writeback list for the inode depending on its current state and
364 * possibly also change of its state while we were doing writeback. Here we
365 * handle things such as livelock prevention or fairness of writeback among
366 * inodes. This function can be called only by flusher thread - noone else
367 * processes all inodes in writeback lists and requeueing inodes behind flusher
368 * thread's back can have unexpected consequences.
369 */
370 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
371 struct writeback_control *wbc)
372 {
373 if (inode->i_state & I_FREEING)
374 return;
375
376 /*
377 * Sync livelock prevention. Each inode is tagged and synced in one
378 * shot. If still dirty, it will be redirty_tail()'ed below. Update
379 * the dirty time to prevent enqueue and sync it again.
380 */
381 if ((inode->i_state & I_DIRTY) &&
382 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
383 inode->dirtied_when = jiffies;
384
385 if (wbc->pages_skipped) {
386 /*
387 * writeback is not making progress due to locked
388 * buffers. Skip this inode for now.
389 */
390 redirty_tail(inode, wb);
391 return;
392 }
393
394 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
395 /*
396 * We didn't write back all the pages. nfs_writepages()
397 * sometimes bales out without doing anything.
398 */
399 if (wbc->nr_to_write <= 0) {
400 /* Slice used up. Queue for next turn. */
401 requeue_io(inode, wb);
402 } else {
403 /*
404 * Writeback blocked by something other than
405 * congestion. Delay the inode for some time to
406 * avoid spinning on the CPU (100% iowait)
407 * retrying writeback of the dirty page/inode
408 * that cannot be performed immediately.
409 */
410 redirty_tail(inode, wb);
411 }
412 } else if (inode->i_state & I_DIRTY) {
413 /*
414 * Filesystems can dirty the inode during writeback operations,
415 * such as delayed allocation during submission or metadata
416 * updates after data IO completion.
417 */
418 redirty_tail(inode, wb);
419 } else {
420 /* The inode is clean. Remove from writeback lists. */
421 list_del_init(&inode->i_wb_list);
422 }
423 }
424
425 /*
426 * Write out an inode and its dirty pages. Do not update the writeback list
427 * linkage. That is left to the caller. The caller is also responsible for
428 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
429 */
430 static int
431 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
432 {
433 struct address_space *mapping = inode->i_mapping;
434 long nr_to_write = wbc->nr_to_write;
435 unsigned dirty;
436 int ret;
437
438 WARN_ON(!(inode->i_state & I_SYNC));
439
440 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
441
442 ret = do_writepages(mapping, wbc);
443
444 /*
445 * Make sure to wait on the data before writing out the metadata.
446 * This is important for filesystems that modify metadata on data
447 * I/O completion. We don't do it for sync(2) writeback because it has a
448 * separate, external IO completion path and ->sync_fs for guaranteeing
449 * inode metadata is written back correctly.
450 */
451 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
452 int err = filemap_fdatawait(mapping);
453 if (ret == 0)
454 ret = err;
455 }
456
457 /*
458 * Some filesystems may redirty the inode during the writeback
459 * due to delalloc, clear dirty metadata flags right before
460 * write_inode()
461 */
462 spin_lock(&inode->i_lock);
463 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
464 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
465 inode->i_state &= ~I_DIRTY_PAGES;
466 dirty = inode->i_state & I_DIRTY;
467 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
468 spin_unlock(&inode->i_lock);
469 /* Don't write the inode if only I_DIRTY_PAGES was set */
470 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
471 int err = write_inode(inode, wbc);
472 if (ret == 0)
473 ret = err;
474 }
475 trace_writeback_single_inode(inode, wbc, nr_to_write);
476 return ret;
477 }
478
479 /*
480 * Write out an inode's dirty pages. Either the caller has an active reference
481 * on the inode or the inode has I_WILL_FREE set.
482 *
483 * This function is designed to be called for writing back one inode which
484 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
485 * and does more profound writeback list handling in writeback_sb_inodes().
486 */
487 static int
488 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
489 struct writeback_control *wbc)
490 {
491 int ret = 0;
492
493 spin_lock(&inode->i_lock);
494 if (!atomic_read(&inode->i_count))
495 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
496 else
497 WARN_ON(inode->i_state & I_WILL_FREE);
498
499 if (inode->i_state & I_SYNC) {
500 if (wbc->sync_mode != WB_SYNC_ALL)
501 goto out;
502 /*
503 * It's a data-integrity sync. We must wait. Since callers hold
504 * inode reference or inode has I_WILL_FREE set, it cannot go
505 * away under us.
