]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/fs-writeback.c
Merge tag 'usb-5.2-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[mirror_ubuntu-jammy-kernel.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 struct wb_completion {
40 atomic_t cnt;
41 };
42
43 /*
44 * Passed into wb_writeback(), essentially a subset of writeback_control
45 */
46 struct wb_writeback_work {
47 long nr_pages;
48 struct super_block *sb;
49 unsigned long *older_than_this;
50 enum writeback_sync_modes sync_mode;
51 unsigned int tagged_writepages:1;
52 unsigned int for_kupdate:1;
53 unsigned int range_cyclic:1;
54 unsigned int for_background:1;
55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
56 unsigned int auto_free:1; /* free on completion */
57 enum wb_reason reason; /* why was writeback initiated? */
58
59 struct list_head list; /* pending work list */
60 struct wb_completion *done; /* set if the caller waits */
61 };
62
63 /*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
76 /*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90 return list_entry(head, struct inode, i_io_list);
91 }
92
93 /*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
112 return true;
113 }
114 }
115
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120 clear_bit(WB_has_dirty_io, &wb->state);
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
123 }
124 }
125
126 /**
127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131 *
132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
136 static bool inode_io_list_move_locked(struct inode *inode,
137 struct bdi_writeback *wb,
138 struct list_head *head)
139 {
140 assert_spin_locked(&wb->list_lock);
141
142 list_move(&inode->i_io_list, head);
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150 }
151
152 /**
153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
160 static void inode_io_list_del_locked(struct inode *inode,
161 struct bdi_writeback *wb)
162 {
163 assert_spin_locked(&wb->list_lock);
164
165 list_del_init(&inode->i_io_list);
166 wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179 {
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
188 static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
190 {
191 trace_writeback_queue(wb, work);
192
193 if (work->done)
194 atomic_inc(&work->done->cnt);
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
204 spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220 {
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232
233 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272 }
273
274 /**
275 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
276 * @inode: inode of interest with i_lock held
277 *
278 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
279 * held on entry and is released on return. The returned wb is guaranteed
280 * to stay @inode's associated wb until its list_lock is released.
281 */
282 static struct bdi_writeback *
283 locked_inode_to_wb_and_lock_list(struct inode *inode)
284 __releases(&inode->i_lock)
285 __acquires(&wb->list_lock)
286 {
287 while (true) {
288 struct bdi_writeback *wb = inode_to_wb(inode);
289
290 /*
291 * inode_to_wb() association is protected by both
292 * @inode->i_lock and @wb->list_lock but list_lock nests
293 * outside i_lock. Drop i_lock and verify that the
294 * association hasn't changed after acquiring list_lock.
295 */
296 wb_get(wb);
297 spin_unlock(&inode->i_lock);
298 spin_lock(&wb->list_lock);
299
300 /* i_wb may have changed inbetween, can't use inode_to_wb() */
301 if (likely(wb == inode->i_wb)) {
302 wb_put(wb); /* @inode already has ref */
303 return wb;
304 }
305
306 spin_unlock(&wb->list_lock);
307 wb_put(wb);
308 cpu_relax();
309 spin_lock(&inode->i_lock);
310 }
311 }
312
313 /**
314 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
315 * @inode: inode of interest
316 *
317 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
318 * on entry.
319 */
320 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
321 __acquires(&wb->list_lock)
322 {
323 spin_lock(&inode->i_lock);
324 return locked_inode_to_wb_and_lock_list(inode);
325 }
326
327 struct inode_switch_wbs_context {
328 struct inode *inode;
329 struct bdi_writeback *new_wb;
330
331 struct rcu_head rcu_head;
332 struct work_struct work;
333 };
334
335 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
336 {
337 down_write(&bdi->wb_switch_rwsem);
338 }
339
340 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
341 {
342 up_write(&bdi->wb_switch_rwsem);
343 }
344
345 static void inode_switch_wbs_work_fn(struct work_struct *work)
346 {
347 struct inode_switch_wbs_context *isw =
348 container_of(work, struct inode_switch_wbs_context, work);
349 struct inode *inode = isw->inode;
350 struct backing_dev_info *bdi = inode_to_bdi(inode);
351 struct address_space *mapping = inode->i_mapping;
352 struct bdi_writeback *old_wb = inode->i_wb;
353 struct bdi_writeback *new_wb = isw->new_wb;
354 XA_STATE(xas, &mapping->i_pages, 0);
355 struct page *page;
356 bool switched = false;
357
358 /*
359 * If @inode switches cgwb membership while sync_inodes_sb() is
360 * being issued, sync_inodes_sb() might miss it. Synchronize.
361 */
362 down_read(&bdi->wb_switch_rwsem);
363
364 /*
365 * By the time control reaches here, RCU grace period has passed
366 * since I_WB_SWITCH assertion and all wb stat update transactions
367 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
368 * synchronizing against the i_pages lock.
369 *
370 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
371 * gives us exclusion against all wb related operations on @inode
372 * including IO list manipulations and stat updates.
373 */
374 if (old_wb < new_wb) {
375 spin_lock(&old_wb->list_lock);
376 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
377 } else {
378 spin_lock(&new_wb->list_lock);
379 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
380 }
381 spin_lock(&inode->i_lock);
382 xa_lock_irq(&mapping->i_pages);
383
384 /*
385 * Once I_FREEING is visible under i_lock, the eviction path owns
386 * the inode and we shouldn't modify ->i_io_list.
387 */
388 if (unlikely(inode->i_state & I_FREEING))
389 goto skip_switch;
390
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394 * pages actually under writeback.
395 */
396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (PageDirty(page)) {
398 dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 inc_wb_stat(new_wb, WB_RECLAIMABLE);
400 }
401 }
402
403 xas_set(&xas, 0);
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 WARN_ON_ONCE(!PageWriteback(page));
406 dec_wb_stat(old_wb, WB_WRITEBACK);
407 inc_wb_stat(new_wb, WB_WRITEBACK);
408 }
409
410 wb_get(new_wb);
411
412 /*
413 * Transfer to @new_wb's IO list if necessary. The specific list
414 * @inode was on is ignored and the inode is put on ->b_dirty which
415 * is always correct including from ->b_dirty_time. The transfer
416 * preserves @inode->dirtied_when ordering.
417 */
418 if (!list_empty(&inode->i_io_list)) {
419 struct inode *pos;
420
421 inode_io_list_del_locked(inode, old_wb);
422 inode->i_wb = new_wb;
423 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
424 if (time_after_eq(inode->dirtied_when,
425 pos->dirtied_when))
426 break;
427 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
428 } else {
429 inode->i_wb = new_wb;
430 }
431
432 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
433 inode->i_wb_frn_winner = 0;
434 inode->i_wb_frn_avg_time = 0;
435 inode->i_wb_frn_history = 0;
436 switched = true;
437 skip_switch:
438 /*
439 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
440 * ensures that the new wb is visible if they see !I_WB_SWITCH.
441 */
442 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
443
444 xa_unlock_irq(&mapping->i_pages);
445 spin_unlock(&inode->i_lock);
446 spin_unlock(&new_wb->list_lock);
447 spin_unlock(&old_wb->list_lock);
448
449 up_read(&bdi->wb_switch_rwsem);
450
451 if (switched) {
452 wb_wakeup(new_wb);
453 wb_put(old_wb);
454 }
455 wb_put(new_wb);
456
457 iput(inode);
458 kfree(isw);
459
460 atomic_dec(&isw_nr_in_flight);
461 }
462
463 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
464 {
465 struct inode_switch_wbs_context *isw = container_of(rcu_head,
466 struct inode_switch_wbs_context, rcu_head);
467
468 /* needs to grab bh-unsafe locks, bounce to work item */
469 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
470 queue_work(isw_wq, &isw->work);
471 }
472
473 /**
474 * inode_switch_wbs - change the wb association of an inode
475 * @inode: target inode
476 * @new_wb_id: ID of the new wb
477 *
478 * Switch @inode's wb association to the wb identified by @new_wb_id. The
479 * switching is performed asynchronously and may fail silently.
480 */
481 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
482 {
483 struct backing_dev_info *bdi = inode_to_bdi(inode);
484 struct cgroup_subsys_state *memcg_css;
485 struct inode_switch_wbs_context *isw;
486
487 /* noop if seems to be already in progress */
488 if (inode->i_state & I_WB_SWITCH)
489 return;
490
491 /*
492 * Avoid starting new switches while sync_inodes_sb() is in
493 * progress. Otherwise, if the down_write protected issue path
494 * blocks heavily, we might end up starting a large number of
495 * switches which will block on the rwsem.
496 */
497 if (!down_read_trylock(&bdi->wb_switch_rwsem))
498 return;
499
500 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
501 if (!isw)
502 goto out_unlock;
503
504 /* find and pin the new wb */
505 rcu_read_lock();
506 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
507 if (memcg_css)
508 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
509 rcu_read_unlock();
510 if (!isw->new_wb)
511 goto out_free;
512
513 /* while holding I_WB_SWITCH, no one else can update the association */
514 spin_lock(&inode->i_lock);
515 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
516 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
517 inode_to_wb(inode) == isw->new_wb) {
518 spin_unlock(&inode->i_lock);
519 goto out_free;
520 }
521 inode->i_state |= I_WB_SWITCH;
522 __iget(inode);
523 spin_unlock(&inode->i_lock);
524
525 isw->inode = inode;
526
527 /*
528 * In addition to synchronizing among switchers, I_WB_SWITCH tells
529 * the RCU protected stat update paths to grab the i_page
530 * lock so that stat transfer can synchronize against them.
