]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/fs-writeback.c
Merge tag 'for-5.14-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123
124 list_move(&inode->i_io_list, head);
125
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
129
130 wb_io_lists_depopulated(wb);
131 return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136 spin_lock_bh(&wb->work_lock);
137 if (test_bit(WB_registered, &wb->state))
138 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143 struct wb_writeback_work *work)
144 {
145 struct wb_completion *done = work->done;
146
147 if (work->auto_free)
148 kfree(work);
149 if (done) {
150 wait_queue_head_t *waitq = done->waitq;
151
152 /* @done can't be accessed after the following dec */
153 if (atomic_dec_and_test(&done->cnt))
154 wake_up_all(waitq);
155 }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159 struct wb_writeback_work *work)
160 {
161 trace_writeback_queue(wb, work);
162
163 if (work->done)
164 atomic_inc(&work->done->cnt);
165
166 spin_lock_bh(&wb->work_lock);
167
168 if (test_bit(WB_registered, &wb->state)) {
169 list_add_tail(&work->list, &wb->work_list);
170 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 } else
172 finish_writeback_work(wb, work);
173
174 spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178 * wb_wait_for_completion - wait for completion of bdi_writeback_works
179 * @done: target wb_completion
180 *
181 * Wait for one or more work items issued to @bdi with their ->done field
182 * set to @done, which should have been initialized with
183 * DEFINE_WB_COMPLETION(). This function returns after all such work items
184 * are completed. Work items which are waited upon aren't freed
185 * automatically on completion.
186 */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189 atomic_dec(&done->cnt); /* put down the initial count */
190 wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196 * Parameters for foreign inode detection, see wbc_detach_inode() to see
197 * how they're used.
198 *
199 * These paramters are inherently heuristical as the detection target
200 * itself is fuzzy. All we want to do is detaching an inode from the
201 * current owner if it's being written to by some other cgroups too much.
202 *
203 * The current cgroup writeback is built on the assumption that multiple
204 * cgroups writing to the same inode concurrently is very rare and a mode
205 * of operation which isn't well supported. As such, the goal is not
206 * taking too long when a different cgroup takes over an inode while
207 * avoiding too aggressive flip-flops from occasional foreign writes.
208 *
209 * We record, very roughly, 2s worth of IO time history and if more than
210 * half of that is foreign, trigger the switch. The recording is quantized
211 * to 16 slots. To avoid tiny writes from swinging the decision too much,
212 * writes smaller than 1/8 of avg size are ignored.
213 */
214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218
219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
223 /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
227
228 /*
229 * Maximum inodes per isw. A specific value has been chosen to make
230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231 */
232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240 struct backing_dev_info *bdi = inode_to_bdi(inode);
241 struct bdi_writeback *wb = NULL;
242
243 if (inode_cgwb_enabled(inode)) {
244 struct cgroup_subsys_state *memcg_css;
245
246 if (page) {
247 memcg_css = mem_cgroup_css_from_page(page);
248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 } else {
250 /* must pin memcg_css, see wb_get_create() */
251 memcg_css = task_get_css(current, memory_cgrp_id);
252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 css_put(memcg_css);
254 }
255 }
256
257 if (!wb)
258 wb = &bdi->wb;
259
260 /*
261 * There may be multiple instances of this function racing to
262 * update the same inode. Use cmpxchg() to tell the winner.
263 */
264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271 * @inode: inode of interest with i_lock held
272 * @wb: target bdi_writeback
273 *
274 * Remove the inode from wb's io lists and if necessarily put onto b_attached
275 * list. Only inodes attached to cgwb's are kept on this list.
276 */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 struct bdi_writeback *wb)
279 {
280 assert_spin_locked(&wb->list_lock);
281 assert_spin_locked(&inode->i_lock);
282
283 inode->i_state &= ~I_SYNC_QUEUED;
284 if (wb != &wb->bdi->wb)
285 list_move(&inode->i_io_list, &wb->b_attached);
286 else
287 list_del_init(&inode->i_io_list);
288 wb_io_lists_depopulated(wb);
289 }
290
291 /**
292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293 * @inode: inode of interest with i_lock held
294 *
295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
296 * held on entry and is released on return. The returned wb is guaranteed
297 * to stay @inode's associated wb until its list_lock is released.
298 */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 __releases(&inode->i_lock)
302 __acquires(&wb->list_lock)
303 {
304 while (true) {
305 struct bdi_writeback *wb = inode_to_wb(inode);
306
307 /*
308 * inode_to_wb() association is protected by both
309 * @inode->i_lock and @wb->list_lock but list_lock nests
310 * outside i_lock. Drop i_lock and verify that the
311 * association hasn't changed after acquiring list_lock.
312 */
313 wb_get(wb);
314 spin_unlock(&inode->i_lock);
315 spin_lock(&wb->list_lock);
316
317 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318 if (likely(wb == inode->i_wb)) {
319 wb_put(wb); /* @inode already has ref */
320 return wb;
321 }
322
323 spin_unlock(&wb->list_lock);
324 wb_put(wb);
325 cpu_relax();
326 spin_lock(&inode->i_lock);
327 }
328 }
329
330 /**
331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332 * @inode: inode of interest
333 *
334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335 * on entry.
336 */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 __acquires(&wb->list_lock)
339 {
340 spin_lock(&inode->i_lock);
341 return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345 struct rcu_work work;
346
347 /*
348 * Multiple inodes can be switched at once. The switching procedure
349 * consists of two parts, separated by a RCU grace period. To make
350 * sure that the second part is executed for each inode gone through
351 * the first part, all inode pointers are placed into a NULL-terminated
352 * array embedded into struct inode_switch_wbs_context. Otherwise
353 * an inode could be left in a non-consistent state.
354 */
355 struct bdi_writeback *new_wb;
356 struct inode *inodes[];
357 };
358
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361 down_write(&bdi->wb_switch_rwsem);
362 }
363
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366 up_write(&bdi->wb_switch_rwsem);
367 }
368
369 static bool inode_do_switch_wbs(struct inode *inode,
370 struct bdi_writeback *old_wb,
371 struct bdi_writeback *new_wb)
372 {
373 struct address_space *mapping = inode->i_mapping;
374 XA_STATE(xas, &mapping->i_pages, 0);
375 struct page *page;
376 bool switched = false;
377
378 spin_lock(&inode->i_lock);
379 xa_lock_irq(&mapping->i_pages);
380
381 /*
382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 * path owns the inode and we shouldn't modify ->i_io_list.
384 */
385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386 goto skip_switch;
387
388 trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under writeback.
394 */
395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 if (PageDirty(page)) {
397 dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 }
400 }
401
402 xas_set(&xas, 0);
403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 WARN_ON_ONCE(!PageWriteback(page));
405 dec_wb_stat(old_wb, WB_WRITEBACK);
406 inc_wb_stat(new_wb, WB_WRITEBACK);
407 }
408
409 wb_get(new_wb);
410
411 /*
412 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
413 * the specific list @inode was on is ignored and the @inode is put on
414 * ->b_dirty which is always correct including from ->b_dirty_time.
415 * The transfer preserves @inode->dirtied_when ordering. If the @inode
416 * was clean, it means it was on the b_attached list, so move it onto
417 * the b_attached list of @new_wb.
418 */
419 if (!list_empty(&inode->i_io_list)) {
420 inode->i_wb = new_wb;
421
422 if (inode->i_state & I_DIRTY_ALL) {
423 struct inode *pos;
424
425 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426 if (time_after_eq(inode->dirtied_when,
427 pos->dirtied_when))
428 break;
429 inode_io_list_move_locked(inode, new_wb,
430 pos->i_io_list.prev);
431 } else {
432 inode_cgwb_move_to_attached(inode, new_wb);
433 }
434 } else {
435 inode->i_wb = new_wb;
436 }
437
438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
442 switched = true;
443 skip_switch:
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
450 xa_unlock_irq(&mapping->i_pages);
451 spin_unlock(&inode->i_lock);
452
453 return switched;
454 }
455
456 static void inode_switch_wbs_work_fn(struct work_struct *work)
457 {
458 struct inode_switch_wbs_context *isw =
459 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
460 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462 struct bdi_writeback *new_wb = isw->new_wb;
463 unsigned long nr_switched = 0;
464 struct inode **inodep;
465
466 /*
467 * If @inode switches cgwb membership while sync_inodes_sb() is
468 * being issued, sync_inodes_sb() might miss it. Synchronize.
469 */
470 down_read(&bdi->wb_switch_rwsem);
471
472 /*
473 * By the time control reaches here, RCU grace period has passed
474 * since I_WB_SWITCH assertion and all wb stat update transactions
475 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476 * synchronizing against the i_pages lock.
477 *
478 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479 * gives us exclusion against all wb related operations on @inode
480 * including IO list manipulations and stat updates.
481 */
482 if (old_wb < new_wb) {
483 spin_lock(&old_wb->list_lock);
484 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485 } else {
486 spin_lock(&new_wb->list_lock);
487 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488 }
489
490 for (inodep = isw->inodes; *inodep; inodep++) {
491 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493 nr_switched++;
494 }
495
496 spin_unlock(&new_wb->list_lock);
497 spin_unlock(&old_wb->list_lock);
498
499 up_read(&bdi->wb_switch_rwsem);
500
501 if (nr_switched) {
502 wb_wakeup(new_wb);
503 wb_put_many(old_wb, nr_switched);
504 }
505
506 for (inodep = isw->inodes; *inodep; inodep++)
507 iput(*inodep);
508 wb_put(new_wb);
509 kfree(isw);
510 atomic_dec(&isw_nr_in_flight);
511 }
512
513 static bool inode_prepare_wbs_switch(struct inode *inode,
514 struct bdi_writeback *new_wb)
515 {
516 /*
517 * Paired with smp_mb() in cgroup_writeback_umount().