506 */
507 __inode_wait_for_writeback(inode);
508 }
509 WARN_ON(inode->i_state & I_SYNC);
510 /*
511 * Skip inode if it is clean. We don't want to mess with writeback
512 * lists in this function since flusher thread may be doing for example
513 * sync in parallel and if we move the inode, it could get skipped. So
514 * here we make sure inode is on some writeback list and leave it there
515 * unless we have completely cleaned the inode.
516 */
517 if (!(inode->i_state & I_DIRTY))
518 goto out;
519 inode->i_state |= I_SYNC;
520 spin_unlock(&inode->i_lock);
521
522 ret = __writeback_single_inode(inode, wbc);
523
524 spin_lock(&wb->list_lock);
525 spin_lock(&inode->i_lock);
526 /*
527 * If inode is clean, remove it from writeback lists. Otherwise don't
528 * touch it. See comment above for explanation.
529 */
530 if (!(inode->i_state & I_DIRTY))
531 list_del_init(&inode->i_wb_list);
532 spin_unlock(&wb->list_lock);
533 inode_sync_complete(inode);
534 out:
535 spin_unlock(&inode->i_lock);
536 return ret;
537 }
538
539 static long writeback_chunk_size(struct backing_dev_info *bdi,
540 struct wb_writeback_work *work)
541 {
542 long pages;
543
544 /*
545 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
546 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
547 * here avoids calling into writeback_inodes_wb() more than once.
548 *
549 * The intended call sequence for WB_SYNC_ALL writeback is:
550 *
551 * wb_writeback()
552 * writeback_sb_inodes() <== called only once
553 * write_cache_pages() <== called once for each inode
554 * (quickly) tag currently dirty pages
555 * (maybe slowly) sync all tagged pages
556 */
557 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
558 pages = LONG_MAX;
559 else {
560 pages = min(bdi->avg_write_bandwidth / 2,
561 global_dirty_limit / DIRTY_SCOPE);
562 pages = min(pages, work->nr_pages);
563 pages = round_down(pages + MIN_WRITEBACK_PAGES,
564 MIN_WRITEBACK_PAGES);
565 }
566
567 return pages;
568 }
569
570 /*
571 * Write a portion of b_io inodes which belong to @sb.
572 *
573 * Return the number of pages and/or inodes written.
574 */
575 static long writeback_sb_inodes(struct super_block *sb,
576 struct bdi_writeback *wb,
577 struct wb_writeback_work *work)
578 {
579 struct writeback_control wbc = {
580 .sync_mode = work->sync_mode,
581 .tagged_writepages = work->tagged_writepages,
582 .for_kupdate = work->for_kupdate,
583 .for_background = work->for_background,
584 .for_sync = work->for_sync,
585 .range_cyclic = work->range_cyclic,
586 .range_start = 0,
587 .range_end = LLONG_MAX,
588 };
589 unsigned long start_time = jiffies;
590 long write_chunk;
591 long wrote = 0; /* count both pages and inodes */
592
593 while (!list_empty(&wb->b_io)) {
594 struct inode *inode = wb_inode(wb->b_io.prev);
595
596 if (inode->i_sb != sb) {
597 if (work->sb) {
598 /*
599 * We only want to write back data for this
600 * superblock, move all inodes not belonging
601 * to it back onto the dirty list.
602 */
603 redirty_tail(inode, wb);
604 continue;
605 }
606
607 /*
608 * The inode belongs to a different superblock.
609 * Bounce back to the caller to unpin this and
610 * pin the next superblock.
611 */
612 break;
613 }
614
615 /*
616 * Don't bother with new inodes or inodes being freed, first
617 * kind does not need periodic writeout yet, and for the latter
618 * kind writeout is handled by the freer.
619 */
620 spin_lock(&inode->i_lock);
621 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
622 spin_unlock(&inode->i_lock);
623 redirty_tail(inode, wb);
624 continue;
625 }
626 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
627 /*
628 * If this inode is locked for writeback and we are not
629 * doing writeback-for-data-integrity, move it to
630 * b_more_io so that writeback can proceed with the
631 * other inodes on s_io.
632 *
633 * We'll have another go at writing back this inode
634 * when we completed a full scan of b_io.