531 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
532 */
533 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
534
535 atomic_inc(&isw_nr_in_flight);
536
537 goto out_unlock;
538
539 out_free:
540 if (isw->new_wb)
541 wb_put(isw->new_wb);
542 kfree(isw);
543 out_unlock:
544 up_read(&bdi->wb_switch_rwsem);
545 }
546
547 /**
548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549 * @wbc: writeback_control of interest
550 * @inode: target inode
551 *
552 * @inode is locked and about to be written back under the control of @wbc.
553 * Record @inode's writeback context into @wbc and unlock the i_lock. On
554 * writeback completion, wbc_detach_inode() should be called. This is used
555 * to track the cgroup writeback context.
556 */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 struct inode *inode)
559 {
560 if (!inode_cgwb_enabled(inode)) {
561 spin_unlock(&inode->i_lock);
562 return;
563 }
564
565 wbc->wb = inode_to_wb(inode);
566 wbc->inode = inode;
567
568 wbc->wb_id = wbc->wb->memcg_css->id;
569 wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 wbc->wb_tcand_id = 0;
571 wbc->wb_bytes = 0;
572 wbc->wb_lcand_bytes = 0;
573 wbc->wb_tcand_bytes = 0;
574
575 wb_get(wbc->wb);
576 spin_unlock(&inode->i_lock);
577
578 /*
579 * A dying wb indicates that the memcg-blkcg mapping has changed
580 * and a new wb is already serving the memcg. Switch immediately.
581 */
582 if (unlikely(wb_dying(wbc->wb)))
583 inode_switch_wbs(inode, wbc->wb_id);
584 }
585
586 /**
587 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
588 * @wbc: writeback_control of the just finished writeback
589 *
590 * To be called after a writeback attempt of an inode finishes and undoes
591 * wbc_attach_and_unlock_inode(). Can be called under any context.
592 *
593 * As concurrent write sharing of an inode is expected to be very rare and
594 * memcg only tracks page ownership on first-use basis severely confining
595 * the usefulness of such sharing, cgroup writeback tracks ownership
596 * per-inode. While the support for concurrent write sharing of an inode
597 * is deemed unnecessary, an inode being written to by different cgroups at
598 * different points in time is a lot more common, and, more importantly,
599 * charging only by first-use can too readily lead to grossly incorrect
600 * behaviors (single foreign page can lead to gigabytes of writeback to be
601 * incorrectly attributed).
602 *
603 * To resolve this issue, cgroup writeback detects the majority dirtier of
604 * an inode and transfers the ownership to it. To avoid unnnecessary
605 * oscillation, the detection mechanism keeps track of history and gives
606 * out the switch verdict only if the foreign usage pattern is stable over
607 * a certain amount of time and/or writeback attempts.
608 *
609 * On each writeback attempt, @wbc tries to detect the majority writer
610 * using Boyer-Moore majority vote algorithm. In addition to the byte
611 * count from the majority voting, it also counts the bytes written for the
612 * current wb and the last round's winner wb (max of last round's current
613 * wb, the winner from two rounds ago, and the last round's majority
614 * candidate). Keeping track of the historical winner helps the algorithm
615 * to semi-reliably detect the most active writer even when it's not the
616 * absolute majority.
617 *
618 * Once the winner of the round is determined, whether the winner is
619 * foreign or not and how much IO time the round consumed is recorded in
620 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
621 * over a certain threshold, the switch verdict is given.
622 */
623 void wbc_detach_inode(struct writeback_control *wbc)
624 {
625 struct bdi_writeback *wb = wbc->wb;
626 struct inode *inode = wbc->inode;
627 unsigned long avg_time, max_bytes, max_time;
628 u16 history;
629 int max_id;
630
631 if (!wb)
632 return;
633
634 history = inode->i_wb_frn_history;
635 avg_time = inode->i_wb_frn_avg_time;
636
637 /* pick the winner of this round */
638 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
639 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
640 max_id = wbc->wb_id;
641 max_bytes = wbc->wb_bytes;
642 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
643 max_id = wbc->wb_lcand_id;
644 max_bytes = wbc->wb_lcand_bytes;
645 } else {
646 max_id = wbc->wb_tcand_id;
647 max_bytes = wbc->wb_tcand_bytes;
648 }
649
650 /*
651 * Calculate the amount of IO time the winner consumed and fold it
652 * into the running average kept per inode. If the consumed IO
653 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
654 * deciding whether to switch or not. This is to prevent one-off
655 * small dirtiers from skewing the verdict.
656 */
657 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
658 wb->avg_write_bandwidth);
659 if (avg_time)
660 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
661 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
662 else
663 avg_time = max_time; /* immediate catch up on first run */
664
665 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
666 int slots;
667
668 /*
669 * The switch verdict is reached if foreign wb's consume
670 * more than a certain proportion of IO time in a
671 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
672 * history mask where each bit represents one sixteenth of
673 * the period. Determine the number of slots to shift into
674 * history from @max_time.
675 */
676 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
677 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
678 history <<= slots;
679 if (wbc->wb_id != max_id)
680 history |= (1U << slots) - 1;
681
682 /*
683 * Switch if the current wb isn't the consistent winner.
684 * If there are multiple closely competing dirtiers, the
685 * inode may switch across them repeatedly over time, which
686 * is okay. The main goal is avoiding keeping an inode on
687 * the wrong wb for an extended period of time.
688 */
689 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
690 inode_switch_wbs(inode, max_id);
691 }
692
693 /*
694 * Multiple instances of this function may race to update the
695 * following fields but we don't mind occassional inaccuracies.
696 */
697 inode->i_wb_frn_winner = max_id;
698 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
699 inode->i_wb_frn_history = history;
700
701 wb_put(wbc->wb);
702 wbc->wb = NULL;
703 }
704
705 /**
706 * wbc_account_io - account IO issued during writeback
707 * @wbc: writeback_control of the writeback in progress
708 * @page: page being written out
709 * @bytes: number of bytes being written out
710 *
711 * @bytes from @page are about to written out during the writeback
712 * controlled by @wbc. Keep the book for foreign inode detection. See
713 * wbc_detach_inode().
714 */
715 void wbc_account_io(struct writeback_control *wbc, struct page *page,
716 size_t bytes)
717 {
718 int id;
719
720 /*
721 * pageout() path doesn't attach @wbc to the inode being written
722 * out. This is intentional as we don't want the function to block
723 * behind a slow cgroup. Ultimately, we want pageout() to kick off
724 * regular writeback instead of writing things out itself.
725 */
726 if (!wbc->wb)
727 return;
728
729 id = mem_cgroup_css_from_page(page)->id;
730
731 if (id == wbc->wb_id) {
732 wbc->wb_bytes += bytes;
733 return;
734 }
735
736 if (id == wbc->wb_lcand_id)
737 wbc->wb_lcand_bytes += bytes;
738
739 /* Boyer-Moore majority vote algorithm */
740 if (!wbc->wb_tcand_bytes)
741 wbc->wb_tcand_id = id;
742 if (id == wbc->wb_tcand_id)
743 wbc->wb_tcand_bytes += bytes;
744 else
745 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
746 }
747 EXPORT_SYMBOL_GPL(wbc_account_io);
748
749 /**
750 * inode_congested - test whether an inode is congested
751 * @inode: inode to test for congestion (may be NULL)
752 * @cong_bits: mask of WB_[a]sync_congested bits to test
753 *
754 * Tests whether @inode is congested. @cong_bits is the mask of congestion
755 * bits to test and the return value is the mask of set bits.
756 *
757 * If cgroup writeback is enabled for @inode, the congestion state is
758 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
759 * associated with @inode is congested; otherwise, the root wb's congestion
760 * state is used.
761 *
762 * @inode is allowed to be NULL as this function is often called on
763 * mapping->host which is NULL for the swapper space.
764 */
765 int inode_congested(struct inode *inode, int cong_bits)
766 {
767 /*
768 * Once set, ->i_wb never becomes NULL while the inode is alive.
769 * Start transaction iff ->i_wb is visible.
770 */
771 if (inode && inode_to_wb_is_valid(inode)) {
772 struct bdi_writeback *wb;
773 struct wb_lock_cookie lock_cookie = {};
774 bool congested;
775
776 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
777 congested = wb_congested(wb, cong_bits);
778 unlocked_inode_to_wb_end(inode, &lock_cookie);
779 return congested;
780 }
781
782 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
783 }
784 EXPORT_SYMBOL_GPL(inode_congested);
785
786 /**
787 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
788 * @wb: target bdi_writeback to split @nr_pages to
789 * @nr_pages: number of pages to write for the whole bdi
790 *
791 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
792 * relation to the total write bandwidth of all wb's w/ dirty inodes on
793 * @wb->bdi.