518 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521 */
522 smp_mb();
523
524 /* while holding I_WB_SWITCH, no one else can update the association */
525 spin_lock(&inode->i_lock);
526 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
528 inode_to_wb(inode) == new_wb) {
529 spin_unlock(&inode->i_lock);
530 return false;
531 }
532 inode->i_state |= I_WB_SWITCH;
533 __iget(inode);
534 spin_unlock(&inode->i_lock);
535
536 return true;
537 }
538
539 /**
540 * inode_switch_wbs - change the wb association of an inode
541 * @inode: target inode
542 * @new_wb_id: ID of the new wb
543 *
544 * Switch @inode's wb association to the wb identified by @new_wb_id. The
545 * switching is performed asynchronously and may fail silently.
546 */
547 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
548 {
549 struct backing_dev_info *bdi = inode_to_bdi(inode);
550 struct cgroup_subsys_state *memcg_css;
551 struct inode_switch_wbs_context *isw;
552
553 /* noop if seems to be already in progress */
554 if (inode->i_state & I_WB_SWITCH)
555 return;
556
557 /* avoid queueing a new switch if too many are already in flight */
558 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
559 return;
560
561 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
562 if (!isw)
563 return;
564
565 atomic_inc(&isw_nr_in_flight);
566
567 /* find and pin the new wb */
568 rcu_read_lock();
569 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
570 if (memcg_css && !css_tryget(memcg_css))
571 memcg_css = NULL;
572 rcu_read_unlock();
573 if (!memcg_css)
574 goto out_free;
575
576 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
577 css_put(memcg_css);
578 if (!isw->new_wb)
579 goto out_free;
580
581 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
582 goto out_free;
583
584 isw->inodes[0] = inode;
585
586 /*
587 * In addition to synchronizing among switchers, I_WB_SWITCH tells
588 * the RCU protected stat update paths to grab the i_page
589 * lock so that stat transfer can synchronize against them.
590 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
591 */
592 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
593 queue_rcu_work(isw_wq, &isw->work);
594 return;
595
596 out_free:
597 atomic_dec(&isw_nr_in_flight);
598 if (isw->new_wb)
599 wb_put(isw->new_wb);
600 kfree(isw);
601 }
602
603 /**
604 * cleanup_offline_cgwb - detach associated inodes
605 * @wb: target wb
606 *
607 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
608 * to eventually release the dying @wb. Returns %true if not all inodes were
609 * switched and the function has to be restarted.
610 */
611 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
612 {
613 struct cgroup_subsys_state *memcg_css;
614 struct inode_switch_wbs_context *isw;
615 struct inode *inode;
616 int nr;
617 bool restart = false;
618
619 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
620 sizeof(struct inode *), GFP_KERNEL);
621 if (!isw)
622 return restart;
623
624 atomic_inc(&isw_nr_in_flight);
625
626 for (memcg_css = wb->memcg_css->parent; memcg_css;
627 memcg_css = memcg_css->parent) {
628 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
629 if (isw->new_wb)
630 break;
631 }
632 if (unlikely(!isw->new_wb))
633 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
634
635 nr = 0;
636 spin_lock(&wb->list_lock);
637 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
638 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
639 continue;
640
641 isw->inodes[nr++] = inode;
642
643 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
644 restart = true;
645 break;
646 }
647 }
648 spin_unlock(&wb->list_lock);
649
650 /* no attached inodes? bail out */
651 if (nr == 0) {
652 atomic_dec(&isw_nr_in_flight);
653 wb_put(isw->new_wb);
654 kfree(isw);
655 return restart;
656 }
657
658 /*
659 * In addition to synchronizing among switchers, I_WB_SWITCH tells
660 * the RCU protected stat update paths to grab the i_page
661 * lock so that stat transfer can synchronize against them.
662 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
663 */
664 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
665 queue_rcu_work(isw_wq, &isw->work);
666
667 return restart;
668 }
669
670 /**
671 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
672 * @wbc: writeback_control of interest
673 * @inode: target inode
674 *
675 * @inode is locked and about to be written back under the control of @wbc.
676 * Record @inode's writeback context into @wbc and unlock the i_lock. On
677 * writeback completion, wbc_detach_inode() should be called. This is used
678 * to track the cgroup writeback context.
679 */
680 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
681 struct inode *inode)
682 {
683 if (!inode_cgwb_enabled(inode)) {
684 spin_unlock(&inode->i_lock);
685 return;
686 }
687
688 wbc->wb = inode_to_wb(inode);
689 wbc->inode = inode;
690
691 wbc->wb_id = wbc->wb->memcg_css->id;
692 wbc->wb_lcand_id = inode->i_wb_frn_winner;
693 wbc->wb_tcand_id = 0;
694 wbc->wb_bytes = 0;
695 wbc->wb_lcand_bytes = 0;
696 wbc->wb_tcand_bytes = 0;
697
698 wb_get(wbc->wb);
699 spin_unlock(&inode->i_lock);
700
701 /*
702 * A dying wb indicates that either the blkcg associated with the
703 * memcg changed or the associated memcg is dying. In the first
704 * case, a replacement wb should already be available and we should
705 * refresh the wb immediately. In the second case, trying to
706 * refresh will keep failing.
707 */
708 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
709 inode_switch_wbs(inode, wbc->wb_id);
710 }
711 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
712
713 /**
714 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
715 * @wbc: writeback_control of the just finished writeback
716 *
717 * To be called after a writeback attempt of an inode finishes and undoes
718 * wbc_attach_and_unlock_inode(). Can be called under any context.
719 *
720 * As concurrent write sharing of an inode is expected to be very rare and
721 * memcg only tracks page ownership on first-use basis severely confining
722 * the usefulness of such sharing, cgroup writeback tracks ownership
723 * per-inode. While the support for concurrent write sharing of an inode
724 * is deemed unnecessary, an inode being written to by different cgroups at
725 * different points in time is a lot more common, and, more importantly,
726 * charging only by first-use can too readily lead to grossly incorrect
727 * behaviors (single foreign page can lead to gigabytes of writeback to be
728 * incorrectly attributed).
729 *
730 * To resolve this issue, cgroup writeback detects the majority dirtier of
731 * an inode and transfers the ownership to it. To avoid unnnecessary
732 * oscillation, the detection mechanism keeps track of history and gives
733 * out the switch verdict only if the foreign usage pattern is stable over
734 * a certain amount of time and/or writeback attempts.
735 *
736 * On each writeback attempt, @wbc tries to detect the majority writer
737 * using Boyer-Moore majority vote algorithm. In addition to the byte
738 * count from the majority voting, it also counts the bytes written for the
739 * current wb and the last round's winner wb (max of last round's current
740 * wb, the winner from two rounds ago, and the last round's majority
741 * candidate). Keeping track of the historical winner helps the algorithm
742 * to semi-reliably detect the most active writer even when it's not the
743 * absolute majority.
744 *
745 * Once the winner of the round is determined, whether the winner is
746 * foreign or not and how much IO time the round consumed is recorded in
747 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
748 * over a certain threshold, the switch verdict is given.
749 */
750 void wbc_detach_inode(struct writeback_control *wbc)
751 {
752 struct bdi_writeback *wb = wbc->wb;
753 struct inode *inode = wbc->inode;
754 unsigned long avg_time, max_bytes, max_time;
755 u16 history;
756 int max_id;
757
758 if (!wb)
759 return;
760
761 history = inode->i_wb_frn_history;
762 avg_time = inode->i_wb_frn_avg_time;
763
764 /* pick the winner of this round */
765 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
766 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
767 max_id = wbc->wb_id;
768 max_bytes = wbc->wb_bytes;
769 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
770 max_id = wbc->wb_lcand_id;
771 max_bytes = wbc->wb_lcand_bytes;
772 } else {
773 max_id = wbc->wb_tcand_id;
774 max_bytes = wbc->wb_tcand_bytes;
775 }
776
777 /*
778 * Calculate the amount of IO time the winner consumed and fold it
779 * into the running average kept per inode. If the consumed IO
780 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
781 * deciding whether to switch or not. This is to prevent one-off
782 * small dirtiers from skewing the verdict.
783 */
784 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
785 wb->avg_write_bandwidth);
786 if (avg_time)
787 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
788 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
789 else
790 avg_time = max_time; /* immediate catch up on first run */
791
792 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
793 int slots;
794
795 /*
796 * The switch verdict is reached if foreign wb's consume
797 * more than a certain proportion of IO time in a
798 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
799 * history mask where each bit represents one sixteenth of
800 * the period. Determine the number of slots to shift into
801 * history from @max_time.
802 */
803 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
804 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
805 history <<= slots;
806 if (wbc->wb_id != max_id)
807 history |= (1U << slots) - 1;
808
809 if (history)
810 trace_inode_foreign_history(inode, wbc, history);
811
812 /*
813 * Switch if the current wb isn't the consistent winner.
814 * If there are multiple closely competing dirtiers, the
815 * inode may switch across them repeatedly over time, which
816 * is okay. The main goal is avoiding keeping an inode on
817 * the wrong wb for an extended period of time.
818 */
819 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
820 inode_switch_wbs(inode, max_id);
821 }
822
823 /*
824 * Multiple instances of this function may race to update the
825 * following fields but we don't mind occassional inaccuracies.
826 */
827 inode->i_wb_frn_winner = max_id;
828 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
829 inode->i_wb_frn_history = history;
830
831 wb_put(wbc->wb);
832 wbc->wb = NULL;
833 }
834 EXPORT_SYMBOL_GPL(wbc_detach_inode);
835
836 /**
837 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
838 * @wbc: writeback_control of the writeback in progress
839 * @page: page being written out
840 * @bytes: number of bytes being written out
841 *
842 * @bytes from @page are about to written out during the writeback
843 * controlled by @wbc. Keep the book for foreign inode detection. See
844 * wbc_detach_inode().
845 */
846 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
847 size_t bytes)
848 {
849 struct cgroup_subsys_state *css;
850 int id;
851
852 /*
853 * pageout() path doesn't attach @wbc to the inode being written
854 * out. This is intentional as we don't want the function to block
855 * behind a slow cgroup. Ultimately, we want pageout() to kick off
856 * regular writeback instead of writing things out itself.