635 */
636 spin_unlock(&inode->i_lock);
637 requeue_io(inode, wb);
638 trace_writeback_sb_inodes_requeue(inode);
639 continue;
640 }
641 spin_unlock(&wb->list_lock);
642
643 /*
644 * We already requeued the inode if it had I_SYNC set and we
645 * are doing WB_SYNC_NONE writeback. So this catches only the
646 * WB_SYNC_ALL case.
647 */
648 if (inode->i_state & I_SYNC) {
649 /* Wait for I_SYNC. This function drops i_lock... */
650 inode_sleep_on_writeback(inode);
651 /* Inode may be gone, start again */
652 spin_lock(&wb->list_lock);
653 continue;
654 }
655 inode->i_state |= I_SYNC;
656 spin_unlock(&inode->i_lock);
657
658 write_chunk = writeback_chunk_size(wb->bdi, work);
659 wbc.nr_to_write = write_chunk;
660 wbc.pages_skipped = 0;
661
662 /*
663 * We use I_SYNC to pin the inode in memory. While it is set
664 * evict_inode() will wait so the inode cannot be freed.
665 */
666 __writeback_single_inode(inode, &wbc);
667
668 work->nr_pages -= write_chunk - wbc.nr_to_write;
669 wrote += write_chunk - wbc.nr_to_write;
670 spin_lock(&wb->list_lock);
671 spin_lock(&inode->i_lock);
672 if (!(inode->i_state & I_DIRTY))
673 wrote++;
674 requeue_inode(inode, wb, &wbc);
675 inode_sync_complete(inode);
676 spin_unlock(&inode->i_lock);
677 cond_resched_lock(&wb->list_lock);
678 /*
679 * bail out to wb_writeback() often enough to check
680 * background threshold and other termination conditions.
681 */
682 if (wrote) {
683 if (time_is_before_jiffies(start_time + HZ / 10UL))
684 break;
685 if (work->nr_pages <= 0)
686 break;
687 }
688 }
689 return wrote;
690 }
691
692 static long __writeback_inodes_wb(struct bdi_writeback *wb,
693 struct wb_writeback_work *work)
694 {
695 unsigned long start_time = jiffies;
696 long wrote = 0;
697
698 while (!list_empty(&wb->b_io)) {
699 struct inode *inode = wb_inode(wb->b_io.prev);
700 struct super_block *sb = inode->i_sb;
701
702 if (!grab_super_passive(sb)) {
703 /*
704 * grab_super_passive() may fail consistently due to
705 * s_umount being grabbed by someone else. Don't use
706 * requeue_io() to avoid busy retrying the inode/sb.
707 */
708 redirty_tail(inode, wb);
709 continue;
710 }
711 wrote += writeback_sb_inodes(sb, wb, work);
712 drop_super(sb);
713
714 /* refer to the same tests at the end of writeback_sb_inodes */
715 if (wrote) {
716 if (time_is_before_jiffies(start_time + HZ / 10UL))
717 break;
718 if (work->nr_pages <= 0)
719 break;
720 }
721 }
722 /* Leave any unwritten inodes on b_io */
723 return wrote;
724 }
725
726 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
727 enum wb_reason reason)
728 {
729 struct wb_writeback_work work = {
730 .nr_pages = nr_pages,
731 .sync_mode = WB_SYNC_NONE,
732 .range_cyclic = 1,
733 .reason = reason,
734 };
735
736 spin_lock(&wb->list_lock);
737 if (list_empty(&wb->b_io))
738 queue_io(wb, &work);
739 __writeback_inodes_wb(wb, &work);
740 spin_unlock(&wb->list_lock);
741
742 return nr_pages - work.nr_pages;
743 }
744
745 static bool over_bground_thresh(struct backing_dev_info *bdi)
746 {
747 unsigned long background_thresh, dirty_thresh;
748
749 global_dirty_limits(&background_thresh, &dirty_thresh);
750
751 if (global_page_state(NR_FILE_DIRTY) +
752 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
753 return true;
754
755 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
756 bdi_dirty_limit(bdi, background_thresh))
757 return true;
758
759 return false;
760 }
761
762 /*
763 * Called under wb->list_lock. If there are multiple wb per bdi,
764 * only the flusher working on the first wb should do it.