794 */
795 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
796 {
797 unsigned long this_bw = wb->avg_write_bandwidth;
798 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
799
800 if (nr_pages == LONG_MAX)
801 return LONG_MAX;
802
803 /*
804 * This may be called on clean wb's and proportional distribution
805 * may not make sense, just use the original @nr_pages in those
806 * cases. In general, we wanna err on the side of writing more.
807 */
808 if (!tot_bw || this_bw >= tot_bw)
809 return nr_pages;
810 else
811 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
812 }
813
814 /**
815 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
816 * @bdi: target backing_dev_info
817 * @base_work: wb_writeback_work to issue
818 * @skip_if_busy: skip wb's which already have writeback in progress
819 *
820 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
821 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
822 * distributed to the busy wbs according to each wb's proportion in the
823 * total active write bandwidth of @bdi.
824 */
825 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
826 struct wb_writeback_work *base_work,
827 bool skip_if_busy)
828 {
829 struct bdi_writeback *last_wb = NULL;
830 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
831 struct bdi_writeback, bdi_node);
832
833 might_sleep();
834 restart:
835 rcu_read_lock();
836 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
837 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
838 struct wb_writeback_work fallback_work;
839 struct wb_writeback_work *work;
840 long nr_pages;
841
842 if (last_wb) {
843 wb_put(last_wb);
844 last_wb = NULL;
845 }
846
847 /* SYNC_ALL writes out I_DIRTY_TIME too */
848 if (!wb_has_dirty_io(wb) &&
849 (base_work->sync_mode == WB_SYNC_NONE ||
850 list_empty(&wb->b_dirty_time)))
851 continue;
852 if (skip_if_busy && writeback_in_progress(wb))
853 continue;
854
855 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
856
857 work = kmalloc(sizeof(*work), GFP_ATOMIC);
858 if (work) {
859 *work = *base_work;
860 work->nr_pages = nr_pages;
861 work->auto_free = 1;
862 wb_queue_work(wb, work);
863 continue;
864 }
865
866 /* alloc failed, execute synchronously using on-stack fallback */
867 work = &fallback_work;
868 *work = *base_work;
869 work->nr_pages = nr_pages;
870 work->auto_free = 0;
871 work->done = &fallback_work_done;
872
873 wb_queue_work(wb, work);
874
875 /*
876 * Pin @wb so that it stays on @bdi->wb_list. This allows
877 * continuing iteration from @wb after dropping and
878 * regrabbing rcu read lock.
879 */
880 wb_get(wb);
881 last_wb = wb;
882
883 rcu_read_unlock();
884 wb_wait_for_completion(bdi, &fallback_work_done);
885 goto restart;
886 }
887 rcu_read_unlock();
888
889 if (last_wb)
890 wb_put(last_wb);
891 }
892
893 /**
894 * cgroup_writeback_umount - flush inode wb switches for umount
895 *
896 * This function is called when a super_block is about to be destroyed and
897 * flushes in-flight inode wb switches. An inode wb switch goes through
898 * RCU and then workqueue, so the two need to be flushed in order to ensure
899 * that all previously scheduled switches are finished. As wb switches are
900 * rare occurrences and synchronize_rcu() can take a while, perform
901 * flushing iff wb switches are in flight.
902 */
903 void cgroup_writeback_umount(void)
904 {
905 if (atomic_read(&isw_nr_in_flight)) {
906 /*
907 * Use rcu_barrier() to wait for all pending callbacks to
908 * ensure that all in-flight wb switches are in the workqueue.
909 */
910 rcu_barrier();
911 flush_workqueue(isw_wq);
912 }
913 }
914
915 static int __init cgroup_writeback_init(void)
916 {
917 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
918 if (!isw_wq)
919 return -ENOMEM;
920 return 0;
921 }
922 fs_initcall(cgroup_writeback_init);
923
924 #else /* CONFIG_CGROUP_WRITEBACK */
925
926 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
927 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
928
929 static struct bdi_writeback *
930 locked_inode_to_wb_and_lock_list(struct inode *inode)
931 __releases(&inode->i_lock)
932 __acquires(&wb->list_lock)
933 {
934 struct bdi_writeback *wb = inode_to_wb(inode);
935
936 spin_unlock(&inode->i_lock);
937 spin_lock(&wb->list_lock);
938 return wb;
939 }
940
941 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
942 __acquires(&wb->list_lock)
943 {
944 struct bdi_writeback *wb = inode_to_wb(inode);
945
946 spin_lock(&wb->list_lock);
947 return wb;
948 }
949
950 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
951 {
952 return nr_pages;
953 }
954
955 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
956 struct wb_writeback_work *base_work,
957 bool skip_if_busy)
958 {
959 might_sleep();
960
961 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
962 base_work->auto_free = 0;
963 wb_queue_work(&bdi->wb, base_work);
964 }
965 }
966
967 #endif /* CONFIG_CGROUP_WRITEBACK */
968
969 /*
970 * Add in the number of potentially dirty inodes, because each inode
971 * write can dirty pagecache in the underlying blockdev.
972 */
973 static unsigned long get_nr_dirty_pages(void)
974 {
975 return global_node_page_state(NR_FILE_DIRTY) +
976 global_node_page_state(NR_UNSTABLE_NFS) +
977 get_nr_dirty_inodes();
978 }
979
980 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
981 {
982 if (!wb_has_dirty_io(wb))
983 return;
984
985 /*
986 * All callers of this function want to start writeback of all
987 * dirty pages. Places like vmscan can call this at a very
988 * high frequency, causing pointless allocations of tons of
989 * work items and keeping the flusher threads busy retrieving
990 * that work. Ensure that we only allow one of them pending and
991 * inflight at the time.
992 */
993 if (test_bit(WB_start_all, &wb->state) ||
994 test_and_set_bit(WB_start_all, &wb->state))
995 return;
996
997 wb->start_all_reason = reason;
998 wb_wakeup(wb);
999 }
1000
1001 /**
1002 * wb_start_background_writeback - start background writeback
1003 * @wb: bdi_writback to write from
1004 *
1005 * Description:
1006 * This makes sure WB_SYNC_NONE background writeback happens. When
1007 * this function returns, it is only guaranteed that for given wb
1008 * some IO is happening if we are over background dirty threshold.
1009 * Caller need not hold sb s_umount semaphore.
1010 */
1011 void wb_start_background_writeback(struct bdi_writeback *wb)
1012 {
1013 /*
1014 * We just wake up the flusher thread. It will perform background
1015 * writeback as soon as there is no other work to do.
1016 */
1017 trace_writeback_wake_background(wb);
1018 wb_wakeup(wb);
1019 }
1020
1021 /*
1022 * Remove the inode from the writeback list it is on.
1023 */
1024 void inode_io_list_del(struct inode *inode)
1025 {
1026 struct bdi_writeback *wb;
1027
1028 wb = inode_to_wb_and_lock_list(inode);
1029 inode_io_list_del_locked(inode, wb);
1030 spin_unlock(&wb->list_lock);
1031 }
1032
1033 /*
1034 * mark an inode as under writeback on the sb
1035 */
1036 void sb_mark_inode_writeback(struct inode *inode)
1037 {
1038 struct super_block *sb = inode->i_sb;
1039 unsigned long flags;
1040
1041 if (list_empty(&inode->i_wb_list)) {
1042 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1043 if (list_empty(&inode->i_wb_list)) {
1044 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1045 trace_sb_mark_inode_writeback(inode);
1046 }
1047 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1048 }
1049 }
1050
1051 /*
1052 * clear an inode as under writeback on the sb
1053 */
1054 void sb_clear_inode_writeback(struct inode *inode)
1055 {
1056 struct super_block *sb = inode->i_sb;
1057 unsigned long flags;
1058
1059 if (!list_empty(&inode->i_wb_list)) {
1060 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1061 if (!list_empty(&inode->i_wb_list)) {
1062 list_del_init(&inode->i_wb_list);
1063 trace_sb_clear_inode_writeback(inode);
1064 }
1065 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1066 }
1067 }
1068
1069 /*
1070 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1071 * furthest end of its superblock's dirty-inode list.
1072 *
1073 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1074 * already the most-recently-dirtied inode on the b_dirty list. If that is
1075 * the case then the inode must have been redirtied while it was being written
1076 * out and we don't reset its dirtied_when.
1077 */
1078 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1079 {
1080 if (!list_empty(&wb->b_dirty)) {
1081 struct inode *tail;
1082
1083 tail = wb_inode(wb->b_dirty.next);
1084 if (time_before(inode->dirtied_when, tail->dirtied_when))
1085 inode->dirtied_when = jiffies;
1086 }
1087 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1088 }
1089
1090 /*
1091 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1092 */
1093 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1094 {
1095 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1096 }
1097
1098 static void inode_sync_complete(struct inode *inode)
1099 {
1100 inode->i_state &= ~I_SYNC;
1101 /* If inode is clean an unused, put it into LRU now... */
1102 inode_add_lru(inode);
1103 /* Waiters must see I_SYNC cleared before being woken up */
1104 smp_mb();
1105 wake_up_bit(&inode->i_state, __I_SYNC);
1106 }
1107
1108 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1109 {
1110 bool ret = time_after(inode->dirtied_when, t);
1111 #ifndef CONFIG_64BIT
1112 /*
1113 * For inodes being constantly redirtied, dirtied_when can get stuck.
1114 * It _appears_ to be in the future, but is actually in distant past.