857 */
858 if (!wbc->wb || wbc->no_cgroup_owner)
859 return;
860
861 css = mem_cgroup_css_from_page(page);
862 /* dead cgroups shouldn't contribute to inode ownership arbitration */
863 if (!(css->flags & CSS_ONLINE))
864 return;
865
866 id = css->id;
867
868 if (id == wbc->wb_id) {
869 wbc->wb_bytes += bytes;
870 return;
871 }
872
873 if (id == wbc->wb_lcand_id)
874 wbc->wb_lcand_bytes += bytes;
875
876 /* Boyer-Moore majority vote algorithm */
877 if (!wbc->wb_tcand_bytes)
878 wbc->wb_tcand_id = id;
879 if (id == wbc->wb_tcand_id)
880 wbc->wb_tcand_bytes += bytes;
881 else
882 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
883 }
884 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
885
886 /**
887 * inode_congested - test whether an inode is congested
888 * @inode: inode to test for congestion (may be NULL)
889 * @cong_bits: mask of WB_[a]sync_congested bits to test
890 *
891 * Tests whether @inode is congested. @cong_bits is the mask of congestion
892 * bits to test and the return value is the mask of set bits.
893 *
894 * If cgroup writeback is enabled for @inode, the congestion state is
895 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
896 * associated with @inode is congested; otherwise, the root wb's congestion
897 * state is used.
898 *
899 * @inode is allowed to be NULL as this function is often called on
900 * mapping->host which is NULL for the swapper space.
901 */
902 int inode_congested(struct inode *inode, int cong_bits)
903 {
904 /*
905 * Once set, ->i_wb never becomes NULL while the inode is alive.
906 * Start transaction iff ->i_wb is visible.
907 */
908 if (inode && inode_to_wb_is_valid(inode)) {
909 struct bdi_writeback *wb;
910 struct wb_lock_cookie lock_cookie = {};
911 bool congested;
912
913 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
914 congested = wb_congested(wb, cong_bits);
915 unlocked_inode_to_wb_end(inode, &lock_cookie);
916 return congested;
917 }
918
919 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
920 }
921 EXPORT_SYMBOL_GPL(inode_congested);
922
923 /**
924 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
925 * @wb: target bdi_writeback to split @nr_pages to
926 * @nr_pages: number of pages to write for the whole bdi
927 *
928 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
929 * relation to the total write bandwidth of all wb's w/ dirty inodes on
930 * @wb->bdi.
931 */
932 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
933 {
934 unsigned long this_bw = wb->avg_write_bandwidth;
935 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
936
937 if (nr_pages == LONG_MAX)
938 return LONG_MAX;
939
940 /*
941 * This may be called on clean wb's and proportional distribution
942 * may not make sense, just use the original @nr_pages in those
943 * cases. In general, we wanna err on the side of writing more.
944 */
945 if (!tot_bw || this_bw >= tot_bw)
946 return nr_pages;
947 else
948 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
949 }
950
951 /**
952 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
953 * @bdi: target backing_dev_info
954 * @base_work: wb_writeback_work to issue
955 * @skip_if_busy: skip wb's which already have writeback in progress
956 *
957 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
958 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
959 * distributed to the busy wbs according to each wb's proportion in the
960 * total active write bandwidth of @bdi.
961 */
962 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
963 struct wb_writeback_work *base_work,
964 bool skip_if_busy)
965 {
966 struct bdi_writeback *last_wb = NULL;
967 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
968 struct bdi_writeback, bdi_node);
969
970 might_sleep();
971 restart:
972 rcu_read_lock();
973 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
974 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
975 struct wb_writeback_work fallback_work;
976 struct wb_writeback_work *work;
977 long nr_pages;
978
979 if (last_wb) {
980 wb_put(last_wb);
981 last_wb = NULL;
982 }
983
984 /* SYNC_ALL writes out I_DIRTY_TIME too */
985 if (!wb_has_dirty_io(wb) &&
986 (base_work->sync_mode == WB_SYNC_NONE ||
987 list_empty(&wb->b_dirty_time)))
988 continue;
989 if (skip_if_busy && writeback_in_progress(wb))
990 continue;
991
992 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
993
994 work = kmalloc(sizeof(*work), GFP_ATOMIC);
995 if (work) {
996 *work = *base_work;
997 work->nr_pages = nr_pages;
998 work->auto_free = 1;
999 wb_queue_work(wb, work);
1000 continue;
1001 }
1002
1003 /* alloc failed, execute synchronously using on-stack fallback */
1004 work = &fallback_work;
1005 *work = *base_work;
1006 work->nr_pages = nr_pages;
1007 work->auto_free = 0;
1008 work->done = &fallback_work_done;
1009
1010 wb_queue_work(wb, work);
1011
1012 /*
1013 * Pin @wb so that it stays on @bdi->wb_list. This allows
1014 * continuing iteration from @wb after dropping and
1015 * regrabbing rcu read lock.
1016 */
1017 wb_get(wb);
1018 last_wb = wb;
1019
1020 rcu_read_unlock();
1021 wb_wait_for_completion(&fallback_work_done);
1022 goto restart;
1023 }
1024 rcu_read_unlock();
1025
1026 if (last_wb)
1027 wb_put(last_wb);
1028 }
1029
1030 /**
1031 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1032 * @bdi_id: target bdi id
1033 * @memcg_id: target memcg css id
1034 * @nr: number of pages to write, 0 for best-effort dirty flushing
1035 * @reason: reason why some writeback work initiated
1036 * @done: target wb_completion
1037 *
1038 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1039 * with the specified parameters.
1040 */
1041 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1042 enum wb_reason reason, struct wb_completion *done)
1043 {
1044 struct backing_dev_info *bdi;
1045 struct cgroup_subsys_state *memcg_css;
1046 struct bdi_writeback *wb;
1047 struct wb_writeback_work *work;
1048 int ret;
1049
1050 /* lookup bdi and memcg */
1051 bdi = bdi_get_by_id(bdi_id);
1052 if (!bdi)
1053 return -ENOENT;
1054
1055 rcu_read_lock();
1056 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1057 if (memcg_css && !css_tryget(memcg_css))
1058 memcg_css = NULL;
1059 rcu_read_unlock();
1060 if (!memcg_css) {
1061 ret = -ENOENT;
1062 goto out_bdi_put;
1063 }
1064
1065 /*
1066 * And find the associated wb. If the wb isn't there already
1067 * there's nothing to flush, don't create one.
1068 */
1069 wb = wb_get_lookup(bdi, memcg_css);
1070 if (!wb) {
1071 ret = -ENOENT;
1072 goto out_css_put;
1073 }
1074
1075 /*
1076 * If @nr is zero, the caller is attempting to write out most of
1077 * the currently dirty pages. Let's take the current dirty page
1078 * count and inflate it by 25% which should be large enough to
1079 * flush out most dirty pages while avoiding getting livelocked by
1080 * concurrent dirtiers.
1081 */
1082 if (!nr) {
1083 unsigned long filepages, headroom, dirty, writeback;
1084
1085 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1086 &writeback);
1087 nr = dirty * 10 / 8;
1088 }
1089
1090 /* issue the writeback work */
1091 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1092 if (work) {
1093 work->nr_pages = nr;
1094 work->sync_mode = WB_SYNC_NONE;
1095 work->range_cyclic = 1;
1096 work->reason = reason;
1097 work->done = done;
1098 work->auto_free = 1;
1099 wb_queue_work(wb, work);
1100 ret = 0;
1101 } else {
1102 ret = -ENOMEM;
1103 }
1104
1105 wb_put(wb);
1106 out_css_put:
1107 css_put(memcg_css);
1108 out_bdi_put:
1109 bdi_put(bdi);
1110 return ret;
1111 }
1112
1113 /**
1114 * cgroup_writeback_umount - flush inode wb switches for umount
1115 *
1116 * This function is called when a super_block is about to be destroyed and
1117 * flushes in-flight inode wb switches. An inode wb switch goes through
1118 * RCU and then workqueue, so the two need to be flushed in order to ensure
1119 * that all previously scheduled switches are finished. As wb switches are
1120 * rare occurrences and synchronize_rcu() can take a while, perform
1121 * flushing iff wb switches are in flight.
1122 */
1123 void cgroup_writeback_umount(void)
1124 {
1125 /*
1126 * SB_ACTIVE should be reliably cleared before checking
1127 * isw_nr_in_flight, see generic_shutdown_super().
1128 */
1129 smp_mb();
1130
1131 if (atomic_read(&isw_nr_in_flight)) {
1132 /*
1133 * Use rcu_barrier() to wait for all pending callbacks to
1134 * ensure that all in-flight wb switches are in the workqueue.
1135 */
1136 rcu_barrier();
1137 flush_workqueue(isw_wq);
1138 }
1139 }
1140
1141 static int __init cgroup_writeback_init(void)
1142 {
1143 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1144 if (!isw_wq)
1145 return -ENOMEM;
1146 return 0;
1147 }
1148 fs_initcall(cgroup_writeback_init);
1149
1150 #else /* CONFIG_CGROUP_WRITEBACK */
1151
1152 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1153 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1154
1155 static void inode_cgwb_move_to_attached(struct inode *inode,
1156 struct bdi_writeback *wb)
1157 {
1158 assert_spin_locked(&wb->list_lock);
1159 assert_spin_locked(&inode->i_lock);
1160
1161 inode->i_state &= ~I_SYNC_QUEUED;
1162 list_del_init(&inode->i_io_list);
1163 wb_io_lists_depopulated(wb);
1164 }
1165
1166 static struct bdi_writeback *
1167 locked_inode_to_wb_and_lock_list(struct inode *inode)
1168 __releases(&inode->i_lock)
1169 __acquires(&wb->list_lock)
1170 {
1171 struct bdi_writeback *wb = inode_to_wb(inode);
1172
1173 spin_unlock(&inode->i_lock);
1174 spin_lock(&wb->list_lock);
1175 return wb;
1176 }
1177
1178 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1179 __acquires(&wb->list_lock)
1180 {
1181 struct bdi_writeback *wb = inode_to_wb(inode);
1182
1183 spin_lock(&wb->list_lock);
1184 return wb;
1185 }
1186
1187 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1188 {
1189 return nr_pages;
1190 }
1191
1192 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1193 struct wb_writeback_work *base_work,
1194 bool skip_if_busy)
1195 {
1196 might_sleep();
1197
1198 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1199 base_work->auto_free = 0;
1200 wb_queue_work(&bdi->wb, base_work);
1201 }
1202 }
1203
1204 #endif /* CONFIG_CGROUP_WRITEBACK */
1205
1206 /*
1207 * Add in the number of potentially dirty inodes, because each inode
1208 * write can dirty pagecache in the underlying blockdev.