765 */
766 static void wb_update_bandwidth(struct bdi_writeback *wb,
767 unsigned long start_time)
768 {
769 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
770 }
771
772 /*
773 * Explicit flushing or periodic writeback of "old" data.
774 *
775 * Define "old": the first time one of an inode's pages is dirtied, we mark the
776 * dirtying-time in the inode's address_space. So this periodic writeback code
777 * just walks the superblock inode list, writing back any inodes which are
778 * older than a specific point in time.
779 *
780 * Try to run once per dirty_writeback_interval. But if a writeback event
781 * takes longer than a dirty_writeback_interval interval, then leave a
782 * one-second gap.
783 *
784 * older_than_this takes precedence over nr_to_write. So we'll only write back
785 * all dirty pages if they are all attached to "old" mappings.
786 */
787 static long wb_writeback(struct bdi_writeback *wb,
788 struct wb_writeback_work *work)
789 {
790 unsigned long wb_start = jiffies;
791 long nr_pages = work->nr_pages;
792 unsigned long oldest_jif;
793 struct inode *inode;
794 long progress;
795
796 oldest_jif = jiffies;
797 work->older_than_this = &oldest_jif;
798
799 spin_lock(&wb->list_lock);
800 for (;;) {
801 /*
802 * Stop writeback when nr_pages has been consumed
803 */
804 if (work->nr_pages <= 0)
805 break;
806
807 /*
808 * Background writeout and kupdate-style writeback may
809 * run forever. Stop them if there is other work to do
810 * so that e.g. sync can proceed. They'll be restarted
811 * after the other works are all done.
812 */
813 if ((work->for_background || work->for_kupdate) &&
814 !list_empty(&wb->bdi->work_list))
815 break;
816
817 /*
818 * For background writeout, stop when we are below the
819 * background dirty threshold
820 */
821 if (work->for_background && !over_bground_thresh(wb->bdi))
822 break;
823
824 /*
825 * Kupdate and background works are special and we want to
826 * include all inodes that need writing. Livelock avoidance is
827 * handled by these works yielding to any other work so we are
828 * safe.
829 */
830 if (work->for_kupdate) {
831 oldest_jif = jiffies -
832 msecs_to_jiffies(dirty_expire_interval * 10);
833 } else if (work->for_background)
834 oldest_jif = jiffies;
835
836 trace_writeback_start(wb->bdi, work);
837 if (list_empty(&wb->b_io))
838 queue_io(wb, work);
839 if (work->sb)
840 progress = writeback_sb_inodes(work->sb, wb, work);
841 else
842 progress = __writeback_inodes_wb(wb, work);
843 trace_writeback_written(wb->bdi, work);
844
845 wb_update_bandwidth(wb, wb_start);
846
847 /*
848 * Did we write something? Try for more
849 *
850 * Dirty inodes are moved to b_io for writeback in batches.
851 * The completion of the current batch does not necessarily
852 * mean the overall work is done. So we keep looping as long
853 * as made some progress on cleaning pages or inodes.
854 */
855 if (progress)
856 continue;
857 /*
858 * No more inodes for IO, bail
859 */
860 if (list_empty(&wb->b_more_io))
861 break;
862 /*
863 * Nothing written. Wait for some inode to
864 * become available for writeback. Otherwise
865 * we'll just busyloop.
866 */
867 if (!list_empty(&wb->b_more_io)) {
868 trace_writeback_wait(wb->bdi, work);
869 inode = wb_inode(wb->b_more_io.prev);
870 spin_lock(&inode->i_lock);
871 spin_unlock(&wb->list_lock);
872 /* This function drops i_lock... */
873 inode_sleep_on_writeback(inode);
874 spin_lock(&wb->list_lock);
875 }
876 }
877 spin_unlock(&wb->list_lock);
878
879 return nr_pages - work->nr_pages;
880 }
881
882 /*
883 * Return the next wb_writeback_work struct that hasn't been processed yet.
884 */
885 static struct wb_writeback_work *
886 get_next_work_item(struct backing_dev_info *bdi)
887 {
888 struct wb_writeback_work *work = NULL;
889
890 spin_lock_bh(&bdi->wb_lock);
891 if (!list_empty(&bdi->work_list)) {
892 work = list_entry(bdi->work_list.next,
893 struct wb_writeback_work, list);
894 list_del_init(&work->list);
895 }
896 spin_unlock_bh(&bdi->wb_lock);
897 return work;
898 }
899
900 /*
901 * Add in the number of potentially dirty inodes, because each inode
902 * write can dirty pagecache in the underlying blockdev.