1115 * This test is necessary to prevent such wrapped-around relative times
1116 * from permanently stopping the whole bdi writeback.
1117 */
1118 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1119 #endif
1120 return ret;
1121 }
1122
1123 #define EXPIRE_DIRTY_ATIME 0x0001
1124
1125 /*
1126 * Move expired (dirtied before work->older_than_this) dirty inodes from
1127 * @delaying_queue to @dispatch_queue.
1128 */
1129 static int move_expired_inodes(struct list_head *delaying_queue,
1130 struct list_head *dispatch_queue,
1131 int flags,
1132 struct wb_writeback_work *work)
1133 {
1134 unsigned long *older_than_this = NULL;
1135 unsigned long expire_time;
1136 LIST_HEAD(tmp);
1137 struct list_head *pos, *node;
1138 struct super_block *sb = NULL;
1139 struct inode *inode;
1140 int do_sb_sort = 0;
1141 int moved = 0;
1142
1143 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1144 older_than_this = work->older_than_this;
1145 else if (!work->for_sync) {
1146 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1147 older_than_this = &expire_time;
1148 }
1149 while (!list_empty(delaying_queue)) {
1150 inode = wb_inode(delaying_queue->prev);
1151 if (older_than_this &&
1152 inode_dirtied_after(inode, *older_than_this))
1153 break;
1154 list_move(&inode->i_io_list, &tmp);
1155 moved++;
1156 if (flags & EXPIRE_DIRTY_ATIME)
1157 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1158 if (sb_is_blkdev_sb(inode->i_sb))
1159 continue;
1160 if (sb && sb != inode->i_sb)
1161 do_sb_sort = 1;
1162 sb = inode->i_sb;
1163 }
1164
1165 /* just one sb in list, splice to dispatch_queue and we're done */
1166 if (!do_sb_sort) {
1167 list_splice(&tmp, dispatch_queue);
1168 goto out;
1169 }
1170
1171 /* Move inodes from one superblock together */
1172 while (!list_empty(&tmp)) {
1173 sb = wb_inode(tmp.prev)->i_sb;
1174 list_for_each_prev_safe(pos, node, &tmp) {
1175 inode = wb_inode(pos);
1176 if (inode->i_sb == sb)
1177 list_move(&inode->i_io_list, dispatch_queue);
1178 }
1179 }
1180 out:
1181 return moved;
1182 }
1183
1184 /*
1185 * Queue all expired dirty inodes for io, eldest first.
1186 * Before
1187 * newly dirtied b_dirty b_io b_more_io
1188 * =============> gf edc BA
1189 * After
1190 * newly dirtied b_dirty b_io b_more_io
1191 * =============> g fBAedc
1192 * |
1193 * +--> dequeue for IO
1194 */
1195 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1196 {
1197 int moved;
1198
1199 assert_spin_locked(&wb->list_lock);
1200 list_splice_init(&wb->b_more_io, &wb->b_io);
1201 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1202 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1203 EXPIRE_DIRTY_ATIME, work);
1204 if (moved)
1205 wb_io_lists_populated(wb);
1206 trace_writeback_queue_io(wb, work, moved);
1207 }
1208
1209 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1210 {
1211 int ret;
1212
1213 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1214 trace_writeback_write_inode_start(inode, wbc);
1215 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1216 trace_writeback_write_inode(inode, wbc);
1217 return ret;
1218 }
1219 return 0;
1220 }
1221
1222 /*
1223 * Wait for writeback on an inode to complete. Called with i_lock held.
1224 * Caller must make sure inode cannot go away when we drop i_lock.
1225 */
1226 static void __inode_wait_for_writeback(struct inode *inode)
1227 __releases(inode->i_lock)
1228 __acquires(inode->i_lock)
1229 {
1230 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1231 wait_queue_head_t *wqh;
1232
1233 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1234 while (inode->i_state & I_SYNC) {
1235 spin_unlock(&inode->i_lock);
1236 __wait_on_bit(wqh, &wq, bit_wait,
1237 TASK_UNINTERRUPTIBLE);
1238 spin_lock(&inode->i_lock);
1239 }
1240 }
1241
1242 /*
1243 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1244 */
1245 void inode_wait_for_writeback(struct inode *inode)
1246 {
1247 spin_lock(&inode->i_lock);
1248 __inode_wait_for_writeback(inode);
1249 spin_unlock(&inode->i_lock);
1250 }
1251
1252 /*
1253 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1254 * held and drops it. It is aimed for callers not holding any inode reference
1255 * so once i_lock is dropped, inode can go away.
1256 */
1257 static void inode_sleep_on_writeback(struct inode *inode)
1258 __releases(inode->i_lock)
1259 {
1260 DEFINE_WAIT(wait);
1261 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1262 int sleep;
1263
1264 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1265 sleep = inode->i_state & I_SYNC;
1266 spin_unlock(&inode->i_lock);
1267 if (sleep)
1268 schedule();
1269 finish_wait(wqh, &wait);
1270 }
1271
1272 /*
1273 * Find proper writeback list for the inode depending on its current state and
1274 * possibly also change of its state while we were doing writeback. Here we
1275 * handle things such as livelock prevention or fairness of writeback among
1276 * inodes. This function can be called only by flusher thread - noone else
1277 * processes all inodes in writeback lists and requeueing inodes behind flusher
1278 * thread's back can have unexpected consequences.
1279 */
1280 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1281 struct writeback_control *wbc)
1282 {
1283 if (inode->i_state & I_FREEING)
1284 return;
1285
1286 /*
1287 * Sync livelock prevention. Each inode is tagged and synced in one
1288 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1289 * the dirty time to prevent enqueue and sync it again.
1290 */
1291 if ((inode->i_state & I_DIRTY) &&
1292 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1293 inode->dirtied_when = jiffies;
1294
1295 if (wbc->pages_skipped) {
1296 /*
1297 * writeback is not making progress due to locked
1298 * buffers. Skip this inode for now.
1299 */
1300 redirty_tail(inode, wb);
1301 return;
1302 }
1303
1304 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1305 /*
1306 * We didn't write back all the pages. nfs_writepages()
1307 * sometimes bales out without doing anything.
1308 */
1309 if (wbc->nr_to_write <= 0) {
1310 /* Slice used up. Queue for next turn. */
1311 requeue_io(inode, wb);
1312 } else {
1313 /*
1314 * Writeback blocked by something other than
1315 * congestion. Delay the inode for some time to
1316 * avoid spinning on the CPU (100% iowait)
1317 * retrying writeback of the dirty page/inode
1318 * that cannot be performed immediately.
1319 */
1320 redirty_tail(inode, wb);
1321 }
1322 } else if (inode->i_state & I_DIRTY) {
1323 /*
1324 * Filesystems can dirty the inode during writeback operations,
1325 * such as delayed allocation during submission or metadata
1326 * updates after data IO completion.
1327 */
1328 redirty_tail(inode, wb);
1329 } else if (inode->i_state & I_DIRTY_TIME) {
1330 inode->dirtied_when = jiffies;
1331 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1332 } else {
1333 /* The inode is clean. Remove from writeback lists. */
1334 inode_io_list_del_locked(inode, wb);
1335 }
1336 }
1337
1338 /*
1339 * Write out an inode and its dirty pages. Do not update the writeback list
1340 * linkage. That is left to the caller. The caller is also responsible for
1341 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1342 */
1343 static int
1344 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1345 {
1346 struct address_space *mapping = inode->i_mapping;
1347 long nr_to_write = wbc->nr_to_write;
1348 unsigned dirty;
1349 int ret;
1350
1351 WARN_ON(!(inode->i_state & I_SYNC));
1352
1353 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1354
1355 ret = do_writepages(mapping, wbc);
1356
1357 /*
1358 * Make sure to wait on the data before writing out the metadata.
1359 * This is important for filesystems that modify metadata on data
1360 * I/O completion. We don't do it for sync(2) writeback because it has a
1361 * separate, external IO completion path and ->sync_fs for guaranteeing
1362 * inode metadata is written back correctly.
1363 */
1364 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1365 int err = filemap_fdatawait(mapping);
1366 if (ret == 0)
1367 ret = err;
1368 }
1369
1370 /*
1371 * Some filesystems may redirty the inode during the writeback
1372 * due to delalloc, clear dirty metadata flags right before
1373 * write_inode()
1374 */
1375 spin_lock(&inode->i_lock);
1376
1377 dirty = inode->i_state & I_DIRTY;
1378 if (inode->i_state & I_DIRTY_TIME) {
1379 if ((dirty & I_DIRTY_INODE) ||
1380 wbc->sync_mode == WB_SYNC_ALL ||
1381 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1382 unlikely(time_after(jiffies,
1383 (inode->dirtied_time_when +
1384 dirtytime_expire_interval * HZ)))) {
1385 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1386 trace_writeback_lazytime(inode);
1387 }
1388 } else
1389 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1390 inode->i_state &= ~dirty;
1391
1392 /*
1393 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1394 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1395 * either they see the I_DIRTY bits cleared or we see the dirtied
1396 * inode.