1209 */
1210 static unsigned long get_nr_dirty_pages(void)
1211 {
1212 return global_node_page_state(NR_FILE_DIRTY) +
1213 get_nr_dirty_inodes();
1214 }
1215
1216 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1217 {
1218 if (!wb_has_dirty_io(wb))
1219 return;
1220
1221 /*
1222 * All callers of this function want to start writeback of all
1223 * dirty pages. Places like vmscan can call this at a very
1224 * high frequency, causing pointless allocations of tons of
1225 * work items and keeping the flusher threads busy retrieving
1226 * that work. Ensure that we only allow one of them pending and
1227 * inflight at the time.
1228 */
1229 if (test_bit(WB_start_all, &wb->state) ||
1230 test_and_set_bit(WB_start_all, &wb->state))
1231 return;
1232
1233 wb->start_all_reason = reason;
1234 wb_wakeup(wb);
1235 }
1236
1237 /**
1238 * wb_start_background_writeback - start background writeback
1239 * @wb: bdi_writback to write from
1240 *
1241 * Description:
1242 * This makes sure WB_SYNC_NONE background writeback happens. When
1243 * this function returns, it is only guaranteed that for given wb
1244 * some IO is happening if we are over background dirty threshold.
1245 * Caller need not hold sb s_umount semaphore.
1246 */
1247 void wb_start_background_writeback(struct bdi_writeback *wb)
1248 {
1249 /*
1250 * We just wake up the flusher thread. It will perform background
1251 * writeback as soon as there is no other work to do.
1252 */
1253 trace_writeback_wake_background(wb);
1254 wb_wakeup(wb);
1255 }
1256
1257 /*
1258 * Remove the inode from the writeback list it is on.
1259 */
1260 void inode_io_list_del(struct inode *inode)
1261 {
1262 struct bdi_writeback *wb;
1263
1264 wb = inode_to_wb_and_lock_list(inode);
1265 spin_lock(&inode->i_lock);
1266
1267 inode->i_state &= ~I_SYNC_QUEUED;
1268 list_del_init(&inode->i_io_list);
1269 wb_io_lists_depopulated(wb);
1270
1271 spin_unlock(&inode->i_lock);
1272 spin_unlock(&wb->list_lock);
1273 }
1274 EXPORT_SYMBOL(inode_io_list_del);
1275
1276 /*
1277 * mark an inode as under writeback on the sb
1278 */
1279 void sb_mark_inode_writeback(struct inode *inode)
1280 {
1281 struct super_block *sb = inode->i_sb;
1282 unsigned long flags;
1283
1284 if (list_empty(&inode->i_wb_list)) {
1285 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1286 if (list_empty(&inode->i_wb_list)) {
1287 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1288 trace_sb_mark_inode_writeback(inode);
1289 }
1290 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1291 }
1292 }
1293
1294 /*
1295 * clear an inode as under writeback on the sb
1296 */
1297 void sb_clear_inode_writeback(struct inode *inode)
1298 {
1299 struct super_block *sb = inode->i_sb;
1300 unsigned long flags;
1301
1302 if (!list_empty(&inode->i_wb_list)) {
1303 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1304 if (!list_empty(&inode->i_wb_list)) {
1305 list_del_init(&inode->i_wb_list);
1306 trace_sb_clear_inode_writeback(inode);
1307 }
1308 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1309 }
1310 }
1311
1312 /*
1313 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1314 * furthest end of its superblock's dirty-inode list.
1315 *
1316 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1317 * already the most-recently-dirtied inode on the b_dirty list. If that is
1318 * the case then the inode must have been redirtied while it was being written
1319 * out and we don't reset its dirtied_when.
1320 */
1321 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1322 {
1323 assert_spin_locked(&inode->i_lock);
1324
1325 if (!list_empty(&wb->b_dirty)) {
1326 struct inode *tail;
1327
1328 tail = wb_inode(wb->b_dirty.next);
1329 if (time_before(inode->dirtied_when, tail->dirtied_when))
1330 inode->dirtied_when = jiffies;
1331 }
1332 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1333 inode->i_state &= ~I_SYNC_QUEUED;
1334 }
1335
1336 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1337 {
1338 spin_lock(&inode->i_lock);
1339 redirty_tail_locked(inode, wb);
1340 spin_unlock(&inode->i_lock);
1341 }
1342
1343 /*
1344 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1345 */
1346 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1347 {
1348 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1349 }
1350
1351 static void inode_sync_complete(struct inode *inode)
1352 {
1353 inode->i_state &= ~I_SYNC;
1354 /* If inode is clean an unused, put it into LRU now... */
1355 inode_add_lru(inode);
1356 /* Waiters must see I_SYNC cleared before being woken up */
1357 smp_mb();
1358 wake_up_bit(&inode->i_state, __I_SYNC);
1359 }
1360
1361 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1362 {
1363 bool ret = time_after(inode->dirtied_when, t);
1364 #ifndef CONFIG_64BIT
1365 /*
1366 * For inodes being constantly redirtied, dirtied_when can get stuck.
1367 * It _appears_ to be in the future, but is actually in distant past.
1368 * This test is necessary to prevent such wrapped-around relative times
1369 * from permanently stopping the whole bdi writeback.
1370 */
1371 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1372 #endif
1373 return ret;
1374 }
1375
1376 #define EXPIRE_DIRTY_ATIME 0x0001
1377
1378 /*
1379 * Move expired (dirtied before dirtied_before) dirty inodes from
1380 * @delaying_queue to @dispatch_queue.
1381 */
1382 static int move_expired_inodes(struct list_head *delaying_queue,
1383 struct list_head *dispatch_queue,
1384 unsigned long dirtied_before)
1385 {
1386 LIST_HEAD(tmp);
1387 struct list_head *pos, *node;
1388 struct super_block *sb = NULL;
1389 struct inode *inode;
1390 int do_sb_sort = 0;
1391 int moved = 0;
1392
1393 while (!list_empty(delaying_queue)) {
1394 inode = wb_inode(delaying_queue->prev);
1395 if (inode_dirtied_after(inode, dirtied_before))
1396 break;
1397 list_move(&inode->i_io_list, &tmp);
1398 moved++;
1399 spin_lock(&inode->i_lock);
1400 inode->i_state |= I_SYNC_QUEUED;
1401 spin_unlock(&inode->i_lock);
1402 if (sb_is_blkdev_sb(inode->i_sb))
1403 continue;
1404 if (sb && sb != inode->i_sb)
1405 do_sb_sort = 1;
1406 sb = inode->i_sb;
1407 }
1408
1409 /* just one sb in list, splice to dispatch_queue and we're done */
1410 if (!do_sb_sort) {
1411 list_splice(&tmp, dispatch_queue);
1412 goto out;
1413 }
1414
1415 /* Move inodes from one superblock together */
1416 while (!list_empty(&tmp)) {
1417 sb = wb_inode(tmp.prev)->i_sb;
1418 list_for_each_prev_safe(pos, node, &tmp) {
1419 inode = wb_inode(pos);
1420 if (inode->i_sb == sb)
1421 list_move(&inode->i_io_list, dispatch_queue);
1422 }
1423 }
1424 out:
1425 return moved;
1426 }
1427
1428 /*
1429 * Queue all expired dirty inodes for io, eldest first.
1430 * Before
1431 * newly dirtied b_dirty b_io b_more_io
1432 * =============> gf edc BA
1433 * After
1434 * newly dirtied b_dirty b_io b_more_io
1435 * =============> g fBAedc
1436 * |
1437 * +--> dequeue for IO
1438 */
1439 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1440 unsigned long dirtied_before)
1441 {
1442 int moved;
1443 unsigned long time_expire_jif = dirtied_before;
1444
1445 assert_spin_locked(&wb->list_lock);
1446 list_splice_init(&wb->b_more_io, &wb->b_io);
1447 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1448 if (!work->for_sync)
1449 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1450 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1451 time_expire_jif);
1452 if (moved)
1453 wb_io_lists_populated(wb);
1454 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1455 }
1456
1457 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1458 {
1459 int ret;
1460
1461 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1462 trace_writeback_write_inode_start(inode, wbc);
1463 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1464 trace_writeback_write_inode(inode, wbc);
1465 return ret;
1466 }
1467 return 0;
1468 }
1469
1470 /*
1471 * Wait for writeback on an inode to complete. Called with i_lock held.
1472 * Caller must make sure inode cannot go away when we drop i_lock.
1473 */
1474 static void __inode_wait_for_writeback(struct inode *inode)
1475 __releases(inode->i_lock)
1476 __acquires(inode->i_lock)
1477 {
1478 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1479 wait_queue_head_t *wqh;
1480
1481 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1482 while (inode->i_state & I_SYNC) {
1483 spin_unlock(&inode->i_lock);
1484 __wait_on_bit(wqh, &wq, bit_wait,
1485 TASK_UNINTERRUPTIBLE);
1486 spin_lock(&inode->i_lock);
1487 }
1488 }
1489
1490 /*
1491 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1492 */
1493 void inode_wait_for_writeback(struct inode *inode)
1494 {
1495 spin_lock(&inode->i_lock);
1496 __inode_wait_for_writeback(inode);
1497 spin_unlock(&inode->i_lock);
1498 }
1499
1500 /*
1501 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1502 * held and drops it. It is aimed for callers not holding any inode reference
1503 * so once i_lock is dropped, inode can go away.
1504 */
1505 static void inode_sleep_on_writeback(struct inode *inode)
1506 __releases(inode->i_lock)
1507 {
1508 DEFINE_WAIT(wait);
1509 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1510 int sleep;
1511
1512 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1513 sleep = inode->i_state & I_SYNC;
1514 spin_unlock(&inode->i_lock);
1515 if (sleep)
1516 schedule();
1517 finish_wait(wqh, &wait);
1518 }
1519
1520 /*
1521 * Find proper writeback list for the inode depending on its current state and
1522 * possibly also change of its state while we were doing writeback. Here we
1523 * handle things such as livelock prevention or fairness of writeback among
1524 * inodes. This function can be called only by flusher thread - noone else
1525 * processes all inodes in writeback lists and requeueing inodes behind flusher
1526 * thread's back can have unexpected consequences.