903 */
904 static unsigned long get_nr_dirty_pages(void)
905 {
906 return global_page_state(NR_FILE_DIRTY) +
907 global_page_state(NR_UNSTABLE_NFS) +
908 get_nr_dirty_inodes();
909 }
910
911 static long wb_check_background_flush(struct bdi_writeback *wb)
912 {
913 if (over_bground_thresh(wb->bdi)) {
914
915 struct wb_writeback_work work = {
916 .nr_pages = LONG_MAX,
917 .sync_mode = WB_SYNC_NONE,
918 .for_background = 1,
919 .range_cyclic = 1,
920 .reason = WB_REASON_BACKGROUND,
921 };
922
923 return wb_writeback(wb, &work);
924 }
925
926 return 0;
927 }
928
929 static long wb_check_old_data_flush(struct bdi_writeback *wb)
930 {
931 unsigned long expired;
932 long nr_pages;
933
934 /*
935 * When set to zero, disable periodic writeback
936 */
937 if (!dirty_writeback_interval)
938 return 0;
939
940 expired = wb->last_old_flush +
941 msecs_to_jiffies(dirty_writeback_interval * 10);
942 if (time_before(jiffies, expired))
943 return 0;
944
945 wb->last_old_flush = jiffies;
946 nr_pages = get_nr_dirty_pages();
947
948 if (nr_pages) {
949 struct wb_writeback_work work = {
950 .nr_pages = nr_pages,
951 .sync_mode = WB_SYNC_NONE,
952 .for_kupdate = 1,
953 .range_cyclic = 1,
954 .reason = WB_REASON_PERIODIC,
955 };
956
957 return wb_writeback(wb, &work);
958 }
959
960 return 0;
961 }
962
963 /*
964 * Retrieve work items and do the writeback they describe
965 */
966 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
967 {
968 struct backing_dev_info *bdi = wb->bdi;
969 struct wb_writeback_work *work;
970 long wrote = 0;
971
972 set_bit(BDI_writeback_running, &wb->bdi->state);
973 while ((work = get_next_work_item(bdi)) != NULL) {
974 /*
975 * Override sync mode, in case we must wait for completion
976 * because this thread is exiting now.
977 */
978 if (force_wait)
979 work->sync_mode = WB_SYNC_ALL;
980
981 trace_writeback_exec(bdi, work);
982
983 wrote += wb_writeback(wb, work);
984
985 /*
986 * Notify the caller of completion if this is a synchronous
987 * work item, otherwise just free it.
988 */
989 if (work->done)
990 complete(work->done);
991 else
992 kfree(work);
993 }
994
995 /*
996 * Check for periodic writeback, kupdated() style
997 */
998 wrote += wb_check_old_data_flush(wb);
999 wrote += wb_check_background_flush(wb);
1000 clear_bit(BDI_writeback_running, &wb->bdi->state);
1001
1002 return wrote;
1003 }
1004
1005 /*
1006 * Handle writeback of dirty data for the device backed by this bdi. Also
1007 * reschedules periodically and does kupdated style flushing.
1008 */
1009 void bdi_writeback_workfn(struct work_struct *work)
1010 {
1011 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1012 struct bdi_writeback, dwork);
1013 struct backing_dev_info *bdi = wb->bdi;
1014 long pages_written;
1015
1016 set_worker_desc("flush-%s", dev_name(bdi->dev));
1017 current->flags |= PF_SWAPWRITE;
1018
1019 if (likely(!current_is_workqueue_rescuer() ||
1020 list_empty(&bdi->bdi_list))) {
1021 /*
1022 * The normal path. Keep writing back @bdi until its
1023 * work_list is empty. Note that this path is also taken
1024 * if @bdi is shutting down even when we're running off the
1025 * rescuer as work_list needs to be drained.
1026 */
1027 do {
1028 pages_written = wb_do_writeback(wb, 0);
1029 trace_writeback_pages_written(pages_written);
1030 } while (!list_empty(&bdi->work_list));
1031 } else {
1032 /*
1033 * bdi_wq can't get enough workers and we're running off
1034 * the emergency worker. Don't hog it. Hopefully, 1024 is
1035 * enough for efficient IO.