1397 *
1398 * I_DIRTY_PAGES is always cleared together above even if @mapping
1399 * still has dirty pages. The flag is reinstated after smp_mb() if
1400 * necessary. This guarantees that either __mark_inode_dirty()
1401 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1402 */
1403 smp_mb();
1404
1405 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1406 inode->i_state |= I_DIRTY_PAGES;
1407
1408 spin_unlock(&inode->i_lock);
1409
1410 if (dirty & I_DIRTY_TIME)
1411 mark_inode_dirty_sync(inode);
1412 /* Don't write the inode if only I_DIRTY_PAGES was set */
1413 if (dirty & ~I_DIRTY_PAGES) {
1414 int err = write_inode(inode, wbc);
1415 if (ret == 0)
1416 ret = err;
1417 }
1418 trace_writeback_single_inode(inode, wbc, nr_to_write);
1419 return ret;
1420 }
1421
1422 /*
1423 * Write out an inode's dirty pages. Either the caller has an active reference
1424 * on the inode or the inode has I_WILL_FREE set.
1425 *
1426 * This function is designed to be called for writing back one inode which
1427 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1428 * and does more profound writeback list handling in writeback_sb_inodes().
1429 */
1430 static int writeback_single_inode(struct inode *inode,
1431 struct writeback_control *wbc)
1432 {
1433 struct bdi_writeback *wb;
1434 int ret = 0;
1435
1436 spin_lock(&inode->i_lock);
1437 if (!atomic_read(&inode->i_count))
1438 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1439 else
1440 WARN_ON(inode->i_state & I_WILL_FREE);
1441
1442 if (inode->i_state & I_SYNC) {
1443 if (wbc->sync_mode != WB_SYNC_ALL)
1444 goto out;
1445 /*
1446 * It's a data-integrity sync. We must wait. Since callers hold
1447 * inode reference or inode has I_WILL_FREE set, it cannot go
1448 * away under us.
1449 */
1450 __inode_wait_for_writeback(inode);
1451 }
1452 WARN_ON(inode->i_state & I_SYNC);
1453 /*
1454 * Skip inode if it is clean and we have no outstanding writeback in
1455 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1456 * function since flusher thread may be doing for example sync in
1457 * parallel and if we move the inode, it could get skipped. So here we
1458 * make sure inode is on some writeback list and leave it there unless
1459 * we have completely cleaned the inode.
1460 */
1461 if (!(inode->i_state & I_DIRTY_ALL) &&
1462 (wbc->sync_mode != WB_SYNC_ALL ||
1463 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1464 goto out;
1465 inode->i_state |= I_SYNC;
1466 wbc_attach_and_unlock_inode(wbc, inode);
1467
1468 ret = __writeback_single_inode(inode, wbc);
1469
1470 wbc_detach_inode(wbc);
1471
1472 wb = inode_to_wb_and_lock_list(inode);
1473 spin_lock(&inode->i_lock);
1474 /*
1475 * If inode is clean, remove it from writeback lists. Otherwise don't
1476 * touch it. See comment above for explanation.
1477 */
1478 if (!(inode->i_state & I_DIRTY_ALL))
1479 inode_io_list_del_locked(inode, wb);
1480 spin_unlock(&wb->list_lock);
1481 inode_sync_complete(inode);
1482 out:
1483 spin_unlock(&inode->i_lock);
1484 return ret;
1485 }
1486
1487 static long writeback_chunk_size(struct bdi_writeback *wb,
1488 struct wb_writeback_work *work)
1489 {
1490 long pages;
1491
1492 /*
1493 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1494 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1495 * here avoids calling into writeback_inodes_wb() more than once.
1496 *
1497 * The intended call sequence for WB_SYNC_ALL writeback is:
1498 *
1499 * wb_writeback()
1500 * writeback_sb_inodes() <== called only once
1501 * write_cache_pages() <== called once for each inode
1502 * (quickly) tag currently dirty pages
1503 * (maybe slowly) sync all tagged pages
1504 */
1505 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1506 pages = LONG_MAX;
1507 else {
1508 pages = min(wb->avg_write_bandwidth / 2,
1509 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1510 pages = min(pages, work->nr_pages);
1511 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1512 MIN_WRITEBACK_PAGES);
1513 }
1514
1515 return pages;
1516 }
1517
1518 /*
1519 * Write a portion of b_io inodes which belong to @sb.
1520 *
1521 * Return the number of pages and/or inodes written.
1522 *
1523 * NOTE! This is called with wb->list_lock held, and will
1524 * unlock and relock that for each inode it ends up doing
1525 * IO for.
1526 */
1527 static long writeback_sb_inodes(struct super_block *sb,
1528 struct bdi_writeback *wb,
1529 struct wb_writeback_work *work)
1530 {
1531 struct writeback_control wbc = {
1532 .sync_mode = work->sync_mode,
1533 .tagged_writepages = work->tagged_writepages,
1534 .for_kupdate = work->for_kupdate,
1535 .for_background = work->for_background,
1536 .for_sync = work->for_sync,
1537 .range_cyclic = work->range_cyclic,
1538 .range_start = 0,
1539 .range_end = LLONG_MAX,
1540 };
1541 unsigned long start_time = jiffies;
1542 long write_chunk;
1543 long wrote = 0; /* count both pages and inodes */
1544
1545 while (!list_empty(&wb->b_io)) {
1546 struct inode *inode = wb_inode(wb->b_io.prev);
1547 struct bdi_writeback *tmp_wb;
1548
1549 if (inode->i_sb != sb) {
1550 if (work->sb) {
1551 /*
1552 * We only want to write back data for this
1553 * superblock, move all inodes not belonging
1554 * to it back onto the dirty list.
1555 */
1556 redirty_tail(inode, wb);
1557 continue;
1558 }
1559
1560 /*
1561 * The inode belongs to a different superblock.
1562 * Bounce back to the caller to unpin this and
1563 * pin the next superblock.
1564 */
1565 break;
1566 }
1567
1568 /*
1569 * Don't bother with new inodes or inodes being freed, first
1570 * kind does not need periodic writeout yet, and for the latter
1571 * kind writeout is handled by the freer.
1572 */
1573 spin_lock(&inode->i_lock);
1574 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1575 spin_unlock(&inode->i_lock);
1576 redirty_tail(inode, wb);
1577 continue;
1578 }
1579 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1580 /*
1581 * If this inode is locked for writeback and we are not
1582 * doing writeback-for-data-integrity, move it to
1583 * b_more_io so that writeback can proceed with the
1584 * other inodes on s_io.
1585 *
1586 * We'll have another go at writing back this inode
1587 * when we completed a full scan of b_io.
1588 */
1589 spin_unlock(&inode->i_lock);
1590 requeue_io(inode, wb);
1591 trace_writeback_sb_inodes_requeue(inode);
1592 continue;
1593 }
1594 spin_unlock(&wb->list_lock);
1595
1596 /*
1597 * We already requeued the inode if it had I_SYNC set and we
1598 * are doing WB_SYNC_NONE writeback. So this catches only the
1599 * WB_SYNC_ALL case.
1600 */
1601 if (inode->i_state & I_SYNC) {
1602 /* Wait for I_SYNC. This function drops i_lock... */
1603 inode_sleep_on_writeback(inode);
1604 /* Inode may be gone, start again */
1605 spin_lock(&wb->list_lock);
1606 continue;
1607 }
1608 inode->i_state |= I_SYNC;
1609 wbc_attach_and_unlock_inode(&wbc, inode);
1610
1611 write_chunk = writeback_chunk_size(wb, work);
1612 wbc.nr_to_write = write_chunk;
1613 wbc.pages_skipped = 0;
1614
1615 /*
1616 * We use I_SYNC to pin the inode in memory. While it is set
1617 * evict_inode() will wait so the inode cannot be freed.
1618 */
1619 __writeback_single_inode(inode, &wbc);
1620
1621 wbc_detach_inode(&wbc);
1622 work->nr_pages -= write_chunk - wbc.nr_to_write;
1623 wrote += write_chunk - wbc.nr_to_write;
1624
1625 if (need_resched()) {
1626 /*
1627 * We're trying to balance between building up a nice
1628 * long list of IOs to improve our merge rate, and
1629 * getting those IOs out quickly for anyone throttling
1630 * in balance_dirty_pages(). cond_resched() doesn't
1631 * unplug, so get our IOs out the door before we
1632 * give up the CPU.
1633 */
1634 blk_flush_plug(current);
1635 cond_resched();
1636 }
1637
1638 /*
1639 * Requeue @inode if still dirty. Be careful as @inode may
1640 * have been switched to another wb in the meantime.
1641 */
1642 tmp_wb = inode_to_wb_and_lock_list(inode);
1643 spin_lock(&inode->i_lock);
1644 if (!(inode->i_state & I_DIRTY_ALL))
1645 wrote++;
1646 requeue_inode(inode, tmp_wb, &wbc);
1647 inode_sync_complete(inode);
1648 spin_unlock(&inode->i_lock);
1649
1650 if (unlikely(tmp_wb != wb)) {
1651 spin_unlock(&tmp_wb->list_lock);
1652 spin_lock(&wb->list_lock);
1653 }
1654
1655 /*
1656 * bail out to wb_writeback() often enough to check
1657 * background threshold and other termination conditions.