1527 */
1528 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1529 struct writeback_control *wbc)
1530 {
1531 if (inode->i_state & I_FREEING)
1532 return;
1533
1534 /*
1535 * Sync livelock prevention. Each inode is tagged and synced in one
1536 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1537 * the dirty time to prevent enqueue and sync it again.
1538 */
1539 if ((inode->i_state & I_DIRTY) &&
1540 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1541 inode->dirtied_when = jiffies;
1542
1543 if (wbc->pages_skipped) {
1544 /*
1545 * writeback is not making progress due to locked
1546 * buffers. Skip this inode for now.
1547 */
1548 redirty_tail_locked(inode, wb);
1549 return;
1550 }
1551
1552 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1553 /*
1554 * We didn't write back all the pages. nfs_writepages()
1555 * sometimes bales out without doing anything.
1556 */
1557 if (wbc->nr_to_write <= 0) {
1558 /* Slice used up. Queue for next turn. */
1559 requeue_io(inode, wb);
1560 } else {
1561 /*
1562 * Writeback blocked by something other than
1563 * congestion. Delay the inode for some time to
1564 * avoid spinning on the CPU (100% iowait)
1565 * retrying writeback of the dirty page/inode
1566 * that cannot be performed immediately.
1567 */
1568 redirty_tail_locked(inode, wb);
1569 }
1570 } else if (inode->i_state & I_DIRTY) {
1571 /*
1572 * Filesystems can dirty the inode during writeback operations,
1573 * such as delayed allocation during submission or metadata
1574 * updates after data IO completion.
1575 */
1576 redirty_tail_locked(inode, wb);
1577 } else if (inode->i_state & I_DIRTY_TIME) {
1578 inode->dirtied_when = jiffies;
1579 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1580 inode->i_state &= ~I_SYNC_QUEUED;
1581 } else {
1582 /* The inode is clean. Remove from writeback lists. */
1583 inode_cgwb_move_to_attached(inode, wb);
1584 }
1585 }
1586
1587 /*
1588 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1589 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1590 *
1591 * This doesn't remove the inode from the writeback list it is on, except
1592 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1593 * expiration. The caller is otherwise responsible for writeback list handling.
1594 *
1595 * The caller is also responsible for setting the I_SYNC flag beforehand and
1596 * calling inode_sync_complete() to clear it afterwards.
1597 */
1598 static int
1599 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1600 {
1601 struct address_space *mapping = inode->i_mapping;
1602 long nr_to_write = wbc->nr_to_write;
1603 unsigned dirty;
1604 int ret;
1605
1606 WARN_ON(!(inode->i_state & I_SYNC));
1607
1608 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1609
1610 ret = do_writepages(mapping, wbc);
1611
1612 /*
1613 * Make sure to wait on the data before writing out the metadata.
1614 * This is important for filesystems that modify metadata on data
1615 * I/O completion. We don't do it for sync(2) writeback because it has a
1616 * separate, external IO completion path and ->sync_fs for guaranteeing
1617 * inode metadata is written back correctly.
1618 */
1619 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1620 int err = filemap_fdatawait(mapping);
1621 if (ret == 0)
1622 ret = err;
1623 }
1624
1625 /*
1626 * If the inode has dirty timestamps and we need to write them, call
1627 * mark_inode_dirty_sync() to notify the filesystem about it and to
1628 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1629 */
1630 if ((inode->i_state & I_DIRTY_TIME) &&
1631 (wbc->sync_mode == WB_SYNC_ALL ||
1632 time_after(jiffies, inode->dirtied_time_when +
1633 dirtytime_expire_interval * HZ))) {
1634 trace_writeback_lazytime(inode);
1635 mark_inode_dirty_sync(inode);
1636 }
1637
1638 /*
1639 * Get and clear the dirty flags from i_state. This needs to be done
1640 * after calling writepages because some filesystems may redirty the
1641 * inode during writepages due to delalloc. It also needs to be done
1642 * after handling timestamp expiration, as that may dirty the inode too.
1643 */
1644 spin_lock(&inode->i_lock);
1645 dirty = inode->i_state & I_DIRTY;
1646 inode->i_state &= ~dirty;
1647
1648 /*
1649 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1650 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1651 * either they see the I_DIRTY bits cleared or we see the dirtied
1652 * inode.
1653 *
1654 * I_DIRTY_PAGES is always cleared together above even if @mapping
1655 * still has dirty pages. The flag is reinstated after smp_mb() if
1656 * necessary. This guarantees that either __mark_inode_dirty()
1657 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1658 */
1659 smp_mb();
1660
1661 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1662 inode->i_state |= I_DIRTY_PAGES;
1663
1664 spin_unlock(&inode->i_lock);
1665
1666 /* Don't write the inode if only I_DIRTY_PAGES was set */
1667 if (dirty & ~I_DIRTY_PAGES) {
1668 int err = write_inode(inode, wbc);
1669 if (ret == 0)
1670 ret = err;
1671 }
1672 trace_writeback_single_inode(inode, wbc, nr_to_write);
1673 return ret;
1674 }
1675
1676 /*
1677 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1678 * the regular batched writeback done by the flusher threads in
1679 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1680 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1681 *
1682 * To prevent the inode from going away, either the caller must have a reference
1683 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1684 */
1685 static int writeback_single_inode(struct inode *inode,
1686 struct writeback_control *wbc)
1687 {
1688 struct bdi_writeback *wb;
1689 int ret = 0;
1690
1691 spin_lock(&inode->i_lock);
1692 if (!atomic_read(&inode->i_count))
1693 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1694 else
1695 WARN_ON(inode->i_state & I_WILL_FREE);
1696
1697 if (inode->i_state & I_SYNC) {
1698 /*
1699 * Writeback is already running on the inode. For WB_SYNC_NONE,
1700 * that's enough and we can just return. For WB_SYNC_ALL, we
1701 * must wait for the existing writeback to complete, then do
1702 * writeback again if there's anything left.
1703 */
1704 if (wbc->sync_mode != WB_SYNC_ALL)
1705 goto out;
1706 __inode_wait_for_writeback(inode);
1707 }
1708 WARN_ON(inode->i_state & I_SYNC);
1709 /*
1710 * If the inode is already fully clean, then there's nothing to do.
1711 *
1712 * For data-integrity syncs we also need to check whether any pages are
1713 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1714 * there are any such pages, we'll need to wait for them.
1715 */
1716 if (!(inode->i_state & I_DIRTY_ALL) &&
1717 (wbc->sync_mode != WB_SYNC_ALL ||
1718 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1719 goto out;
1720 inode->i_state |= I_SYNC;
1721 wbc_attach_and_unlock_inode(wbc, inode);
1722
1723 ret = __writeback_single_inode(inode, wbc);
1724
1725 wbc_detach_inode(wbc);
1726
1727 wb = inode_to_wb_and_lock_list(inode);
1728 spin_lock(&inode->i_lock);
1729 /*
1730 * If the inode is now fully clean, then it can be safely removed from
1731 * its writeback list (if any). Otherwise the flusher threads are
1732 * responsible for the writeback lists.
1733 */
1734 if (!(inode->i_state & I_DIRTY_ALL))
1735 inode_cgwb_move_to_attached(inode, wb);
1736 spin_unlock(&wb->list_lock);
1737 inode_sync_complete(inode);
1738 out:
1739 spin_unlock(&inode->i_lock);
1740 return ret;
1741 }
1742
1743 static long writeback_chunk_size(struct bdi_writeback *wb,
1744 struct wb_writeback_work *work)
1745 {
1746 long pages;
1747
1748 /*
1749 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1750 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1751 * here avoids calling into writeback_inodes_wb() more than once.
1752 *
1753 * The intended call sequence for WB_SYNC_ALL writeback is:
1754 *
1755 * wb_writeback()
1756 * writeback_sb_inodes() <== called only once
1757 * write_cache_pages() <== called once for each inode
1758 * (quickly) tag currently dirty pages
1759 * (maybe slowly) sync all tagged pages
1760 */
1761 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1762 pages = LONG_MAX;
1763 else {
1764 pages = min(wb->avg_write_bandwidth / 2,
1765 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1766 pages = min(pages, work->nr_pages);
1767 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1768 MIN_WRITEBACK_PAGES);
1769 }
1770
1771 return pages;
1772 }
1773
1774 /*
1775 * Write a portion of b_io inodes which belong to @sb.
1776 *
1777 * Return the number of pages and/or inodes written.
1778 *
1779 * NOTE! This is called with wb->list_lock held, and will
1780 * unlock and relock that for each inode it ends up doing
1781 * IO for.
1782 */
1783 static long writeback_sb_inodes(struct super_block *sb,
1784 struct bdi_writeback *wb,
1785 struct wb_writeback_work *work)
1786 {
1787 struct writeback_control wbc = {
1788 .sync_mode = work->sync_mode,
1789 .tagged_writepages = work->tagged_writepages,
1790 .for_kupdate = work->for_kupdate,
1791 .for_background = work->for_background,
1792 .for_sync = work->for_sync,
1793 .range_cyclic = work->range_cyclic,
1794 .range_start = 0,
1795 .range_end = LLONG_MAX,
1796 };
1797 unsigned long start_time = jiffies;
1798 long write_chunk;
1799 long wrote = 0; /* count both pages and inodes */
1800
1801 while (!list_empty(&wb->b_io)) {
1802 struct inode *inode = wb_inode(wb->b_io.prev);
1803 struct bdi_writeback *tmp_wb;
1804
1805 if (inode->i_sb != sb) {
1806 if (work->sb) {
1807 /*
1808 * We only want to write back data for this
1809 * superblock, move all inodes not belonging
1810 * to it back onto the dirty list.
1811 */
1812 redirty_tail(inode, wb);
1813 continue;
1814 }
1815
1816 /*
1817 * The inode belongs to a different superblock.