1036 */
1037 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1038 WB_REASON_FORKER_THREAD);
1039 trace_writeback_pages_written(pages_written);
1040 }
1041
1042 if (!list_empty(&bdi->work_list) ||
1043 (wb_has_dirty_io(wb) && dirty_writeback_interval))
1044 queue_delayed_work(bdi_wq, &wb->dwork,
1045 msecs_to_jiffies(dirty_writeback_interval * 10));
1046
1047 current->flags &= ~PF_SWAPWRITE;
1048 }
1049
1050 /*
1051 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1052 * the whole world.
1053 */
1054 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1055 {
1056 struct backing_dev_info *bdi;
1057
1058 if (!nr_pages) {
1059 nr_pages = global_page_state(NR_FILE_DIRTY) +
1060 global_page_state(NR_UNSTABLE_NFS);
1061 }
1062
1063 rcu_read_lock();
1064 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1065 if (!bdi_has_dirty_io(bdi))
1066 continue;
1067 __bdi_start_writeback(bdi, nr_pages, false, reason);
1068 }
1069 rcu_read_unlock();
1070 }
1071
1072 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1073 {
1074 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1075 struct dentry *dentry;
1076 const char *name = "?";
1077
1078 dentry = d_find_alias(inode);
1079 if (dentry) {
1080 spin_lock(&dentry->d_lock);
1081 name = (const char *) dentry->d_name.name;
1082 }
1083 printk(KERN_DEBUG
1084 "%s(%d): dirtied inode %lu (%s) on %s\n",
1085 current->comm, task_pid_nr(current), inode->i_ino,
1086 name, inode->i_sb->s_id);
1087 if (dentry) {
1088 spin_unlock(&dentry->d_lock);
1089 dput(dentry);
1090 }
1091 }
1092 }
1093
1094 /**
1095 * __mark_inode_dirty - internal function
1096 * @inode: inode to mark
1097 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1098 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1099 * mark_inode_dirty_sync.
1100 *
1101 * Put the inode on the super block's dirty list.
1102 *
1103 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1104 * dirty list only if it is hashed or if it refers to a blockdev.
1105 * If it was not hashed, it will never be added to the dirty list
1106 * even if it is later hashed, as it will have been marked dirty already.
1107 *
1108 * In short, make sure you hash any inodes _before_ you start marking
1109 * them dirty.
1110 *
1111 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1112 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1113 * the kernel-internal blockdev inode represents the dirtying time of the
1114 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1115 * page->mapping->host, so the page-dirtying time is recorded in the internal
1116 * blockdev inode.
1117 */
1118 void __mark_inode_dirty(struct inode *inode, int flags)
1119 {
1120 struct super_block *sb = inode->i_sb;
1121 struct backing_dev_info *bdi = NULL;
1122
1123 /*
1124 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1125 * dirty the inode itself
1126 */
1127 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1128 trace_writeback_dirty_inode_start(inode, flags);
1129
1130 if (sb->s_op->dirty_inode)
1131 sb->s_op->dirty_inode(inode, flags);
1132
1133 trace_writeback_dirty_inode(inode, flags);
1134 }
1135
1136 /*
1137 * make sure that changes are seen by all cpus before we test i_state
1138 * -- mikulas
1139 */
1140 smp_mb();
1141
1142 /* avoid the locking if we can */
1143 if ((inode->i_state & flags) == flags)
1144 return;
1145
1146 if (unlikely(block_dump))
1147 block_dump___mark_inode_dirty(inode);
1148
1149 spin_lock(&inode->i_lock);
1150 if ((inode->i_state & flags) != flags) {
1151 const int was_dirty = inode->i_state & I_DIRTY;
1152
1153 inode->i_state |= flags;
1154
1155 /*
1156 * If the inode is being synced, just update its dirty state.
1157 * The unlocker will place the inode on the appropriate
1158 * superblock list, based upon its state.
1159 */
1160 if (inode->i_state & I_SYNC)
1161 goto out_unlock_inode;
1162
1163 /*
1164 * Only add valid (hashed) inodes to the superblock's
1165 * dirty list. Add blockdev inodes as well.
1166 */
1167 if (!S_ISBLK(inode->i_mode)) {
1168 if (inode_unhashed(inode))
1169 goto out_unlock_inode;
1170 }
1171 if (inode->i_state & I_FREEING)
1172 goto out_unlock_inode;
1173
1174 /*
1175 * If the inode was already on b_dirty/b_io/b_more_io, don't
1176 * reposition it (that would break b_dirty time-ordering).