1658 */
1659 if (wrote) {
1660 if (time_is_before_jiffies(start_time + HZ / 10UL))
1661 break;
1662 if (work->nr_pages <= 0)
1663 break;
1664 }
1665 }
1666 return wrote;
1667 }
1668
1669 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1670 struct wb_writeback_work *work)
1671 {
1672 unsigned long start_time = jiffies;
1673 long wrote = 0;
1674
1675 while (!list_empty(&wb->b_io)) {
1676 struct inode *inode = wb_inode(wb->b_io.prev);
1677 struct super_block *sb = inode->i_sb;
1678
1679 if (!trylock_super(sb)) {
1680 /*
1681 * trylock_super() may fail consistently due to
1682 * s_umount being grabbed by someone else. Don't use
1683 * requeue_io() to avoid busy retrying the inode/sb.
1684 */
1685 redirty_tail(inode, wb);
1686 continue;
1687 }
1688 wrote += writeback_sb_inodes(sb, wb, work);
1689 up_read(&sb->s_umount);
1690
1691 /* refer to the same tests at the end of writeback_sb_inodes */
1692 if (wrote) {
1693 if (time_is_before_jiffies(start_time + HZ / 10UL))
1694 break;
1695 if (work->nr_pages <= 0)
1696 break;
1697 }
1698 }
1699 /* Leave any unwritten inodes on b_io */
1700 return wrote;
1701 }
1702
1703 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1704 enum wb_reason reason)
1705 {
1706 struct wb_writeback_work work = {
1707 .nr_pages = nr_pages,
1708 .sync_mode = WB_SYNC_NONE,
1709 .range_cyclic = 1,
1710 .reason = reason,
1711 };
1712 struct blk_plug plug;
1713
1714 blk_start_plug(&plug);
1715 spin_lock(&wb->list_lock);
1716 if (list_empty(&wb->b_io))
1717 queue_io(wb, &work);
1718 __writeback_inodes_wb(wb, &work);
1719 spin_unlock(&wb->list_lock);
1720 blk_finish_plug(&plug);
1721
1722 return nr_pages - work.nr_pages;
1723 }
1724
1725 /*
1726 * Explicit flushing or periodic writeback of "old" data.
1727 *
1728 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1729 * dirtying-time in the inode's address_space. So this periodic writeback code
1730 * just walks the superblock inode list, writing back any inodes which are
1731 * older than a specific point in time.
1732 *
1733 * Try to run once per dirty_writeback_interval. But if a writeback event
1734 * takes longer than a dirty_writeback_interval interval, then leave a
1735 * one-second gap.
1736 *
1737 * older_than_this takes precedence over nr_to_write. So we'll only write back
1738 * all dirty pages if they are all attached to "old" mappings.
1739 */
1740 static long wb_writeback(struct bdi_writeback *wb,
1741 struct wb_writeback_work *work)
1742 {
1743 unsigned long wb_start = jiffies;
1744 long nr_pages = work->nr_pages;
1745 unsigned long oldest_jif;
1746 struct inode *inode;
1747 long progress;
1748 struct blk_plug plug;
1749
1750 oldest_jif = jiffies;
1751 work->older_than_this = &oldest_jif;
1752
1753 blk_start_plug(&plug);
1754 spin_lock(&wb->list_lock);
1755 for (;;) {
1756 /*
1757 * Stop writeback when nr_pages has been consumed
1758 */
1759 if (work->nr_pages <= 0)
1760 break;
1761
1762 /*
1763 * Background writeout and kupdate-style writeback may
1764 * run forever. Stop them if there is other work to do
1765 * so that e.g. sync can proceed. They'll be restarted
1766 * after the other works are all done.
1767 */
1768 if ((work->for_background || work->for_kupdate) &&
1769 !list_empty(&wb->work_list))
1770 break;
1771
1772 /*
1773 * For background writeout, stop when we are below the
1774 * background dirty threshold
1775 */
1776 if (work->for_background && !wb_over_bg_thresh(wb))
1777 break;
1778
1779 /*
1780 * Kupdate and background works are special and we want to
1781 * include all inodes that need writing. Livelock avoidance is
1782 * handled by these works yielding to any other work so we are
1783 * safe.
1784 */
1785 if (work->for_kupdate) {
1786 oldest_jif = jiffies -
1787 msecs_to_jiffies(dirty_expire_interval * 10);
1788 } else if (work->for_background)
1789 oldest_jif = jiffies;
1790
1791 trace_writeback_start(wb, work);
1792 if (list_empty(&wb->b_io))
1793 queue_io(wb, work);
1794 if (work->sb)
1795 progress = writeback_sb_inodes(work->sb, wb, work);
1796 else
1797 progress = __writeback_inodes_wb(wb, work);
1798 trace_writeback_written(wb, work);
1799
1800 wb_update_bandwidth(wb, wb_start);
1801
1802 /*
1803 * Did we write something? Try for more
1804 *
1805 * Dirty inodes are moved to b_io for writeback in batches.
1806 * The completion of the current batch does not necessarily
1807 * mean the overall work is done. So we keep looping as long
1808 * as made some progress on cleaning pages or inodes.
1809 */
1810 if (progress)
1811 continue;
1812 /*
1813 * No more inodes for IO, bail
1814 */
1815 if (list_empty(&wb->b_more_io))
1816 break;
1817 /*
1818 * Nothing written. Wait for some inode to
1819 * become available for writeback. Otherwise
1820 * we'll just busyloop.
1821 */
1822 trace_writeback_wait(wb, work);
1823 inode = wb_inode(wb->b_more_io.prev);
1824 spin_lock(&inode->i_lock);
1825 spin_unlock(&wb->list_lock);
1826 /* This function drops i_lock... */
1827 inode_sleep_on_writeback(inode);
1828 spin_lock(&wb->list_lock);
1829 }
1830 spin_unlock(&wb->list_lock);
1831 blk_finish_plug(&plug);
1832
1833 return nr_pages - work->nr_pages;
1834 }
1835
1836 /*
1837 * Return the next wb_writeback_work struct that hasn't been processed yet.
1838 */
1839 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1840 {
1841 struct wb_writeback_work *work = NULL;
1842
1843 spin_lock_bh(&wb->work_lock);
1844 if (!list_empty(&wb->work_list)) {
1845 work = list_entry(wb->work_list.next,
1846 struct wb_writeback_work, list);
1847 list_del_init(&work->list);
1848 }
1849 spin_unlock_bh(&wb->work_lock);
1850 return work;
1851 }
1852
1853 static long wb_check_background_flush(struct bdi_writeback *wb)
1854 {
1855 if (wb_over_bg_thresh(wb)) {
1856
1857 struct wb_writeback_work work = {
1858 .nr_pages = LONG_MAX,
1859 .sync_mode = WB_SYNC_NONE,
1860 .for_background = 1,
1861 .range_cyclic = 1,
1862 .reason = WB_REASON_BACKGROUND,
1863 };
1864
1865 return wb_writeback(wb, &work);
1866 }
1867
1868 return 0;
1869 }
1870
1871 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1872 {
1873 unsigned long expired;
1874 long nr_pages;
1875
1876 /*
1877 * When set to zero, disable periodic writeback
1878 */
1879 if (!dirty_writeback_interval)
1880 return 0;
1881
1882 expired = wb->last_old_flush +
1883 msecs_to_jiffies(dirty_writeback_interval * 10);
1884 if (time_before(jiffies, expired))
1885 return 0;
1886
1887 wb->last_old_flush = jiffies;
1888 nr_pages = get_nr_dirty_pages();
1889
1890 if (nr_pages) {
1891 struct wb_writeback_work work = {
1892 .nr_pages = nr_pages,
1893 .sync_mode = WB_SYNC_NONE,
1894 .for_kupdate = 1,
1895 .range_cyclic = 1,
1896 .reason = WB_REASON_PERIODIC,
1897 };
1898
1899 return wb_writeback(wb, &work);
1900 }
1901
1902 return 0;
1903 }
1904
1905 static long wb_check_start_all(struct bdi_writeback *wb)
1906 {
1907 long nr_pages;
1908
1909 if (!test_bit(WB_start_all, &wb->state))
1910 return 0;
1911
1912 nr_pages = get_nr_dirty_pages();
1913 if (nr_pages) {
1914 struct wb_writeback_work work = {
1915 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1916 .sync_mode = WB_SYNC_NONE,
1917 .range_cyclic = 1,
1918 .reason = wb->start_all_reason,
1919 };
1920
1921 nr_pages = wb_writeback(wb, &work);
1922 }
1923
1924 clear_bit(WB_start_all, &wb->state);
1925 return nr_pages;
1926 }
1927
1928
1929 /*
1930 * Retrieve work items and do the writeback they describe
1931 */
1932 static long wb_do_writeback(struct bdi_writeback *wb)
1933 {
1934 struct wb_writeback_work *work;
1935 long wrote = 0;
1936
1937 set_bit(WB_writeback_running, &wb->state);
1938 while ((work = get_next_work_item(wb)) != NULL) {
1939 trace_writeback_exec(wb, work);
1940 wrote += wb_writeback(wb, work);
1941 finish_writeback_work(wb, work);
1942 }
1943
1944 /*
1945 * Check for a flush-everything request
1946 */
1947 wrote += wb_check_start_all(wb);
1948
1949 /*
1950 * Check for periodic writeback, kupdated() style
1951 */
1952 wrote += wb_check_old_data_flush(wb);
1953 wrote += wb_check_background_flush(wb);
1954 clear_bit(WB_writeback_running, &wb->state);
1955
1956 return wrote;
1957 }
1958
1959 /*
1960 * Handle writeback of dirty data for the device backed by this bdi. Also
1961 * reschedules periodically and does kupdated style flushing.