1818 * Bounce back to the caller to unpin this and
1819 * pin the next superblock.
1820 */
1821 break;
1822 }
1823
1824 /*
1825 * Don't bother with new inodes or inodes being freed, first
1826 * kind does not need periodic writeout yet, and for the latter
1827 * kind writeout is handled by the freer.
1828 */
1829 spin_lock(&inode->i_lock);
1830 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1831 redirty_tail_locked(inode, wb);
1832 spin_unlock(&inode->i_lock);
1833 continue;
1834 }
1835 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1836 /*
1837 * If this inode is locked for writeback and we are not
1838 * doing writeback-for-data-integrity, move it to
1839 * b_more_io so that writeback can proceed with the
1840 * other inodes on s_io.
1841 *
1842 * We'll have another go at writing back this inode
1843 * when we completed a full scan of b_io.
1844 */
1845 spin_unlock(&inode->i_lock);
1846 requeue_io(inode, wb);
1847 trace_writeback_sb_inodes_requeue(inode);
1848 continue;
1849 }
1850 spin_unlock(&wb->list_lock);
1851
1852 /*
1853 * We already requeued the inode if it had I_SYNC set and we
1854 * are doing WB_SYNC_NONE writeback. So this catches only the
1855 * WB_SYNC_ALL case.
1856 */
1857 if (inode->i_state & I_SYNC) {
1858 /* Wait for I_SYNC. This function drops i_lock... */
1859 inode_sleep_on_writeback(inode);
1860 /* Inode may be gone, start again */
1861 spin_lock(&wb->list_lock);
1862 continue;
1863 }
1864 inode->i_state |= I_SYNC;
1865 wbc_attach_and_unlock_inode(&wbc, inode);
1866
1867 write_chunk = writeback_chunk_size(wb, work);
1868 wbc.nr_to_write = write_chunk;
1869 wbc.pages_skipped = 0;
1870
1871 /*
1872 * We use I_SYNC to pin the inode in memory. While it is set
1873 * evict_inode() will wait so the inode cannot be freed.
1874 */
1875 __writeback_single_inode(inode, &wbc);
1876
1877 wbc_detach_inode(&wbc);
1878 work->nr_pages -= write_chunk - wbc.nr_to_write;
1879 wrote += write_chunk - wbc.nr_to_write;
1880
1881 if (need_resched()) {
1882 /*
1883 * We're trying to balance between building up a nice
1884 * long list of IOs to improve our merge rate, and
1885 * getting those IOs out quickly for anyone throttling
1886 * in balance_dirty_pages(). cond_resched() doesn't
1887 * unplug, so get our IOs out the door before we
1888 * give up the CPU.
1889 */
1890 blk_flush_plug(current);
1891 cond_resched();
1892 }
1893
1894 /*
1895 * Requeue @inode if still dirty. Be careful as @inode may
1896 * have been switched to another wb in the meantime.
1897 */
1898 tmp_wb = inode_to_wb_and_lock_list(inode);
1899 spin_lock(&inode->i_lock);
1900 if (!(inode->i_state & I_DIRTY_ALL))
1901 wrote++;
1902 requeue_inode(inode, tmp_wb, &wbc);
1903 inode_sync_complete(inode);
1904 spin_unlock(&inode->i_lock);
1905
1906 if (unlikely(tmp_wb != wb)) {
1907 spin_unlock(&tmp_wb->list_lock);
1908 spin_lock(&wb->list_lock);
1909 }
1910
1911 /*
1912 * bail out to wb_writeback() often enough to check
1913 * background threshold and other termination conditions.
1914 */
1915 if (wrote) {
1916 if (time_is_before_jiffies(start_time + HZ / 10UL))
1917 break;
1918 if (work->nr_pages <= 0)
1919 break;
1920 }
1921 }
1922 return wrote;
1923 }
1924
1925 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1926 struct wb_writeback_work *work)
1927 {
1928 unsigned long start_time = jiffies;
1929 long wrote = 0;
1930
1931 while (!list_empty(&wb->b_io)) {
1932 struct inode *inode = wb_inode(wb->b_io.prev);
1933 struct super_block *sb = inode->i_sb;
1934
1935 if (!trylock_super(sb)) {
1936 /*
1937 * trylock_super() may fail consistently due to
1938 * s_umount being grabbed by someone else. Don't use
1939 * requeue_io() to avoid busy retrying the inode/sb.
1940 */
1941 redirty_tail(inode, wb);
1942 continue;
1943 }
1944 wrote += writeback_sb_inodes(sb, wb, work);
1945 up_read(&sb->s_umount);
1946
1947 /* refer to the same tests at the end of writeback_sb_inodes */
1948 if (wrote) {
1949 if (time_is_before_jiffies(start_time + HZ / 10UL))
1950 break;
1951 if (work->nr_pages <= 0)
1952 break;
1953 }
1954 }
1955 /* Leave any unwritten inodes on b_io */
1956 return wrote;
1957 }
1958
1959 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1960 enum wb_reason reason)
1961 {
1962 struct wb_writeback_work work = {
1963 .nr_pages = nr_pages,
1964 .sync_mode = WB_SYNC_NONE,
1965 .range_cyclic = 1,
1966 .reason = reason,
1967 };
1968 struct blk_plug plug;
1969
1970 blk_start_plug(&plug);
1971 spin_lock(&wb->list_lock);
1972 if (list_empty(&wb->b_io))
1973 queue_io(wb, &work, jiffies);
1974 __writeback_inodes_wb(wb, &work);
1975 spin_unlock(&wb->list_lock);
1976 blk_finish_plug(&plug);
1977
1978 return nr_pages - work.nr_pages;
1979 }
1980
1981 /*
1982 * Explicit flushing or periodic writeback of "old" data.
1983 *
1984 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1985 * dirtying-time in the inode's address_space. So this periodic writeback code
1986 * just walks the superblock inode list, writing back any inodes which are
1987 * older than a specific point in time.
1988 *
1989 * Try to run once per dirty_writeback_interval. But if a writeback event
1990 * takes longer than a dirty_writeback_interval interval, then leave a
1991 * one-second gap.
1992 *
1993 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1994 * all dirty pages if they are all attached to "old" mappings.
1995 */
1996 static long wb_writeback(struct bdi_writeback *wb,
1997 struct wb_writeback_work *work)
1998 {
1999 unsigned long wb_start = jiffies;
2000 long nr_pages = work->nr_pages;
2001 unsigned long dirtied_before = jiffies;
2002 struct inode *inode;
2003 long progress;
2004 struct blk_plug plug;
2005
2006 blk_start_plug(&plug);
2007 spin_lock(&wb->list_lock);
2008 for (;;) {
2009 /*
2010 * Stop writeback when nr_pages has been consumed
2011 */
2012 if (work->nr_pages <= 0)
2013 break;
2014
2015 /*
2016 * Background writeout and kupdate-style writeback may
2017 * run forever. Stop them if there is other work to do
2018 * so that e.g. sync can proceed. They'll be restarted
2019 * after the other works are all done.
2020 */
2021 if ((work->for_background || work->for_kupdate) &&
2022 !list_empty(&wb->work_list))
2023 break;
2024
2025 /*
2026 * For background writeout, stop when we are below the
2027 * background dirty threshold
2028 */
2029 if (work->for_background && !wb_over_bg_thresh(wb))
2030 break;
2031
2032 /*
2033 * Kupdate and background works are special and we want to
2034 * include all inodes that need writing. Livelock avoidance is
2035 * handled by these works yielding to any other work so we are
2036 * safe.
2037 */
2038 if (work->for_kupdate) {
2039 dirtied_before = jiffies -
2040 msecs_to_jiffies(dirty_expire_interval * 10);
2041 } else if (work->for_background)
2042 dirtied_before = jiffies;
2043
2044 trace_writeback_start(wb, work);
2045 if (list_empty(&wb->b_io))
2046 queue_io(wb, work, dirtied_before);
2047 if (work->sb)
2048 progress = writeback_sb_inodes(work->sb, wb, work);
2049 else
2050 progress = __writeback_inodes_wb(wb, work);
2051 trace_writeback_written(wb, work);
2052
2053 wb_update_bandwidth(wb, wb_start);
2054
2055 /*
2056 * Did we write something? Try for more
2057 *
2058 * Dirty inodes are moved to b_io for writeback in batches.
2059 * The completion of the current batch does not necessarily
2060 * mean the overall work is done. So we keep looping as long
2061 * as made some progress on cleaning pages or inodes.
2062 */
2063 if (progress)
2064 continue;
2065 /*
2066 * No more inodes for IO, bail
2067 */
2068 if (list_empty(&wb->b_more_io))
2069 break;
2070 /*
2071 * Nothing written. Wait for some inode to
2072 * become available for writeback. Otherwise
2073 * we'll just busyloop.
2074 */
2075 trace_writeback_wait(wb, work);
2076 inode = wb_inode(wb->b_more_io.prev);
2077 spin_lock(&inode->i_lock);
2078 spin_unlock(&wb->list_lock);
2079 /* This function drops i_lock... */
2080 inode_sleep_on_writeback(inode);
2081 spin_lock(&wb->list_lock);
2082 }
2083 spin_unlock(&wb->list_lock);
2084 blk_finish_plug(&plug);
2085
2086 return nr_pages - work->nr_pages;
2087 }
2088
2089 /*
2090 * Return the next wb_writeback_work struct that hasn't been processed yet.