1177 */
1178 if (!was_dirty) {
1179 bool wakeup_bdi = false;
1180 bdi = inode_to_bdi(inode);
1181
1182 if (bdi_cap_writeback_dirty(bdi)) {
1183 WARN(!test_bit(BDI_registered, &bdi->state),
1184 "bdi-%s not registered\n", bdi->name);
1185
1186 /*
1187 * If this is the first dirty inode for this
1188 * bdi, we have to wake-up the corresponding
1189 * bdi thread to make sure background
1190 * write-back happens later.
1191 */
1192 if (!wb_has_dirty_io(&bdi->wb))
1193 wakeup_bdi = true;
1194 }
1195
1196 spin_unlock(&inode->i_lock);
1197 spin_lock(&bdi->wb.list_lock);
1198 inode->dirtied_when = jiffies;
1199 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1200 spin_unlock(&bdi->wb.list_lock);
1201
1202 if (wakeup_bdi)
1203 bdi_wakeup_thread_delayed(bdi);
1204 return;
1205 }
1206 }
1207 out_unlock_inode:
1208 spin_unlock(&inode->i_lock);
1209
1210 }
1211 EXPORT_SYMBOL(__mark_inode_dirty);
1212
1213 static void wait_sb_inodes(struct super_block *sb)
1214 {
1215 struct inode *inode, *old_inode = NULL;
1216
1217 /*
1218 * We need to be protected against the filesystem going from
1219 * r/o to r/w or vice versa.
1220 */
1221 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1222
1223 spin_lock(&inode_sb_list_lock);
1224
1225 /*
1226 * Data integrity sync. Must wait for all pages under writeback,
1227 * because there may have been pages dirtied before our sync
1228 * call, but which had writeout started before we write it out.
1229 * In which case, the inode may not be on the dirty list, but
1230 * we still have to wait for that writeout.
1231 */
1232 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1233 struct address_space *mapping = inode->i_mapping;
1234
1235 spin_lock(&inode->i_lock);
1236 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1237 (mapping->nrpages == 0)) {
1238 spin_unlock(&inode->i_lock);
1239 continue;
1240 }
1241 __iget(inode);
1242 spin_unlock(&inode->i_lock);
1243 spin_unlock(&inode_sb_list_lock);
1244
1245 /*
1246 * We hold a reference to 'inode' so it couldn't have been
1247 * removed from s_inodes list while we dropped the
1248 * inode_sb_list_lock. We cannot iput the inode now as we can
1249 * be holding the last reference and we cannot iput it under
1250 * inode_sb_list_lock. So we keep the reference and iput it
1251 * later.
1252 */
1253 iput(old_inode);
1254 old_inode = inode;
1255
1256 filemap_fdatawait(mapping);
1257
1258 cond_resched();
1259
1260 spin_lock(&inode_sb_list_lock);
1261 }
1262 spin_unlock(&inode_sb_list_lock);
1263 iput(old_inode);
1264 }
1265
1266 /**
1267 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1268 * @sb: the superblock
1269 * @nr: the number of pages to write
1270 * @reason: reason why some writeback work initiated
1271 *
1272 * Start writeback on some inodes on this super_block. No guarantees are made
1273 * on how many (if any) will be written, and this function does not wait
1274 * for IO completion of submitted IO.
1275 */
1276 void writeback_inodes_sb_nr(struct super_block *sb,
1277 unsigned long nr,
1278 enum wb_reason reason)
1279 {
1280 DECLARE_COMPLETION_ONSTACK(done);
1281 struct wb_writeback_work work = {
1282 .sb = sb,
1283 .sync_mode = WB_SYNC_NONE,
1284 .tagged_writepages = 1,
1285 .done = &done,
1286 .nr_pages = nr,
1287 .reason = reason,
1288 };
1289
1290 if (sb->s_bdi == &noop_backing_dev_info)
1291 return;
1292 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1293 bdi_queue_work(sb->s_bdi, &work);
1294 wait_for_completion(&done);
1295 }
1296 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1297
1298 /**
1299 * writeback_inodes_sb - writeback dirty inodes from given super_block
1300 * @sb: the superblock
1301 * @reason: reason why some writeback work was initiated
1302 *
1303 * Start writeback on some inodes on this super_block. No guarantees are made
1304 * on how many (if any) will be written, and this function does not wait
1305 * for IO completion of submitted IO.