1962 */
1963 void wb_workfn(struct work_struct *work)
1964 {
1965 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1966 struct bdi_writeback, dwork);
1967 long pages_written;
1968
1969 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1970 current->flags |= PF_SWAPWRITE;
1971
1972 if (likely(!current_is_workqueue_rescuer() ||
1973 !test_bit(WB_registered, &wb->state))) {
1974 /*
1975 * The normal path. Keep writing back @wb until its
1976 * work_list is empty. Note that this path is also taken
1977 * if @wb is shutting down even when we're running off the
1978 * rescuer as work_list needs to be drained.
1979 */
1980 do {
1981 pages_written = wb_do_writeback(wb);
1982 trace_writeback_pages_written(pages_written);
1983 } while (!list_empty(&wb->work_list));
1984 } else {
1985 /*
1986 * bdi_wq can't get enough workers and we're running off
1987 * the emergency worker. Don't hog it. Hopefully, 1024 is
1988 * enough for efficient IO.
1989 */
1990 pages_written = writeback_inodes_wb(wb, 1024,
1991 WB_REASON_FORKER_THREAD);
1992 trace_writeback_pages_written(pages_written);
1993 }
1994
1995 if (!list_empty(&wb->work_list))
1996 wb_wakeup(wb);
1997 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1998 wb_wakeup_delayed(wb);
1999
2000 current->flags &= ~PF_SWAPWRITE;
2001 }
2002
2003 /*
2004 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2005 * write back the whole world.
2006 */
2007 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2008 enum wb_reason reason)
2009 {
2010 struct bdi_writeback *wb;
2011
2012 if (!bdi_has_dirty_io(bdi))
2013 return;
2014
2015 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2016 wb_start_writeback(wb, reason);
2017 }
2018
2019 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2020 enum wb_reason reason)
2021 {
2022 rcu_read_lock();
2023 __wakeup_flusher_threads_bdi(bdi, reason);
2024 rcu_read_unlock();
2025 }
2026
2027 /*
2028 * Wakeup the flusher threads to start writeback of all currently dirty pages
2029 */
2030 void wakeup_flusher_threads(enum wb_reason reason)
2031 {
2032 struct backing_dev_info *bdi;
2033
2034 /*
2035 * If we are expecting writeback progress we must submit plugged IO.
2036 */
2037 if (blk_needs_flush_plug(current))
2038 blk_schedule_flush_plug(current);
2039
2040 rcu_read_lock();
2041 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2042 __wakeup_flusher_threads_bdi(bdi, reason);
2043 rcu_read_unlock();
2044 }
2045
2046 /*
2047 * Wake up bdi's periodically to make sure dirtytime inodes gets
2048 * written back periodically. We deliberately do *not* check the
2049 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2050 * kernel to be constantly waking up once there are any dirtytime
2051 * inodes on the system. So instead we define a separate delayed work
2052 * function which gets called much more rarely. (By default, only
2053 * once every 12 hours.)
2054 *
2055 * If there is any other write activity going on in the file system,
2056 * this function won't be necessary. But if the only thing that has
2057 * happened on the file system is a dirtytime inode caused by an atime
2058 * update, we need this infrastructure below to make sure that inode
2059 * eventually gets pushed out to disk.
2060 */
2061 static void wakeup_dirtytime_writeback(struct work_struct *w);
2062 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2063
2064 static void wakeup_dirtytime_writeback(struct work_struct *w)
2065 {
2066 struct backing_dev_info *bdi;
2067
2068 rcu_read_lock();
2069 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2070 struct bdi_writeback *wb;
2071
2072 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2073 if (!list_empty(&wb->b_dirty_time))
2074 wb_wakeup(wb);
2075 }
2076 rcu_read_unlock();
2077 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2078 }
2079
2080 static int __init start_dirtytime_writeback(void)
2081 {
2082 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2083 return 0;
2084 }
2085 __initcall(start_dirtytime_writeback);
2086
2087 int dirtytime_interval_handler(struct ctl_table *table, int write,
2088 void __user *buffer, size_t *lenp, loff_t *ppos)
2089 {
2090 int ret;
2091
2092 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2093 if (ret == 0 && write)
2094 mod_delayed_work(system_wq, &dirtytime_work, 0);
2095 return ret;
2096 }
2097
2098 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2099 {
2100 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2101 struct dentry *dentry;
2102 const char *name = "?";
2103
2104 dentry = d_find_alias(inode);
2105 if (dentry) {
2106 spin_lock(&dentry->d_lock);
2107 name = (const char *) dentry->d_name.name;
2108 }
2109 printk(KERN_DEBUG
2110 "%s(%d): dirtied inode %lu (%s) on %s\n",
2111 current->comm, task_pid_nr(current), inode->i_ino,
2112 name, inode->i_sb->s_id);
2113 if (dentry) {
2114 spin_unlock(&dentry->d_lock);
2115 dput(dentry);
2116 }
2117 }
2118 }
2119
2120 /**
2121 * __mark_inode_dirty - internal function
2122 *
2123 * @inode: inode to mark
2124 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2125 *
2126 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2127 * mark_inode_dirty_sync.
2128 *
2129 * Put the inode on the super block's dirty list.
2130 *
2131 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2132 * dirty list only if it is hashed or if it refers to a blockdev.
2133 * If it was not hashed, it will never be added to the dirty list
2134 * even if it is later hashed, as it will have been marked dirty already.
2135 *
2136 * In short, make sure you hash any inodes _before_ you start marking
2137 * them dirty.
2138 *
2139 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2140 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2141 * the kernel-internal blockdev inode represents the dirtying time of the
2142 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2143 * page->mapping->host, so the page-dirtying time is recorded in the internal
2144 * blockdev inode.
2145 */
2146 void __mark_inode_dirty(struct inode *inode, int flags)
2147 {
2148 struct super_block *sb = inode->i_sb;
2149 int dirtytime;
2150
2151 trace_writeback_mark_inode_dirty(inode, flags);
2152
2153 /*
2154 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2155 * dirty the inode itself
2156 */
2157 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2158 trace_writeback_dirty_inode_start(inode, flags);
2159
2160 if (sb->s_op->dirty_inode)
2161 sb->s_op->dirty_inode(inode, flags);
2162
2163 trace_writeback_dirty_inode(inode, flags);
2164 }
2165 if (flags & I_DIRTY_INODE)
2166 flags &= ~I_DIRTY_TIME;
2167 dirtytime = flags & I_DIRTY_TIME;
2168
2169 /*
2170 * Paired with smp_mb() in __writeback_single_inode() for the
2171 * following lockless i_state test. See there for details.
2172 */
2173 smp_mb();
2174
2175 if (((inode->i_state & flags) == flags) ||
2176 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2177 return;
2178
2179 if (unlikely(block_dump))
2180 block_dump___mark_inode_dirty(inode);
2181
2182 spin_lock(&inode->i_lock);
2183 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2184 goto out_unlock_inode;
2185 if ((inode->i_state & flags) != flags) {
2186 const int was_dirty = inode->i_state & I_DIRTY;
2187
2188 inode_attach_wb(inode, NULL);
2189
2190 if (flags & I_DIRTY_INODE)
2191 inode->i_state &= ~I_DIRTY_TIME;
2192 inode->i_state |= flags;
2193
2194 /*
2195 * If the inode is being synced, just update its dirty state.
2196 * The unlocker will place the inode on the appropriate
2197 * superblock list, based upon its state.
2198 */
2199 if (inode->i_state & I_SYNC)
2200 goto out_unlock_inode;
2201
2202 /*
2203 * Only add valid (hashed) inodes to the superblock's
2204 * dirty list. Add blockdev inodes as well.
2205 */
2206 if (!S_ISBLK(inode->i_mode)) {
2207 if (inode_unhashed(inode))
2208 goto out_unlock_inode;
2209 }
2210 if (inode->i_state & I_FREEING)
2211 goto out_unlock_inode;
2212
2213 /*
2214 * If the inode was already on b_dirty/b_io/b_more_io, don't
2215 * reposition it (that would break b_dirty time-ordering).
2216 */
2217 if (!was_dirty) {
2218 struct bdi_writeback *wb;
2219 struct list_head *dirty_list;
2220 bool wakeup_bdi = false;
2221
2222 wb = locked_inode_to_wb_and_lock_list(inode);
2223
2224 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2225 !test_bit(WB_registered, &wb->state),
2226 "bdi-%s not registered\n", wb->bdi->name);
2227
2228 inode->dirtied_when = jiffies;
2229 if (dirtytime)
2230 inode->dirtied_time_when = jiffies;
2231
2232 if (inode->i_state & I_DIRTY)
2233 dirty_list = &wb->b_dirty;
2234 else
2235 dirty_list = &wb->b_dirty_time;
2236
2237 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2238 dirty_list);
2239
2240 spin_unlock(&wb->list_lock);
2241 trace_writeback_dirty_inode_enqueue(inode);
2242
2243 /*
2244 * If this is the first dirty inode for this bdi,
2245 * we have to wake-up the corresponding bdi thread
2246 * to make sure background write-back happens
2247 * later.