2091 */
2092 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2093 {
2094 struct wb_writeback_work *work = NULL;
2095
2096 spin_lock_bh(&wb->work_lock);
2097 if (!list_empty(&wb->work_list)) {
2098 work = list_entry(wb->work_list.next,
2099 struct wb_writeback_work, list);
2100 list_del_init(&work->list);
2101 }
2102 spin_unlock_bh(&wb->work_lock);
2103 return work;
2104 }
2105
2106 static long wb_check_background_flush(struct bdi_writeback *wb)
2107 {
2108 if (wb_over_bg_thresh(wb)) {
2109
2110 struct wb_writeback_work work = {
2111 .nr_pages = LONG_MAX,
2112 .sync_mode = WB_SYNC_NONE,
2113 .for_background = 1,
2114 .range_cyclic = 1,
2115 .reason = WB_REASON_BACKGROUND,
2116 };
2117
2118 return wb_writeback(wb, &work);
2119 }
2120
2121 return 0;
2122 }
2123
2124 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2125 {
2126 unsigned long expired;
2127 long nr_pages;
2128
2129 /*
2130 * When set to zero, disable periodic writeback
2131 */
2132 if (!dirty_writeback_interval)
2133 return 0;
2134
2135 expired = wb->last_old_flush +
2136 msecs_to_jiffies(dirty_writeback_interval * 10);
2137 if (time_before(jiffies, expired))
2138 return 0;
2139
2140 wb->last_old_flush = jiffies;
2141 nr_pages = get_nr_dirty_pages();
2142
2143 if (nr_pages) {
2144 struct wb_writeback_work work = {
2145 .nr_pages = nr_pages,
2146 .sync_mode = WB_SYNC_NONE,
2147 .for_kupdate = 1,
2148 .range_cyclic = 1,
2149 .reason = WB_REASON_PERIODIC,
2150 };
2151
2152 return wb_writeback(wb, &work);
2153 }
2154
2155 return 0;
2156 }
2157
2158 static long wb_check_start_all(struct bdi_writeback *wb)
2159 {
2160 long nr_pages;
2161
2162 if (!test_bit(WB_start_all, &wb->state))
2163 return 0;
2164
2165 nr_pages = get_nr_dirty_pages();
2166 if (nr_pages) {
2167 struct wb_writeback_work work = {
2168 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2169 .sync_mode = WB_SYNC_NONE,
2170 .range_cyclic = 1,
2171 .reason = wb->start_all_reason,
2172 };
2173
2174 nr_pages = wb_writeback(wb, &work);
2175 }
2176
2177 clear_bit(WB_start_all, &wb->state);
2178 return nr_pages;
2179 }
2180
2181
2182 /*
2183 * Retrieve work items and do the writeback they describe
2184 */
2185 static long wb_do_writeback(struct bdi_writeback *wb)
2186 {
2187 struct wb_writeback_work *work;
2188 long wrote = 0;
2189
2190 set_bit(WB_writeback_running, &wb->state);
2191 while ((work = get_next_work_item(wb)) != NULL) {
2192 trace_writeback_exec(wb, work);
2193 wrote += wb_writeback(wb, work);
2194 finish_writeback_work(wb, work);
2195 }
2196
2197 /*
2198 * Check for a flush-everything request
2199 */
2200 wrote += wb_check_start_all(wb);
2201
2202 /*
2203 * Check for periodic writeback, kupdated() style
2204 */
2205 wrote += wb_check_old_data_flush(wb);
2206 wrote += wb_check_background_flush(wb);
2207 clear_bit(WB_writeback_running, &wb->state);
2208
2209 return wrote;
2210 }
2211
2212 /*
2213 * Handle writeback of dirty data for the device backed by this bdi. Also
2214 * reschedules periodically and does kupdated style flushing.
2215 */
2216 void wb_workfn(struct work_struct *work)
2217 {
2218 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2219 struct bdi_writeback, dwork);
2220 long pages_written;
2221
2222 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2223 current->flags |= PF_SWAPWRITE;
2224
2225 if (likely(!current_is_workqueue_rescuer() ||
2226 !test_bit(WB_registered, &wb->state))) {
2227 /*
2228 * The normal path. Keep writing back @wb until its
2229 * work_list is empty. Note that this path is also taken
2230 * if @wb is shutting down even when we're running off the
2231 * rescuer as work_list needs to be drained.
2232 */
2233 do {
2234 pages_written = wb_do_writeback(wb);
2235 trace_writeback_pages_written(pages_written);
2236 } while (!list_empty(&wb->work_list));
2237 } else {
2238 /*
2239 * bdi_wq can't get enough workers and we're running off
2240 * the emergency worker. Don't hog it. Hopefully, 1024 is
2241 * enough for efficient IO.
2242 */
2243 pages_written = writeback_inodes_wb(wb, 1024,
2244 WB_REASON_FORKER_THREAD);
2245 trace_writeback_pages_written(pages_written);
2246 }
2247
2248 if (!list_empty(&wb->work_list))
2249 wb_wakeup(wb);
2250 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2251 wb_wakeup_delayed(wb);
2252
2253 current->flags &= ~PF_SWAPWRITE;
2254 }
2255
2256 /*
2257 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2258 * write back the whole world.
2259 */
2260 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2261 enum wb_reason reason)
2262 {
2263 struct bdi_writeback *wb;
2264
2265 if (!bdi_has_dirty_io(bdi))
2266 return;
2267
2268 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2269 wb_start_writeback(wb, reason);
2270 }
2271
2272 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2273 enum wb_reason reason)
2274 {
2275 rcu_read_lock();
2276 __wakeup_flusher_threads_bdi(bdi, reason);
2277 rcu_read_unlock();
2278 }
2279
2280 /*
2281 * Wakeup the flusher threads to start writeback of all currently dirty pages
2282 */
2283 void wakeup_flusher_threads(enum wb_reason reason)
2284 {
2285 struct backing_dev_info *bdi;
2286
2287 /*
2288 * If we are expecting writeback progress we must submit plugged IO.
2289 */
2290 if (blk_needs_flush_plug(current))
2291 blk_schedule_flush_plug(current);
2292
2293 rcu_read_lock();
2294 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2295 __wakeup_flusher_threads_bdi(bdi, reason);
2296 rcu_read_unlock();
2297 }
2298
2299 /*
2300 * Wake up bdi's periodically to make sure dirtytime inodes gets
2301 * written back periodically. We deliberately do *not* check the
2302 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2303 * kernel to be constantly waking up once there are any dirtytime
2304 * inodes on the system. So instead we define a separate delayed work
2305 * function which gets called much more rarely. (By default, only
2306 * once every 12 hours.)
2307 *
2308 * If there is any other write activity going on in the file system,
2309 * this function won't be necessary. But if the only thing that has
2310 * happened on the file system is a dirtytime inode caused by an atime
2311 * update, we need this infrastructure below to make sure that inode
2312 * eventually gets pushed out to disk.
2313 */
2314 static void wakeup_dirtytime_writeback(struct work_struct *w);
2315 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2316
2317 static void wakeup_dirtytime_writeback(struct work_struct *w)
2318 {
2319 struct backing_dev_info *bdi;
2320
2321 rcu_read_lock();
2322 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2323 struct bdi_writeback *wb;
2324
2325 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2326 if (!list_empty(&wb->b_dirty_time))
2327 wb_wakeup(wb);
2328 }
2329 rcu_read_unlock();
2330 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2331 }
2332
2333 static int __init start_dirtytime_writeback(void)
2334 {
2335 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2336 return 0;
2337 }
2338 __initcall(start_dirtytime_writeback);
2339
2340 int dirtytime_interval_handler(struct ctl_table *table, int write,
2341 void *buffer, size_t *lenp, loff_t *ppos)
2342 {
2343 int ret;
2344
2345 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2346 if (ret == 0 && write)
2347 mod_delayed_work(system_wq, &dirtytime_work, 0);
2348 return ret;
2349 }
2350
2351 /**
2352 * __mark_inode_dirty - internal function to mark an inode dirty
2353 *
2354 * @inode: inode to mark
2355 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2356 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2357 * with I_DIRTY_PAGES.
2358 *
2359 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2360 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2361 *
2362 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2363 * instead of calling this directly.
2364 *
2365 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2366 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2367 * even if they are later hashed, as they will have been marked dirty already.
2368 *
2369 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2370 *
2371 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2372 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2373 * the kernel-internal blockdev inode represents the dirtying time of the
2374 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2375 * page->mapping->host, so the page-dirtying time is recorded in the internal
2376 * blockdev inode.
2377 */
2378 void __mark_inode_dirty(struct inode *inode, int flags)
2379 {
2380 struct super_block *sb = inode->i_sb;
2381 int dirtytime = 0;
2382
2383 trace_writeback_mark_inode_dirty(inode, flags);
2384
2385 if (flags & I_DIRTY_INODE) {
2386 /*
2387 * Notify the filesystem about the inode being dirtied, so that
2388 * (if needed) it can update on-disk fields and journal the
2389 * inode. This is only needed when the inode itself is being
2390 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2391 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2392 */
2393 trace_writeback_dirty_inode_start(inode, flags);
2394 if (sb->s_op->dirty_inode)
2395 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2396 trace_writeback_dirty_inode(inode, flags);
2397
2398 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2399 flags &= ~I_DIRTY_TIME;
2400 } else {
2401 /*
2402 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2403 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2404 * in one call to __mark_inode_dirty().)
2405 */
2406 dirtytime = flags & I_DIRTY_TIME;
2407 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2408 }
2409
2410 /*
2411 * Paired with smp_mb() in __writeback_single_inode() for the
2412 * following lockless i_state test. See there for details.
2413 */
2414 smp_mb();
2415
2416 if (((inode->i_state & flags) == flags) ||
2417 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2418 return;
2419
2420 spin_lock(&inode->i_lock);
2421 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2422 goto out_unlock_inode;
2423 if ((inode->i_state & flags) != flags) {
2424 const int was_dirty = inode->i_state & I_DIRTY;
2425
2426 inode_attach_wb(inode, NULL);
2427
2428 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2429 if (flags & I_DIRTY_INODE)
2430 inode->i_state &= ~I_DIRTY_TIME;
2431 inode->i_state |= flags;
2432
2433 /*
2434 * If the inode is queued for writeback by flush worker, just
2435 * update its dirty state. Once the flush worker is done with
2436 * the inode it will place it on the appropriate superblock
2437 * list, based upon its state.
2438 */
2439 if (inode->i_state & I_SYNC_QUEUED)
2440 goto out_unlock_inode;
2441
2442 /*
2443 * Only add valid (hashed) inodes to the superblock's
2444 * dirty list. Add blockdev inodes as well.