1306 */
1307 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1308 {
1309 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1310 }
1311 EXPORT_SYMBOL(writeback_inodes_sb);
1312
1313 /**
1314 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1315 * @sb: the superblock
1316 * @nr: the number of pages to write
1317 * @reason: the reason of writeback
1318 *
1319 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1320 * Returns 1 if writeback was started, 0 if not.
1321 */
1322 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1323 unsigned long nr,
1324 enum wb_reason reason)
1325 {
1326 if (writeback_in_progress(sb->s_bdi))
1327 return 1;
1328
1329 if (!down_read_trylock(&sb->s_umount))
1330 return 0;
1331
1332 writeback_inodes_sb_nr(sb, nr, reason);
1333 up_read(&sb->s_umount);
1334 return 1;
1335 }
1336 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1337
1338 /**
1339 * try_to_writeback_inodes_sb - try to start writeback if none underway
1340 * @sb: the superblock
1341 * @reason: reason why some writeback work was initiated
1342 *
1343 * Implement by try_to_writeback_inodes_sb_nr()
1344 * Returns 1 if writeback was started, 0 if not.
1345 */
1346 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1347 {
1348 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1349 }
1350 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1351
1352 /**
1353 * sync_inodes_sb - sync sb inode pages
1354 * @sb: the superblock
1355 *
1356 * This function writes and waits on any dirty inode belonging to this
1357 * super_block.
1358 */
1359 void sync_inodes_sb(struct super_block *sb)
1360 {
1361 DECLARE_COMPLETION_ONSTACK(done);
1362 struct wb_writeback_work work = {
1363 .sb = sb,
1364 .sync_mode = WB_SYNC_ALL,
1365 .nr_pages = LONG_MAX,
1366 .range_cyclic = 0,
1367 .done = &done,
1368 .reason = WB_REASON_SYNC,
1369 .for_sync = 1,
1370 };
1371
1372 /* Nothing to do? */
1373 if (sb->s_bdi == &noop_backing_dev_info)
1374 return;
1375 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1376
1377 bdi_queue_work(sb->s_bdi, &work);
1378 wait_for_completion(&done);
1379
1380 wait_sb_inodes(sb);
1381 }
1382 EXPORT_SYMBOL(sync_inodes_sb);
1383
1384 /**
1385 * write_inode_now - write an inode to disk
1386 * @inode: inode to write to disk
1387 * @sync: whether the write should be synchronous or not
1388 *
1389 * This function commits an inode to disk immediately if it is dirty. This is
1390 * primarily needed by knfsd.
1391 *
1392 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1393 */
1394 int write_inode_now(struct inode *inode, int sync)
1395 {
1396 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1397 struct writeback_control wbc = {
1398 .nr_to_write = LONG_MAX,
1399 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1400 .range_start = 0,
1401 .range_end = LLONG_MAX,
1402 };
1403
1404 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1405 wbc.nr_to_write = 0;
1406
1407 might_sleep();
1408 return writeback_single_inode(inode, wb, &wbc);
1409 }
1410 EXPORT_SYMBOL(write_inode_now);
1411
1412 /**
1413 * sync_inode - write an inode and its pages to disk.
1414 * @inode: the inode to sync
1415 * @wbc: controls the writeback mode
1416 *
1417 * sync_inode() will write an inode and its pages to disk. It will also
1418 * correctly update the inode on its superblock's dirty inode lists and will
1419 * update inode->i_state.
1420 *
1421 * The caller must have a ref on the inode.
1422 */
1423 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1424 {
1425 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1426 }
1427 EXPORT_SYMBOL(sync_inode);
1428
1429 /**
1430 * sync_inode_metadata - write an inode to disk
1431 * @inode: the inode to sync
1432 * @wait: wait for I/O to complete.
1433 *
1434 * Write an inode to disk and adjust its dirty state after completion.
1435 *
1436 * Note: only writes the actual inode, no associated data or other metadata.
1437 */
1438 int sync_inode_metadata(struct inode *inode, int wait)
1439 {
1440 struct writeback_control wbc = {
1441 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1442 .nr_to_write = 0, /* metadata-only */
1443 };
1444
1445 return sync_inode(inode, &wbc);
1446 }
1447 EXPORT_SYMBOL(sync_inode_metadata);