2248 */
2249 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2250 wb_wakeup_delayed(wb);
2251 return;
2252 }
2253 }
2254 out_unlock_inode:
2255 spin_unlock(&inode->i_lock);
2256 }
2257 EXPORT_SYMBOL(__mark_inode_dirty);
2258
2259 /*
2260 * The @s_sync_lock is used to serialise concurrent sync operations
2261 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2262 * Concurrent callers will block on the s_sync_lock rather than doing contending
2263 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2264 * has been issued up to the time this function is enter is guaranteed to be
2265 * completed by the time we have gained the lock and waited for all IO that is
2266 * in progress regardless of the order callers are granted the lock.
2267 */
2268 static void wait_sb_inodes(struct super_block *sb)
2269 {
2270 LIST_HEAD(sync_list);
2271
2272 /*
2273 * We need to be protected against the filesystem going from
2274 * r/o to r/w or vice versa.
2275 */
2276 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2277
2278 mutex_lock(&sb->s_sync_lock);
2279
2280 /*
2281 * Splice the writeback list onto a temporary list to avoid waiting on
2282 * inodes that have started writeback after this point.
2283 *
2284 * Use rcu_read_lock() to keep the inodes around until we have a
2285 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2286 * the local list because inodes can be dropped from either by writeback
2287 * completion.
2288 */
2289 rcu_read_lock();
2290 spin_lock_irq(&sb->s_inode_wblist_lock);
2291 list_splice_init(&sb->s_inodes_wb, &sync_list);
2292
2293 /*
2294 * Data integrity sync. Must wait for all pages under writeback, because
2295 * there may have been pages dirtied before our sync call, but which had
2296 * writeout started before we write it out. In which case, the inode
2297 * may not be on the dirty list, but we still have to wait for that
2298 * writeout.
2299 */
2300 while (!list_empty(&sync_list)) {
2301 struct inode *inode = list_first_entry(&sync_list, struct inode,
2302 i_wb_list);
2303 struct address_space *mapping = inode->i_mapping;
2304
2305 /*
2306 * Move each inode back to the wb list before we drop the lock
2307 * to preserve consistency between i_wb_list and the mapping
2308 * writeback tag. Writeback completion is responsible to remove
2309 * the inode from either list once the writeback tag is cleared.
2310 */
2311 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2312
2313 /*
2314 * The mapping can appear untagged while still on-list since we
2315 * do not have the mapping lock. Skip it here, wb completion
2316 * will remove it.
2317 */
2318 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2319 continue;
2320
2321 spin_unlock_irq(&sb->s_inode_wblist_lock);
2322
2323 spin_lock(&inode->i_lock);
2324 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2325 spin_unlock(&inode->i_lock);
2326
2327 spin_lock_irq(&sb->s_inode_wblist_lock);
2328 continue;
2329 }
2330 __iget(inode);
2331 spin_unlock(&inode->i_lock);
2332 rcu_read_unlock();
2333
2334 /*
2335 * We keep the error status of individual mapping so that
2336 * applications can catch the writeback error using fsync(2).
2337 * See filemap_fdatawait_keep_errors() for details.
2338 */
2339 filemap_fdatawait_keep_errors(mapping);
2340
2341 cond_resched();
2342
2343 iput(inode);
2344
2345 rcu_read_lock();
2346 spin_lock_irq(&sb->s_inode_wblist_lock);
2347 }
2348 spin_unlock_irq(&sb->s_inode_wblist_lock);
2349 rcu_read_unlock();
2350 mutex_unlock(&sb->s_sync_lock);
2351 }
2352
2353 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2354 enum wb_reason reason, bool skip_if_busy)
2355 {
2356 DEFINE_WB_COMPLETION_ONSTACK(done);
2357 struct wb_writeback_work work = {
2358 .sb = sb,
2359 .sync_mode = WB_SYNC_NONE,
2360 .tagged_writepages = 1,
2361 .done = &done,
2362 .nr_pages = nr,
2363 .reason = reason,
2364 };
2365 struct backing_dev_info *bdi = sb->s_bdi;
2366
2367 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2368 return;
2369 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2370
2371 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2372 wb_wait_for_completion(bdi, &done);
2373 }
2374
2375 /**
2376 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2377 * @sb: the superblock
2378 * @nr: the number of pages to write
2379 * @reason: reason why some writeback work initiated
2380 *
2381 * Start writeback on some inodes on this super_block. No guarantees are made
2382 * on how many (if any) will be written, and this function does not wait
2383 * for IO completion of submitted IO.
2384 */
2385 void writeback_inodes_sb_nr(struct super_block *sb,
2386 unsigned long nr,
2387 enum wb_reason reason)
2388 {
2389 __writeback_inodes_sb_nr(sb, nr, reason, false);
2390 }
2391 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2392
2393 /**
2394 * writeback_inodes_sb - writeback dirty inodes from given super_block
2395 * @sb: the superblock
2396 * @reason: reason why some writeback work was initiated
2397 *
2398 * Start writeback on some inodes on this super_block. No guarantees are made
2399 * on how many (if any) will be written, and this function does not wait
2400 * for IO completion of submitted IO.
2401 */
2402 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2403 {
2404 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2405 }
2406 EXPORT_SYMBOL(writeback_inodes_sb);
2407
2408 /**
2409 * try_to_writeback_inodes_sb - try to start writeback if none underway
2410 * @sb: the superblock
2411 * @reason: reason why some writeback work was initiated
2412 *
2413 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2414 */
2415 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2416 {
2417 if (!down_read_trylock(&sb->s_umount))
2418 return;
2419
2420 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2421 up_read(&sb->s_umount);
2422 }
2423 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2424
2425 /**
2426 * sync_inodes_sb - sync sb inode pages
2427 * @sb: the superblock
2428 *
2429 * This function writes and waits on any dirty inode belonging to this
2430 * super_block.
2431 */
2432 void sync_inodes_sb(struct super_block *sb)
2433 {
2434 DEFINE_WB_COMPLETION_ONSTACK(done);
2435 struct wb_writeback_work work = {
2436 .sb = sb,
2437 .sync_mode = WB_SYNC_ALL,
2438 .nr_pages = LONG_MAX,
2439 .range_cyclic = 0,
2440 .done = &done,
2441 .reason = WB_REASON_SYNC,
2442 .for_sync = 1,
2443 };
2444 struct backing_dev_info *bdi = sb->s_bdi;
2445
2446 /*
2447 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2448 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2449 * bdi_has_dirty() need to be written out too.
2450 */
2451 if (bdi == &noop_backing_dev_info)
2452 return;
2453 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2454
2455 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2456 bdi_down_write_wb_switch_rwsem(bdi);
2457 bdi_split_work_to_wbs(bdi, &work, false);
2458 wb_wait_for_completion(bdi, &done);
2459 bdi_up_write_wb_switch_rwsem(bdi);
2460
2461 wait_sb_inodes(sb);
2462 }
2463 EXPORT_SYMBOL(sync_inodes_sb);
2464
2465 /**
2466 * write_inode_now - write an inode to disk
2467 * @inode: inode to write to disk
2468 * @sync: whether the write should be synchronous or not
2469 *
2470 * This function commits an inode to disk immediately if it is dirty. This is
2471 * primarily needed by knfsd.
2472 *
2473 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2474 */
2475 int write_inode_now(struct inode *inode, int sync)
2476 {
2477 struct writeback_control wbc = {
2478 .nr_to_write = LONG_MAX,
2479 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2480 .range_start = 0,
2481 .range_end = LLONG_MAX,
2482 };
2483
2484 if (!mapping_cap_writeback_dirty(inode->i_mapping))
2485 wbc.nr_to_write = 0;
2486
2487 might_sleep();
2488 return writeback_single_inode(inode, &wbc);
2489 }
2490 EXPORT_SYMBOL(write_inode_now);
2491
2492 /**
2493 * sync_inode - write an inode and its pages to disk.
2494 * @inode: the inode to sync
2495 * @wbc: controls the writeback mode
2496 *
2497 * sync_inode() will write an inode and its pages to disk. It will also
2498 * correctly update the inode on its superblock's dirty inode lists and will
2499 * update inode->i_state.
2500 *
2501 * The caller must have a ref on the inode.
2502 */
2503 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2504 {
2505 return writeback_single_inode(inode, wbc);
2506 }
2507 EXPORT_SYMBOL(sync_inode);
2508
2509 /**
2510 * sync_inode_metadata - write an inode to disk
2511 * @inode: the inode to sync
2512 * @wait: wait for I/O to complete.
2513 *
2514 * Write an inode to disk and adjust its dirty state after completion.
2515 *
2516 * Note: only writes the actual inode, no associated data or other metadata.
2517 */
2518 int sync_inode_metadata(struct inode *inode, int wait)
2519 {
2520 struct writeback_control wbc = {
2521 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2522 .nr_to_write = 0, /* metadata-only */
2523 };
2524
2525 return sync_inode(inode, &wbc);
2526 }
2527 EXPORT_SYMBOL(sync_inode_metadata);