2445 */
2446 if (!S_ISBLK(inode->i_mode)) {
2447 if (inode_unhashed(inode))
2448 goto out_unlock_inode;
2449 }
2450 if (inode->i_state & I_FREEING)
2451 goto out_unlock_inode;
2452
2453 /*
2454 * If the inode was already on b_dirty/b_io/b_more_io, don't
2455 * reposition it (that would break b_dirty time-ordering).
2456 */
2457 if (!was_dirty) {
2458 struct bdi_writeback *wb;
2459 struct list_head *dirty_list;
2460 bool wakeup_bdi = false;
2461
2462 wb = locked_inode_to_wb_and_lock_list(inode);
2463
2464 inode->dirtied_when = jiffies;
2465 if (dirtytime)
2466 inode->dirtied_time_when = jiffies;
2467
2468 if (inode->i_state & I_DIRTY)
2469 dirty_list = &wb->b_dirty;
2470 else
2471 dirty_list = &wb->b_dirty_time;
2472
2473 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2474 dirty_list);
2475
2476 spin_unlock(&wb->list_lock);
2477 trace_writeback_dirty_inode_enqueue(inode);
2478
2479 /*
2480 * If this is the first dirty inode for this bdi,
2481 * we have to wake-up the corresponding bdi thread
2482 * to make sure background write-back happens
2483 * later.
2484 */
2485 if (wakeup_bdi &&
2486 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2487 wb_wakeup_delayed(wb);
2488 return;
2489 }
2490 }
2491 out_unlock_inode:
2492 spin_unlock(&inode->i_lock);
2493 }
2494 EXPORT_SYMBOL(__mark_inode_dirty);
2495
2496 /*
2497 * The @s_sync_lock is used to serialise concurrent sync operations
2498 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2499 * Concurrent callers will block on the s_sync_lock rather than doing contending
2500 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2501 * has been issued up to the time this function is enter is guaranteed to be
2502 * completed by the time we have gained the lock and waited for all IO that is
2503 * in progress regardless of the order callers are granted the lock.
2504 */
2505 static void wait_sb_inodes(struct super_block *sb)
2506 {
2507 LIST_HEAD(sync_list);
2508
2509 /*
2510 * We need to be protected against the filesystem going from
2511 * r/o to r/w or vice versa.
2512 */
2513 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2514
2515 mutex_lock(&sb->s_sync_lock);
2516
2517 /*
2518 * Splice the writeback list onto a temporary list to avoid waiting on
2519 * inodes that have started writeback after this point.
2520 *
2521 * Use rcu_read_lock() to keep the inodes around until we have a
2522 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2523 * the local list because inodes can be dropped from either by writeback
2524 * completion.
2525 */
2526 rcu_read_lock();
2527 spin_lock_irq(&sb->s_inode_wblist_lock);
2528 list_splice_init(&sb->s_inodes_wb, &sync_list);
2529
2530 /*
2531 * Data integrity sync. Must wait for all pages under writeback, because
2532 * there may have been pages dirtied before our sync call, but which had
2533 * writeout started before we write it out. In which case, the inode
2534 * may not be on the dirty list, but we still have to wait for that
2535 * writeout.
2536 */
2537 while (!list_empty(&sync_list)) {
2538 struct inode *inode = list_first_entry(&sync_list, struct inode,
2539 i_wb_list);
2540 struct address_space *mapping = inode->i_mapping;
2541
2542 /*
2543 * Move each inode back to the wb list before we drop the lock
2544 * to preserve consistency between i_wb_list and the mapping
2545 * writeback tag. Writeback completion is responsible to remove
2546 * the inode from either list once the writeback tag is cleared.
2547 */
2548 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2549
2550 /*
2551 * The mapping can appear untagged while still on-list since we
2552 * do not have the mapping lock. Skip it here, wb completion
2553 * will remove it.
2554 */
2555 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2556 continue;
2557
2558 spin_unlock_irq(&sb->s_inode_wblist_lock);
2559
2560 spin_lock(&inode->i_lock);
2561 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2562 spin_unlock(&inode->i_lock);
2563
2564 spin_lock_irq(&sb->s_inode_wblist_lock);
2565 continue;
2566 }
2567 __iget(inode);
2568 spin_unlock(&inode->i_lock);
2569 rcu_read_unlock();
2570
2571 /*
2572 * We keep the error status of individual mapping so that
2573 * applications can catch the writeback error using fsync(2).
2574 * See filemap_fdatawait_keep_errors() for details.
2575 */
2576 filemap_fdatawait_keep_errors(mapping);
2577
2578 cond_resched();
2579
2580 iput(inode);
2581
2582 rcu_read_lock();
2583 spin_lock_irq(&sb->s_inode_wblist_lock);
2584 }
2585 spin_unlock_irq(&sb->s_inode_wblist_lock);
2586 rcu_read_unlock();
2587 mutex_unlock(&sb->s_sync_lock);
2588 }
2589
2590 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2591 enum wb_reason reason, bool skip_if_busy)
2592 {
2593 struct backing_dev_info *bdi = sb->s_bdi;
2594 DEFINE_WB_COMPLETION(done, bdi);
2595 struct wb_writeback_work work = {
2596 .sb = sb,
2597 .sync_mode = WB_SYNC_NONE,
2598 .tagged_writepages = 1,
2599 .done = &done,
2600 .nr_pages = nr,
2601 .reason = reason,
2602 };
2603
2604 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2605 return;
2606 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2607
2608 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2609 wb_wait_for_completion(&done);
2610 }
2611
2612 /**
2613 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2614 * @sb: the superblock
2615 * @nr: the number of pages to write
2616 * @reason: reason why some writeback work initiated
2617 *
2618 * Start writeback on some inodes on this super_block. No guarantees are made
2619 * on how many (if any) will be written, and this function does not wait
2620 * for IO completion of submitted IO.
2621 */
2622 void writeback_inodes_sb_nr(struct super_block *sb,
2623 unsigned long nr,
2624 enum wb_reason reason)
2625 {
2626 __writeback_inodes_sb_nr(sb, nr, reason, false);
2627 }
2628 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2629
2630 /**
2631 * writeback_inodes_sb - writeback dirty inodes from given super_block
2632 * @sb: the superblock
2633 * @reason: reason why some writeback work was initiated
2634 *
2635 * Start writeback on some inodes on this super_block. No guarantees are made
2636 * on how many (if any) will be written, and this function does not wait
2637 * for IO completion of submitted IO.
2638 */
2639 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2640 {
2641 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2642 }
2643 EXPORT_SYMBOL(writeback_inodes_sb);
2644
2645 /**
2646 * try_to_writeback_inodes_sb - try to start writeback if none underway
2647 * @sb: the superblock
2648 * @reason: reason why some writeback work was initiated
2649 *
2650 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2651 */
2652 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2653 {
2654 if (!down_read_trylock(&sb->s_umount))
2655 return;
2656
2657 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2658 up_read(&sb->s_umount);
2659 }
2660 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2661
2662 /**
2663 * sync_inodes_sb - sync sb inode pages
2664 * @sb: the superblock
2665 *
2666 * This function writes and waits on any dirty inode belonging to this
2667 * super_block.
2668 */
2669 void sync_inodes_sb(struct super_block *sb)
2670 {
2671 struct backing_dev_info *bdi = sb->s_bdi;
2672 DEFINE_WB_COMPLETION(done, bdi);
2673 struct wb_writeback_work work = {
2674 .sb = sb,
2675 .sync_mode = WB_SYNC_ALL,
2676 .nr_pages = LONG_MAX,
2677 .range_cyclic = 0,
2678 .done = &done,
2679 .reason = WB_REASON_SYNC,
2680 .for_sync = 1,
2681 };
2682
2683 /*
2684 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2685 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2686 * bdi_has_dirty() need to be written out too.
2687 */
2688 if (bdi == &noop_backing_dev_info)
2689 return;
2690 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2691
2692 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2693 bdi_down_write_wb_switch_rwsem(bdi);
2694 bdi_split_work_to_wbs(bdi, &work, false);
2695 wb_wait_for_completion(&done);
2696 bdi_up_write_wb_switch_rwsem(bdi);
2697
2698 wait_sb_inodes(sb);
2699 }
2700 EXPORT_SYMBOL(sync_inodes_sb);
2701
2702 /**
2703 * write_inode_now - write an inode to disk
2704 * @inode: inode to write to disk
2705 * @sync: whether the write should be synchronous or not
2706 *
2707 * This function commits an inode to disk immediately if it is dirty. This is
2708 * primarily needed by knfsd.
2709 *
2710 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2711 */
2712 int write_inode_now(struct inode *inode, int sync)
2713 {
2714 struct writeback_control wbc = {
2715 .nr_to_write = LONG_MAX,
2716 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2717 .range_start = 0,
2718 .range_end = LLONG_MAX,
2719 };
2720
2721 if (!mapping_can_writeback(inode->i_mapping))
2722 wbc.nr_to_write = 0;
2723
2724 might_sleep();
2725 return writeback_single_inode(inode, &wbc);
2726 }
2727 EXPORT_SYMBOL(write_inode_now);
2728
2729 /**
2730 * sync_inode - write an inode and its pages to disk.
2731 * @inode: the inode to sync
2732 * @wbc: controls the writeback mode
2733 *
2734 * sync_inode() will write an inode and its pages to disk. It will also
2735 * correctly update the inode on its superblock's dirty inode lists and will
2736 * update inode->i_state.
2737 *
2738 * The caller must have a ref on the inode.
2739 */
2740 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2741 {
2742 return writeback_single_inode(inode, wbc);
2743 }
2744 EXPORT_SYMBOL(sync_inode);
2745
2746 /**
2747 * sync_inode_metadata - write an inode to disk
2748 * @inode: the inode to sync
2749 * @wait: wait for I/O to complete.
2750 *
2751 * Write an inode to disk and adjust its dirty state after completion.
2752 *
2753 * Note: only writes the actual inode, no associated data or other metadata.
2754 */
2755 int sync_inode_metadata(struct inode *inode, int wait)
2756 {
2757 struct writeback_control wbc = {
2758 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2759 .nr_to_write = 0, /* metadata-only */
2760 };
2761
2762 return sync_inode(inode, &wbc);
2763 }
2764 EXPORT_SYMBOL(sync_inode_metadata);